EP2199725B1 - Multi-impingement-surface for cooling a wall - Google Patents

Multi-impingement-surface for cooling a wall Download PDF

Info

Publication number
EP2199725B1
EP2199725B1 EP08021833A EP08021833A EP2199725B1 EP 2199725 B1 EP2199725 B1 EP 2199725B1 EP 08021833 A EP08021833 A EP 08021833A EP 08021833 A EP08021833 A EP 08021833A EP 2199725 B1 EP2199725 B1 EP 2199725B1
Authority
EP
European Patent Office
Prior art keywords
impingement
webs
composite
layers
perforated sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08021833A
Other languages
German (de)
French (fr)
Other versions
EP2199725A1 (en
Inventor
Andreas Heselhaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT08021833T priority Critical patent/ATE528606T1/en
Priority to EP08021833A priority patent/EP2199725B1/en
Priority to JP2009283250A priority patent/JP5511352B2/en
Priority to RU2009146588/06A priority patent/RU2518773C2/en
Priority to CN200910253488.8A priority patent/CN101787904B/en
Publication of EP2199725A1 publication Critical patent/EP2199725A1/en
Application granted granted Critical
Publication of EP2199725B1 publication Critical patent/EP2199725B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F7/064Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using an intermediate powder layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/182Transpiration cooling
    • F01D5/183Blade walls being porous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/182Transpiration cooling
    • F01D5/184Blade walls being made of perforated sheet laminae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4646Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/185Two-dimensional patterned serpentine-like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0077Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements
    • F28D2021/0078Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements in the form of cooling walls

Definitions

  • the invention relates to a multi-impingement composite for cooling a wall, a wall with the multi-impingement composite and a method for producing the multi-impingement composite.
  • a generic composite is off GB-A-2 061 482 known.
  • the hot gas leading part has a wall at which it is in contact with the hot gas on one side in contact and is cooled on its other side with the cooling air.
  • a heat flow is transported away from the wall, so that the wall at its side facing the hot gas has a contact temperature which is below the hot gas temperature.
  • the porous structure abuts against the wall, so that heat is transferred from the wall into a porous structure by heat conduction and heat radiation.
  • the porous structure in turn gives in her the volume of heat to the cooling air, with the heat from the porous structure can be removed.
  • the structure needs to have only a relatively small volume on these walls in order to transmit a desired heat flow from the wall to the cooling air can.
  • the wall may have a plurality of film cooling holes through which the cooling air is directed through the wall into the hot gas flow, thereby forming a film of cooling air on the hot gas side surface of the wall.
  • the cooling air flows out of the porous structure into the hot gas flow, so that a uniform flow through the porous structure is achieved perpendicular to the wall.
  • the film cooling can approach their ideal borderline case, the effusion cooling.
  • an optimally heat-insulating film of cooling air adjusts itself to the hot gas-side surface of the wall at the same time.
  • the porous structure may for example be made of a metal foam, which has only a random structure with a stochastically distributed pore size due to its conventional manufacturing process.
  • the metal foam is inexpensive to manufacture, but has significant disadvantages.
  • the metal foam may be partially closed, which thereby have too small a width, so that there is a risk of clogging of these pores.
  • the metal foam has sharp edges in its interior, whereby an increased pressure loss can occur when flowing through the metal foam with the cooling air.
  • the metal foam has a plurality of pores in its interior delimiting webs whose stochastically constant diameter is detrimental to the heat conduction.
  • a designed porous structure which in principle can have any optimal geometry.
  • the designed porous structure can be produced, for example, by the production process "selective laser melting” or “selective sintering".
  • these production methods have the disadvantage that they can be used to produce the designed porous structure only up to a maximum of 6 PPI (pores per inch) and a minimum web thickness of 0.6 to 1 mm.
  • these design structures produced in this way are not suitable for the previously mentioned, flat and to be cooled walls, as this PPI rates of 40 to 50 PPI would be required.
  • the "selective laser melting” is very time consuming and costly.
  • a designed porous structure for cooling example of Schaufelend outfitn, ring segments on blades, Transitionswanditch and burner walls, such. Z. can still be produced, still significant disadvantages.
  • a designed porous structure 101 is shown.
  • the designed porous structure 101 has a plurality of pores 102 formed by ridges 103 that converge at nodes 104.
  • the high heat transfer of the designed porous structure 101 is due to the multiplicity of repetitive stagnation point flows as it flows through the designed porous structure 101 with the cooling air. It is characterized by the one of the pores 102, which is the shape of in Fig. 4 has drawn pyramid, the cooling air flow accelerates, which bounces on one of the webs 103 or one of the nodes 104, wherein a high local heat transfer is formed. From there, the flow of cooling air through the next opening is accelerated again to bounce on the next node 104 or webs 103.
  • Object of the invention is to provide a multi-impingement composite for cooling a wall, a wall with the multi-impingement composite and a method for producing the multi-impingement composite, wherein the flow through the multi-impingement composite a high Number of impingement cooling flows can be generated, which with the multi-impingement composite, the wall is effectively cooled.
  • the multi-impingement composite according to the invention can be contacted with the surface of a wall to be cooled and thermally conductive and has a plurality of pinhole layers with a plurality of pinhole formed, distributed over the surface of the pinhole layers arranged through holes and a plurality of web layers, with the pinhole layers are arranged alternately stacked and each having a plurality of webs which are arranged distributed over the surface of the pinhole layers and bridge each of these, each web of a web layer is arranged in alignment with one of the webs of the other web layers and each through hole of the one Pinhole layer is arranged offset to the through holes of the adjacent pinhole layers, so that when the multi-impingement composite is pressurized on its one flat side with the cooling fluid, the cooling fluid through the fürgangslöc flows forth and then between the jetties and the apertured diaphragm layers settled by flooding, whereby the heat flow derived in the webs of the wall with the cooling fluid can be discharged.
  • the multi-impingement composite thus has a plurality of layers on the pinhole layers, which are arranged one above the other and have mutually staggered through holes. Through the through holes, the cooling fluid is cascaded in an impingement cooling flow on the respective underlying level can be brought.
  • the last (hot) or the first (cold) plane represents the wall, which can be significantly thicker than the impact cooling planes.
  • the planes are interconnected by the webs, which are formed as connecting elements of the pinhole layers.
  • the webs conduct heat from the wall to be cooled to the other levels, so that heat can also be transferred there in the impingement cooling flows. For this purpose, the webs are aligned on top of each other.
  • the webs each have the largest possible cross-sectional area, so that the heat transfer rate along the webs is high.
  • the cross-sectional area of the webs are only selected to be so large that the pressure losses in the flow of cooling fluid caused by the webs and the concomitant impairment of the heat transfers in the impact cooling flows are not excessively high.
  • the orders of magnitude of the cross-sectional areas of the webs also result from the distance between the through holes.
  • the multi-impingement composite With the distance to the hot, to be cooled wall, the proportion of the heat flow decreases, which is absorbed by the cooling medium. Thus, in far from the wall remote impact cooling layers, the proportion of the heat flow is small, which is absorbed by the cooling medium. Thereby, it is sufficient to limit the thickness of the multi-impingement composite to a maximum necessary extent, so that the multi-impingement composite has a sufficient number of pinhole layers and land layers designed for a predetermined heat transfer line and for a given pressure loss.
  • the Geometry of the multi-impingement composite can be optimized for overall heat transfer and overall pressure loss.
  • the distances between the lands and the distances between the through holes may be from less than 1 mm to several centimeters.
  • the multi-impingement composite is formed as an extreme case of the designed porous structure, wherein the multi-impingement composite has a high geometric patterning.
  • the area of stagnation point flow is limited to a very small cross-section formed by the area of the structural elements struck by the cooling fluid. This necessitates the aforementioned concentration of as many stagnation points per volume as possible, thereby requiring a high PPI rate of the porous structure.
  • the high stagnation point heat transfer area extends to the entire gap between the limiting land layers. As a result, the distance between the lands and the through holes need not be as small as would be necessary with a designed 40 to 50 PPI porous structure.
  • the impingement of the laterally propagating impingement cooling fluid on the webs results in a turbulence which ensures a similarly high heat transfer at the webs and further downstream impact surface, as in the stagnation point region itself.
  • the entire inner surface of the multi-impingement composite becomes high heat transfer, although the distance between the lands and the through holes may be much greater than 40 to 50 PPI.
  • the longitudinal directions of the webs extend perpendicular to the pinhole layers. Furthermore, the webs are in a rectangular grid evenly over the surface arranged the Lochblendenechichten distributed.
  • the through holes are each equidistant from four immediately adjacent lands, and the gap formed between the four lands has either one of the through holes in either one orifice plate or in the other pinhole layer such that the through holes are in gap.
  • the webs have a lancet-shaped cross section with two opposite blunt edges and two opposite sharp edges.
  • the through-holes of the adjacent apertured diaphragm layer through which the cooling fluid flows in the gap formed between the four webs when the cooling fluid pressure is applied to the multi-impingement composite on one flat side thereof.
  • the through-holes of the adjacent pinhole layer through which the cooling fluid flows into the gap formed between the four lands when the multi-impingement composite impinges on its one flat side with the cooling fluid pressure is.
  • the pinhole plates are preferably rounded or touched. This reduces pressure losses in the multi-impingement composite, which can reduce the pressure of the cooling fluid to be applied to the multi-impingement composite. By further rounding the transitions between the pinhole plates and the webs, the stresses in the pinhole plates and the webs would advantageously distributed such that excessive voltage spikes are prevented.
  • the wall of the invention has the multi-impingement composite, which is contacted with the surface of the wall surface and heat-conducting.
  • the multi-impingement composite preferably rests against one of the web layers on the wall, and the wall preferably has a plurality of through-holes, so that the wall is formed as one of the pinhole layers.
  • the distribution density of the through holes in the wall may advantageously be chosen to be the same as the distribution density of the through holes in the pinhole layers, so that an optimal, directed perpendicular to the wall flow is made possible.
  • the Effusionsksselungscou can be optimally used in closely spaced through holes in the wall.
  • the hole density in the wall can also be different from that in the pinhole plates.
  • the method according to the invention for producing the multi-impingement composite comprises the step of printing individual layers of the multi-impingement composite together in a screen printing process, wherein a screen mask is produced for each of two apertured diaphragm layers and a web layer, through which a paste is pressed.
  • the paste preferably comprises metal powder and binder.
  • the multi-impingement composite is preferably sintered.
  • the thickness of the pinhole plates preferably has the same order of magnitude as the thickness of the web layers.
  • the screen mask is made photochemically from a metal foil.
  • the paste consisting of metal powder and binder is pressed for each layer through the pores of the screen mask, which is later preferably sintered as a whole. If the process parameters are known, such as formulation, drying time and shrinkage, the process can run cost-effectively in mass production.
  • the other method of making the multi-impingement composite according to the invention comprises the steps of: prefabricating blocks of the multi-impingement composite from layers of constant cross-section; Pre-drying and stacking the blocks. It is preferred that the multi-impingement composite is sintered.
  • the thickness of the pinhole plates preferably has the same order of magnitude as the thickness of the web layers. If the blocks of the multi-impingement composite are prefabricated, they are pre-dried and precisely stacked and then joined together in the sintering process.
  • the basis for high manufacturing accuracy in the production of the multi-impingement composite is the high-precision production of the molds for the blocks.
  • the molds are made by a photochemical process that is applied to individual layers of the mold made from metal foils.
  • An alternative method of making the multi-impingement composite comprises the steps of: forming the apertured plate layers and the fin layers of thin metal foils; Stacking the metal foils to form the multi-impingement composite; Connecting the metal foils averages "transient liquid phase bonding".
  • the metal foils are stacked directly and bonded by means of transient liquid face bonding, wherein the metal foils were photochemically shaped into individual layers of the positive of the multi-impingement composite to be produced.
  • the screen printing method can be advantageously used. For larger distances between the webs, however, there is a risk that the overhanging printed film may tear.
  • the method of making the multi-impingement composite with prefabricated blocks of pre-dried sintered / binder material may be used for a pitch of lands and through-holes that is 10mm and larger.
  • the "transient liquid face bonding" of the individual metal foils can be used with a grid pitch greater than 10 mm.
  • the multi-impingement composite 1 has a plurality of web layers 6, each between two adjacent
  • Aperture layers 2 are arranged so that the multi-impingement composite 1 has a formed from the pinhole layers 2 and the web layers 4 sandwich structure.
  • the web layers 6 are formed from a plurality of webs 7, which are also arranged like a raster similar to the through holes 3 and are perpendicular to the pinhole layers 2 with their longitudinal directions. As a result, with each web 7, the distance between two adjacent apertured diaphragm layers 2 is bridged so that heat can be transmitted from one apertured diaphragm layer 2 via the web 7 to the other apertured diaphragm layer 2.
  • a gap 8 is formed, into which either the inlet side 4 of one of the through holes 3 or the outlet side 5 of one of the through holes 3 opens.
  • the through holes 3 are arranged on a gap.
  • the webs 7 of a web layer 6 are each arranged in alignment with their immediate neighbors of the other web layers, wherein the webs 7 in the first embodiment according to the invention of the multi-impingement composite according to Fig. 1 each have a circular cross-section 9.
  • the webs 7 according to the second embodiment of the multi-impingement composite according to the invention have Fig. 2 a lancet-shaped cross-section, which is formed by two opposite acute edges 11 and two opposite obtuse edges 12, wherein the sharp edges 11 and the blunt edges 12 are arranged alternately when the boundary of the lancet-shaped cross section 10.
  • a flat with a wall to be cooled and thermally conductive contactable flat side 17 of the multi-impingement composite 1 is provided. Facing away from this flat side 17, a flat side 16 which can be pressurized with a cooling medium is provided on the multi-impingement composite 1.
  • the cooling medium flows through the through holes 3 and enters at the exit side 5 in one of the intermediate spaces 8 with a main flow 13 a. Characterized in that the diameter of the through holes 3 is smaller than the width of the intermediate spaces 8, a turbulence 14 of the cooling fluid sets in the gap 8 a.
  • a transverse flow 14 sets in, which flows from an impact point 16 of the main flow 13 on the aperture diaphragm layer 2 to the inlet openings 4 of the through holes 3 arranged offset in the next plane.
  • the cooling fluid then exits at the inlet side 4 of the through hole 3 from the intermediate space 8 as the main flow 13 again and passes through the outlet side 5 of the through hole 3 to the underlying gap 8.
  • Opposite to the main flow 13 is formed by the webs 7 from the wall transmit a heat flow 15 a.
  • the heat flow 15 is seen in the direction of the main flow 13 seen from space 8 to space 8 by convective heat transfer to the cooling fluid, so that with the cooling fluid, the wall is cooled, also the heat flow, which flows into each pinhole layer 2, through the perpendicular
  • the main diaphragm 13 impinging on the pinhole diaphragm layer 2 is partially absorbed by the cooling fluid.

