EP2203385A1 - Procédé de préparation d'un géopolymère a porosité contrôlée, le géopolymère ainsi obtenu et ses differentes applications - Google Patents

Procédé de préparation d'un géopolymère a porosité contrôlée, le géopolymère ainsi obtenu et ses differentes applications

Info

Publication number
EP2203385A1
EP2203385A1 EP08839022A EP08839022A EP2203385A1 EP 2203385 A1 EP2203385 A1 EP 2203385A1 EP 08839022 A EP08839022 A EP 08839022A EP 08839022 A EP08839022 A EP 08839022A EP 2203385 A1 EP2203385 A1 EP 2203385A1
Authority
EP
European Patent Office
Prior art keywords
geopolymer
silicate
porosity
silica
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP08839022A
Other languages
German (de)
English (en)
Inventor
Fabien Frizon
Christophe Joussot Dubien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2203385A1 publication Critical patent/EP2203385A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • C04B28/008Mineral polymers other than those of the Davidovits type, e.g. from a reaction mixture containing waterglass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention relates to the field of geopolymers and, more particularly, to the field of geopolymers with controlled porosity.
  • the present invention aims at providing a method of preparation in which the main formulation parameters make it possible simultaneously to control the total porosity of the geopolymer as well as its porous modes, ie micro-, macro- and mesoporous thus opening the way to an engineering of the porosity of these materials.
  • the present invention also relates to the geopolymers obtainable by said process, their various uses and this particularly in the field of catalysis and filtration.
  • the initial reactive material contains essentially silica and aluminum from an aluminosilicate source
  • the material obtained is amorphous aluminosilicate inorganic polymer [13], [14] termed "geopolymer" [15].
  • the geopolymer is prepared by activating the alumino-silicate source from the high pH solution. This preparation consists of kneading together the various components and then keeping the material obtained under defined conditions of temperature, pressure and relative humidity until the final geopolymer is obtained.
  • a simplified reaction mechanism is, however, generally accepted [37]: it consists mainly of a dissolution / polycondensation mechanism whose different steps take place simultaneously. Initially, the solid grains of the alumino-silicate source are suspended in the aqueous phase. At high pH, the dissolution of the source aluminosilicates is rapid and leads to the appearance of chemical species (aluminates, silicates, aluminosilicates, etc.) in the activation solution, which phase may also contain silicate species. This process is water consuming.
  • the supersaturation of the solution causes the appearance of a gel linked to the polycondensation of the oligomers in the aqueous phase.
  • the size of the oligomers formed depends on the size of the compensating cation [38].
  • geopolymers develop a high porosity, which makes them particularly advantageous in applications as insulation.
  • Geopolymers are also used as binders [16-20] in the formulation of building materials [21, 22], concretes or mortars [23, 24] and fireproof materials [25-27].
  • binders [16-20] in the formulation of building materials [21, 22], concretes or mortars [23, 24] and fireproof materials [25-27].
  • Several production methods are known [28, 29], allowing their implementation on site or in the context of prefabrications [30, 31].
  • geopolymers can be used as a matrix for coating or inerting toxic waste [32-34].
  • the porous nature of the geopolymers can make it a particularly interesting support for various applications such as catalysis or filtration.
  • the present invention makes it possible to provide a solution to the need presented above and consists of a process making it possible to obtain geopolymers as monolithic materials whose porosity can be controlled as soon as they are formulated.
  • the results obtained by the inventors have made it possible to develop a method by which the porosity of the material is as well controlled in the macroporous zone as in the mesoporous zone, said control being applied as much to the total porosity of the material as to 'to the pore distribution of it.
  • the term "geopolymer” is intended to mean an amorphous aluminosilicate inorganic polymer. Said polymer is obtained from a reactive material containing essentially silica and aluminum, activated by a strongly alkaline solution, the solid / solution mass ratio in the formulation being low, in particular less than 0.6 and, advantageously, less than 0.5.
  • the structure of a geopolymer is composed of an Si-O-Al lattice formed of silicate (SiO 4 ) and aluminate (AlO 4 ) tetrahedra bound at their vertices by oxygen atom sharing. Within this network, there is (are) one (or more) charge compensating cation (s) also called compensation cation (s). These cations symbolized later by the letter M make it possible to compensate for the negative charge of the complex A1O 4 ⁇ .
  • the geopolymer prepared according to the process of the present invention can be microporous, macroporous or mesoporous. Advantageously, it is a macroporous or mesoporous geopolymer.
  • microporous a material whose pore diameter (dp) is less than 2 nm
  • mesoporous a material such as 2 ⁇ dp ⁇ 50 nm
  • macroporous a material whose pore diameter is greater than 50 nm.
  • the present invention exposes the possibility of defining by the formulation the porosity of the geopolymer and this, more particularly in the macro and mesoporous domains.
  • the method which is the subject of the present invention is remarkable because an identical porosity of the final material can come from several different initial formulations.
  • To formulate a geopolymer is to choose [5, 10, 36]:
  • a high pH activation solution characterized in particular by its amount of water and the amount of soluble silicates it may possibly contain.
  • the pore properties of the material are influenced by the specific choices of the species selected for the preparation. Thus, a judicious determination of all the parameters of formulation and implementation allows a priori to control several properties related to the porosity of the geopolymer.
  • controlled porosity is used to control the total porosity, the class of the porosity and / or the pore distribution.
  • the present invention is therefore characterized by a reasoned choice of certain parameters from the formulation of the geopolymer to be prepared after having first defined the poral characteristics of said geopolymer.
  • the present invention therefore relates to a process for preparing a controlled porosity geopolymer comprising a step of dissolution / polycondensation of an aluminosilicate source in an activating solution that may optionally contain silicate components, said process comprising the following successive steps consisting of a. define at least one characteristic of the porosity of the geopolymer to be prepared; b. determining a value or an element for at least one parameter selected from the total amount of water, the total amount of silica, the compensation cation, and the particle size distribution of the possible silicate components, to obtain the characteristic defined in step (a); vs. select said value or said element predetermined in step (b).
  • Step (a) of the method according to the present invention consists in defining at least one characteristic selected from the group consisting of the total porosity, the porosity class and the pore distribution such as the pore size distribution in a given class. .
  • at least two of these characteristics and, more particularly, the three characteristics are defined in step (a).
  • Step (b) of the method according to the present invention can be implemented in different ways.
  • this step consists of testing different values (or different elements) for at least one parameter among the previously listed parameters and determining the value (or the element) making it possible to obtain at least one characteristic defined in step (a). ).
  • step (b) of the method according to the invention may consist of identifying the value (or the element) making it possible to obtain at least one characteristic defined in step (a) on the basis of previously obtained data. and in particular accessible to the skilled person in scientific publications or patent applications. It may be necessary to repeat the step
  • the present invention relates to a process for the preparation of a geopolymer with controlled porosity comprising a step of dissolution / polycondensation of an aluminosilicate source in an activation solution that may optionally contain silicate components, said process comprising a step to select: a pre-determined value for the total quantity of water and / or for the size distribution of the possible silicate components in order to obtain a geopolymer whose porosity accessible to water is between about 15% and 1%; 65%.
  • the porosity accessible to water of the geopolymer is of the order of 15%, of the order of 20%, of the order of 25%, of the order of 30%, of the order of 35%.
  • % of the order of 40%, of the order of 45%, of the order of 50%, of the order of 55%, of the order of 60% or of the order of 65%; a pre-determined value for the total amount of silica in order to obtain a geopolymer having a monomodal microporosity, mesoporosity or macroporosity and / or
  • the work of the inventors has made it possible to show that the total porosity of the geopolymers can be controlled by modifying the formulation parameters of these materials, in particular the water content.
  • the amount of water influences the total porosity of the geopolymer presumably by conditioning: the space initially separating the source aluminosilicate solid particles,
  • the quantity of water can in particular be fixed via the molar ratio H 2 O / M 2 O with H 2 O corresponding to the sum of the quantity expressed in moles of water present in the activation solution and the quantity expressed in moles of water optionally bound to the alumino-silicate source and M 2 O corresponding to the molar amount of compensation cation oxide in the activation solution.
  • H 2 O / M 2 O molar ratio makes it possible to increase the total porosity of the geopolymer thus obtained.
  • the inventors have shown that an H 2 O / M 2 O molar ratio greater than 10, advantageously greater than 11 makes it possible to obtain a geopolymer whose porosity accessible to water is greater than 50%.
  • the pre-determined value for the particle size distribution of the possible silicate components is advantageously chosen from a pre-determined value of the median diameter of the particle size distribution of the possible silicate components or a predetermined value of the extent of the particle size distribution of the particles. possible silicate components.
  • the lower the median diameter of the silicates components used the more the polymer obtained has a porosity accessible to low water.
  • the smaller the extent of the particle size distribution of the silicate components the lower the pore distribution of the geopolymer obtained is centered, and therefore the lower the total geopolymer porosity.
  • the class of porosity (macropores, mesopores or micropores) can to be chosen as soon as it is implemented by selecting a total concentration of suitable silica.
  • the porous mode depends on the porosity proper to the gel. This amounts to modifying the polycondensation behavior, for example by doping the amount of silicate monomers by adding reagents into the activation solution.
  • the unreacted silica also seems to lead to a steric hindrance of the residual aqueous poral space, thus to a decrease in the porous mode of the material.
  • the particle size distribution of the silica used has an impact on the modalities of space and therefore on the porosity of the material.
  • amount of silica is meant the sum of the silica supplied by the aluminosilicate source and the silica possibly present in the activation solution.
  • the SiO 2 / M 2 O molar ratio makes it possible to assess the total amount of silica, SiO 2 corresponding to the molar amount of silicon oxide supplied by the alumino-silicate source and the silica possibly present in the activation solution.
  • those skilled in the art can obtain and / or calculate these values, without inventive effort, by using standard chemical analyzes, such as weighing or X-ray fluorescence, of all the reagents used.
  • a SiO 2 ZM 2 O molar ratio greater than 1 and especially greater than 1.1 makes it possible to obtain a geopolymer exhibiting a monomodal mesoporosity whereas a molar ratio SiO 2 / M 2 O less than 1, in particular less than 0.9, in particular less than 0.8 and, more particularly, less than 0.7 makes it possible to obtain a geopolymer having a monomodal macroporosity.
  • the pore distribution and in particular the pore size in a pore range can also be predetermined by an appropriate formulation.
  • a geopolymer having a monomodal porosity and, more particularly, a monomodal macroporosity or mesoporosity whose distribution of pore volumes is more or less extensive can be synthesized by choosing one or more suitable compensation cation (s). With the water and silica content fixed in the material, the size and arrangement of the oligomers formed depends on the size of the compensating cations used. The porosity distribution thus controlled seems to be an intrinsic porosity to the initial oligomeric structures.
  • the compensation cation is especially chosen from alkali metals, alkaline earth metals and mixtures thereof.
  • Mating means mixtures of two or more alkali metals, mixtures of two or more alkaline earth metals and mixtures of one or more alkali metals with one or more alkaline earth metals.
