EP2001003B1 - Procédé et système dans une véhicule pour d'évitement de collision. - Google Patents

Procédé et système dans une véhicule pour d'évitement de collision. Download PDF

Info

Publication number
EP2001003B1
EP2001003B1 EP20070108940 EP07108940A EP2001003B1 EP 2001003 B1 EP2001003 B1 EP 2001003B1 EP 20070108940 EP20070108940 EP 20070108940 EP 07108940 A EP07108940 A EP 07108940A EP 2001003 B1 EP2001003 B1 EP 2001003B1
Authority
EP
European Patent Office
Prior art keywords
obstacle
vehicle
host
collision avoidance
host vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20070108940
Other languages
German (de)
English (en)
Other versions
EP2001003A1 (fr
Inventor
Mattias Brännström
Jonas Jansson
Christian Grante
Tom Pilutti
Roger Trombley
Jessica Bigas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to EP20070108940 priority Critical patent/EP2001003B1/fr
Publication of EP2001003A1 publication Critical patent/EP2001003A1/fr
Application granted granted Critical
Publication of EP2001003B1 publication Critical patent/EP2001003B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/163Decentralised systems, e.g. inter-vehicle communication involving continuous checking

Definitions

  • the invention relates to a method for an in-vehicle collision avoidance system according to the preamble of claim 1.
  • the invention furthermore relates to an in-vehicle collision avoidance system according to the preamble of claim 8.
  • the invention relates to a method performed for analysing the threat level for a host vehicle carrying means for performing analyses of a traffic scenario including the host vehicle and other objects including an obstacle vehicle.
  • the invention also relates to a system present in a host vehicle, which system includes means for analysing the threat level for a host vehicle, which system includes means for performing analyses of a traffic scenario including the host vehicle and other objects including an obstacle vehicle.
  • FCAS forward collision avoidance system
  • sensors such as RADAR (RAdio Detection And Ranging), LIDAR (LIght Detection And Ranging) and cameras to monitor the region in front of the host vehicle.
  • RADAR RAdio Detection And Ranging
  • LIDAR LIght Detection And Ranging
  • a tracking algorithm is used to estimate the state of the objects ahead and a decision algorithm uses the estimated states to determine any action, e.g. warning the driver, autonomous braking or steering. Examples of forward collision avoidance systems are provided in EP1717778 and DE 102 57 842 .
  • the object of the invention is thus to further improve a method for an in-vehicle collision avoidance system and an in-vehicle collision avoidance system in a manner such that the risk for unnecessary intervention is reduced.
  • the decision algorithms in most automotive forward collision systems continuously evaluate the threat for a collision with an obstacle ahead.
  • a standard approach is to evaluate if any manoeuvres exist that avoid a collision with current obstacles. For example one can evaluate the lateral and longitudinal acceleration required to avoid collision with an obstacle.
  • the possibility that a driver of an obstacle vehicle can avoid a possible collision is not considered.
  • a method for an in vehicle collision avoidance system and an in-vehicle collision avoidance system are improved by considering the possibility that a driver of an obstacle vehicle can avoid a possible collision are accounted for by determining an obstacle vehicle collision avoidance effort value representing an effort for the obstacle vehicle to avoid a collision with the host vehicle.
  • the risk for unnecessary intervention is reduced by determining a host vehicle intervention based on a retrieved host vehicle collision avoidance effort value and the determined obstacle vehicle collision avoidance effort value.
  • the collision threat is evaluated by first evaluating the effort required by the host vehicle to avoid a collision assuming that the obstacle maintains a constant maneuver. Secondly the effort for the obstacle vehicle to avoid the host vehicle, assuming a constant maneuver for the host, is evaluated.
  • the threat of a having a collision is based on the effort both of the host and of the obstacle to avoid a collision when the other vehicle keeps a constant maneuver.
  • the possibility of calculating the joint effort for both vehicles to avoid a collision by a coordinated avoidance maneuver may preferably disregarded, since it is difficult to predict a joint action taken by both the host vehicle driver and obstacle vehicle driver with good accuracy.
  • the invention is particularly suitable for any situation where there is a large probability that the driver of the obstacle vehicle is observing of the host vehicle. This also includes, but is not limited to, scenarios where the relative heading angle is not large, e.g. traffic situations where the obstacle vehicle is in the host's blind spot.
  • the invention is however applicable for evaluating the collision threat in scenarios where there is a large relative heading angle, typically larger than 45 deg., where 0 deg. means vehicle traveling in the same direction and 180 deg. the opposite direction between the host vehicle, which carries the collision avoidance system and the obstacle vehicle.