Abstract

The multi-impingement composite (1) for cooling a wall using a cooling liquid, comprises perforated sheet layers (2) with several passage holes (3) distributedly arranged over a surface of the perforated sheet layers and formed as perforated sheets, and web layers (6) that are alternatively stacked with the perforated sheet layers and have several webs (7), where the multi-impingement composite is contactable with a surface of the wall in a flat and heat-conducting manner and the webs are distributedly arranged over the surface of the perforated sheet layers. The multi-impingement composite (1) for cooling a wall using a cooling liquid, comprises perforated sheet layers (2) with several passage holes (3) distributedly arranged over a surface of the perforated sheet layers and formed as perforated sheets, and web layers (6) that are alternatively stacked with the perforated sheet layers and have several webs (7), where the multi-impingement composite is contactable with a surface of the wall in a flat and heat-conducting manner and the webs are distributedly arranged over the surface of the perforated sheet layers and bridge over the perforated sheet layers. Each web of the web layer is arranged in line with one of the webs of the other web layers. Each passage hole of the perforated sheet layers is displaceably arranged to the passage holes of the adjacent perforated sheet layers, so that when the multi-impingement composite is pressurized on its flat side with the cooling liquid, the cooling liquid flows through the perforated sheets and flushes through an intermediate space located between the webs and the perforated sheet layers, where the heat stream derived from the wall is supplyable into the webs with the cooling liquid. The longitudinal directions of the webs extend vertical to the perforated sheet layers. The webs are distributedly arranged in a rectangular raster permanently over the surface of the perforated sheet layers. The passage holes are arranged in same distances to four direct adjacent webs and the intermediate space formed between the four webs has one of the passage holes in one perforated sheet layers or in the other perforated sheet layer, so that the passage holes are gaps. The webs have a circular or lancet-shaped cross-section with two opposite blunt edges and two opposite pointed edges. The passage holes of the perforated sheet layer, through which the cooling liquid flows out into the intermediate space formed between the four webs when the multi-impingement composite is pressurized on its flat side with the cooling liquid, lie on lines crossing the pointed edges. The passage holes of the perforated sheet layer, through which the cooling liquid flows-in into the intermediate space formed between the four webs when the multi-impingement composite is pressurized on its flat side with the cooling liquid, lie on lines crossing the blunt edges. The perforated sheet layers are rounded-off at the passage holes. An independent claim is included for a method for producing a multi-impingement composite.

Description

Die Erfindung betrifft einen Multi-Impingement-Verbund zum Kühlen einer Wand, eine Wand mit dem Multi-Impingement-Verbund und ein Verfahren zur Herstellung des Multi-Impingement-Verbunds.The invention relates to a multi-impingement composite for cooling a wall, a wall with the multi-impingement composite and a method for producing the multi-impingement composite.

Ein gattungsgemäßer Verbund ist aus GB-A-2 061 482 bekannt.A generic composite is off GB-A-2 061 482 known.

