EP2198150A2 - Wind generator with two successive rotors - Google Patents

Wind generator with two successive rotors

Info

Publication number
EP2198150A2
EP2198150A2 EP08869640A EP08869640A EP2198150A2 EP 2198150 A2 EP2198150 A2 EP 2198150A2 EP 08869640 A EP08869640 A EP 08869640A EP 08869640 A EP08869640 A EP 08869640A EP 2198150 A2 EP2198150 A2 EP 2198150A2
Authority
EP
European Patent Office
Prior art keywords
helix
propeller
tubular body
energy
aerogenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08869640A
Other languages
German (de)
French (fr)
Inventor
Frédéric CARRÉ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2198150A2 publication Critical patent/EP2198150A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/02Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors
    • F03D1/025Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors coaxially arranged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/14Casings, housings, nacelles, gondels or the like, protecting or supporting assemblies there within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved
    • F05B2250/711Shape curved convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved
    • F05B2250/712Shape curved concave
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention relates to an aerogenerator having a tubular body comprising: a circular air inlet opening, - a circular exhaust opening, a non-limiting outer surface between the intake opening and the exhaust opening an inner surface defining an air passage connecting said openings, having a horizontal straight flow axis, and having a convergent section connected to the intake opening, and a diverging section connected to the exhaust opening, said sections being connected by a neck, a rotating means axially positioned near the neck and converting the air flow movement to the neck in a rotational movement of a coupling means connected to a first generating machine, and a first propeller rotatably mounted relative to the tubular body, upstream of the rotational means, axially placed in the convergent section of the inner surface.
  • JP2005240668 and JP2003028043 for which the inner surface has a generally nozzle shape.
  • the admitted air is accelerated in the convergent section, this increase in energy kinetics of the wind accompanied by a progressive decrease of the pressure.
  • the shape of the diverging section creates an additional depression which has the effect of suctioning the inlet to the outlet ("Venturi" effect).
  • These known wind turbines have the disadvantage of having an acceptable production of electrical energy only for a relatively high wind speed, and to have a relatively low overall efficiency given the low value of the ratio between the power captured by the rotating device at the neck and the power of the wind at the neck.
  • the rotary means is a generator turbine supplying mechanical energy, for example to an electric generator.
  • the upstream propeller is still in compressor mode to raise the Mach number from the airflow to Machi at the neck upstream of the turbine. This condition is the basic principle used in this document in order to recover a part of the internal energy of the fluid in the expansion which takes place in the turbine (passage from Machi to MachO at the outlet).
  • This document also provides for the case where two propellers are placed upstream of the turbine. As above, they act as a compressor to raise the flow to Machi at the neck. They are always energy consumers.
  • the propeller interposed between the first propeller and the turbine requires less energy than the first propeller located in the plane of the intake opening and without wind, allows to start the first propeller via the turbine, by mechanical drive. a transmission shaft.
  • the (or) propeller (s) placed (s) upstream of the rotary means consisting solely of a turbine operates (s) in compressor mode, regardless of the natural wind speed.
  • the outer shape has no particular effect on the operation of the aerogenerator because, although potentially depressing, the convergence angle of the convergent section T2 is too high and causes the sliding flux to detach on the outer surface, eliminating any influence of the external flow on the internal flow.
  • the ratio between the neck diameter and the diameter of the intake opening is substantially equal to 0.3. This very low ratio is a necessity to achieve a speed close to Machi at the neck, this speed condition, mentioned in WO2006 / 054290, being the consequence of the use of a turbine for coupling to the electric generator. , said turbine being intended to recover a portion of the internal energy of the fluid by expansion in the turbine.
  • the object of the invention is to provide an aerogenerator having increased overall efficiency.
  • the aerogenerator according to the invention is remarkable in that: the rotary means is constituted by a second propeller rotatably mounted relative to the tubular body and configured to rotate in the opposite direction with respect to the first propeller, the ratio between the diameter of the neck and the diameter of the intake opening is between 0.6 and 0.8, the outer surface has a diverging section connected to the intake opening and a convergent section connected to the opening of exhaust, shaped to form a surface of revolution whose axis of revolution coincides with the axis of flow and a generating curve is formed by the extrados of an aircraft wing, a second reversible generating machine to which is connected to the first helix and connected to regulating means adapting the operation of the first helix as a function of at least one physical parameter related to the operation of the second helix ice.
  • the aerogenerator according to the invention does not have the objective of recovering the internal energy of the fluid, merely considering the kinetic energy / pressure energy exchanges.