  • a suitable range for the relative heading angle ⁇ is 30° ⁇ ⁇ ⁇ 150° or -150° ⁇ ⁇ ⁇ -30°.
  • the collision threat in an accident scenario is determined by evaluating the effort for both the host vehicle and the obstacle vehicle to avoid a collision.
  • an alarm should be issued if this effort is high for both vehicles.
  • An alarm here, may implicate any /or a combination of the following actions: warning to the driver, warning the driver of the obstacle, autonomous braking, autonomous steering or other actions to reduce the probability of injury.
  • the effort for the host vehicle to avoid a collision is defined as E 1 ⁇ 0 and the effort for the other vehicle is defined as as E 2 ⁇ 0.
  • the evaluation of the effort E 1 and E 2 may include other objects and information about infrastructure.
  • an alarm is issued if min ( E 1 , E 2 ) > E th , where E th defines a threshold value for when a collision is considered to be imminent.
  • the determination of a host vehicle intervention based on said a host vehicle collision avoidance effort value and obstacle vehicle collision avoidance effort value is applied for Constant Acceleration Maneuvers as is explained in the following example.
  • a common metric to measure the collision threat is to calculate the lateral acceleration required to avoid collision, i.e. evaluation of the possibility to avoid collision by means of steering.
  • the lateral acceleration capability is limited by tire-to-road friction.
  • the maximum lateral acceleration for a passenger car is typically 1 g ⁇ 9.8 m/s 2 .
  • the set of feasible maneuvers is given by [-9.8 9.8] m/s 2 , in this case.
  • ⁇ needed needed acceleration to avoid a collision (m/s 2 ) x i , 0 j lateral or longitudinal position for obstacle or host vehicle (m) x 0 j velocity for obstacle or host (m/s) x 0 j acceleration for obstacle or host (m/s 2 ) w j vehicle width for obstacle or host (m)
  • (2) gives the possible lateral accelerations to avoid a collision.
  • Two solutions are yielded by (2) one is for passing to the right of the obstacle and the other one is for passing to the left of the obstacle, see Figure 1 .
  • the obstacles steering threat number STN obstacle , i.e. the effort for the obstacle to avoid the host, is calculated correspondingly.
  • Another common metric to evaluate the collision threat is by the longitudinal acceleration to avoid collision, this is often considered to correspond to how much braking is required to avoid a collision.
  • Figure 2 illustrates a crossing scenario.
  • the host can either accelerate to pass before the obstacle or brake sufficiently hard for the obstacle to pass through the host path before a collision occurs.
  • an obstacle vehicle 1 having a heading direction 2 which intersects the heading direction 3 of a host vehicle is shown.
  • the relative heading angle that is the angle between the respective heading direction is denoted by ⁇ .
  • Equation (6) Since the relative acceleration is given by Equation (6).
  • ATN and BTN are chosen to describe the longitudinal effort to avoid a collision by braking or accelerating.
  • the longitudinal acceleration to avoid collision is calculated both for the host x needed , long host and the obstacle x needed , long obstacle .
  • TN host represents a host vehicle collision avoidance effort value indicating an effort for a host vehicle to avoid a collision with the obstacle vehicle
  • TN obstacle represents an obstacle vehicle collision avoidance effort value indicating an effort for an obstacle vehicle to avoid a collision with the host vehicle.
  • a block scheme of a method according to the invention is illustrated.
  • a first method step S10 the presence of an obstacle vehicle having a heading direction which intersects a heading direction of a host vehicle is detected.
  • the method step S10 utilises input data from sensor means such as a radar, lidar, camera or the like which are capable of detecting an obstacle vehicle.
  • the sensor means furthermore determines the speed of the obstacle vehicle relative to the host vehicle and optionally the acceleration of the obstacle vehicle.
  • a future path estimator estimates a future path of the obstacle vehicle from the input data collected by the sensor means.
  • the future path may be determined based on the assumption that the obstacle vehicle will progress under a constant manoeuvre with constant acceleration or optionally that the obstacle vehicle will deviate from a constant manoeuvre based on assumed behaviours that a driver may undertake. Different behaviour may be assigned with different probability weights.
  • the future path estimator suitable utilises a Kalman filtering process to assign probable future path of the obstacle vehicle. Future path estimators are well known in the art.
  • Suitable future path estimators are described in A. Eidehall, Tracking and threat assessment for automotive collision avoidance, . PhD thesis, Linköping University, Linköping, Sweden, 2005 . Linköping Studies in Science and Technology. Dissertations No. 1066 or J. Jansson. Collision Avoidance Theory with Application to Automotive Collision Mitigation. PhD thesis, Linköping University, Linköping, Sweden, 2005 . Linköping Studies in Science and Technology. Dissertations No. 950 .