In einer Verbrennungskraftmaschine, insbesondere einer Gasturbine, liegen hohe Betriebstemperaturen vor, so dass Heißgas führende Teile einer hohen thermischen Beanspruchung ausgesetzt sind. Hat das Heißgas beim Betrieb der Gasturbine eine Temperatur erreicht, die oberhalb der maximal zulässigen Betriebstemperatur der Heißgas führenden Teile liegt, so sind die Heißgas führenden Teile zu kühlen, damit sie keinen Schaden nehmen. Herkömmlich werden in einer Gasturbine die Heißgas führenden Teile mit Kühlluft gekühlt, die von dem Verdichter der Gasturbine abgezweigt wird. Daraus resultiert eine Verschlechterung des Wirkungsgrads der Gasturbine, so dass ein möglichst niedriger Kühlluftverbrauch angestrebt ist, wodurch die Kühlluft möglichst effektiv ausgenutzt sein soll. Derzeit wird zur Erreichung eines möglichst hohen Wirkungsgrad der Gasturbine eine Halbierung des derzeit gängigen Kühlluftverbrauchs angestrebt.In an internal combustion engine, in particular a gas turbine, high operating temperatures are present, so that hot gas-carrying parts are exposed to high thermal stress. If the hot gas has reached a temperature during operation of the gas turbine, which is above the maximum permissible operating temperature of the hot gas leading parts, the parts leading to hot gas must be cooled so that they do no damage. Conventionally, in a gas turbine, the hot gas passing parts are cooled with cooling air diverted from the compressor of the gas turbine. This results in a deterioration of the efficiency of the gas turbine, so that the lowest possible cooling air consumption is sought, so that the cooling air should be utilized as effectively as possible. Currently, in order to achieve the highest possible efficiency of the gas turbine halving the current cooling air consumption is sought.

Das Heißgas führende Teil weist eine Wand auf, an der sie an ihrer einen Seite mit dem Heißgas in Berührkontakt steht und an ihrer anderen Seite mit der Kühlluft gekühlt wird. Mittels der Kühlluft wird von der Wand ein Wärmestrom abtransportiert, so dass die Wand an ihrer dem Heißgas zugewandten Seite eine Kontakttemperatur hat, die unterhalb der Heißgastemperatur liegt. Es ist bekannt, an der dem Heißgas abgewandten Seite der Wand eine poröse Struktur vorzusehen, die von der Kühlluft durchströmt ist. Die poröse Struktur liegt an der Wand an, so dass durch Wärmeleitung und Wärmestrahlung Wärme von der Wand in poröse Struktur übertragen wird. Die poröse Struktur gibt wiederum in ihrem ganzen Volumen die Wärme an die Kühlluft ab, mit der die Wärme aus der porösen Struktur abtransportiert werden kann.The hot gas leading part has a wall at which it is in contact with the hot gas on one side in contact and is cooled on its other side with the cooling air. By means of the cooling air, a heat flow is transported away from the wall, so that the wall at its side facing the hot gas has a contact temperature which is below the hot gas temperature. It is known to provide on the side facing away from the hot gas of the wall, a porous structure which is flowed through by the cooling air. The porous structure abuts against the wall, so that heat is transferred from the wall into a porous structure by heat conduction and heat radiation. The porous structure in turn gives in her the volume of heat to the cooling air, with the heat from the porous structure can be removed.

Mit Hilfe der porösen Struktur können beispielsweise Schaufelendwände, Ringsegmente über Laufschaufeln, Transitionswandungen und Brennerwandungen gekühlt werden, wobei diese Wandungen im Wesentlichen eben verlaufen. Daher braucht an diesen Wandungen die Struktur nur ein relativ geringes Volumen zu haben, um einen gewünschte Wärmestrom aus der Wand an die Kühlluft übertragen zu können. Ferner ist es bekannt, dass die Wand eine Mehrzahl an Filmkühlbohrungen aufweisen kann, durch die die Kühlluft durch die Wand in die Heißgasströmung geleitet wird, wodurch sich an der heißgasseitigen Oberfläche der Wand ein Film aus Kühlluft ausbildet. Hervorgerufen durch das Vorsehen der Mehrzahl an Filmkühlbohrungen strömt die Kühlluft aus der porösen Struktur in die Heißgasströmung aus, so dass eine gleichmäßige Durchströmung der porösen Struktur senkrecht zu der Wand erreicht ist. Ferner kann durch das Vorsehen der Kühlluftbohrungen erreicht werden, dass sich heißgasseitig die Filmkühlung ihrem idealen Grenzfall, der Effusionskühlung, annähern kann. Dadurch stellt sich gleichzeitig ein optimal Wärme isolierender Film aus Kühlluft an der heißgasseitigen Oberfläche der Wand ein.With the aid of the porous structure, for example, blade end walls, ring segments can be cooled by means of moving blades, transition walls and burner walls, these walls running essentially flat. Therefore, the structure needs to have only a relatively small volume on these walls in order to transmit a desired heat flow from the wall to the cooling air can. Further, it is known that the wall may have a plurality of film cooling holes through which the cooling air is directed through the wall into the hot gas flow, thereby forming a film of cooling air on the hot gas side surface of the wall. Caused by the provision of the plurality of film cooling holes, the cooling air flows out of the porous structure into the hot gas flow, so that a uniform flow through the porous structure is achieved perpendicular to the wall. Furthermore, it can be achieved by providing the cooling air holes that the hot gas side, the film cooling can approach their ideal borderline case, the effusion cooling. As a result, an optimally heat-insulating film of cooling air adjusts itself to the hot gas-side surface of the wall at the same time.

Die poröse Struktur kann beispielsweise aus einem Metallschaum hergestellt sein, der aufgrund seines herkömmlichen Herstellungsprozesses nur eine zufällige Struktur mit einer stochastisch verteilten Porenweite hat. Der Metallschaum ist kostengünstig in seiner Herstellung, hat aber signifikante Nachteile. So können beispielsweise in dem Metallschaum Poren teilweise verschlossen sein, die dadurch eine zu geringe Weite haben, so dass die Gefahr der Verstopfung dieser Poren besteht. Außerdem weist der Metallschaum in seinem Inneren scharfe Kanten auf, wodurch sich ein erhöhter Druckverlust beim Durchströmen des Metallschaums mit der Kühlluft einstellen kann. Ferner hat der Metallschaum in seinem Inneren eine Mehrzahl an die Poren abgrenzenden Stege, deren stochastisch konstanter Durchmesser nachteilig für die Wärmeleitung ist. Außerdem ist eine Radienbildung an der Wand in der porösen Struktur nicht gegeben.The porous structure may for example be made of a metal foam, which has only a random structure with a stochastically distributed pore size due to its conventional manufacturing process. The metal foam is inexpensive to manufacture, but has significant disadvantages. Thus, for example, in the metal foam pores may be partially closed, which thereby have too small a width, so that there is a risk of clogging of these pores. In addition, the metal foam has sharp edges in its interior, whereby an increased pressure loss can occur when flowing through the metal foam with the cooling air. Furthermore, the metal foam has a plurality of pores in its interior delimiting webs whose stochastically constant diameter is detrimental to the heat conduction. In addition, there is no radii on the wall in the porous structure.

Ferner ist eine designte poröse Struktur bekannt, die prinzipiell jede beliebige, optimale Geometrie haben kann. Die designte poröse Struktur kann beispielsweise mit dem Herstellungsverfahren "selective laser melting" oder "selective sintering" hergestellt werden. Diese Herstellungsverfahren haben jedoch den Nachteil, dass mit ihnen die designte poröse Struktur lediglich bis zu maximal 6 PPI (Poren pro inch) und eine mindeste Stegdicke von 0,6 bis 1 mm hergestellt werden kann. Diese derart hergestellten Designstrukturen sind allerdings für die vorher genannten, ebenen und zu kühlenden Wänden nicht geeignet, da hierzu PPI-Raten von 40 bis 50 PPI erforderlich wären. Außerdem ist das "selective laser melting" sehr zeitaufwändig und kostenintensiv. Somit hat eine designte poröse Struktur zur Kühlung beispielsweise von Schaufelendwänden, Ringsegmenten über Laufschaufeln, Transitionswandungen und Brennerwandungen, wie z. Z. hergestellt werden kann, noch signifikante Nachteile.Furthermore, a designed porous structure is known, which in principle can have any optimal geometry. The designed porous structure can be produced, for example, by the production process "selective laser melting" or "selective sintering". However, these production methods have the disadvantage that they can be used to produce the designed porous structure only up to a maximum of 6 PPI (pores per inch) and a minimum web thickness of 0.6 to 1 mm. However, these design structures produced in this way are not suitable for the previously mentioned, flat and to be cooled walls, as this PPI rates of 40 to 50 PPI would be required. In addition, the "selective laser melting" is very time consuming and costly. Thus, a designed porous structure for cooling example of Schaufelendwänden, ring segments on blades, Transitionswandungen and burner walls, such. Z. can still be produced, still significant disadvantages.