  • the rotating means disposed near the neck and coupled to the first generating machine is constituted by a propeller which does not require a severe condition of air speed for its operation.
  • the velocity at the neck is approximately equal to Mach 0.3, thanks to the relatively high ratio (between 0.6 and 0.8) between the neck diameter and the diameter of the inlet opening.
  • This ratio can be even greater by the use of the outer surface in the form of Aircraft wing profile which greatly accelerates the flow of air sliding on the outer surface, without detachment of the flow through a suitable convergence angle, and generate a depression at the rear of the wind turbine sufficient to increase the velocity of fluid from the air passage.
  • the operation of the first helix is conditioned to a physical parameter related to the second helix placed at the neck, which can vary between a fan operation, and a free operation for itself to generate energy by coupling. to a clean generator.
  • FIG. 1 is an axial sectional view 2 is a left-hand view of the aerogenerator of FIG. 1;
  • FIG. a view identical to Figure 1, but detailing the flow of air.
  • the example of an aerogenerator comprises a tubular body 10 mounted to rotate along a vertical axis at the top of a supporting structure 11.
  • the tubular body 10 has a general shape of revolution and therefore has an axis of revolution, which will subsequently correspond to the flow axis X of the air, rectilinear and horizontal.
  • the orientation of the tubular body 10 with respect to the carrying structure 11 is practiced automatically, that is to say freely depending on the orientation of the wind, or by an orientation mechanism ensuring that the X axis of flow is collinear with the direction of the wind.
  • the tubular body 10 defines a circular inlet opening OA, for the admission of air in windy conditions.
  • the tubular body 10 delimits an escape opening OE of circular shape whose diameter may be slightly smaller than that of the intake opening OA ( as shown), even equal or slightly higher.
  • the exhaust opening OE allows the air admitted by the intake opening OA to escape from the tubular body 10.
  • the tubular body 10 has an outer surface 12 having an aerofoil shaped aircraft wing, with a bulge constituting a divergent section T1 from the inlet opening OA and along which the outer diameter increases gradually, and a convergent section T2 connecting the section T1 and the exhaust opening OE and along which the outer diameter decreases gradually.
  • Such an aerodynamic profile has the effect of producing a vacuum at the OE exhaust opening.
  • the outer surface 12 is therefore deprimogenic between the inlet opening OA and the exhaust opening OE.
  • the sections T1 and T2 are shaped to form a surface of revolution whose axis of revolution coincides with the axis of flow X and a generating curve is formed by the extrados of an aircraft wing.
  • the dimensional characteristics of the extrados can be adapted according to the expected natural wind speed (rope, camber, angle of attack, angle of convergence, angle of divergence, angle of leakage ).
  • the tubular body 10 delimits internally an inner surface 13 having an aerodynamic profile in the form of wing-bottom, with a bulge constituting a convergent section T3 connected to the inlet opening OA and along which the internal diameter decreases progressively, and a diverging section T4 connecting the convergent section T3 and the exhaust opening OE and along which the inner diameter increases progressively.
  • the two sections T3 and T4 of the inner surface 13 are connected by a neck 14.
  • the inner surface 13 delimits an air passage 15 in the form of a nozzle connecting the openings OA and OE, and in which the air flows according to the flow axis X from the intake opening OA to escape through the exhaust opening OE.
  • the ratio between the diameter of the neck 14 and the diameter of the inlet opening OA is between 0.6 and 0.8.
  • the ratio between the axial length of the aerogenerator and the diameter of the intake opening OA is greater than 1, 4, preferably between 1, 5 and 2.
  • the aerogenerator comprises a first helix H1 placed in the convergent section T3 and a rotating means placed at the neck 14 and converting the air flow movement at the neck 14 into a rotational movement of a shaft connected to a first machine generator G1.
  • the rotary means is constituted by a second helix H2 rotatably mounted relative to the tubular body 10, in an axial position (along the X axis) near the neck 14.
  • the second propeller H2 is connected to the first generating machine G1 by via a coupling means such as a fixed tube or a connecting shaft.
  • the axis of rotation of the helices H2 and H1 coincides with the axis of flow X.
  • the first generating machine G1 is an electrodynamic machine generating electric energy when its rotor is driven in a rotational movement relative to its axis. stator.
  • the first helix H1 is rotatably mounted relative to the tubular body 10 upstream of the second helix H2, in an axial position (along the X axis) along the convergent section T3 of the inner surface 13.