  • the alkali metals lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs) are more particularly preferred.
  • the alkaline earth metals magnesium (Mg), calcium (Ca), strontium (Sr) and barium (Ba) are more particularly preferred.
  • the amount of compensation cation (s) that can be used in the context of the process of the present invention is between 0.1 and 10, especially between 0.5 and 5, in particular between 0.8 and 2, especially with respect to the molar amount of Al 2 O 3.
  • the amount of cation (s) compensation is chosen so that the molar ratio M 2 (VAl 2 O 3 is equal to 1.
  • the selection step consists of selecting a compensation cation from potassium, sodium and cesium to obtain an extent of the pore distribution of the geopolymer containing as potassium compensation cation, less than the extent of the pore distribution of the geopolymer containing sodium compensation cation, itself less than the extent of the pore distribution of the geopolymer containing as cesium compensation cation.
  • the person skilled in the art will be able to determine, as a function of the compensation cation or of the mixture of compensation cations used, the influence on the porosity distribution without doing proof of a particular inventive effort.
  • any alumino-silicate source known to those skilled in the art can be implemented in the context of the process of the invention.
  • this Alumino-silicate source is a solid source containing amorphous aluminosilicates.
  • amorphous aluminosilicates are chosen in particular from the minerals of natural aluminosilicates such as illite, stilbite, kaolinite, pyrophyllite, andalusite, bentonite, kyanite, milanite, grovenite, amesite, cordierite, feldspar, allophane, etc .; calcined natural aluminosilicate minerals such as metakaolin; synthetic glasses based on pure aluminosilicates; aluminous cement; pumice; calcined by-products or industrial mining residues such as fly ash and blast furnace slags respectively obtained from the burning of coal and during the processing of cast iron ore in a blast furnace; and mixtures thereof.
  • natural aluminosilicates such as illite, stilbite, kaolinite, pyrophyllite, andalusite, bentonite, kyanite, milanite, grovenite, amesite, cordierite
  • the alumino-silicate source used in the context of the present invention is in a solid form and, advantageously, in the form of a powder or a mixture of particles. These particles have in particular a median diameter (d50) of between 0.1 and 40 ⁇ m, in particular between 0.5 and 20 ⁇ m and, in particular, between 1 and 10 ⁇ m.
  • d50 median diameter
  • metakaolin is used as alumino-silicate source, it is in the form of particles whose median diameter (d50) determined by laser particle size is about 6 microns.
  • particles whose average diameter (d50) is 6 microns means that half of the particles have a diameter of less than 6 microns.
  • the skilled person at the time of formulation will, without inventive effort, calculate the amount of alumino-silicate source to be used depending on the composition of the alumino-silicate source used and the desired purpose ie desired properties for the geopolymer. Indeed, depending on the desired properties, a person skilled in the art will be able to choose the most suitable values to achieve this goal and thus will be able to set the molar ratios H 2 O / M 2 O and / or SiO 2 / M 2 O.
  • activation solution is intended to mean a strongly alkaline aqueous solution which may optionally contain silicate components.
  • strongly alkaline means a solution whose pH is greater than 9, especially greater than 10, in particular greater than 11 and more particularly greater than 12.
  • the activation solution comprises the compensation cation or the mixture of compensation cations in the form of an ionic solution or a salt.
  • the activation solution is chosen in particular from an aqueous solution of sodium silicate (Na 2 SiO), potassium silicate (K 2 SiO 2), sodium hydroxide (NaOH), potassium hydroxide ( KOH), calcium hydroxide (Ca (OH) 2 ), cesium hydroxide (CsOH) and their sulphates, phosphates and nitrates derivatives, etc ....
  • sodium silicate Na 2 SiO
  • potassium silicate K 2 SiO 2
  • sodium hydroxide NaOH
  • potassium hydroxide KOH
  • calcium hydroxide Ca (OH) 2
  • cesium hydroxide (CsOH) cesium hydroxide
  • the silicates components present in the activation solution may be not only the silicates provided by the silicates of the compensation cations present in the activation solution but also other silicates added to the activation solution. These are especially selected from silica, colloidal silica and vitreous silica. It is therefore clear that the silicate components present in the activation solution are either only the silicate (s) provided in the form of silicate (s) of the compensation cations, or only the silicate (s) added (s). ) and selected from silica, colloidal silica and vitreous silica, a mixture of these two sources of silicates.
  • the activating solution is prepared by mixing the various elements previously described which compose it. The mixture can be produced with more or less intense stirring depending on the nature of said elements.
  • the solid / solution mass ratio is, in the context of the present invention, low, especially less than 0.6 and advantageously less than 0.5. This mass ratio corresponds to the mass of solids (ie alumino-silicate source + compensating cations + silicate components) on the mass of solution (ie activation solution).
  • the process for preparing a controlled porosity geopolymer that is the subject of the present invention and, more particularly, the dissolution / polycondensation stages consists, first of all, in mixing the aluminosilicate source with the activation solution while stirring. more or less intense depending on the nature of the alumino-silicate source and the elements contained in the activation solution and then to preserve the material obtained under defined conditions of temperature, pressure and relative humidity until the final geopolymer.
  • reaction time is also a function of the compensation cation (s) used.
  • the reaction time may be between 5 minutes and 48 hours, in particular between 1 and 42 hours, advantageously between 5 and 36 hours and, in particular, between 10 hours and 24 hours.
  • the reaction is carried out under tight conditions and under a pressure corresponding to atmospheric pressure.
  • the present invention also relates to a geopolymer capable of being prepared by the method of the invention and having a monomodal mesoporosity with 50% of the pores having an accessibility diameter determined by mercury porosity extending over less than 5 nm (pore distribution strongly refined), between 5 and 10 nm (wider pore distribution) or over 10 nm (spreading pore distribution).
  • the present invention also relates to a geopolymer capable of being prepared by the method of the invention and having a monomodal macroporosity with 50% of the pores having an accessibility diameter determined by mercury porosity extending over less than 10 nm (pore distribution strongly refined), between 10 and 50 nm (wider pore distribution) or over 50 nm (spread pore distribution).
  • the present invention also relates to a catalytic support and / or species separation chemical composition comprising a geopolymer as defined above and the use of said geopolymer. All known uses of those skilled in the art implementing a geopolymer and in particular the uses described in the prior art cited above are contemplated within the scope of the present invention.
  • the present invention relates, more particularly, to the use of a geopolymer as defined previously in catalysis or in filtration.
  • Figure 1 shows the pore distribution as a function of mercury porosimetric accessibility diameter for geopolymers of controlled porous modes.
  • Figure 2 shows the distribution of pore volumes as a function of mercury porosimetric accessibility diameter for geopolymers of different pore selectivity.
  • Figure 3 shows the influence of silica and, more particularly, its particle size distribution on the mercury porosimetric accessibility diameter distribution for geopolymers of controlled porous modes.
  • the aluminosilicate source used is metakaolin because this alumino-silicate source makes it possible to obtain more "pure" geopolymers whose properties are globally more homogeneous [39, 40].
  • the metakaolin used is Pieri Premix MK (Grace Construction Products), whose composition determined by X-ray fluorescence is reported in Table 1.
  • the specific surface area of this material, measured by the Brunauer-Emmet-Teller method, is equal to 19, 9 m 2 / g and the median diameter of the particles (d50), determined by laser granulometry, is equal to 5.9 ⁇ m.
  • Table 1 Chemical composition of the meta-kao used.
  • alkali metal hydroxide solutions employed were prepared by dissolving in ultrapure water granules of NaOH, KOH ( Prolabo, Rectapur, 98%) and CsOH (Alfa Aesar, 99.9%).
  • the silica optionally added to the system is an amorphous silica (BDH) whose average diameter is equal to 128.81 ⁇ m.
  • activation solutions containing alkali silicates were prepared.
  • the alkali hydroxide solutions were obtained by dissolving the appropriate products in ultrapure water.
  • the amorphous silica possibly added to the system is then introduced into these solutions and mixed for 30 minutes.
  • the composition of these activation solutions is thus fully described by: the natures of the alkalis used in the formulation and their optional molar ratio, the molar ratio H 2 O / M 2 O, denoted by e, the molar ratio SiO 2 / M 2 O noted s.
  • the geopolymer is prepared by mixing metakaolin and the activation solution in a standard laboratory mixer (European Standard EN 196-1) for 1 minute at slow speed and 2 minutes at fast speed. The material is then placed in teflon molds of dimensions 4 * 4 * 16 cm, vibrated for a few seconds, then placed in sealed conditions at 20 0 C and at atmospheric pressure for 24 hours. After this period, the geopolymer is demolded and placed in a sealed bag and stored at ambient pressure and temperature until use.
  • a standard laboratory mixer European Standard EN 196-1
  • the porosity of the geopolymers was characterized by: - porosimetry accessible to water according to the recommendations of the French Association for Construction (PSAC) and the French Association of Research and Testing on Materials and Constructions (AFREM), this method of measuring porosity is one of the most representative of the total porosity of building materials [43], the porosimetry with mercury intrusion. These measurements were carried out on a Micromeritics Autopore IV 9510 apparatus, whose investigative pressures ranged from 0.2 to 61000 psi.
  • Table 2 summarizes measurements of water porosity carried out on geopolymers of different composition. A small variation in the water content strongly impacts the total measured porosity.
  • Table 2 Composition of geopolymers and porosity accessible to associated water.
  • the objective here is to formulate two materials having controlled and distinct porous modes: the first material must have a monomodal macroporosity centered on 100 nm, the second geopolymer a monomodal mesoporosity centered on 10 nm.
  • the objective here is to formulate three materials presenting monomodal mesoporosities whose distribution of pore volumes is more or less extensive.
  • the geopolymers were manufactured according to the following formulations:
  • 50% of the pores have an access diameter of between 4.1 and 8.8 nm; the sodium geopolymer, the porosity is always monomodal, selective, but more spread distribution because pore range of greater size: 50% of the pores have an access diameter of between 9.9 and 16.5 nm.
  • the objective here is to study the influence of the silicates components that may contain the activation solution and, more particularly, the influence of the nature of the silica introduced into the activation solution.
  • Tixosil 38 (Precipitated silica from
  • Table 3 compares the values of the total porosities of the geopolymers synthesized with Tixosil silicas 331 and 38 to the porosity of a geopolymer synthesized by a BDH precipitated silica.
  • the median diameter and the extent of the particle size distribution have a significant influence on the porosity accessible to water: the lower the median diameter, the lower the total porosity.
  • Table 4 summarizes the formulations of the geopolymers studied.
  • the silica Tixosil 38 makes it possible to obtain geopolymers whose pore dispersion is centered around values smaller than the Tixosil 331.
  • the silica Tixosil 38 has a grain size slightly smaller than the Tixosil 331, but especially much less dispersed. It should be emphasized that the porosity obtained is always mesoporous (silica content), refined (potassium compensating cation): the grain size of the silica therefore essentially influences the water-accessible porosity of the material and the characteristic dimensions of the diameter on which the porous mode is centered.
  • a judicious formulation of the geopolymers makes it possible to control the macroporosity and / or the mesoporosity of these materials and opens the way to an engineering of the porosity of these materials, amorphous aluminosilicate inorganic polymers.
  • Geopolymer stone for construction and decoration included rock residues and a poly (sialate), poly (sialate-siloxo) and / or poly (sialate-disoloxo) geopolymer binder., FR2831905, Editor. 2003. 25. Yan, S., Geopolymer Dry Powder Regenerated Polystyrene Heat Preservation and Heat Insulating Mortar., CN1762884, Editor. 2006.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