In Fig. 4 ist eine designte poröse Struktur 101 gezeigt. Die designte poröse Struktur 101 weist eine Mehrzahl an Poren 102 auf, die von Stegen 103 gebildet sind, die in Knoten 104 zusammenlaufen. Die hohe Wärmeübertragung der designten porösen Struktur 101 beruht auf der Vielzahl sich wiederholender Staupunktströmungen beim Durchströmen der designten porösen Struktur 101 mit der Kühlluft. Dabei wird durch die eine der Poren 102, die die Form der in Fig. 4 eingezeichneten Pyramide hat, die Kühlluftströmung beschleunigt, die auf einen der Stege 103 oder einen der Knoten 104 prallt, wobei ein hoher lokaler Wärmeübergang entsteht. Von dort wird die Kühlluftströmung durch die nächste Öffnung wieder beschleunigt, um auf die nächsten Knoten 104 oder Stege 103 zu prallen. Bei der designten porösen Struktur 101 mit 6 PPI Strukturen steht allerdings eine zu geringe Anzahl an Staupunktströmungen pro Volumen zur Verfügung, um in dem bei einem ebenen Bauteil begrenzt zur Verfügung stehenden Volumen die erforderliche Wärme an die Kühlluft zu übertragen. Die Wärmeübertragungsfähigkeit der porösen Struktur 101 kann mit steigender Anzahl an Prallkühlsituationen bzw. der PPI-Rate erhöht werden, bis im Extremfall das ganze Volumen der designten porösen Struktur 101 nur noch aus winzigen Prallkühlströmungen besteht. Problematisch ist, dass die poröse Struktur 101 in nicht ausreichender Feinheit herkömmlich herstellbar ist.In Fig. 4 For example, a designed porous structure 101 is shown. The designed porous structure 101 has a plurality of pores 102 formed by ridges 103 that converge at nodes 104. The high heat transfer of the designed porous structure 101 is due to the multiplicity of repetitive stagnation point flows as it flows through the designed porous structure 101 with the cooling air. It is characterized by the one of the pores 102, which is the shape of in Fig. 4 has drawn pyramid, the cooling air flow accelerates, which bounces on one of the webs 103 or one of the nodes 104, wherein a high local heat transfer is formed. From there, the flow of cooling air through the next opening is accelerated again to bounce on the next node 104 or webs 103. In the designed porous structure 101 with 6 PPI structures, however, there is an insufficient number of stagnation point flows per volume in order to transfer the required heat to the cooling air in the volume available for a flat component. The heat transfer capability of the porous structure 101 can be increased with increasing number of impingement cooling situations or the PPI rate, until in an extreme case the entire volume of the designed porous structure 101 consists only of minute impingement cooling flows. The problem is that the porous structure 101 is conventionally produced in insufficient fineness.

Aufgabe der Erfindung ist es einen Multi-Impingement-Verbund zum Kühlen einer Wand, eine Wand mit dem Multi-Impingement-Verbund und ein Verfahren zur Herstellung des Multi-Impingement-Verbunds zu schaffen, wobei beim Durchströmen des Multi-Impingement-Verbunds eine hohe Anzahl an Prallkühlströmungen erzeugbar ist, wodurch mit dem Multi-Impingement-Verbund die Wand effektiv kühlbar ist.Object of the invention is to provide a multi-impingement composite for cooling a wall, a wall with the multi-impingement composite and a method for producing the multi-impingement composite, wherein the flow through the multi-impingement composite a high Number of impingement cooling flows can be generated, which with the multi-impingement composite, the wall is effectively cooled.

Der erfindungsgemäße Multi-Impingement-Verbund ist mit der Oberfläche einer zu kühlenden Wand flächig und wärmeleitend kontaktierbar und weist eine Mehrzahl an Lochblendenschichten mit einer Mehrzahl an als Lochblenden ausgebildeten, über die Fläche der Lochblendenschichten verteilt angeordneten Durchgangslöchern und eine Mehrzahl an Stegschichten auf, die mit den Lochblendenschichten abwechselnd gestapelt angeordnet sind und jeweils eine Mehrzahl an Stegen aufweisen, die über die Fläche der Lochblendenschichten verteilt angeordnet sind und jeweils diese überbrücken, wobei jeder Steg der einen Stegschicht mit jeweils einem der Stege der anderen Stegschichten fluchtend angeordnet ist und jedes Durchgangsloch der einen Lochblendenschicht zu den Durchgangslöchern der benachbarten Lochblendenschichten versetzt angeordnet ist, so dass, wenn der Multi-Impingement-Verbund an seiner einen Flachseite mit dem Kühlfluid druckbeaufschlagt ist, das Kühlfluid durch die Durchgangslöcher strömt und danach die zwischen den Stegen und den Lochblendenschichten angesiedelten Zwischenräume durchflutet, wodurch der in den Stegen von der Wand abgeleitete Wärmestrom mit dem Kühlfluid abführbar ist.The multi-impingement composite according to the invention can be contacted with the surface of a wall to be cooled and thermally conductive and has a plurality of pinhole layers with a plurality of pinhole formed, distributed over the surface of the pinhole layers arranged through holes and a plurality of web layers, with the pinhole layers are arranged alternately stacked and each having a plurality of webs which are arranged distributed over the surface of the pinhole layers and bridge each of these, each web of a web layer is arranged in alignment with one of the webs of the other web layers and each through hole of the one Pinhole layer is arranged offset to the through holes of the adjacent pinhole layers, so that when the multi-impingement composite is pressurized on its one flat side with the cooling fluid, the cooling fluid through the Durchgangslöc flows forth and then between the jetties and the apertured diaphragm layers settled by flooding, whereby the heat flow derived in the webs of the wall with the cooling fluid can be discharged.

Der Multi-Impingement-Verbund weist also mehrere Schichten an den Lochblendenschichten auf, die übereinander angeordnet sind und gegeneinander versetzt angeordnete Durchgangslöcher haben. Durch die Durchgangslöcher ist das Kühlfluid kaskadenförmig in eine Prallkühlströmung auf der jeweils darunter liegende Ebene bringbar. Die letzte (heiße) oder die erste (kalte) Ebene stellt die Wand dar, die deutlich dicker als die Prallkühlebenen sein kann. Die Ebenen sind durch die Stege miteinander verbunden, die als Verbindungselemente der Lochblendenschichten ausgebildet sind. Durch die Stege wird Wärme von der zu kühlenden Wand zu den anderen Ebenen geleitet, so dass in den Prallkühlströmungen dort ebenfalls Wärme übertragen werden kann. Dazu liegen die Stege fluchtend übereinander. Die Stege haben jeweils eine möglichst große Querschnittsfläche, damit die Wärmeleitungsrate längs der Stege hoch ist. Die Querschnittsfläche der Stege sind allerdings nur so groß gewählt, dass die durch die Stege verursachten Druckverluste in der Kühlfluidströmung und die dabei einhergehende Beeinträchtigung der Wärmeübergänge in den Prallkühlströmungen nicht übermäßig hoch sind. Die Größenordnungen der Querschnittsflächen der Stege ergeben sich auch aus dem Abstand der Durchgangslöcher.The multi-impingement composite thus has a plurality of layers on the pinhole layers, which are arranged one above the other and have mutually staggered through holes. Through the through holes, the cooling fluid is cascaded in an impingement cooling flow on the respective underlying level can be brought. The last (hot) or the first (cold) plane represents the wall, which can be significantly thicker than the impact cooling planes. The planes are interconnected by the webs, which are formed as connecting elements of the pinhole layers. The webs conduct heat from the wall to be cooled to the other levels, so that heat can also be transferred there in the impingement cooling flows. For this purpose, the webs are aligned on top of each other. The webs each have the largest possible cross-sectional area, so that the heat transfer rate along the webs is high. However, the cross-sectional area of the webs are only selected to be so large that the pressure losses in the flow of cooling fluid caused by the webs and the concomitant impairment of the heat transfers in the impact cooling flows are not excessively high. The orders of magnitude of the cross-sectional areas of the webs also result from the distance between the through holes.

Mit dem Abstand zur heißen, zu kühlenden Wand nimmt der Anteil des Wärmestroms ab, der von dem Kühlmedium aufgenommen wird. Somit ist in weit von der Wand entfernten Prallkühlschichten der Anteil des Wärmestroms gering, der von dem Kühlmedium aufgenommen wird. Dadurch ist es ausreichend die Dicke des Multi-Impingement-Verbunds auf ein maximal notwendiges Maß zu begrenzen, so dass der Multi-Impingement-Verbund eine für eine vorherbestimmte Wärmeübertragungsleitung und für einen bestimmten Druckverlust ausgelegt eine ausreichende Anzahl an Lochblendenschichten und Stegschichten aufweist. Die Geometrie des Multi-Impingement-Verbunds kann hinsichtlich seiner ingesamten Wärmeübertragung und seines gesamten Druckverlusts optimiert werden. Die Abstände zwischen den Stegen und die Abstände zwischen den Durchgangslöchern können von weniger als 1 mm bis zu mehreren Zentimetern sein. Somit ist der Multi-Impingement-Verbund als ein Extremfall der designten porösen Struktur ausgebildet, wobei der der Multi-Impingement-Verbund eine hohe geometrische Strukturierung hat.With the distance to the hot, to be cooled wall, the proportion of the heat flow decreases, which is absorbed by the cooling medium. Thus, in far from the wall remote impact cooling layers, the proportion of the heat flow is small, which is absorbed by the cooling medium. Thereby, it is sufficient to limit the thickness of the multi-impingement composite to a maximum necessary extent, so that the multi-impingement composite has a sufficient number of pinhole layers and land layers designed for a predetermined heat transfer line and for a given pressure loss. The Geometry of the multi-impingement composite can be optimized for overall heat transfer and overall pressure loss. The distances between the lands and the distances between the through holes may be from less than 1 mm to several centimeters. Thus, the multi-impingement composite is formed as an extreme case of the designed porous structure, wherein the multi-impingement composite has a high geometric patterning.