  • An obstacle vehicle is defined as a vehicle having a heading direction which intersects a heading direction of a host vehicle. Vehicles which do not have a future path having a heading direction which intersects a heading direction of a host vehicle are not considered as potential hazardous objects.
  • a host vehicle collision avoidance effort value representing an effort for a host vehicle to avoid a collision with the obstacle vehicle is determined.
  • Determination of vehicle collision avoidance effort values are well known in the art. In the broadest aspect of the invention any known method for determining a host vehicle collision avoidance effort value may be used. A suitable method is described above, where the host vehicle collision avoidance value is determined under the assumption that the obstacle vehicle performs a constant manoeuvre under a constant acceleration. According to this method determination of the host vehicle collision avoidance effort value includes determination of required longitudinal acceleration of the host vehicle in order to avoid collision with the obstacle vehicle, when assuming that the obstacle vehicle performs a constant manoeuvre.
  • the determination of the obstacle vehicle collision avoidance effort value may include determination of required longitudinal acceleration of the obstacle vehicle in order to avoid collision with the host vehicle, when assuming that the host vehicle performs a constant manoeuvre. Further examples of how to establish a host vehicle collision avoidance value are described in A. Eidehall, Tracking and threat assessment for automotive collision avoidance, . PhD thesis, Linköping University, Linköping, Sweden, 2005 . Linköping Studies in Science and Technology. Dissertations No. 1066 ; J. Jansson. Collision Avoidance Theory with Application to Automotive Collision Mitigation. PhD thesis, Linköping University, Linköping, Sweden, 2005 . Linköping Studies in Science and Technology. Dissertations No.
  • an obstacle vehicle collision avoidance effort value representing an effort for the obstacle vehicle to avoid a collision with the host vehicle is determined.
  • the obstacle vehicle collision avoidance value is determined under the assumption that the host vehicle performs a constant manoeuvre under a constant acceleration. Determination of the obstacle vehicle collision avoidance effort value therefore advantageously includes determination of required longitudinal acceleration of the obstacle vehicle in order to avoid collision with the host vehicle, when assuming that the host vehicle performs a constant manoeuvre. Furthermore, determination of the host vehicle collision avoidance effort value preferably includes determination of required lateral acceleration of the host vehicle in order to avoid collision with the obstacle vehicle, when assuming that the obstacle vehicle performs a constant manoeuvre.
  • the obstacle vehicle collision avoidance value is determined in the host vehicle with use of input data from the sensor system carried by the host vehicle.
  • the method does not require that the obstacle vehicle is equipped with a system for determining an obstacle vehicle collision avoidance effort value since all necessary equipment for performing the method is carried by the host vehicle.
  • the obstacle vehicle collision avoidance effort value may be determined using the same principles as determining host vehicle collision avoidance effort values by methods known in the art while applying the principles on the obstacle vehicle rather than on the host vehicle.
  • a host vehicle intervention based on said a host vehicle collision avoidance effort value and obstacle vehicle collision avoidance effort value is determined.
  • the intervention can consist in activation of forced steering, activation of brakes or simply alerting the driver by indicator means.
  • Suitable means for performing the interventions are well known in the art. Such means are for instance disclosed in the following references: US 6607255 , US 6559762 , US 6659572 , US 6655749 , US 6517172 , US 6523912 , US 6560525 , or US 6677855 .
  • intervention is made in the event an intervention is made in the event the minimum of the host vehicle collision avoidance effort value and the obstacle vehicle collision avoidance effort value exceeds a threshold value.
  • This embodiment is particularly suitable since experience has shown that active safety systems tend to underestimate the capacity of drivers to adapt to traffic scenarios.
  • this embodiment is advantageous in at road crossings where one of the roads is a priority road and traffic on the other road has a duty to yield.
  • method for in-vehicle collision avoidance is restricted to traffic scenarios where a relative heading angle ⁇ between the host vehicle and the obstacle vehicle is such that 30° ⁇ ⁇ ⁇ 150° or -150° ⁇ ⁇ ⁇ -30°.
  • FIG 4 a schematic drawing of a system 10 for in-vehicle collision is shown.
  • the in-vehicle collision avoidance system comprises avoidance:
  • the means 20 for detecting the presence of an obstacle vehicle having a heading direction which intersects a heading direction of a host vehicle includes sensor means 21 such as a radar, lidar, camera or the like which are capable of detecting an obstacle vehicle.
  • the sensor means furthermore determines the speed of the obstacle vehicle relative to the host vehicle and optionally the acceleration of the obstacle vehicle.