La présente invention concerne un procédé de préparation d'un géopolymère à porosité contrôlée, avec une étape de dissolution/polycondensation d'une source alumino-silicatée dans une solution d' activation, comprenant les étapes successives suivantes : (a) définir une caractéristique de la porosité du géopolymère à préparer; (b) déterminer une valeur ou un élément pour un paramètre choisi parmi la quantité totale d'eau, la quantité totale de silice, le cation de compensation, et la distribution granulométrique des éventuels composants silicates, permettant d'obtenir la caractéristique définie à l'étape (a); et (c) sélectionner ladite valeur ou ledit élément pré-déterminé (e) à l'étape (b). La présente invention concerne un géopolymère susceptible d'être préparé par ledit procédé ainsi que les différentes utilisations dudit géopolymère.

Description

PROCEDE DE PREPARATION D'UN GEOPOLYMERE A POROSITE
CONTRÔLÉE, LE GÉOPOLYMÈRE AINSI OBTENU ET SES
DIFFERENTES APPLICATIONS
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention concerne le domaine des géopolymères et, plus particulièrement, le domaine des géopolymères à porosité contrôlée.
La présente invention vise à fournir un procédé de préparation dans lequel les principaux paramètres de formulation permettent de contrôler simultanément la porosité totale du géopolymère ainsi que ses modes poreux, i.e. micro-, macro- et mésoporeux ouvrant ainsi la voie à une ingénierie de la porosité de ces matériaux.
La présente invention concerne également les géopolymères susceptibles d'être obtenus par ledit procédé, leurs différentes utilisations et ce notamment dans le secteur de la catalyse et de la filtration.
ETAT DE LA TECHNIQUE ANTERIEURE Depuis une trentaine d'années, l'on sait que la mise en contact de matériaux alumino-silicatés et d'une solution de fort pH peut conduire, sous des conditions expérimentales choisies, à l'obtention de zéolites de synthèse [1] . La nature cristalline et le degré de cristallinité de ces dernières dépendent notamment de la nature des matériaux initiaux utilisés et du rapport massique solution/solide mis en œuvre. Les sources alumino-silicatées pouvant être utilisées pour cette synthèse sont très variées, qu'il s'agisse de minéraux naturels (illite, stilbite, kaolinite par exemple [2, 3]), de minéraux calcinés (métakaolin [4-6],...) ou de matériaux de substitution, principalement des sous-produits calcinés ou résidus d'exploitation industrielle (cendres volantes [7-12]) . Lorsque le matériau réactif initial contient essentiellement de la silice et de l'aluminium provenant d'une source alumino-silicatée, qu'il est activé par des solutions fortement alcalines et que le rapport massique solide/solution est faible, le matériau obtenu est un polymère inorganique alumino- silicaté amorphe [13], [14] dénommé « géopolymère » [15] .
Le géopolymère est préparé par activation de la source alumino-silicatée à partir de la solution de fort pH. Cette préparation consiste à malaxer ensemble les différents composants puis à conserver le matériau obtenu dans des conditions définies de température, de pression et d'humidité relative jusqu'à obtention du géopolymère final.
Les réactions précises conduisant à la formation d'un géopolymère également appelées géopolymérisation sont complexes et encore mal comprises. Un mécanisme réactionnel simplifié est cependant généralement accepté [37] : il consiste principalement en un mécanisme de dissolution/polycondensation dont les différentes étapes se déroulent simultanément. Initialement, les grains solides de la source alumino-silicatée sont en suspension dans la phase aqueuse. A fort pH, la dissolution des alumino- silicates sources est rapide et entraîne l'apparition d'espèces chimiques (aluminates, silicates, alumino- silicates..) dans la solution d' activation, phase pouvant par ailleurs contenir des espèces silicatées. Ce processus est consommateur d'eau.
La sursaturation de la solution entraîne l'apparition d'un gel lié à la polycondensation des oligomères dans la phase aqueuse. La taille des oligomères formés dépend de la taille du cation compensateur [38] .
Alors que la polycondensation se poursuit, il se déroule des réorganisations et réarrangements internes conduisant à la formation d'un réseau tridimensionnel alumino-silicaté .
Il est déjà connu que les géopolymères développent une porosité importante, ce qui en fait notamment leur avantage dans les applications comme isolant. Les géopolymères sont également utilisés comme liants [16-20] dans la formulation de matériaux de construction [21, 22], de bétons ou de mortiers [23, 24] et de matériaux résistants au feu [25-27] . Plusieurs modes de production sont connus [28, 29], permettant leur mise en œuvre sur chantier ou dans le cadre de préfabrications [30, 31] . D'autre part, tout comme les ciments Portland silico-calciques usuels, les géopolymères peuvent être employés comme matrice d'enrobage ou d' inertage des déchets toxiques [32-34] . Comme expliqué ci-dessus le caractère poreux des géopolymères peut en faire un support particulièrement intéressant pour différentes applications comme par exemple en catalyse ou en filtration. Ainsi, il existe un réel besoin d'un procédé de préparation de géopolymères dans le but de disposer, de façon reproductible et maîtrisée, d'un matériau à porosité contrôlée i.e. d'un matériau dont la porosité peut être déterminée et pré-sélectionnée dès la préparation de la formulation dudit matériau.
EXPOSÉ DE L'INVENTION
La présente invention permet d' apporter une solution au besoin présenté ci-dessus et consiste en un procédé permettant d'obtenir des géopolymères en tant que matériaux monolithiques dont la porosité peut être contrôlée dès leur formulation.
En effet, les résultats obtenus par les inventeurs ont permis de mettre au point un procédé grâce auquel la porosité du matériau est aussi bien contrôlée dans la zone macroporeuse que dans la zone mésoporeuse, ledit contrôle s' appliquant autant à la porosité totale du matériau qu'à la distribution porale de celui-ci. Par « géopolymère », on entend dans le cadre de la présente invention un polymère inorganique alumino-silicaté amorphe. Ledit polymère est obtenu à partir d'un matériau réactif contenant essentiellement de la silice et de l'aluminium, activé par une solution fortement alcaline, le rapport massique solide/solution dans la formulation étant faible, notamment inférieur à 0,6 et, avantageusement, inférieur à 0,5. La structure d'un géopolymère est composée d'un réseau Si-O-Al formé de tétraèdres de silicates (SiO4) et d'aluminates (AlO4) liés en leurs sommets par partage d'atomes d'oxygène. Au sein de ce réseau, se trouve (nt) un (ou plusieurs) cation (s) compensateur (s) de charge également appelé (s) cation (s) de compensation. Ces cations symbolisés par la suite par la lettre M permettent de compenser la charge négative du complexe A1O4 ~. Le géopolymère préparé selon le procédé de la présente invention peut être microporeux, macroporeux ou mésoporeux. Avantageusement, il s'agit d'un géopolymère macroporeux ou mésoporeux.
Rappelons que, d'après l'Union Internationale de Chimie Pure et Appliquée (IUPAC) [35], est qualifié de microporeux, un matériau dont le diamètre des pores (dp) est inférieur à 2 nm, de mésoporeux, un matériau tel que 2 < dp < 50 nm et de macroporeux, un matériau dont le diamètre des pores est supérieur à 50 nm.
La présente invention expose la possibilité de définir par la formulation la porosité du géopolymère et ce, plus particulièrement dans les domaines macro et mésoporeux. De plus, le procédé objet de la présente invention est remarquable car une porosité identique du matériau final peut provenir de plusieurs formulations initiales différentes. Formuler un géopolymère revient à choisir [5, 10, 36] :
(1) une source alumino-silicatée,
(2) un ou plusieurs cation (s) de compensation,
(3) une solution d' activation de fort pH, caractérisée en particulier par sa quantité d'eau et la quantité de silicates solubles qu'elle peut éventuellement contenir.
Les propriétés porales du matériau sont influencées par les choix spécifiques des espèces sélectionnées pour la préparation. Ainsi, une détermination judicieuse de l'ensemble des paramètres de formulation et de mise en œuvre permet de contrôler a priori plusieurs propriétés liées à la porosité du géopolymère .
Ainsi, les travaux des inventeurs ont permis de montrer que trois propriétés fondamentales des matériaux poreux peuvent ainsi être prédéfinies par un choix approprié lors de leur préparation : (a' ) la porosité totale ;
(b' ) la classe de porosité (macroporosité, mésoporosité ou microporosité) ; (c' ) la distribution porale et notamment la distribution de la taille des pores dans une classe donnée .
Ainsi, dans le cadre de la présente invention, on entend par « porosité contrôlée » le contrôle de la porosité totale, de la classe de la porosité et/ou de la distribution porale. La présente invention se caractérise donc par un choix motivé de certains paramètres dès la formulation du géopolymère à préparer après avoir prélablement défini les caractéritiques porales dudit géopolymère.
La présente invention concerne donc un procédé de préparation d'un géopolymère à porosité contrôlée comprenant une étape de dissolution/polycondensation d'une source alumino- silicatée dans une solution d' activation pouvant éventuellement contenir des composants silicates, ledit procédé comprenant les étapes successives suivantes consistant à a. définir au moins une caractéristique de la porosité du géopolymère à préparer ; b. déterminer une valeur ou un élément pour au moins un paramètre choisi parmi la quantité totale d'eau, la quantité totale de silice, le cation de compensation, et la distribution granulométrique des éventuels composants silicates, permettant d'obtenir la caractéristique définie à l'étape (a) ; c. sélectionner ladite valeur ou ledit élément pré-déterminé (e) à l'étape (b) .
L'étape (a) du procédé selon la présente invention consiste à définir au moins une caractéristique choisie dans le groupe constitué par la porosité totale, la classe de porosité et la distribution porale telle que la distribution de la taille des pores dans une classe donnée. Avantageusement, au moins deux de ces caractéristiques et, plus particulièrement, les trois caractéristiques sont définies à l'étape (a) .
L'étape (b) du procédé selon la présente invention peut être mise en œuvre de différentes façons .
Avantageusement, cette étape consiste à tester différentes valeurs (ou différents éléments) pour au moins un paramètre parmi les paramètres précédemment listés et à déterminer la valeur (ou l'élément) permettant d'obtenir au moins une caractéristique définie à l'étape (a) .
En variante, l'étape (b) du procédé selon l'invention peut consister à identifier la valeur (ou l'élément) permettant d'obtenir au moins une caractéristique définie à l'étape (a) sur la base de données préalablement obtenues et notamment accessibles à l'homme du métier dans les publications scientifiques ou les demandes de brevet. II peut être nécessaire de répéter l'étape
(b) plusieurs fois et notamment pour chaque caractéristique porale définie.