  • the first H1 propeller is linked to a second machine generating G2 reversible type. More specifically, the second generator machine G2 is a reversible electrodynamic machine.
  • the diameter of the helix H1 is greater than that of the helix H2. It delimits, with the inner surface 13 and the propeller H2, a chamber for compression and acceleration CH of the air admitted through the opening OA. In the CH chamber, the air undergoes an increase in kinetic energy.
  • the propellers H2 and H1 each comprise a plurality of blades angularly distributed in a variable pitch.
  • the helix H2 is configured to rotate in the opposite direction with respect to the first helix H1.
  • the aerogenerator comprises an electronic control device (see FIG. 3) comprising: regulation means 16 of the second reversible generator machine G2, by embedded example in the thickness of the tubular body 10, a sensor 17 measuring a physical parameter associated with the operation of the second helix H2, a power management system 18, for example integrated in the thickness of the tubular body 10, and connected energy storage means 19, and / or the electrical network 20 and external power supply means 21 in energy.
  • the two generating machines G1 and G2 are electrically connected to the energy management system 18, respectively via connections marked 22 and 23.
  • the energy management system 18 is electrically connected to the energy storage means 19 through a connection 24, and / or to the electrical network 20 via a connection 25 and to the external power supply means 21 via a connection 26.
  • the regulation means 16 of the second generating machine G2 are electrically connected to the sensor 17 via a connection 27 and to the second generating machine G2 by a connection 28.
  • the second generating machine G2 is reversible, it can be driving when it is supplied with electricity, its rotor then being rotated relative to its stator with the energy provided.
  • the machine G2 can also operate as a generator: it generates electrical energy when the propeller H1 imposes on the rotor of the machine G2 a rotational movement relative to its stator.
  • a not shown reversible coupling system (for example a centrifugal or electromagnetic clutch or by electrical control of the engine / generator of the machine G2) is interposed between the helix H1 and the second generator machine G2, in order to be able to ensure that the freely rotating H1 propeller is mounted in case of uncoupling.
  • the connection 28 provides the connection between the coupling system and the regulation means 16.
  • the propeller H1 When the propeller H1 is uncoupled from the generator machine G2, the propeller H1 is in "freewheeling" mode. In the opposite case, it is either in “motor” mode (corresponding to a motor operation of the generator machine G2), or in “generator” mode (corresponding to a generator operation of the generator machine G2).
  • the purpose of the regulation means 16 is to select the mode of operation of the first propeller H1 ("motor”, “generator” or “free wheel") which is adapted at each instant.
  • the selection, at any moment, of the operating mode of the H1 propeller makes it possible to adapt the operation of the first helix H1 as a function of at least one physical parameter (pressure, speed, temperature, etc.) measured by the sensor 17 and related to the operation of the second helix H2.
  • the selection of the mode of the first propeller H1 is carried out by a corresponding action on the second generator machine G2 and on the coupling system, via the connection 28.
  • the regulation means 16 can provide a modulation of the speed of rotation of the first propeller H1 as a function of the speed of rotation of the second propeller H2 measured by the sensor 17 when the latter is a tachometer.
  • This type of modulation makes it possible in particular, in steady state, to avoid or at least to regulate the rotation of the air in the passage 15.
  • the regulation means 16 integrate a first control law imposing on the first propeller H1: the "engine” mode as long as the rotation speed of the second helix H2 is less than a first predetermined threshold ⁇ 1, the "generator” mode when the rotational speed of the second helix H2 is greater than a second predetermined threshold ⁇ 2 greater than ⁇ 1, the "freewheel” mode when the rotational speed of the second helix H2 is between ⁇ 1 and ⁇ 2.
  • the regulating means 16 may also incorporate a second control law, which has priority over the first control law, and imposes on the first propeller H1 the "motor" mode as soon as the difference between the rotational speed of the second propeller H2 and the rotation speed of the first helix H1 is greater than a third predetermined threshold ⁇ 3, itself possibly being a function of ⁇ 1.
  • the operating mode of the first helix H1 is selected by the regulation means 16 via the connection 28, based on the information received from the sensor 17 via the connection 27.
  • the energy management system 18 receives the electrical energy created by the first generating machine G1 via the connection 22.
  • the energy management system 18 transmits the electrical energy required for the second generator machine G2 via the connection 23.
  • the energy management system 18 receives the electrical energy produced by the second generator machine G2 via the connection 23.