In dem Multi-Impingement-Verbund treten neben der Staupunktströmung noch andere Wärmeübertragungemechanismen auf. Bei einer herkömmlichen designten porösen Struktur ist der Bereich der Staupunktströmung auf einen sehr kleinen Querschnitt begrenzt, der von dem Bereich der von dem Kühlfluid getroffenen Strukturelemente gebildet ist. Dadurch wird die vorhergehend erwähnte Konzentration von möglichst vielen Staupunkten pro Volumen notwendig, wodurch eine hohe PPI-Rate von der porösen Struktur gefordert ist. Bei dem Multi-Impingement-Verbund erstreckt sich der Bereich des hohen Staupunktwärmeübergangs auf den gesamten Zwischenraum zwischen den begrenzenden Stegschichten. Dadurch muss der Abstand zwischen den Stegen und den Durchgangslöchern bei weitem nicht so klein sein, wie es bei einer designten porösen Struktur mit 40 bis 50 PPI notwendig wäre. Zudem ergibt sich durch das Aufprallen des seitlich sich ausbreitenden Prallkühlfluids auf die Stege eine Verwirbelung, die für einen ähnlich hohen Wärmeübergang an den Stegen und weiter stromab liegenden Pralloberfläche sorgt, wie im Staupunktbereich selbst. Somit wird die gesamte innere Oberfläche des Multi-Impingement-Verbunds mit hohem Wärmeübergang beaufschlagt, obwohl der Abstand zwischen den Stegen und den Durchgangslöchern viel größer sein kann als 40 bis 50 PPI.In the multi-impingement composite, other heat transfer mechanisms occur in addition to the stagnation point flow. In a conventional designed porous structure, the area of stagnation point flow is limited to a very small cross-section formed by the area of the structural elements struck by the cooling fluid. This necessitates the aforementioned concentration of as many stagnation points per volume as possible, thereby requiring a high PPI rate of the porous structure. In the multi-impingement composite, the high stagnation point heat transfer area extends to the entire gap between the limiting land layers. As a result, the distance between the lands and the through holes need not be as small as would be necessary with a designed 40 to 50 PPI porous structure. In addition, the impingement of the laterally propagating impingement cooling fluid on the webs results in a turbulence which ensures a similarly high heat transfer at the webs and further downstream impact surface, as in the stagnation point region itself. Thus, the entire inner surface of the multi-impingement composite becomes high heat transfer, although the distance between the lands and the through holes may be much greater than 40 to 50 PPI.

Die Längsrichtungen der Stege erstrecken sich senkrecht zu den Lochblendenschichten. Ferner sind die Stege in ein Rechteckraster gleichmäßig über die Fläche der Lochblendenechichten verteilt angeordnet. Die Durchgangslöcher sind jeweils im gleichen Abstand zu vier unmittelbar benachbarten Stegen angeordnet und der zwischen den vier Stegen gebildete Zwischenraum weist entweder in der einen Lochblendenschicht oder in der anderen Lochblendenschicht eines der Durchgangslöcher auf, so dass die Durchgangslöcher auf Lücke stehen.The longitudinal directions of the webs extend perpendicular to the pinhole layers. Furthermore, the webs are in a rectangular grid evenly over the surface arranged the Lochblendenechichten distributed. The through holes are each equidistant from four immediately adjacent lands, and the gap formed between the four lands has either one of the through holes in either one orifice plate or in the other pinhole layer such that the through holes are in gap.

Die Stege haben einen lanzettenförmigen Querschnitt mit zwei gegenüberliegenden stumpfen Kanten und zwei gegenüberliegenden spitzen Kanten.The webs have a lancet-shaped cross section with two opposite blunt edges and two opposite sharp edges.

Ferner liegen bevorzugt auf gedachten, die spitzen Kanten kreuzenden Linien die Durchgangslöcher derjenigen benachbarten Lochblendenschicht, durch die das Kühlfluid in dem zwischen den vier Stegen gebildeten Zwischenraum ausströmt, wenn der Multi-Impingement-Verbund an seiner einen Flachseite mit dem Kühlfluiddruck beaufschlagt ist. Ferner ist es bevorzugt, dass auf gedachten, die stumpfen Kanten kreuzenden Linien die Durchgangslöcher derjenigen benachbarten Lochblendenschicht liegen, durch die das Kühlfluid in den zwischen den vier Stegen gebildeten Zwischenraum einströmt, wenn der Multi-Impingement-Verbund an seiner einen Flachseite mit dem Kühlfluiddruck beaufschlagt ist. Dadurch wird eine gleichmäßige Beschleunigung der Strömung des Kühlfluids zwischen dem Aufprallpunkt auf die stumpfen Kanten und den Austrittsdurchgangslöchern der jeweiligen Ebene erreicht. Somit wird eine Ablösung der Kühlfluidströmung unterbunden, die beilspielsweise bei den stegen mit dem kreisförmigen Querschnitt hinter den engsten durchströmten Querschnitt stattfinden und stromab den Wärmeübergang an der im "Windschatten" liegenden Oberfläche des Stegs deutlich reduzieren würde. Alle Strömungseffekte, wie beispielsweise die Verwirbelung der Kühlfluidströmung in den von den Stegen gebildeten Zwischenräumen bleiben bestehen, so dass die lanzettenartige Ausbildung der Stege eine Optimierung des Multi-Impingement-Verbunds ist.Further, preferably on imaginary lines crossing the sharp edges are the through-holes of the adjacent apertured diaphragm layer through which the cooling fluid flows in the gap formed between the four webs when the cooling fluid pressure is applied to the multi-impingement composite on one flat side thereof. Further, it is preferable that on imaginary lines crossing the blunt edges are the through-holes of the adjacent pinhole layer through which the cooling fluid flows into the gap formed between the four lands when the multi-impingement composite impinges on its one flat side with the cooling fluid pressure is. Thereby, a smooth acceleration of the flow of the cooling fluid between the impact point on the blunt edges and the exit through holes of the respective plane is achieved. Thus, a separation of the cooling fluid flow is prevented, which take place spielsweise, in the webs with the circular cross-section behind the narrowest flowed cross-section and downstream would significantly reduce the heat transfer at the lying in the "slipstream" surface of the web. All flow effects, such as the turbulence of the cooling fluid flow in the spaces formed by the webs remain, so that the lancet-like formation of the webs is an optimization of the multi-impingement composite.

An den Durchgangslöchern sind bevorzugt die Lochblendenplatten abgerundet oder angefasst. Dadurch sind Druckverluste in dem Multi-Impingement-Verbund reduziert, wodurch der Druck des Kühlfluids reduziert werden kann, mit dem der Multi-Impingement-Verbunds zu beaufschlagen ist. Durch eine weitere Abrundung der Übergänge zwischen den Lochblendenplatten und den Stegen würden die Spannungen in den Lochblendenplatten und den Stegen vorteilhaft derart verteilt, dass übermäßige Spannungsspitzen unterbunden sind. Die erfindungsgemäße Wand weist den Multi-Impingement-Verbund auf, der mit der Oberfläche der Wand flächig und wärmeleitend kontaktiert ist. Der Multi-Impingement-Verbund liegt bevorzugt mit einer der Stegschichten an der Wand an und die Wand weist bevorzugt eine Mehrzahl an Durchgangslöchern auf, so dass die Wand als eine der Lochblendenschichten ausgebildet ist. Die Verteilungsdichte der Durchgangslöcher in der Wand kann vorteilhaft genauso groß gewählt sein wie die Verteilungsdichte der Durchgangslöcher in den Lochblendenschichten, so dass eine optimale, senkrecht zur Wand gerichtete Strömung ermöglicht ist. Außerdem kann der Effusionskühlungseffekt bei dicht beieinander liegenden Durchgangslöchern in der Wand optimal genutzt werden. Die Lochdichte in der Wand kann aber auch unterschiedlich zu der in den Lochblendenplatten sein.At the through holes, the pinhole plates are preferably rounded or touched. This reduces pressure losses in the multi-impingement composite, which can reduce the pressure of the cooling fluid to be applied to the multi-impingement composite. By further rounding the transitions between the pinhole plates and the webs, the stresses in the pinhole plates and the webs would advantageously distributed such that excessive voltage spikes are prevented. The wall of the invention has the multi-impingement composite, which is contacted with the surface of the wall surface and heat-conducting. The multi-impingement composite preferably rests against one of the web layers on the wall, and the wall preferably has a plurality of through-holes, so that the wall is formed as one of the pinhole layers. The distribution density of the through holes in the wall may advantageously be chosen to be the same as the distribution density of the through holes in the pinhole layers, so that an optimal, directed perpendicular to the wall flow is made possible. In addition, the Effusionskühlungseffekt can be optimally used in closely spaced through holes in the wall. The hole density in the wall can also be different from that in the pinhole plates.