Plus particulièrement, la présente invention concerne un procédé de préparation d'un géopolymère à porosité contrôlée comprenant une étape de dissolution/polycondensation d'une source alumino- silicatée dans une solution d' activation pouvant éventuellement contenir des composants silicates, ledit procédé comprenant une étape consistant à sélectionner : une valeur pré-déterminée pour la quantité totale d'eau et/ou pour la distribution granulométrique des éventuels composants silicates afin d'obtenir un géopolymère dont la porosité accessible à l'eau est comprise entre de l'ordre de 15 % et de l'ordre de 65 %. Avantageusement, la porosité accessible à l'eau du géopolymère est de l'ordre de 15 %, de l'ordre de 20 %, de l'ordre de 25 %, de l'ordre de 30 %, de l'ordre de 35 %, de l'ordre de 40 %, de l'ordre de 45 %, de l'ordre de 50 %, de l'ordre de 55 %, de l'ordre de 60 % ou de l'ordre de 65 % ; une valeur pré-déterminée pour la quantité totale de silice afin d'obtenir un géopolymère présentant une microporosité, mésoporosité ou macroporosité monomodale et/ou
- un élément pré-déterminé correspondant à un cation de compensation particulier afin d'obtenir un géopolymère dont la distribution porale est plus ou moins étendue.
Par l'expression « de l'ordre de X% », on entend X% ± 2%.
En effet, les travaux des inventeurs ont permis de montrer que la porosité totale des géopolymères peut être contrôlée en modifiant les paramètres de formulation de ces matériaux, en particulier la teneur en eau. Ainsi, sans limitation à une quelconque théorie, la quantité d'eau influence la porosité totale du géopolymère vraisemblablement en conditionnant : l'espace séparant initialement les particules solides alumino-silicatées sources,
- la porosité interne au gel et liée à la production d'eau lors de la polycondensation, - la concentration en aluminates et silicates en solution, donc la morphologie du gel.
La quantité d'eau peut notamment être fixée via le rapport molaire H2O/M2O avec H2O correspondant à la somme de la quantité exprimée en moles d'eau présente dans la solution d'activation et de la quantité exprimée en moles d'eau éventuellement liée à la source alumino-silicatée et M2O correspondant à la quantité molaire d' oxyde de cations de compensation dans la solution d'activation. L'homme du métier peut obtenir et/ou calculer ces valeurs, sans effort inventif, en utilisant des analyses chimiques standards, telles que pesée ou fluorescence X, de l'ensemble des réactifs mis en œuvre. Ainsi, une augmentation du rapport molaire H2O/M2O permet d'accroître la porosité totale du géopolymère ainsi obtenu. A titre d'exemple et de façon non limitative, les inventeurs ont montré qu'un rapport molaire H2O/M2O supérieur à 10, avantageusement supérieur à 11 permet d'obtenir un géopolymère dont la porosité accessible à l'eau est supérieure à 50 %.
Les inventeurs ont également mis en évidence que la distribution granulométrique des composants silicates éventuellement présents dans la solution d' activation et notamment le diamètre médian ou l'étendue de cette distribution granulométrique influencent la porosité totale du géopolymère ainsi obtenu. Ainsi, la valeur pré-déterminée pour la distribution granulométrique des éventuels composants silicates est avantageusement choisie parmi une valeur pré-déterminée du diamètre médian de la distribution granulométrique des éventuels composants silicates ou une valeur pré-déterminée de l'étendue de la distribution granulométrique des éventuels composants silicates. D'une part, plus le diamètre médian des composants silicates mis en œuvre est faible, plus le polymère obtenu présente une porosité accessible à l'eau faible. D'autre part, plus l'étendue de la distribution granulométrique des composants silicates est faible, plus la distribution porale du géopolymère obtenu est centrée sur une valeur faible et, par conséquent, plus la porosité totale du géopolymère est faible .
Ainsi, l'homme du métier pourra obtenir un géopolymère dont la porosité totale sera contrôlée en sélectionnant soit une quantité d'eau adéquate, soit des composants silicates présentant une distribution granulométrique adaptée en termes de diamètre médian et/ou en termes d'étendue de distribution granulométrique, soit une quantité d'eau adéquate et des composants silicates présentant une distribution granulométrique adaptée en termes de diamètre médian et/ou en termes d'étendue de distribution granulométrique .
De par les travaux des inventeurs, il a également été mis en évidence que la classe de la porosité (macropores, mésopores ou micropores) peut être choisie dès la mise en œuvre en sélectionnant une concentration totale en silice adaptée.
Ainsi, à partir d'une quantité d'eau fixée, le mode poreux dépend de la porosité propre au gel. Cela revient à modifier le comportement de polycondensation, par exemple en dopant la quantité de monomères silicates par ajout de réactifs dans la solution d' activation . D'autre part, la silice n'ayant pas réagi semble conduire également à un encombrement stérique de l'espace poral aqueux résiduel, donc à une diminution du mode poreux du matériau. Il est à noter que, comme précédemment expliqué, la distribution granulométrique de la silice utilisée a un impact sur les modalités d'encombrement et donc sur la porosité du matériau.
Par « quantité de silice », on entend la somme de la silice apportée par la source alumino- silicatée et de la silice éventuellement présente dans la solution d' activation . Le rapport molaire Siθ2/M2O permet d'apprécier la quantité totale de silice, SiO2 correspondant à la quantité molaire d'oxyde de silicium apporté par la source alumino-silicatée et par la silice éventuellement présente dans la solution d' activation . Comme précisé précédemment, l'homme du métier peut obtenir et/ou calculer ces valeurs, sans effort inventif, en utilisant des analyses chimiques standards, telles que pesée ou fluorescence X, de l'ensemble des réactifs mis en œuvre. Ainsi, un rapport molaire SiO2ZM2O supérieur à 1 et notamment supérieur à 1,1 permet d'obtenir un géopolymère présentant une mésoporosité monomodale alors qu'un rapport molaire Siθ2/M2O inférieur à 1, notamment inférieur à 0,9, en particulier inférieur à 0,8 et, plus particulièrement, inférieur à 0,7 permet d'obtenir un géopolymère présentant une macroporosité monomodale.
Enfin, la distribution porale et notamment la taille des pores dans une gamme porale peuvent aussi être prédéterminées par une formulation adéquate. Un géopolymère présentant une porosité monomodale et, tout particulièrement, une macroporosité ou une mésoporosité monomodale dont la distribution des volumes des pores est plus ou moins étendue, peut être synthétisé en choisissant un ou plusieurs cation (s) de compensation adapté (s) . A teneur en eau et en silice fixées dans le matériau, la taille et l'agencement des oligomères formés dépend de la taille des cations compensateurs utilisés. La distribution de la porosité ainsi contrôlée semble donc être une porosité intrinsèque aux structures oligomériques initiales. Le cation de compensation est notamment choisi parmi les métaux alcalins, les métaux alcalino- terreux et leurs mélanges. Par « mélange », on entend des mélanges de deux ou plus métaux alcalins, des mélanges de deux ou plus métaux alcalino-terreux et des mélanges de un ou plus métaux alcalins avec un ou plus métaux alcalino-terreux. Parmi les métaux alcalins, sont plus particulièrement préférés le lithium (Li), le sodium (Na) , le potassium (K) , le rubidium (Rb) et le césium (Cs) . Parmi les métaux alcalino-terreux, sont plus particulièrement préférés le magnésium (Mg) , le calcium (Ca) , le strontium (Sr) et le barium (Ba) . La quantité de cation (s) de compensation susceptible d'être mise en œuvre dans le cadre du procédé de la présente invention est comprise entre 0,1 et 10, notamment entre 0,5 et 5, en particulier, entre 0,8 et 2, tout particulièrement, par rapport à la quantité molaire de AI2O3. Avantageusement, dans les différentes formulations mises en œuvre dans le cadre de la présente invention, la quantité de cation (s) de compensation est choisie de façon à ce que le rapport molaire M2(VAl2O3 soit égal à 1.
Ainsi, à titre d'exemples et dans le cadre des cations de compensation alcalins, l'étape de sélection consiste à sélectionner un cation de compensation parmi le potassium, le sodium et le césium pour obtenir une étendue de la distribution porale du géopolymère contenant comme cation de compensation du potassium, inférieure à l'étendue de la distribution porale du géopolymère contenant comme cation de compensation du sodium, elle-même inférieure à l'étendue de la distribution porale du géopolymère contenant comme cation de compensation du césium. Sur la base de l'exemple IV dans la partie expérimentale ci-après, l'homme du métier saura déterminer en fonction du cation de compensation ou du mélange de cations de compensation mis en œuvre, l'influence sur la répartition de porosité sans faire preuve d'un effort inventif particulier.
Toute source alumino-silicatée connue de l'homme du métier peut être mise en œuvre dans le cadre du procédé de l'invention. Avantageusement, cette source alumino-silicatée est une source solide contenant des alumino-silicates amorphes. Ces alumino- silicates amorphes sont notamment choisis parmi les minéraux d' alumino-silicates naturels tels que illite, stilbite, kaolinite, pyrophyllite, andalousite, bentonite, kyanite, milanite, grovénite, amésite, cordiérite, feldspath, allophane, etc.. ; des minéraux d' alumino-silicates naturels calcinés tels que le métakaolin ; des verres synthétiques à base d' alumino- silicates purs ; ciment alumineux ; de la ponce ; des sous-produits calcinés ou résidus d'exploitation industrielle tels que des cendres volantes et des laitiers de haut fourneau respectivement obtenus à partir de la combustion du charbon et lors de la transformation du minerai de fer en fonte dans un haut fourneau ; et des mélanges de ceux-ci.
La source alumino-silicatée mise en œuvre dans le cadre de la présente invention se trouve sous une forme solide et, avantageusement, sous la forme d'une poudre ou d'un mélange de particules. Ces particules ont notamment un diamètre médian (d50) compris entre 0,1 et 40 μm, en particulier entre 0,5 et 20 μm et, tout particulièrement, entre 1 et 10 μm. A titre d'exemple et de façon non exhaustive, lorsque du métakaolin est utilisé comme source alumino-silicatée, il se trouve sous la forme de particules dont le diamètre médian (d50) déterminé par granulométrie laser est d'environ 6 μm. Pour rappel, des particules dont le diamètre moyen (d50) est de 6 μm signifie que la moitié des particules présentent un diamètre inférieur à 6 μm. L'homme du métier au moment de la formulation saura, sans effort inventif, calculer la quantité de source alumino-silicatée à utiliser en fonction de la composition de la source alumino- silicatée utilisée et du but recherché i.e. des propriétés souhaitées pour le géopolymère. En effet, en fonction des propriétés recherchées, l'homme du métier saura choisir les valeurs les mieux adaptées pour atteindre ce but et donc saura fixer les rapports molaires H2O/M2O et/ou SiO2/M2O.