  • the energy management system produced 18 transmits the energy received from the first generating machine G1 (and possibly from the second generating machine G2 in the case of "generator” mode of the first helix H1) to the electrical network 20 by the connection 25 and / or the energy storage means 19 by the connection 24, and possibly receives, in case of "motor” mode of the first propeller H1, the energy needed for training the second generating machine G2 from the power grid 20 by the connection 25 and / or from the energy storage means 19 via the connection 24 and / or from the external power supply means 21 via the connection 26.
  • the energy management system 18 comprises an interface between the signals exchanged with the generating machines G1, G2 and the signals exchanged with the electrical network 20, the energy storage means 19 and the means for external power supply 21.
  • Such an interface may for example include transformers, frequency converters and rectifiers.
  • the strategy carried out by the energy management system 18 with regard to its manner of ordering its exchanges with the other organs of the control device and with the two generators G1, G2 can be parameterized according to the applications.
  • transmission to the electrical network 20 may be preferred in certain applications.
  • the energy level in the storage means 19 and / or the management of consumption peaks will be preferred.
  • the aerogenerator can be fictitiously decomposed into three successive zones A, B, C offset in the direction of the flow axis X and in the direction of passage of the air.
  • the zone A of the aerogenerator corresponds to the part of the aerogenerator located between the plane passing through the opening of the The inlet OA and the plane passing through the end of the diverging section T1 of the outer surface 12.
  • the zone B of the aerogenerator corresponds to the part of the aerogenerator between the zone A and the plane passing through the end of the section. Convergent T3 of the inner surface 13.
  • the zone C of the aerogenerator is, in turn, constituted by the part of the aerogenerator between zone B and the plane passing through the exhaust opening OE. As illustrated in FIG. 4, the compression and acceleration chamber CH is included in the zone B of the aerogenerator.
  • zone A whatever the mode of operation of the first helix H1, the flow of the air flow in the passage 15 is accelerated relative to the wind in which the wind turbine is placed.
  • the flow of the airflow sliding on the outer surface 12 is also accelerated relative to the wind, but of a value lower than the acceleration experienced by the air in the passage 15.
  • zone B the outside diameter decreases progressively, which has the effect of creating a depression and therefore an acceleration of the flow of the air flow sliding on the outer surface 12.
  • the flow of the air flow in the passage 15 is also accelerated along the entire length of the zone B because of the convergent nature of the section T3. These inner and outer accelerations occur regardless of the operating mode of the first H1 propeller.
  • the flow of the air flow in the passage 15 undergoes, parallel to its acceleration, a continuous and progressive increase in pressure along the entire length of zone B.
  • the pressure increase is greater in chamber CH than on the rest of zone B, especially when the H1 propeller operates in the "engine" mode.
  • zone C the flow of the airflow sliding on the outer surface 12 continues to accelerate.
  • the inner diameter gradually increases to the OE exhaust opening which has the effect of creating an additional depression.
  • zone D the air exiting through the exhaust opening OE is accelerated by the flow of the airflow sliding on the outer surface 12 which has a higher speed. This results in the creation of an additional depression behind the aerogenerator and a rejection of aerodynamic disturbances to the rear of the aerogenerator.
  • the depression generated in zone D helps to maintain the process described previously. This global aerodynamic action makes it possible to accelerate the flow at the inlet of the aerogenerator.
  • Photovoltaic cells 31 may be provided on all or part of the outer surface 12 to form the external power supply means 21. However, these means may be made by any suitable solution such as a hydraulic source or an auxiliary generator.
  • the generating machines G1, G2 can be compact and arranged on the flow axis X.
  • the generating machines G1, G2 can be in a ring, that is to say that the propellers H1, H2 associated itself constitutes the rotor of the generating machine G1, G2 and the stator is constituted by a peripheral ring carried vis-a-vis by the inner surface 13.
  • an aerodynamic screen 30 extending axially between the helices H1, H2, for example having a cylindrical outer shape, to avoid aerodynamic disturbances near the X axis of flow. It is clear that such an aerodynamic screen 30 must maintain the mechanical uncoupling of the propellers H1, H2. In addition, it is possible to consider housing the second generating machine G2 inside the aerodynamic screen.
  • the flow axis X is horizontal.
  • the tubular body 10 has a depressing aerodynamic appendage 29 projecting from the outer surface 12 near the exhaust opening OE.
  • This appendix 29 makes it possible to accentuate the acceleration subjected to the flow of the air flow sliding the convergent section T2 of the outer surface 12, and considerably reduces the noise produced by the flow of air on the outer surface 12.