Das erfindungsgemäße Verfahren zur Herstellung des Multi-Impingement-Verbunds weist den Schritt auf: Aufeinanderdrucken von einzelnen Schichten des Multi-Impingement-Verbunds in einem Siebdruckverfahren, wobei jeweils für zwei Lochblendenschichten und eine Stegschicht eine Siebmaske erzeugt wird, durch die eine Paste gedrückt wird. Bevorzugt weist die Paste Metallpulver und Binder auf. Der Multi-Impingement-Verbund wird bevorzugt gesintert. Die Dicke der Lochblendenplatten hat bevorzugt die gleiche Größenordnung wie die Dicke der Stegschichten. Außerdem ist es bevorzugt, dass die Siebmaske aus einer Metallfolie photochemisch hergestellt wird. Bei dem Siebdruckverfahren werden die einzelnen Schichten des Multi-Impingement-Verbunds aufeinander gedruckt, wobei für jede Schicht (insgesamt zwei Lochblendenschichten und eine Stegschicht) jeweils eine Siebmaske erzeugt wird. Beim Drucken selbst wird für jede Schicht durch die Poren der Siebmaske die Paste bestehend aus Metallpulver und Binder gedrückt, die später bevorzugt als Ganzes versintert wird. Sind die Prozessparameter bekannt, wie beispielsweise Rezeptur, Trocknungszeit und Schrumpfmaß, so kann der Prozess kostengünstig in Großserie ablaufen.The method according to the invention for producing the multi-impingement composite comprises the step of printing individual layers of the multi-impingement composite together in a screen printing process, wherein a screen mask is produced for each of two apertured diaphragm layers and a web layer, through which a paste is pressed. The paste preferably comprises metal powder and binder. The multi-impingement composite is preferably sintered. The thickness of the pinhole plates preferably has the same order of magnitude as the thickness of the web layers. In addition, it is preferred that the screen mask is made photochemically from a metal foil. In the screen printing process, the individual layers of the multi-impingement composite printed on each other, wherein for each layer (a total of two pinhole layers and a web layer) each a screen mask is generated. In the printing itself, the paste consisting of metal powder and binder is pressed for each layer through the pores of the screen mask, which is later preferably sintered as a whole. If the process parameters are known, such as formulation, drying time and shrinkage, the process can run cost-effectively in mass production.

Alternativ weist das andere erfindungsgemäße Verfahren zur Herstellung des Multi-Impingement-Verbunds die Schritte auf: Vorfertigen von Blöcken des Multi-Impingement-Verbunds aus Schichten mit konstantem Querschnitt; Vortrocknen und Aufeinanderstapeln der Blöcke. Dabei ist es bevorzugt, dass der Multi-Impingement-Verbund gesintert wird. Die Dicke der Lochblendenplatten hat bevorzugt die gleiche Größenordnung wie die Dicke der Stegschichten. Werden die Blöcke des Multi-Impingement-Verbunds vorgefertigt, so werden sie vorgetrocknet und präzise aufeinandergestapelt und anschließend in den Sinterprozess miteinander verbunden. Grundlage für eine hohe Fertigungsgenauigkeit bei der Herstellung des Multi-Impingement-Verbunds ist ein hochpräzises Herstellen der Formen für die Blöcke. Die Formen werden beispielsweise durch ein photochemisches Verfahren gefertigt, das auf einzelne Schichten der Form angewendet wird, die aus Metallfolien hergestellt werden.Alternatively, the other method of making the multi-impingement composite according to the invention comprises the steps of: prefabricating blocks of the multi-impingement composite from layers of constant cross-section; Pre-drying and stacking the blocks. It is preferred that the multi-impingement composite is sintered. The thickness of the pinhole plates preferably has the same order of magnitude as the thickness of the web layers. If the blocks of the multi-impingement composite are prefabricated, they are pre-dried and precisely stacked and then joined together in the sintering process. The basis for high manufacturing accuracy in the production of the multi-impingement composite is the high-precision production of the molds for the blocks. For example, the molds are made by a photochemical process that is applied to individual layers of the mold made from metal foils.

Ein alternatives Verfahren zur Herstellung des Multi-Impingement-Verbunds umfasst die Schritte: Erzeugen der Lochplattenschichten und der Stegschichten aus dünnen Metallfolien; Stapeln der Metallfolien unter Ausbilden des Multi-Impingement-Verbunds; Verbinden der Metallfolien mittelt "transient liquid phase bonding". Somit werden die Metallfolien direkt aufeinandergestapelt und mittels "transient liquid face bonding" verbunden, wobei die Metallfolien photochemisch zu einzelnen Schichten des Positivs des herzustellenden Multi-Impingement-Verbunds geformt wurden.An alternative method of making the multi-impingement composite comprises the steps of: forming the apertured plate layers and the fin layers of thin metal foils; Stacking the metal foils to form the multi-impingement composite; Connecting the metal foils averages "transient liquid phase bonding". Thus, the metal foils are stacked directly and bonded by means of transient liquid face bonding, wherein the metal foils were photochemically shaped into individual layers of the positive of the multi-impingement composite to be produced.

Ist das Rastermaß der Stege und der Durchgangslöcher in der Größenordnung bis zu 1 mm, kann das Siebdruckverfahren vorteilhaft angewendet werden. Bei größeren Abständen zwischen den Stegen besteht jedoch die Gefahr, dass der überhängend gedruckte Film einreißen kann. Das Verfahren zur Herstellung des Multi-Impingement-Verbunds mit vorgefertigten Blöcken aus vorgetrocknetem Sinter/Binder-Material kann jedoch für ein Rastermaß der Stege und der Durchgangsbohrungen eingesetzt werden, das 10 mm und größer ist. Das "transient liquid face bonding" der einzelnen Metallfolien kann bei einem größeren Rastermaß als 10 mm eingesetzt werden.If the pitch of the lands and the through holes is on the order of up to 1 mm, the screen printing method can be advantageously used. For larger distances between the webs, however, there is a risk that the overhanging printed film may tear. However, the method of making the multi-impingement composite with prefabricated blocks of pre-dried sintered / binder material may be used for a pitch of lands and through-holes that is 10mm and larger. The "transient liquid face bonding" of the individual metal foils can be used with a grid pitch greater than 10 mm.

Im Folgenden werden bevorzugte Ausführungsformen eines erfindungsgemäßen Multi-Impingement-Verbunds anhand der beigefügten schematischen Zeichnungen erläutert. Es zeigen:

  • Fig. 1 und 3 eine perspektivische Ansicht einer ersten erfindungsgemäßen Ausführungsform des Multi-Impingement-Verbunds,
  • Fig. 2 eine Draufsicht eines Querschnitts einer zweiten erfindungsgemäßen Ausführungsform des Multi-Impingement-Verbunds und
  • Fig. 4 eine perspektivische Ansicht einer herkömmlichen designten porösen Struktur.
In the following, preferred embodiments of a multi-impingement composite according to the invention will be explained with reference to the attached schematic drawings. Show it:
  • Fig. 1 and 3 a perspective view of a first embodiment according to the invention of the multi-impingement composite,
  • Fig. 2 a plan view of a cross section of a second embodiment according to the invention of the multi-impingement composite and
  • Fig. 4 a perspective view of a conventional designed porous structure.

Wie es aus Fig. 1 bis 3 ersichtlich ist, weist ein Multi-Impingement-Verbund eine Mehrzahl an Lochblendenschichten 2 auf, in denen gerastert eine Mehrzahl an Durchgangslöchern 3 vorgesehen ist. Durch die Durchgangslöcher 2 strömt Kühlfluid, so dass die Durchgangslöcher jeweils eine Eintrittsseite 4 und eine Austrittsseite 5 aufweisen.Like it out Fig. 1 to 3 can be seen, a multi-impingement composite on a plurality of pinhole layers 2, in which a plurality of through holes 3 is rastered. Cooling fluid flows through the through-holes 2, so that the through-holes each have an inlet side 4 and an outlet side 5.

Ferner weist der Multi-Impingement-Verbund 1 eine Mehrzahl an Stegschichten 6 auf, die jeweils zwischen zwei benachbartenFurthermore, the multi-impingement composite 1 has a plurality of web layers 6, each between two adjacent

Lochblendenschichten 2 angeordnet sind, so dass der Multi-Impingement-Verbund 1 eine aus den Lochblendenschichten 2 und den Stegschichten 4 gebildete Sandwichstruktur aufweist. Die Stegschichten 6 sind aus einer Mehrzahl an Stegen 7 gebildet, die ebenfalls rasterartig ähnlich wie die Durchgangslöcher 3 angeordnet sind und mit ihren Längsrichtungen senkrecht zu den Lochblendenschichten 2 stehen. Dadurch ist mit jedem Steg 7 der Abstand zwischen zwei benachbarten Lochblendenschichten 2 überbrückt, so dass Wärme von der einen Lochblendenschicht 2 via den Steg 7 zu der anderen Lochblendenschicht 2 übertragen werden kann.Aperture layers 2 are arranged so that the multi-impingement composite 1 has a formed from the pinhole layers 2 and the web layers 4 sandwich structure. The web layers 6 are formed from a plurality of webs 7, which are also arranged like a raster similar to the through holes 3 and are perpendicular to the pinhole layers 2 with their longitudinal directions. As a result, with each web 7, the distance between two adjacent apertured diaphragm layers 2 is bridged so that heat can be transmitted from one apertured diaphragm layer 2 via the web 7 to the other apertured diaphragm layer 2.