Par « solution d' activation », on entend dans le cadre de la présente invention une solution aqueuse fortement alcaline pouvant éventuellement contenir des composants silicates. Par « fortement alcaline », on entend une solution dont le pH est supérieur à 9, notamment supérieur à 10, en particulier, supérieur à 11 et, plus particulièrement supérieur à 12. La solution d' activation comprend le cation de compensation ou le mélange de cations de compensation sous forme d'une solution ionique ou d'un sel. Ainsi, la solution d' activation est notamment choisie parmi une solution aqueuse de silicate de sodium (Na2SiOs) , de silicate de potassium (K2SiO2) , d'hydroxyde de sodium (NaOH), d'hydroxyde de potassium (KOH), d'hydroxyde de calcium (Ca(OH)2), d'hydroxyde de césium (CsOH) et leurs dérivés sulfates, phosphates et nitrates, etc.... L'homme du métier connait différentes façons de préparer une telle solution d' activation soit en diluant des compositions commerciales existantes, soit en la préparant de façon extemporanée . L'homme du métier connaît également différentes façons pour ajuster le pH jusqu'à la valeur souhaitée, si nécessaire.
Les composants silicates présents dans la solution d' activation peuvent être non seulement les silicates apportés par les silicates des cations de compensation présents dans la solution d' activation mais aussi d'autres silicates ajoutés à la solution d' activation . Ces derniers sont notamment choisis parmi la silice, la silice colloïdale et la silice vitreuse. Il est donc clair que les composants silicates présents dans la solution d' activation sont soit uniquement le ou les silicate (s) apporté (s) sous forme de silicates des cations de compensation, soit uniquement le ou les silicate (s) ajouté (s) et choisi (s) parmi la silice, la silice colloïdale et la silice vitreuse, soit un mélange de ces deux sources de silicates. La solution d' activation est préparée en mélangeant les différents éléments précédemment décrits qui la composent. Le mélange peut être réalisé sous une agitation plus ou moins intense en fonction de la nature desdits éléments .
A titre d'exemple et en utilisant comme source alumino-silicatée le métakaolin dont la composition chimique est donnée dans le Tableau 1 ci- après, le rapport massique solide/solution est, dans le cadre de la présente invention, faible, notamment inférieur à 0,6 et avantageusement inférieur à 0,5. Ce rapport massique correspond à la masse de solides (i.e. source alumino-silicatée + cations de compensation + composants silicates) sur la masse de solution (i.e. solution d' activation) .
Le procédé de préparation d'un géopolymère à porosité contrôlée objet de la présente invention et, plus particulièrement, les étapes de dissolution/polycondensation consiste, tout d'abord, à mélanger la source alumino-silicatée avec la solution d' activation sous une agitation plus ou moins intense en fonction de la nature de la source alumino-silicatée et des éléments contenus dans la solution d' activation puis à conserver le matériau obtenu dans des conditions définies de température, de pression et d'humidité relative jusqu'à obtention du géopolymère final.
Ces différentes étapes sont effectuées à une température comprise entre 20 et 1200C et notamment entre 20 et 1000C. Le temps de réaction jusqu'à l'obtention du géopolymère à porosité contrôlée dépendra de la température choisie dans la gamme de températures ci-dessus. En effet, plus la température est proche de la température ambiante, plus le temps de réaction est long. Il convient de noter que le temps de réaction est également fonction du (ou des) cation (s) de compensation utilisé (s) . A titre d'exemples, le temps de réaction pourra être compris entre 5 minutes et 48 heures, notamment entre 1 et 42 heures, avantageusment entre 5 et 36 heures et, en particulier, entre 10 heures et 24 heures. L'homme du métier connaît les conditions optimales de pression et d'humidité relative à utiliser, lors de ces étapes, en fonction des différents réactifs mis en œuvre (i.e. source alumino- silicatée et éléments présents dans la solution d' activation) . A titre d'exemple et de façon non limitative, la réaction est effectuée en conditions étanches et sous une pression correspondant à la pression atmosphérique.
La présente invention concerne également un géopolymère susceptible d'être préparé par le procédé de l'invention et présentant une mésoporosité monomodale avec 50% des pores présentant un diamètre d'accessibilité déterminé par porosité mercure s' étendant sur moins de 5 nm (répartition porale fortement affinée) , entre 5 et 10 nm (répartition porale plus large) ou sur plus de 10 nm (répartition porale étalée) . La présente invention concerne également un géopolymère susceptible d'être préparé par le procédé de l'invention et présentant une macroporosité monomodale avec 50% des pores présentant un diamètre d'accessibilité déterminé par porosité mercure s' étendant sur moins de 10 nm (répartition porale fortement affinée), entre 10 et 50 nm (répartition porale plus large) ou sur plus de 50 nm (répartition porale étalée) .
La présente invention concerne également un support catalytique et/ou de séparation d'espèces chimiques comprenant un géopolymère tel que précédemment défini et l'utilisation dudit géopolymère. Toutes les utilisations connues de l'homme du métier mettant en œuvre un géopolymère et notamment les utilisations décrites dans l'art antérieur précédemment cité sont envisagées dans le cadre de la présente invention. La présente invention concerne, plus particulièrement, l'utilisation d'un géopolymère tel que précédemment défini en catalyse ou en filtration.
L' invention sera mieux comprise à la lecture des figures et exemples qui suivent. Ceux-ci n'ont pas pour but de limiter l'invention dans ses applications, il ne s'agit que d'illustrer ici les possibilités offertes par ce nouveau développement de la technique.
BRÈVE DESCRIPTION DES DESSINS
La Figure 1 présente la distribution des pores en fonction du diamètre d'accessibilité déterminé par porosimétrie mercure pour des géopolymères de modes poreux contrôlés.
La Figure 2 présente la distribution des volumes des pores en fonction du diamètre d'accessibilité déterminé par porosimétrie mercure pour des géopolymères de sélectivité porale différente. La Figure 3 présente l'influence de la silice et, plus particulièrement, de sa distribution granulométrique sur la distribution du diamètre d'accessibilité déterminé par porosimétrie mercure pour des géopolymères de modes poreux contrôlés. EXPOSE DETAILLE DE MODES DE REALISATION PARTICULIERS
I : Matériaux utilisés , choix de formulation et méthodes .
1.1. Source alumino-silicatée.
Dans l'ensemble des exemples suivants, la source aluminosilicatée utilisée est du métakaolin car cette source alumino-silicatée permet d'obtenir des géopolymères plus « purs » et dont les propriétés sont globalement plus homogènes [39, 40] .
Le métakaolin employé est du Pieri Premix MK (Grâce Construction Products) , dont la composition déterminée par fluorescence X est reportée dans le tableau 1. La surface spécifique de ce matériau, mesurée par la méthode Brunauer-Emmet-Teller, est égale à 19,9 m2 /g et le diamètre médian des particules (d50), déterminé par granulométrie laser, est égal à 5.9μm.
Tableau 1 : Composition chimique du métakao l in empl oyé .
% mas sique SiO2 Al2O3 CaO3 Fe2O3 TiO2 K2O Na2O MgO P2O5
Métakaolin 54 , 40 38 , 4 0 , 10 1 , 27 1 , 60 0 , 62 < 0 , 20 < 0 , 20 /
1.2. Cations compensateurs .
Dans l'ensemble des exemples suivants, les cations compensateurs retenus sont des alcalins. Ces cas sont en effet les plus fréquemment rencontrés dans la littérature ([40-42] par exemple) ; ils constituent donc une meilleure illustration du propos.
D'autre part, afin de maximiser les réactions de géopolymérisation et d'assurer l' électroneutralité du matériau, la quantité d'alcalin introduite dans le mélange a été fixée de telle sorte que le rapport global M2O/AI2O3 soit égal à 1. Les solutions d'hydroxyde d'alcalins employées ont été préparées par dissolution dans de l'eau ultrapure de granules de NaOH, de KOH (Prolabo, Rectapur, 98%) et de CsOH (Alfa Aesar, 99,9%) .
1.3. Silice.
La silice éventuellement ajoutée au système est une silice amorphe (BDH) dont le diamètre moyen est égal à 128,81 μm.
1.4. Méthode de synthèse .
Le mélange des constituants s'est déroulé en deux étapes.
Au cours de la première étape, les solutions d' activation contenant des silicates alcalins ont été préparées. Les solutions d'hydroxyde d'alcalins ont été obtenues par dissolution des produits appropriés dans de l'eau ultrapure. La silice amorphe éventuellement ajoutée au système est ensuite introduite dans ces solutions et mélangée pendant 30 minutes. La composition de ces solutions d' activation est ainsi entièrement décrite par : les natures des alcalins utilisées dans la formulation et leur éventuel rapport molaire, le rapport molaire H2O/M2O, noté e, le rapport molaire Siθ2/M2O noté s.
Au cours de la seconde étape, le géopolymère est préparé par mélange du métakaolin et de la solution d' activation dans un malaxeur normalisé de laboratoire (Norme Européenne EN 196-1) durant 1 minute à vitesse lente et 2 minutes à vitesse rapide. Le matériau est ensuite mis en place dans des moules en téflon de dimensions 4*4*16 cm, vibré durant quelques secondes, puis placé en conditions étanches à 200C et à pression atmosphérique pendant 24 heures. Après cette période, le géopolymère est démoulé puis placé en sac étanche et conservé à pression et température ambiantes jusqu'à utilisation.
1.5. Méthodes expérimentales .
La porosité des géopolymères a été caractérisée par : - la porosimétrie accessible à l'eau selon les recommandations de l'Association Française pour la Construction (AFPC) et de l'Association Française de Recherches et d'Essais sur les Matériaux et les Constructions (AFREM) , cette méthode de mesure de la porosité est l'une des plus représentatives de la porosité totale des matériaux de construction [43], la porosimétrie à intrusion de mercure. Ces mesures ont été effectuées sur un appareillage Micromeritics Autopore IV 9510, dont les pressions d'investigation ont varié de 0,2 à 61000 psi.
II : Contrôle de la porosité totale par la quantité d'eau.
Il est possible de contrôler la porosité totale des géopolymères en modifiant les paramètres de formulation de ces matériaux, en particulier la teneur en eau.
Le tableau 2 récapitule des mesures de porosité à l'eau menées sur des géopolymères de composition différente. Une faible variation de la teneur en eau impacte fortement la porosité totale mesurée .
Tableau 2 : Composition des géopolymères et porosité accessible à l'eau associée.
III : Contrôle du mode poreux par la quantité de silice.
L'objectif est ici de formuler deux matériaux présentant des modes poreux contrôlés et distincts : le premier matériau doit présenter une macroporosité monomodale centrée sur 100 nm, le second géopolymère une mésoporosité monomodale centrée sur 10 nm.
Les deux géopolymères ont été fabriqués selon les formulations suivantes :