  • the "parachute" effect (appearance of turbulence at the outlet of the tubular body 10) occurs for much higher wind speeds than in the absence of appendix 29.
  • the aerodynamic screen performs a centrifugal deviation of the flow relative to the X axis, further increasing the depression at the rear of the turbine. In other words, it generates a divergence of the air flow sliding on the outer surface 12 and an air depression behind the wind turbine.
  • the aerodynamic appendix 29 has the shape of a ring held at a distance around the tubular body 10 and having an inner face facing the outer face 12, and an opposite outer face.
  • the inner face of the crown has a convex aerodynamic profile with a bulge directed towards the outer surface 12, while the outer face of the crown has a concave aerodynamic profile with a hollow directed towards the outer surface 12.
  • the ratio between the diameter of the aerodynamic appendix 29 and the diameter of the intake opening OA is less than 1.3, to limit the overall size of the wind turbine.
  • control device described above can include functions to perform economic and energy assessments and maintenance forecasts.
  • wind turbines according to the invention can be assembled in horizontal cascades, on a circular axis and / or on different axes and planes.
  • a radiofrequency device can be associated with each wind turbine.
  • the aerogenerator according to the invention does not use the internal energy of the air passing through the passage 15. The whole flow remains, whatever the operation, Mach less than 0.3. Mainly, only the kinetic energy / pressure energy exchanges are considered, neglecting in practice the internal energy variations of the fluid.
  • the H1 propeller is used to accelerate the flow in engine mode, for low winds only. This operation triggers the start of the H2 propeller and makes it possible to operate more efficiently with low winds. Indeed, in this operating range the flow being higher, the second propeller H2 has a significantly better performance. This type of operation is imposed as long as the sum of the energies supplied by the helix H1 and consumed by the helix H2 is greater than the sum of the energies supplied by the two propellers both operating as generators.
  • the convergence of the internal flow is used to increase the axial velocity of the flow without substantially increasing the density of the air: the higher velocity at the neck makes it possible to use a faster H2 helix, with a better efficiency.
  • the helix H1 in generating operation, uses the wind energy linked to the axial component of the speed and restores a speed having a component in rotation (Euler relation). This rotating component is recovered by the helix H2 which restores a purely axial flow at the device outlet. Without the helix H1, the speed of the flow at the output of the helix H2 would necessarily have a component in rotation (Euler relation). The corresponding kinetic energy would then be lost.
  • contra-rotating H1, H2 propellers have better performance than a single H2 propeller, despite the greater friction losses.
  • the shape of the inner surface 12, the shape of the inner surface 13, the choice to take a helix constituting the rotary means to the neck, and the choice of a neck with a relatively small constriction, are chosen to reduce the point of attack. as close as possible to the OA inlet opening, contrary to the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

A wind generator comprises a tubular body (10) with an intake opening (OA), an exhaust opening (OE), an exterior surface (12) that creates a reduced pressure, an interior surface (13) that exhibits a convergent portion (T3) connected to the intake opening (OA), a divergent portion (T4) connected to the exhaust opening (OE) and to the convergent portion (T3) by a throat (14), and a rotor (H2) mounted such that it can rotate relative to the tubular body (10) near the throat (14). It is connected to a first generator machine (G1). It comprises another rotor (H1) mounted such that it can rotate relative to the tubular body (10), positioned upstream of the rotor (H2) in the convergent portion (T3).

Description

Aérogénérateur à deux hélices successives Aerogenerator with two successive propellers
Domaine technique de l'inventionTechnical field of the invention
L'invention est relative à un aérogénérateur ayant un corps tubulaire comprenant : une ouverture circulaire d'admission d'air, - une ouverture circulaire d'échappement, une surface extérieure déprimogène entre l'ouverture d'admission et l'ouverture d'échappement, une surface intérieure délimitant un passage d'air reliant lesdites ouvertures, ayant un axe d'écoulement rectiligne horizontal, et présentant un tronçon convergent relié à l'ouverture d'admission, et un tronçon divergent relié à l'ouverture d'échappement, lesdits tronçons étant reliés par un col, un moyen rotatif axialement positionné à proximité du col et convertissant le mouvement d'écoulement de l'air au col en un mouvement de rotation d'un moyen d'accouplement lié à une première machine génératrice, et une première hélice montée à rotation par rapport au corps tubulaire, en amont du moyen rotatif, axialement placée dans le tronçon convergent de la surface intérieure.The invention relates to an aerogenerator having a tubular body comprising: a circular air inlet opening, - a circular exhaust opening, a non-limiting outer surface between the intake opening and the exhaust opening an inner surface defining an air passage connecting said openings, having a horizontal straight flow axis, and having a convergent section connected to the intake opening, and a diverging section connected to the exhaust opening, said sections being connected by a neck, a rotating means axially positioned near the neck and converting the air flow movement to the neck in a rotational movement of a coupling means connected to a first generating machine, and a first propeller rotatably mounted relative to the tubular body, upstream of the rotational means, axially placed in the convergent section of the inner surface.