  • a future path estimator 22 for the obstacle vehicle estimates a future path of the obstacle vehicle from the input data collected by the sensor means.
  • the future path of the obstacle vehicle may preferably be determined based on the assumption that the obstacle vehicle will progress under a constant manoeuvre with constant acceleration as is explained in detail above or optionally that the obstacle vehicle will deviate from a constant manoeuvre based on assumed behaviours that a driver may undertake. Different behaviour may be assigned with different probability weights.
  • Such a future path estimator suitable utilises a Kalman filtering process to assign probable future path of the obstacle vehicle.
  • a future path estimator 23 for the host vehicle estimates a future path of the obstacle vehicle from the input data collected by sensor means.
  • the sensor means preferably includes input from an on board speedometer, and vehicle yaw rate sensors.
  • An input sensor from accelerometers may also be used.
  • the future path of the host vehicle may be determined based on the assumption that the obstacle vehicle will progress under a constant manoeuvre with constant acceleration or optionally that the obstacle vehicle will deviate from a constant manoeuvre based on assumed behaviours that a driver may undertake. Different behaviour may be assigned with different probability weights.
  • Such a future path estimator suitable utilises a Kalman filtering process to assign probable future path of the obstacle vehicle.
  • Suitable future path estimators for the obstacle vehicle which may be used in the system disclosed herein are disclosed in the references A. Eidehall, Tracking and threat assessment for automotive collision avoidance, . PhD thesis, Linköping University, Linköping, Sweden, 2005 . Linköping Studies in Science and Technology. Dissertations No.
  • an assessment is made of whether the heading direction of the host vehicle intersects the heading direction of the obstacle vehicle. This assessment is made in an obstacle vehicle identification block 25.
  • a host vehicle collision avoidance effort value representing an effort for a host vehicle to avoid a collision with the obstacle vehicle is determined in the means 30 for determining a host vehicle collision avoidance effort value.
  • the means 30 for determining the host vehicle collision avoidance effort value assess the effort required by the host to avoid a collision with the obstacle vehicle.
  • the effort value is suitably calculated as described above.
  • the means 30 for determination of the host vehicle collision avoidance effort value are preferably arranged to include determination of required longitudinal acceleration of the host vehicle in order to avoid collision with the obstacle vehicle, when assuming that the obstacle vehicle performs a constant manoeuvre, when determining the host vehicle collision avoidance effort value.
  • Said means 30 for determination of the host vehicle collision avoidance effort value may furthermore be arranged to include determination of required lateral acceleration of the host vehicle in order to avoid collision with the obstacle vehicle, under assumption that the obstacle vehicle performs a constant manoeuvre, when determining the host vehicle collision avoidance effort value
  • an obstacle vehicle collision avoidance effort value representing an effort for an obstacle vehicle to avoid a collision with the host vehicle is determined in the means 40 for determining an obstacle vehicle collision avoidance effort value.
  • the means 40 for determining an obstacle vehicle collision avoidance effort value assess the effort required by the obstacle vehicle to avoid a collision with the host vehicle.
  • the effort value is suitably calculated as described above.
  • the means 40 for determination of the obstacle vehicle collision avoidance effort value are thus arranged to include determination of required longitudinal acceleration of the obstacle vehicle in order to avoid collision with the host vehicle, under assumption that the host vehicle performs a constant manoeuvre, when determining the obstacle vehicle collision avoidance effort value.
  • the means 40 for determination of the obstacle vehicle collision avoidance effort value may furthermore be arranged to include determination of required lateral acceleration of the obstacle vehicle in order to avoid collision with the host vehicle, under assumption that the host vehicle performs a constant manoeuvre, when determining the obstacle vehicle collision avoidance effort value.
  • the means 50 includes a comparator function block 51 which may compare the collision effort values with threshold values as have been indicated above. Different actions may be performed in dependence of the outcome of the comparison.
  • the means 50 for determining a host vehicle intervention includes means 52 for performing an intervention which are arranged to intervene in the event the minimum of the host vehicle collision avoidance effort value and the obstacle vehicle collision avoidance effort value exceeds a threshold value.
  • the means 50 for determining a host vehicle intervention generates output signals to the brake system, the engine control system, safety equipment or warning indicators depending of how the intervention is made.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Claims (14)