Cation compensateur : sodium uniquement, s=l, 2, e=12 Cation compensateur : sodium uniquement, s=0, 6, e=12
Les analyses effectuées sur ces matériaux par porosimétrie mercure (figure 1) montrent clairement que le cahier des charges est rempli et que les diamètres d'accès aux pores correspondent à la contrainte initiale.
IV : Contrôle de la distribution porale par la nature du cation compensanteur .
L'objectif est ici de formuler trois matériaux présentant des mésoporosités monomodales dont la distribution des volumes des pores est plus ou moins étendue . Les géopolymères ont été fabriqués selon les formulations suivantes :
Cation compensateur : sodium uniquement, s=l, 2, e=12
Cation compensateur : potassium uniquement, s=l, 2, e=12
Cation compensateur : césium uniquement, s=l, 2, e=12
Les analyses effectuées sur ces matériaux par porosimétrie mercure (figure 2) montrent clairement que le cahier des charges est rempli : le géopolymère au potassium présente une porosité monomodale dont la distribution est fortement affinée puisque plus de 50% des pores ont un diamètre d'accès compris entre 4,7 et 6,1 nm ; le géopolymère au césium présente également un unique mode poreux, mais dont la répartition porale est plus large que celle du géopolymère au potassium :
50% des pores ont un diamètre d'accès compris entre 4,1 et 8,8 nm ; le géopolymère au sodium, la porosité est toujours monomodale, sélective, mais de distribution plus étalée car de gamme de pores de taille supérieure : 50% des pores ont un diamètre d'accès compris entre 9,9 et 16,5 nm.
V : Influence de la nature des éventuels composants silicates .
L'objectif ici est d'étudier l'influence des composants silicates que peut contenir la solution d' activation et, plus particulièrement, l'influence de la nature de la silice introduite dans la solution d' activation .
Ainsi, trois types de silice différentes ont été introduites dans la solution d' activation :
Silice précipitée (BDH) dont la granulométrie est dlO = 75,29 μm, d50 = 128,81 μm, d90 = 216, 18 μm ;
Tixosil 331 (Silice précipitée de chez Rhodia Silices) dont la granulométrie est dlO = 3,59 μm, d50 = 9,19 μm, d90 = 25,02 μm ;
Tixosil 38 (Silice précipitée de chez
Rhodia Silices) dont la granulométrie est dlO = 1,40 μm, d50 = 3,66 μm, d90 = 8,79 μm. Les granulométries ont été déterminées par granulométrie laser. V.l. Résultats de porosité accessible à l'eau.
Le tableau 3 ci-après compare les valeurs des porosités totales des géopolymères synthétisés avec les silices Tixosil 331 et 38 à la porosité d'un géopolymère synthétisé par une silice précipitée BDH.
Le diamètre médian et l'étendue de la distribution granulométrique ont une influence importante sur la porosité accessible à l'eau : plus le diamètre médian est faible, plus la porosité totale est faible.
Tableau 3 : Influence de la granulométrie de la silice sur le porosité totale des géopolymères
Porosité totale er
Silice
Tixosil 331 \° o Tixosil 38 précipitée BDH
K+ S=I, 2 e=10 47,5 39,4 27,3
K+ s=l, 2 e=12 53, 6 42,3 36,3
V.2. Résultats de distribution en taille des pores .
Le tableau 4 récapitule les formulations des géopolymères étudiés.
Tableau 4 : Formulation des géopolymères étudiés
Formule Silice κ+ s=l, 2 e= 10 Tixosil 331 κ+ s=l, 2 e= 10 Tixosil 38 κ+ s=l, 2 e= 12 Tixosil 331 κ+ s=l, 2 e= 12 Tixosil 38 La distribution en taille des diamètres d'accès aux pores, obtenue par porosimétrie mercure, est reportée sur la figure 3.
La silice Tixosil 38 permet d'obtenir des géopolymères dont la dispersion des pores est centrée autour de valeurs plus petites que la Tixosil 331. La silice Tixosil 38 possède une taille de grain légèrement inférieure à la Tixosil 331, mais surtout beaucoup moins dispersée. II est à souligner que la porosité obtenue est toujours mésoporeuse (teneur en silice), affinée (cation compensateur potassium) : la granulométrie de la silice influence donc essentiellement la porosité accessible à l'eau du matériau et les dimensions caractéristiques du diamètre sur lequel le mode poreux est centré.
Conclusion
Une formulation judicieuse des géopolymères permet de contrôler la macroporosité et/ou la mésoporosité de ces matériaux et ouvre la voie à une ingénierie de la porosité de ces matériaux, polymères inorganiques alumino-silicatés amorphes.
Les applications de ce type de matériaux faciles à mettre en œuvre, peu onéreux et dont les propriétés thermiques et de résistance au feu ne sont plus à démontrer, pourraient se montrer multiples dans des secteurs industriels variés utilisant des supports catalytiques et/ou de séparation d'espèces chimiques. Références
1. Breck, D. W., Zeolite Molecular Sieves : Stucture, Chemistry and Use. 1974, New York: Wiley Interscience. 415-418.
2. Xu, H. and J. S. J. Van Deventer. The Geopolymerisation of Natural Alumino-Silicates . in Geopolymère' 99 Proceedings . 1999: p. 43-63.
3. Barbosa, V. F. F., K. J. D. MacKenzie, and C. Thaumaturgo, Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. International Journal of Inorganic Materials, 2000. 2(4) : p. 309-317.
4. Xu, H. and J. S. J. Van Deventer, Geopolymerisation of multiple minerais. Minerais
Engineering, 2002. 15: p. 1131-1139.
5. Davidovits, J., Récent Progresses in Concrètes for Nuclear Waste and Uranium Waste Containment. Concrète International, 1994. 16(2) : p. 53-58.
6. Palomo, A., M. T. Blanco-Varela, M. L. Granizo, F. Puertas, T. Vazquez, and M. W. Grutzeck, Chemical stability of cementitious materials based on metakaolin. Cernent and Concrète Research, 1999. 29(7) : p. 997-1004.
7. Palomo, A., M. W. Grutzeck, and M. T. Blanco, Alkali-activated fly ashes: A cernent for the future. Cernent and Concrète Research, 1999. 29(8) : p. 1323-1329. 8. Lee, W. K. W. and J. S. J. Van Deventer, The effects of inorganic sait contamination on the strength and durability of geopolymers. Colloids and Surfaces A : Physicochemical and Engineering Aspects, 2002. 211: p. 115-126.
9. Swanepoel, J. C. and CA. Strydom, Utilisation of fly ash in a geopolymeric material.
Applied Geochemistry, 2002. 17: p. 1143-1148.
10. Hardjito, D., S. E. Wallah, D. M. J. Sumajouw, and B. V. Rangan . Properties of Geopolymer Concrète with FIy Ash as Source Material : Effect of Mixture Composition. In 7th CANMET/ACI International Conférence on Récent Advances in Concrète Technology. 2004. May 26-29, Las Vegas, USA.
11. Bankowski, P., L. Zou, and R. HODGES, Using inorganic polymer to reduce leach rates of metals from brown coal fly ash. Minerais Engineering, 2004. 17: p. 159-166.
12. Bakharev, T., Geopolymeric Materials prepared using Class F fly as hand elevated température curing. Cernent and Concrète Research, 2005. 35: p. 1224-1232.
13. Xu, H. and J. S. J. van Deventer, The geopolymerisation of alumino-silicate minerais. International Journal of Minerai Processing, 2000. 59: p. 247-266. 14. Barbosa, V. F. F., K. J. D. MacKenzie, and
C. Thaumaturgo . Synthesis and Characterization of Sodium Polysialate Inorganic Polymer Based on Alumina and Silica. in Geopolymère' 99 Proceedings . 1999: p. 65-77. 15. Davidovits, J. Chemistry of Geopolymeric Systems, Terminology. in Geopolymère' 99 Proceedings. 1999: p. 9-39.
16. Skvara, F. and F. Kastanek, Geopolymer binder based on fly ash, SK332004, Editor. 2004.
17. Skvara, F. and A. Allahverdi, Binding geopolmeric mixture., CZ20003781, Editor. 2002.
18. Ikeda, 0., Solidification and materialization of fly ash powder with geopolymer, JP8301639, Editor. 1996.
19. Ikeda, 0., Solidification and materialization of kaolin powder with geopolymer., JP8301638, Editor. 1996.
20. Comrie, D., Cementitious materials including stainless steel slag and geopolymers,
US2005160946, Editor. 2005.
21. Davidovits, J., Producing geopolymer cernent free from Portland cernent., FR2712882, Editor. 1995. 22. Laney, B., Geopolymer-modified, gypsum- based construction material, AU3031392, Editor. 1994.
23. Johnson, G. B., Geopolymer concrète and method of préparation and casting, EP1689691, Editor. 2006. 24. Davidovits, J. and F. Waendendries,
Geopolymer stone for construction and décoration comprises rock residues and a poly (sialate) , poly (sialate-siloxo) and/or poly (sialate-disoloxo) geopolymer binder., FR2831905, Editor. 2003. 25. Yan, S., Geopolymer dry powder regenerated polystyrène heat préservation and heat insulating mortar., CN1762884, Editor. 2006.
26. Stein, L. and M. R. Russak, Fire- résistant containers made with geopolymer binder material, WO2004026698, Editor. 2004.
27. Kuenzel, E. and B. Leydolph, Heat- insulating composite material molded part production comprises mixing a high porous granulate based on grain and/or leguminous plant with a geopolymer, molding the mixture into molded body, and hardening., DE10220310, Editor. 2003.
28. Nicholson, CL. and R. A. Fletcher, Geopolymers and method for their production, WO2005019130, Editor. 2005.
29. Davidovits, J. and R. Davidovits, Ready-to-use liquid geopolymer resins and method for production thereof., WO03087008, Editor. 2003.
30. Vahlbrauk, K., Prefabricated chimney, DE4410437, Editor. 1995.
31. Vahlbrauk, K., Wall, ceiling or floor building member. , DE1953590, Editor. 1996.
32. Angus, M. D. and I. H. Godfrey, Waste disposai method, WO2006097696, Editor. 2006. 33. Davidovits, J., Method for obtaining a geopolymer binder allowing to stabilize, solidify and consolidate toxic or waste materials., WO9204298, Editor. 1992.
34. Davidovits, J., Method for stabilizing, solidifying and storing waste material., WO8902766, Editor. 1989. 35. Rouquerol, J., D. Avnir, CW. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, and K. K. Unger, Recommendations for the characterization of porous solids Pure Appl . Chem., 1994. 66 p. 1739-1758.
36. Barbosa, V. F. F. and K. J. D. MacKenzie, Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Materials Research Bulletin, 2003. 38: p. 319-331. 37. Duxson, P., A. Fernandez-Jimenez , J. L.
Provis, G. C. Lukey, A. Palomo, and J. S. J. Van Deventer, Geopolymer technology: the current state of the art. Journal of Materials Science 2007. (in press) .
38. McCormick, A. V. and A. T. Bell, The Solution Chemistry of Zeolite Precursors. Catalunya
Revue of Science and Engineering, 1989. 31(1-2) : p. 97-127.
39. Phair, J. W., J. D. Smith, and J. S. J. Van Deventer, Characteristics of aluminosilicate hydrogels related to commercial « Geopolymers » Materials Letters, 2003. 57: p. 4356-4367.
40. Zhang, Y. S., W. Sun, and Z. J. Li, Hydration process of potassium polysialate (K-PSDS) geopolymer cernent. Advances in Cernent Research, 2005. 17 (1) : p. 23-28.
41. Palomo, A., S. Alonso, A. Fernandez Jiminez, I. Sobrados, and J. Sanz, Alkaline activation of fly ashes. A NMR study of the reaction products. Journal of American Ceramic Society, 2004. 87(6) : p. 1141-1145. 42. Fernandez-Jimenez, A., A. Palomo, and M. Criado, Microstructure development of alkali- activated fly ash cernent: a descriptive model. Cernent and Concrète Research, 2005. 35(6) : p. 1204-1209. 43. AFPC-AFREM, Durabilité des bétons.
Méthodes recommandées pour la mesure des grandeurs associées à la durabilité. Compte-rendu des journées techniques. 1997, Toulouse. 283.