Zwischen benachbarten Stegen 7 in einer der Stegschichten 6 ist ein Zwischenraum 8 ausgebildet, in den entweder die Eintrittsseite 4 eines der Durchgangslöcher 3 oder die Austrittsseite 5 eines der Durchgangslöcher 3 mündet. Dadurch sind die Durchgangslöcher 3 auf Lücke angeordnet.Between adjacent webs 7 in one of the web layers 6, a gap 8 is formed, into which either the inlet side 4 of one of the through holes 3 or the outlet side 5 of one of the through holes 3 opens. As a result, the through holes 3 are arranged on a gap.

Die Stege 7 der einen Stegschicht 6 sind jeweils fluchtend mit ihren unmittelbaren Nachbarn der anderen Stegschichten angeordnet, wobei die Stege 7 in der ersten erfindungsgemäßen Ausführungsform des Multi-Impingement-Verbunds gemäß Fig. 1 jeweils einen kreisförmigen Querschnitt 9 haben. Hingegen haben die Stege 7 gemäß der zweiten erfindungsgemäßen Ausführungsform des Multi-Impingement-Verbunds gemäß Fig. 2 einen lanzettenförmigen Querschnitt, der von zwei einander abgewandten spitzen Kanten 11 und zwei einander abgewandten stumpfen Kanten 12 gebildet ist, wobei die spitzen Kanten 11 und die stumpfen Kanten 12 beim Umlaufen der Berandung des lanzettenförmigen Querschnitts 10 einander sich abwechselnd angeordnet sind. Auf einer gedachten Linie, die die beiden spitzen Kanten 11 des lanzettenförmigen Querschnitts 10 von einem der Stege 7 kreuzt, liegen auf den Zwischenraum 8 bezogen die Durchgangslöcher 3 mit ihren den Zwischenraum 8 zugewandten Austrittsseiten 5. Analog liegen auf einer gedachten Linie, die durch die stumpfen Kanten 12 der lanzettenförmigen Querschnitte 10 der Stege 7 sich erstreckt, bezogen auf den Zwischenraum 8 diesem zugewandt die Eintrittsseiten 4 der Durchgangslöcher 3.The webs 7 of a web layer 6 are each arranged in alignment with their immediate neighbors of the other web layers, wherein the webs 7 in the first embodiment according to the invention of the multi-impingement composite according to Fig. 1 each have a circular cross-section 9. On the other hand, the webs 7 according to the second embodiment of the multi-impingement composite according to the invention have Fig. 2 a lancet-shaped cross-section, which is formed by two opposite acute edges 11 and two opposite obtuse edges 12, wherein the sharp edges 11 and the blunt edges 12 are arranged alternately when the boundary of the lancet-shaped cross section 10. On an imaginary line, which crosses the two pointed edges 11 of the lancet-shaped cross section 10 of one of the webs 7, lie on the gap 8, the through holes 3 with their the gap 8 facing exit sides 5. Analog lie on an imaginary line through the blunt edges 12 of the lancet-shaped cross sections 10 of the webs 7 extends, with respect to the intermediate space 8 facing this, the entry sides 4 of the through holes. 3

In Fig. 1 und 3 unten ist eine mit einer zu kühlenden Wand flächig und wärmeleitend kontaktierbare Flachseite 17 des Multi-Impingement-Verbunds 1 vorgesehen. Dieser Flachseite 17 abgewandt ist an dem Multi-Impingement-Verbund 1 eine mit einem Kühlmedium druckbeaufschlagbare Flachseite 16 vorgesehen. Das Kühlmedium strömt durch die Durchgangslöcher 3 und tritt an der Austrittsseite 5 in einen der Zwischenräume 8 mit einer Hauptströmung 13 ein. Dadurch, dass der Durchmesser der Durchgangslöcher 3 kleiner ist als die Weite der Zwischenräume 8, stellt sich in dem Zwischenraum 8 eine Verwirbelung 14 des Kühlfluids ein. Danach stellt sich eine Querströmung 14 ein, welche von einem Auftreffpunkt 16 der Hauptströmung 13 auf der Lochblendenschicht 2 zu den Eintrittsöffnungen 4 der in der nächsten Ebene versetzt angeordneten Durchgangslöcher 3 strömt. Das Kühlfluid tritt danach an der Eintrittsseite 4 des Durchgangslochs 3 aus dem Zwischenraum 8 als die Hauptströmung 13 wieder aus und gelangt über die Austrittsseite 5 des Durchgangslochs 3 zu dem darunterliegenden Zwischenraum 8. Entgegengesetzt zur Hauptströmung 13 stellt sich durch die Stege 7 von der Wand her übertragen ein Wärmestrom 15 ein. Der Wärmestrom 15 wird in Richtung der Hauptströmung 13 gesehen von Zwischenraum 8 zu Zwischenraum 8 durch konvektive Wärmeübertragung auf das Kühlfluid übertragen, so dass mit dem Kühlfluid die Wand kühlbar ist, zudem wird der Wärmestrom, der in jede Lochblendenschicht 2 einfließt, durch die senkrecht auf die Lochblendenschicht 2 auftreffende Hauptströmung 13 von dem Kühlfluid teilweise aufgenommen. Insgesamt erfolgt somit eine Kühlung des Multi-Impingement-Verbunds 1 durch eine Kombination von Prallkühlung und konvektiver Kühlung an der Pin-Fin-Konfiguration.In Fig. 1 and 3 below is a flat with a wall to be cooled and thermally conductive contactable flat side 17 of the multi-impingement composite 1 is provided. Facing away from this flat side 17, a flat side 16 which can be pressurized with a cooling medium is provided on the multi-impingement composite 1. The cooling medium flows through the through holes 3 and enters at the exit side 5 in one of the intermediate spaces 8 with a main flow 13 a. Characterized in that the diameter of the through holes 3 is smaller than the width of the intermediate spaces 8, a turbulence 14 of the cooling fluid sets in the gap 8 a. Thereafter, a transverse flow 14 sets in, which flows from an impact point 16 of the main flow 13 on the aperture diaphragm layer 2 to the inlet openings 4 of the through holes 3 arranged offset in the next plane. The cooling fluid then exits at the inlet side 4 of the through hole 3 from the intermediate space 8 as the main flow 13 again and passes through the outlet side 5 of the through hole 3 to the underlying gap 8. Opposite to the main flow 13 is formed by the webs 7 from the wall transmit a heat flow 15 a. The heat flow 15 is seen in the direction of the main flow 13 seen from space 8 to space 8 by convective heat transfer to the cooling fluid, so that with the cooling fluid, the wall is cooled, also the heat flow, which flows into each pinhole layer 2, through the perpendicular The main diaphragm 13 impinging on the pinhole diaphragm layer 2 is partially absorbed by the cooling fluid. Overall, therefore, a cooling of the multi-impingement composite 1 by a combination of impingement cooling and convective cooling takes place at the pin-fin configuration.

Claims (12)