  1. Procédé pour un système de l'évitement de collision dans un véhicule, comprenant les étapes suivantes:
    - détecter la présence d'un véhicule obstacle (1) ayant une direction de déplacement (2) qui coupe une direction de déplacement (3) d'un véhicule hôte (4); (S10)
    - déterminer une valeur d'effort d'évitement de collision de véhicule hôte (TN host ) représentant un effort pour un véhicule hôte (4) pour éviter une collision avec le véhicule obstacle (1), l'effort pour éviter une collision étant mesuré en fonction de la quantité requise de l'accélération longitudinale et latérale pour éviter une collision; (S20)
    caractérisé en ce que le procédé comprend en outre l'étape consistant à:
    - déterminer une valeur d'effort d'évitement de collision de véhicule obstacle (TNobstacle ) représentant un effort pour le véhicule obstacle (1) pour éviter une collision avec le véhicule hôte (4); (S30) et
    - déterminer une intervention du véhicule hôte sur la base de ladite valeur d'effort d'évitement de collision de véhicule hôte (TNhost) et ladite valeur d'effort d'évitement de collision de véhicule obstacle (TNobstacle ) (S40).
  2. Procédé selon la revendication 1, caractérisé en ce qu'une intervention est faite dans le cas où le minimum de la valeur d'effort d'évitement de collision de véhicule hôte (TNhost) et de la valeur d'effort d'évitement de collision de véhicule obstacle (TNobstacle ) serait supérieur à une valeur de seuil (TNth ).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la détermination de la valeur d'effort d'évitement de collision de véhicule hôte (TNhost) comprend la détermination de l'accélération longitudinale requise ( X ¨ long , needed host
    Figure imgb0064
    ) du véhicule hôte (4) afin d'éviter une collision avec le véhicule obstacle (1), en supposant que le véhicule obstacle (1) effectue une manoeuvre constante.
  4. Procédé selon la revendication 1, 2 ou 3, caractérisé en ce que la détermination de la valeur d'effort d'évitement de collision de véhicule obstacle (TNobstacle ) comprend la détermination de l'accélération longitudinale requise ( X ¨ long , needed obstacle
    Figure imgb0065
    ) du véhicule obstacle (1) afin d'éviter une collision avec le véhicule hôte (4), en supposant que le véhicule hôte (4) effectue une manoeuvre constante.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la détermination de la valeur d'effort d'évitement de collision de véhicule hôte (TNhost) comprend la détermination d'une accélération latérale requise ( X ¨ lat , needed host
    Figure imgb0066
    ) du véhicule hôte (4) afin d'éviter une collision avec le véhicule obstacle (1), en supposant que le véhicule obstacle (4) effectue une manoeuvre constante.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la détermination de la valeur d'effort d'évitement de collision de véhicule obstacle (TNobstacle ) comprend la détermination d'une accélération latérale requise ( X ¨ lat , needed obstacle
    Figure imgb0067
    ) du véhicule obstacle (1) afin d'éviter une collision avec le véhicule hôte (4), en supposant que le véhicule hôte (4) effectue une manoeuvre constante.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le procédé est limité à des scénarios de circulation où un angle de déplacement relatif α entre le véhicule hôte (4) et le véhicule obstacle (1) est tel que 30°< α < 150° ou -150°< α < -30°.
  8. Système d'évitement de collision dans un véhicule, comprenant:
    - des moyens (20) pour détecter la présence d'un véhicule obstacle (1) ayant une direction de déplacement (2) qui coupe une direction de déplacement (3) d'un véhicule hôte (4);
    - des moyens (30) pour déterminer une valeur d'effort d'évitement de collision de véhicule hôte (TNhost) représentant un effort pour un véhicule hôte (4) pour éviter une collision avec le véhicule obstacle (1), l'effort pour éviter une collision étant mesuré en fonction de la quantité requise de l'accélération longitudinale et latérale pour éviter une collision;
    caractérisé en ce que le système comprend en outre:
    - des moyens (40) pour la détermination d'une valeur d'effort d'évitement de collision de véhicule obstacle (TNobstacle ) représentant un effort pour le véhicule obstacle (1) pour éviter une collision avec le véhicule hôte (1); et
    - des moyens (50) pour la détermination d'une intervention de véhicule hôte sur la base de la valeur d'effort d'évitement de collision de véhicule hôte (TNhost) et de la valeur d'effort d'évitement de collision de véhicule obstacle (TNobstacle ).
  9. Système selon la revendication 8, caractérisé en ce que le système comprend en outre des moyens (52) pour effectuer une intervention qui sont agencés pour intervenir dans le cas où le minimum de la valeur d'effort d'évitement de collision de véhicule hôte (TNhost) et de la valeur d'effort d'évitement de collision de véhicule obstacle (TNobstacle ) serait supérieur à une valeur de seuil (TNth ).
  10. Système selon la revendication 8 ou 9, caractérisé en ce que lesdits moyens (30) pour la détermination de la valeur d'effort d'évitement de collision de véhicule hôte (TN host) sont agencés pour inclure la détermination de l'accélération longitudinale requise ( X ¨ long , needed host
    Figure imgb0068
    ) du véhicule hôte (4) afin d'éviter une collision avec le véhicule obstacle (1), en supposant que le véhicule obstacle (1) effectue une manoeuvre constante lors de la détermination de la valeur d'effort d'évitement de collision de véhicule hôte (TNhost).
  11. Système selon la revendication 8, 9 ou 10, caractérisé en ce que lesdits moyens (40) pour la détermination de la valeur d'effort d'évitement de collision de véhicule obstacle (TNobstacle ) sont agencés pour inclure la détermination de l'accélération longitudinale requise ( X ¨ long , needed obstacle
    Figure imgb0069
    ) du véhicule obstacle (1) afin d'éviter une collision avec le véhicule hôte (4), en supposant que le véhicule hôte (4) effectue une manoeuvre constante lors de la détermination de la valeur d'effort d'évitement de collision de véhicule obstacle (TNobstacle ).
  12. Système selon l'une quelconque des revendications 8 à 11, caractérisé en ce que lesdits moyens (30) pour la détermination de la valeur d'effort d'évitement de collision de véhicule hôte (TNhost) sont agencés pour inclure la détermination de l'accélération latérale nécessaire ( X ¨ lat , needed host
    Figure imgb0070
    ) du véhicule hôte (4) afin d'éviter une collision avec le véhicule obstacle (1), en supposant que le véhicule obstacle (1) effectue une manoeuvre constante lors de la détermination de la valeur d'effort d'évitement de collision de véhicule hôte (TN host).
  13. Système selon l'une quelconque des revendications 8 à 12, caractérisé en ce que lesdits moyens (40) pour la détermination de la valeur d'effort d'évitement de collision de véhicule hôte (TNhost) sont agencés pour inclure la détermination de l'accélération latérale nécessaire ( X ¨ lat , needed obstacle
    Figure imgb0071
    ) du véhicule obstacle (1) afin d'éviter une collision avec le véhicule hôte (4), en supposant que le véhicule hôte (4) effectue une manoeuvre constante lors de la détermination de la valeur d'effort d'évitement de collision de véhicule hôte (TNhost).
  14. Système selon l'une quelconque des revendications 8 à 13, caractérisé en ce que le système d'évitement de collision dans un véhicule est limité sur la base d'une décision d'intervenir à partir de la valeur d'effort d'évitement de collision de véhicule hôte (TNhost) et de la valeur d'effort d'évitement de collision de véhicule obstacle (TNobstacle) à des scénarios de circulation où un angle de déplacement relatif α entre le véhicule hôte (4) et le véhicule obstacle (1) est tel que 30°< α < 150° ou -150°< α < -30°.
EP20070108940 2007-05-25 2007-05-25 Procédé et système dans une véhicule pour d'évitement de collision. Expired - Fee Related EP2001003B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20070108940 EP2001003B1 (fr) 2007-05-25 2007-05-25 Procédé et système dans une véhicule pour d'évitement de collision.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20070108940 EP2001003B1 (fr) 2007-05-25 2007-05-25 Procédé et système dans une véhicule pour d'évitement de collision.