Claims

REVENDICATIONS
1) Procédé de préparation d'un géopolymère à porosité contrôlée comprenant une étape de dissolution/polycondensation d'une source alumino- silicatée dans une solution d' activation pouvant éventuellement contenir des composants silicates, caractérisé en ce qu' il comprend les étapes successives suivantes consistant à a. définir au moins une caractéristique de la porosité du géopolymère à préparer ; b. déterminer une valeur ou un élément pour au moins un paramètre choisi parmi la quantité totale d'eau, la quantité totale de silice, le cation de compensation, et la distribution granulométrique des éventuels composants silicates, permettant d'obtenir la caractéristique définie à l'étape (a) ; c. sélectionner ladite valeur ou ledit élément pré-déterminé (e) à l'étape (b) .
2) Procédé de préparation selon la revendication 1, caractérisé en ce que ladite étape (c) consiste à sélectionner une valeur pré-déterminée pour la quantité totale d'eau et/ou pour la distribution granulométrique desdits composants silicates afin d'obtenir un géopolymère dont la porosité accessible à l'eau est comprise entre de l'ordre de 15 % et de l'ordre de 65 %.
3) Procédé de préparation selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que la valeur pré-déterminée pour la distribution granulométrique desdits composants silicates est choisie parmi une valeur pré-déterminée du diamètre médian de la distribution granulométrique desdits composants silicates ou une valeur pré-déterminée de l'étendue de la distribution granulométrique desdits composants silicates.
4) Procédé de préparation selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ladite étape de sélection consiste à sélectionner une valeur pré-déterminée pour la quantité totale de silice afin d'obtenir un géopolymère présentant une microporosité, mésoporosité ou macroporosité monomodale.
5) Procédé de préparation selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la sélection d'une quantité totale de silice avec un rapport molaire Siθ2/M2O supérieur à 1 permet d'obtenir un géopolymère présentant une mésoporosité monomodale, M2O représentant la quantité molaire d'oxyde de cations de compensation dans la solution d' activation .
6) Procédé de préparation selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la sélection d'une quantité totale de silice avec un rapport molaire SiO2ZM2O inférieur à 1 permet d'obtenir un géopolymère présentant une macroporosité monomodale, M2O représentant la quantité molaire d'oxyde de cations de compensation dans la solution d' activation .
7) Procédé de préparation selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape de sélection consiste à sélectionner ledit cation de compensation parmi les métaux alcalins, les métaux alcalino-terreux et leurs mélanges.
8) Procédé de préparation selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape de sélection consiste à sélectionner un cation de compensation parmi le potassium, le sodium et le césium pour obtenir une distribution porale du géopolymère contenant comme cation de compensation du potassium, inférieure à la distribution porale du géopolymère contenant comme cation de compensation du sodium, elle-même inférieure à la distribution porale du géopolymère contenant comme cation de compensation du césium.
9) Procédé de préparation selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite source alumino-silicatée est une source solide contenant des alumino-silicates amorphes.
10) Procédé de préparation selon la revendication 9, caractérisé en ce que lesdits alumino- silicates amorphes sont choisis parmi les minéraux d' alumino-silicates naturels, des minéraux d' alumino- silicates naturels calcinés, des verres synthétiques à base d' alumino-silicates purs, du ciment alumineux, de la ponce, des sous-produits calcinés ou résidus d'exploitation industrielle et des mélanges de ceux-ci.
11) Procédé de préparation selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite solution d' activation est une solution aqueuse fortement alcaline pouvant éventuellement contenir des composants silicates.
12) Procédé de préparation selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdits composants silicates sont :
- le ou le (s) silicate (s) apporté (s) sous forme de silicates des cations de compensation, le ou les silicate (s) ajouté (s) et choisi (s) parmi la silice, la silice colloïdale et la silice vitreuse un mélange de ces deux sources de silicates.
13) Procédé de préparation selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite solution d' activation présente un pH supérieur à 9.
14) Géopolymère susceptible d'être préparé par un procédé tel que défini dans l'une quelconque des revendications précédentes, caractérisé en ce que ledit géopolymère présente une mésoporosité monomodale avec 50% des pores présentant un diamètre d'accessibilité déterminé par porosité mercure s' étendant sur moins de 5 nm (répartition porale fortement affinée) ou entre 5 et 10 nm (répartition porale plus large) .
15) Géopolymère susceptible d'être préparé par un procédé tel que défini dans l'une quelconque des revendications 1 à 13, caractérisé en ce que ledit géopolymère présente une macroporosité monomodale avec 50% des pores présentant un diamètre d'accessibilité déterminé par porosité mercure s' étendant sur moins de 10 nm (répartition porale fortement affinée) ou entre 10 et 50 nm (répartition porale plus large) .
16) Support catalytique et/ou de séparation d'espèces chimiques comprenant un géopolymère selon l'une quelconque des revendications 14 ou 15.
17) Utilisation d'un géopolymère selon l'une quelconque des revendications 14 ou 15 en catalyse.
18) Utilisation d'un géopolymère selon l'une quelconque des revendications 14 ou 15 en filtration .
EP08839022A 2007-10-18 2008-10-15 Procédé de préparation d'un géopolymère a porosité contrôlée, le géopolymère ainsi obtenu et ses differentes applications Ceased EP2203385A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0758409A FR2922543B1 (fr) 2007-10-18 2007-10-18 Procede de preparation d'un geopolymere a porosite controlee, le geopolymere ainsi obtenu et ses differentes applications
PCT/EP2008/063865 WO2009050196A1 (fr) 2007-10-18 2008-10-15 Procédé de préparation d'un géopolymère a porosité contrôlée, le géopolymère ainsi obtenu et ses differentes applications