  1. Multi-impingement composite for cooling a wall by means of a cooling fluid, wherein the multi-impingement composite can be contacted (17) with the surface of the wall areally and so as to conduct heat, and has a plurality of perforated plate layers (2) with a plurality of through-holes (3), which are formed as perforated plates and are arranged distributed over the surface of the perforated plate layers (2), and a plurality of web layers (6), which are arranged in a stack alternating with the perforated plate layers (2) and each have a plurality of webs (7), which are arranged distributed over the surface of the perforated plate layers (2) and respectively bridge the latter, wherein each web (7) in one web layer (6) is arranged in alignment with in each case one of the webs (7) in the other web layers (7), and each through-hole (3) in one perforated plate layer (2) is arranged offset with respect to the through-holes (3) in the adjacent perforated plate layers (3), such that, when pressure is applied to the multi-impingement composite (1) on its flat side (16) by the cooling fluid, the cooling fluid flows through the through-holes (3) and floods through the interstices (8) located between the webs (7) and the perforated plate layers (2), as a result of which the flow of heat (15) dissipated in the webs (7) by the wall can be removed with the cooling fluid, wherein the longitudinal directions of the webs (7) extend perpendicular to the perforated plate layers (2), the webs (7) are arranged in a rectangular grid distributed uniformly over the surface of the perforated plate layers (2), the through-holes (3) are each arranged at the same distance from four directly adjacent webs (7), and the interstice (8) formed between the four webs (7) has one of the through-holes (3) either in one perforated plate layer (2) or in the other perforated plate layer (2), such that the through-holes (3) are staggered,
    characterized in that
    the webs (7) have a lancet-like cross section (10) with two opposite, blunt edges (12) and two opposite, pointed edges (11).
  2. Multi-impingement composite according to Claim 1,
    wherein the through-holes (3) in that perforated plate layer (2) through which the cooling fluid flows out into the interstice (8) formed between the four webs (7) when pressure is applied to the multi-impingement composite (1) on its flat side (16) by the cooling fluid lie on imaginary lines crossing the pointed edges (11).
  3. Multi-impingement composite according to Claim 1 or 2,
    wherein the through-holes (3) in that perforated plate layer (2) through which the cooling fluid flows into the interstice (8) formed between the four webs (7) when pressure is applied to the multi-impingement composite (1) on its flat side (16) by the cooling fluid lie on imaginary lines crossing the blunt edges (12).
  4. Multi-impingement composite according to one of Claims 1 to 3,
    wherein the perforated plates (2) are rounded off at the through-holes (3).
  5. Wall with a multi-impingement composite according to one of Claims 1 to 4,
    wherein the multi-impingement composite (1) is contacted (17) with the surface of the wall areally and so as to conduct heat.
  6. Wall according to Claim 5,
    wherein the multi-impingement composite bears against the wall by way of one of the web layers (6), and the wall has a plurality of through-holes (3), such that the wall is formed as one of the perforated plate layers (2).
  7. Process for producing a multi-impingement composite (1) according to one of Claims 1 to 4, comprising the following step:
    individual layers of the multi-impingement composite are pressed together in a screen printing process, wherein a screen mask, through which a paste is pressed, is produced in each case for two perforated plate layers (2) and one web layer (7).
  8. Process according to Claim 7,
    wherein the paste comprises metal powder and binder.
  9. Process according to Claim 7 or 8,
    wherein the screen mask is produced photochemically from a metal foil.
  10. Process for producing a multi-impingement composite (1) according to one of Claims 1 to 4, comprising the following steps:
    - blocks of the multi-impingement composite (1) are prefabricated from layers with a constant cross section;
    - the blocks are pre-dried and stacked one on top of another.
  11. Process according to one of Claims 7 to 10,
    wherein the multi-impingement composite (1) is sintered.
  12. Process according to one of Claims 7 to 11,
    wherein the thickness of the perforated plates (2) has the same order of magnitude as the thickness of the web layers (7).
EP08021833A 2008-12-16 2008-12-16 Multi-impingement-surface for cooling a wall Not-in-force EP2199725B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT08021833T ATE528606T1 (en) 2008-12-16 2008-12-16 MULTI-IMPINGEMENT COMPOSITE FOR COOLING A WALL
EP08021833A EP2199725B1 (en) 2008-12-16 2008-12-16 Multi-impingement-surface for cooling a wall
JP2009283250A JP5511352B2 (en) 2008-12-16 2009-12-14 Multiple impingement complexes for cooling walls
RU2009146588/06A RU2518773C2 (en) 2008-12-16 2009-12-15 Wall cooling multireflection laminated complex and method of its production (versions)
CN200910253488.8A CN101787904B (en) 2008-12-16 2009-12-16 For cooling down the multi-impingement of wall body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08021833A EP2199725B1 (en) 2008-12-16 2008-12-16 Multi-impingement-surface for cooling a wall

Publications (2)

Publication Number Publication Date
EP2199725A1 EP2199725A1 (en) 2010-06-23
EP2199725B1 true EP2199725B1 (en) 2011-10-12

Family

ID=40600134

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08021833A Not-in-force EP2199725B1 (en) 2008-12-16 2008-12-16 Multi-impingement-surface for cooling a wall

Country Status (5)

Country Link
EP (1) EP2199725B1 (en)
JP (1) JP5511352B2 (en)
CN (1) CN101787904B (en)
AT (1) ATE528606T1 (en)
RU (1) RU2518773C2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10018052B2 (en) 2012-12-28 2018-07-10 United Technologies Corporation Gas turbine engine component having engineered vascular structure
WO2014105109A1 (en) * 2012-12-28 2014-07-03 United Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
GB201403404D0 (en) 2014-02-27 2014-04-16 Rolls Royce Plc A combustion chamber wall and a method of manufacturing a combustion chamber wall
CN105222158B (en) * 2014-06-30 2018-04-13 中国航发商用航空发动机有限责任公司 Floating pad and combustion chamber flame drum
US10094287B2 (en) 2015-02-10 2018-10-09 United Technologies Corporation Gas turbine engine component with vascular cooling scheme
EP3170980B1 (en) * 2015-11-23 2021-05-05 Raytheon Technologies Corporation Components for gas turbine engines with lattice cooling structure and corresponding method for producing
US10077664B2 (en) 2015-12-07 2018-09-18 United Technologies Corporation Gas turbine engine component having engineered vascular structure
US10221694B2 (en) 2016-02-17 2019-03-05 United Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
JP6717662B2 (en) * 2016-05-20 2020-07-01 株式会社Ihi Lattice structure
US10830095B2 (en) * 2016-08-30 2020-11-10 Siemens Aktiengesellschaft Impingement cooling features for gas turbines
DE112017007180T5 (en) 2017-04-07 2019-12-05 General Electric Company COOLING ARRANGEMENT FOR A TURBINE ARRANGEMENT
US10774653B2 (en) 2018-12-11 2020-09-15 Raytheon Technologies Corporation Composite gas turbine engine component with lattice structure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900629A (en) * 1973-09-14 1975-08-19 Bendix Corp Porous laminate and method of manufacture
GB2049152B (en) * 1979-05-01 1983-05-18 Rolls Royce Perforate laminated material
US4296606A (en) * 1979-10-17 1981-10-27 General Motors Corporation Porous laminated material
GB2087065B (en) * 1980-11-08 1984-11-07 Rolls Royce Wall structure for a combustion chamber
US5145001A (en) * 1989-07-24 1992-09-08 Creare Inc. High heat flux compact heat exchanger having a permeable heat transfer element
US5295530A (en) * 1992-02-18 1994-03-22 General Motors Corporation Single-cast, high-temperature, thin wall structures and methods of making the same
RU2168039C2 (en) * 1996-07-05 2001-05-27 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - ВНИИГАЗ" Reduced heat removal internal combustion engine and method of its manufacture
US20020119079A1 (en) * 1999-12-10 2002-08-29 Norbert Breuer Chemical microreactor and microreactor made by process
US6902372B2 (en) * 2003-09-04 2005-06-07 Siemens Westinghouse Power Corporation Cooling system for a turbine blade
EP1533113A1 (en) * 2003-11-14 2005-05-25 Siemens Aktiengesellschaft High temperature layered system for heat dissipation and method for making it
US7464554B2 (en) * 2004-09-09 2008-12-16 United Technologies Corporation Gas turbine combustor heat shield panel or exhaust panel including a cooling device

Also Published As

Publication number Publication date
JP5511352B2 (en) 2014-06-04
RU2009146588A (en) 2011-06-20
RU2518773C2 (en) 2014-06-10
CN101787904B (en) 2016-06-08
ATE528606T1 (en) 2011-10-15
EP2199725A1 (en) 2010-06-23
CN101787904A (en) 2010-07-28
JP2010144722A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
EP2199725B1 (en) Multi-impingement-surface for cooling a wall
DE4116886C2 (en) Perforated sheet metal as a heat shield
DE60017437T2 (en) RIBS FOR INCREASING THE HEAT TRANSFER OF A COOLING AIR INNER COOLED TURBINE BLADE
DE69919298T2 (en) Cooling structure for a gas turbine combustor
DE1601550B2 (en) COOLABLE WALL WITH POROSITY, IN PARTICULAR FOR SHOVELS OR GUIDES IN A GAS TURBINE
DE102015015598A1 (en) Cooling of engine components
DE102015213090A1 (en) Blade for a turbomachine and method for its production
WO2010086381A1 (en) Cooled component for a gas turbine
DE2630629A1 (en) LAYERED BODY, IN PARTICULAR FOR GAS TURBINE ENGINES
CH709168A2 (en) Seal means for providing a seal between adjacent components and turbomachinery having such a sealing device.
CH643349A5 (en) HEAT EXCHANGER MADE OF CERAMIC MATERIAL AND METHOD FOR THE PRODUCTION THEREOF.
DE112018001266T5 (en) COOLING STRUCTURE FOR TURBINE BUCKET
DE112009000983T5 (en) Heat exchanger with expanded metal vortex generator
EP3207217B1 (en) Film-cooled gas turbine component
DE112018001282B4 (en) Cooling structure for a turbine blade
DE102005010341A1 (en) Plate type heat exchanger has short ridges and grooves to ensure non impeded flow without fluid trapped in pockets
EP1288435B1 (en) Turbine blade with at least one cooling orifice
DE102016215289B4 (en) Honeycomb body for exhaust aftertreatment
WO2010028913A1 (en) Turbine blade having a modular, stepped trailing edge
DE10261071A1 (en) Combustion chamber wall element for gas turbine has outer cover plate, porous center layer and inner cover plate interconnected in one piece, and may be interconnected by one or more diffusion welding processes
DE112017006597B4 (en) Porous honeycomb filter
EP1512911B1 (en) Device for cooling high-thermally stressed parts
EP0992653A1 (en) Film-cooled components with triangular cross section cooling holes
EP1689013A1 (en) Fuel cell
DE112017006343B4 (en) STRUCTURE FOR A COOLING TURBINE BLADE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20101220

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008005132

Country of ref document: DE

Effective date: 20111208

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120112

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120212

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120113

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120213

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120112

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120831

26N No opposition filed

Effective date: 20120713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008005132

Country of ref document: DE

Effective date: 20120713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111012

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 528606

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181203

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181212

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181220

Year of fee payment: 11

Ref country code: CH

Payment date: 20190313

Year of fee payment: 11

Ref country code: DE

Payment date: 20190218

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008005132

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191216

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231