Publications (2)

Publication Number Publication Date
EP2001003A1 EP2001003A1 (fr) 2008-12-10
EP2001003B1 true EP2001003B1 (fr) 2013-04-10

Family

ID=38521912

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070108940 Expired - Fee Related EP2001003B1 (fr) 2007-05-25 2007-05-25 Procédé et système dans une véhicule pour d'évitement de collision.

Country Status (1)

Country Link
EP (1) EP2001003B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9610945B2 (en) 2015-06-10 2017-04-04 Ford Global Technologies, Llc Collision mitigation and avoidance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2211322B1 (fr) * 2009-01-26 2016-11-16 Volvo Car Corporation Procédé et système pour éviter une collision frontale dans un véhicule automobile
EP2388756B1 (fr) * 2010-05-17 2019-01-09 Volvo Car Corporation Réduction du risque de collision frontale
US10737665B2 (en) 2012-08-28 2020-08-11 Ford Global Technologies, Llc Vehicle braking based on external object communications

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10257842A1 (de) * 2002-05-07 2003-11-27 Bosch Gmbh Robert Verfahren zur Bestimmung einer Unfallgefahr eines ersten Objekts mit wenigstens einem zweiten Objekt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9610945B2 (en) 2015-06-10 2017-04-04 Ford Global Technologies, Llc Collision mitigation and avoidance

Also Published As

Publication number Publication date
EP2001003A1 (fr) 2008-12-10

Similar Documents

Publication Publication Date Title
CN110733501B (zh) 用于自动避免碰撞的方法
EP2302412B1 (fr) Système et procédé d&#39;évaluation d&#39;une menace de collision avant d&#39;un véhicule automobile
EP3208165B1 (fr) Système d&#39;assistance à la sécurité d&#39;un véhicule
EP1717778B1 (fr) Procédé et système pour l&#39;empêchement de collision en avant pour un véhicule automobile
EP2484573B1 (fr) Procédé de réduction du risque de collision entre un véhicule et un premier objet externe
CN101327796B (zh) 用于避免后路***通碰撞的方法和设备
US9159023B2 (en) System for predicting a driver&#39;s intention to change lanes
EP2990290B1 (fr) Procédé et système de planification de manoeuvre post-collision et véhicule équipé d&#39;un tel système
US8791802B2 (en) Driver assistance system for reducing blind-spot-detection false alerts
EP3134888B1 (fr) Réduction de fausse alerte à l&#39;aide de données d&#39;emplacement
EP3078515A1 (fr) Évitement de collision sur la base du suivi d&#39;une roue avant pendant une opération inverse
WO2021217752A1 (fr) Procédé de calcul de région de risque de collision piéton-véhicule et système d&#39;évaluation de sécurité
US8577552B1 (en) Forward collision warning system with road-side target filtering
EP3360745B1 (fr) Appareil d&#39;assistance de conduite
KR20160023193A (ko) 긴급 제동 시스템에서 전방위 확장 적용을 위한 충돌 위험 판단 방법 및 장치
EP2423902A1 (fr) Système de sécurité et procédé
EP2211322B1 (fr) Procédé et système pour éviter une collision frontale dans un véhicule automobile
EP2001003B1 (fr) Procédé et système dans une véhicule pour d&#39;évitement de collision.
EP2172920B1 (fr) Évaluation de la menace pour des événements inattendus
JP6593682B2 (ja) 衝突予測システム
KR20150018988A (ko) 도로 상태 모니터링 장치 및 이를 구비한 안전 운전 서비스 제공 시스템
EP4194297A1 (fr) Indication de collision basée sur la vitesse de lacet et les seuils de vitesse latérale
WO2019138262A1 (fr) Procédé pour commander un véhicule
이태영 Robust Autonomous Emergency Braking Algorithm using the Tire-road Friction Estimation and the Sensor Uncertainties
CN118419005A (zh) 一种针对车辆视野盲区的v2v避撞解决方法及***

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090610

17Q First examination report despatched

Effective date: 20090708

AKX Designation fees paid

Designated state(s): DE GB SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007029602

Country of ref document: DE

Effective date: 20130606

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007029602

Country of ref document: DE

Effective date: 20140113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200429

Year of fee payment: 14

Ref country code: SE

Payment date: 20200508

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210413

Year of fee payment: 15

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007029602

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201