Publications (1)

Publication Number Publication Date
EP2203385A1 true EP2203385A1 (fr) 2010-07-07

Family

ID=39433965

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08839022A Ceased EP2203385A1 (fr) 2007-10-18 2008-10-15 Procédé de préparation d'un géopolymère a porosité contrôlée, le géopolymère ainsi obtenu et ses differentes applications

Country Status (8)

Country Link
US (1) US20100222204A1 (fr)
EP (1) EP2203385A1 (fr)
JP (1) JP2011500494A (fr)
KR (1) KR20100085112A (fr)
CN (1) CN101827786A (fr)
FR (1) FR2922543B1 (fr)
RU (1) RU2503617C2 (fr)
WO (1) WO2009050196A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062689A (ja) * 2009-08-17 2011-03-31 Toshiyuki Takahashi 金属酸化物混和構成による汚泥臭気の分解消臭法並びに汚泥分解法
WO2011046910A2 (fr) 2009-10-14 2011-04-21 Arizona Board Of Regents For And On Behalf Of Arizona State University Fabrication de matériaux poreux à l'aide de gels thixotropiques
WO2011068830A2 (fr) 2009-12-01 2011-06-09 Arizona Board Of Regents For And On Behalf Of Arizona State University Matériaux de géopolymère poreux
US9365691B2 (en) 2010-08-06 2016-06-14 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Fabricating porous materials using intrepenetrating inorganic-organic composite gels
KR101078335B1 (ko) 2011-06-01 2011-11-01 주식회사 영일화성 규산염을 이용한 지오폴리머의 제조방법 및 지오폴리머
US9296654B2 (en) 2011-09-21 2016-03-29 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Geopolymer resin materials, geopolymer materials, and materials produced thereby
KR101140102B1 (ko) * 2012-01-26 2012-04-30 천용승 친환경 지오폴리머 모르타르를 이용한 단계별 콘크리트 구조물의 단면보수공법
JP6210659B2 (ja) * 2012-08-01 2017-10-11 国立大学法人京都大学 セシウム含有廃棄物の処理方法。
WO2015006010A2 (fr) 2013-06-21 2015-01-15 Dong-Kyun Seo Oxydes métalliques obtenus à partir de solutions acides
EP2853567A1 (fr) * 2013-09-27 2015-04-01 Heraeus Precious Metals GmbH & Co. KG Cellules solaires produites à partir de plaquettes à haute impédance et d'une pâte comprenant un additif d'oxyde métallique Ag
FR3019176A1 (fr) * 2014-03-27 2015-10-02 Commissariat Energie Atomique Procede de preparation d'un geopolymere macroporeux et mesoporeux, a porosite controlee
EP3154917A4 (fr) * 2014-06-12 2018-03-28 Arizona Board Of Regents, For And On Behalf Of Arizona State University Agrégats géopolymères
WO2015191962A1 (fr) 2014-06-12 2015-12-17 Arizona Board Of Regents On Behalf Of Arizona State University Adsorbants de dioxyde de carbone
US10589210B2 (en) * 2014-12-30 2020-03-17 Evonik Operations Gmbh Aluminosilicates and coatings made therefrom for VOC removal
JP6664639B2 (ja) * 2016-02-26 2020-03-13 アドバンエンジ株式会社 放射線遮蔽体
JP6761682B2 (ja) * 2016-06-30 2020-09-30 大和ハウス工業株式会社 シリケートポリマー成形体の製造方法
WO2018136695A1 (fr) 2017-01-20 2018-07-26 Seo Dong Kyun Nanotiges d'aluminosilicate
JP6990815B2 (ja) * 2017-08-25 2022-01-12 久幸 末松 水素再結合触媒
CN111135796B (zh) * 2020-01-09 2022-02-11 常熟理工学院 一种强效地质聚合除氟剂及其制备方法和应用
FR3106507B1 (fr) * 2020-01-28 2024-03-01 Commissariat Energie Atomique Materiau solide a porosite multiple ouverte comprenant un geopolymere et des particules solides et son procede de preparation
CN111320425A (zh) * 2020-02-29 2020-06-23 运城学院 一种粉煤灰地质聚合物/g-C3N4复合催化剂及其制备方法
CN114377662A (zh) * 2022-03-03 2022-04-22 华北理工大学 一种钢渣基多孔地质聚合物吸附材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060251909A1 (en) * 2005-05-09 2006-11-09 Beall George H Geopolymer composites and structures formed therefrom

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859367A (en) * 1987-10-02 1989-08-22 Joseph Davidovits Waste solidification and disposal method
FR2666253B1 (fr) * 1990-09-04 1992-10-30 Davidovits Joseph Procede d'obtention d'un liant geopolymerique permettant la stabilisation, la solidification et la consolidation de dechets toxiques.
EP0692452B1 (fr) * 1994-07-08 1997-11-05 Tosoh Corporation Aluminosilicate amorphe et procédé pour sa préparation
DE19841740A1 (de) * 1998-09-09 2000-03-16 Porzellanwerk Kloster Veilsdor Keramischer Katalysator zur selektiven Zersetzung von N2O und Verfahren zu dessen Herstellung
US7141112B2 (en) * 2003-01-31 2006-11-28 Douglas C Comrie Cementitious materials including stainless steel slag and geopolymers
FR2872151B1 (fr) * 2004-06-24 2007-06-29 Inst Francais Du Petrole Materiau aluminosilicate mesostructure
CN102352274B (zh) * 2005-03-17 2015-01-21 Noxii国际有限公司 吸附剂组合物及使用其降低煤燃烧过程中的汞排放量的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060251909A1 (en) * 2005-05-09 2006-11-09 Beall George H Geopolymer composites and structures formed therefrom

Also Published As

Publication number Publication date
JP2011500494A (ja) 2011-01-06
RU2010119693A (ru) 2011-11-27
RU2503617C2 (ru) 2014-01-10
FR2922543A1 (fr) 2009-04-24
KR20100085112A (ko) 2010-07-28
CN101827786A (zh) 2010-09-08
FR2922543B1 (fr) 2011-10-14
WO2009050196A1 (fr) 2009-04-23
US20100222204A1 (en) 2010-09-02

Similar Documents

Publication Publication Date Title
EP2203385A1 (fr) Procédé de préparation d&#39;un géopolymère a porosité contrôlée, le géopolymère ainsi obtenu et ses differentes applications
Van Jaarsveld et al. The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics
Lee et al. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements
JP6370876B2 (ja) 気泡複合材料、生産方法、およびその使用
WO2016075393A1 (fr) Adsorbant zéolithique à base de zéolithe mésoporeuse
Machiels et al. Inorganic polymer cement from Fe-silicate glasses: varying the activating solution to glass ratio
Gao et al. Effects of nano-SiO2 on setting time and compressive strength of alkaliactivated metakaolin-based geopolymer
JP2009517327A5 (fr)
CN111792902B (zh) 一种高强耐水型磷石膏复合胶凝材料及其制备方法
RU2002127788A (ru) Химически связанный керамический продукт и способ его получения
Li et al. Effect of vacuum dehydration on gel structure and properties of metakaolin-based geopolymers
CN1884193A (zh) 一种多孔莫来石陶瓷材料及其制备方法
Onutai et al. Possible pathway of zeolite formation through alkali activation chemistry of metakaolin for geopolymer–zeolite composite materials: ATR-FTIR study
WO2014041284A1 (fr) Procédé de préparation d&#39;un mof mis en forme avec un liant hydraulique par pastillage sans liquide ou par granulation présentant des propriétés mécaniques améliorées
JPH08310881A (ja) 多孔質焼結体及びその製造法
RU2554981C1 (ru) Алюмосиликатное кислотостойкое вяжущее и способ его получения
FR3106507A1 (fr) Materiau solide a porosite multiple ouverte comprenant un geopolymere et des particules solides et son procede de preparation
US3949029A (en) Production of porous shaped inorganic structures using gas-laden molecular sieve zeolites
Watanabe et al. Synthesis and characterization of metakaolin-based crystalline phase sodium aluminum silicon oxide geopolymers using concentrated alkaline medium
US8425830B2 (en) Permeable material, articles made therefrom and method of manufacture
EP3031053B1 (fr) Procédé pour traiter et/ou inerter une solution fortement saline éventuellement contaminée
EP1641726A2 (fr) Materiaux d isolation thermique et/ou acoustique a base de s ilice et procedes pour leur obtention
FR3143831A1 (fr) Procede continu pour separer les cations du strontium a partir d’un milieu liquide, avec un materiau comprenant un geopolymere et des particules d’un echangeur ionique
JP2008001564A (ja) 多孔質セラミックス焼成体の製造方法。
JP2005145808A (ja) 無機粉末の炭酸固化体とその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20111007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20130917