État de la techniqueState of the art
De tels aérogénérateurs sont connus par exemple des documentsSuch wind turbines are known for example documents
JP2005240668 et JP2003028043, pour lesquels la surface intérieure a une forme générale de tuyère. Selon l'équation de Bernoulli, l'air admis est accéléré dans le tronçon convergent, cette augmentation de l'énergie cinétique du vent s'accompagnant d'une baisse progressive de la pression. La forme du tronçon divergent crée une dépression supplémentaire qui a pour effet une aspiration de l'entrée vers la sortie (effet « Venturi »). Ces aérogénérateurs connus présentent l'inconvénient de n'avoir une production acceptable d'énergie électrique que pour une vitesse de vent relativement élevée, et d'avoir un rendement général relativement faible compte tenu de la valeur faible du rapport entre la puissance captée par le dispositif rotatif au col et la puissance du vent au col.JP2005240668 and JP2003028043, for which the inner surface has a generally nozzle shape. According to Bernoulli's equation, the admitted air is accelerated in the convergent section, this increase in energy kinetics of the wind accompanied by a progressive decrease of the pressure. The shape of the diverging section creates an additional depression which has the effect of suctioning the inlet to the outlet ("Venturi" effect). These known wind turbines have the disadvantage of having an acceptable production of electrical energy only for a relatively high wind speed, and to have a relatively low overall efficiency given the low value of the ratio between the power captured by the rotating device at the neck and the power of the wind at the neck.
Par ailleurs, il a déjà été imaginé dans le document EP1108888 de placer parallèlement deux hélices identiques aux extrémités d'un corps tubulaire cylindrique et tournant dans des sens de rotation opposés. Chaque extrémité du corps tubulaire est prolongée par une forme conique, convergente en entrée et divergente en sortie. L'action de canaliser l'air au travers d'une telle structure de type « Venturi » (avec une augmentation de l'énergie cinétique de l'air) s'accompagne d'une diminution de pression dans la partie convergente d'entrée, puis d'une chute de pression lors du passage au travers de l'hélice d'entrée. Cette dernière a pour effet de créer une dépression pour accélérer l'air dans le cylindre avant d'arriver à l'hélice de sortie. Mais l'efficacité par faible vent est limitée et les performances ne sont pas satisfaisantes pour beaucoup d'applications. Pour alimenter la dépression en arrière de l'ouverture d'échappement malgré une faible vitesse de vent, il est nécessaire de prévoir des déflecteurs en saillie de la face extérieure à proximité de l'ouverture d'échappement. Mais de tels déflecteurs ont alors pour conséquence de diminuer la vitesse de l'air à l'extérieur, et donc d'abaisser le rendement général.Furthermore, it has already been imagined in EP1108888 to place two identical helices parallel to the ends of a cylindrical tubular body and rotating in opposite directions of rotation. Each end of the tubular body is extended by a conical shape, convergent input and divergent output. The action of channeling the air through such a "Venturi" type structure (with an increase in the kinetic energy of the air) is accompanied by a pressure decrease in the converging input part. , then a pressure drop when passing through the input propeller. The latter has the effect of creating a depression to accelerate the air in the cylinder before arriving at the output propeller. But low wind efficiency is limited and performance is unsatisfactory for many applications. To supply the depression behind the exhaust opening despite a low wind speed, it is necessary to provide deflectors protruding from the outer face near the exhaust opening. But such deflectors then have the effect of reducing the speed of the air outside, and thus lowering the overall efficiency.
Le document WO2006/054290 décrit un aérogénérateur selon le préambule.The document WO2006 / 054290 describes a wind turbine according to the preamble.
Il comprend une hélice amont continuellement motrice pour fournir de l'énergie au fluide (soit ventilateur, soit compresseur). Le moyen rotatif est une turbine génératrice fournissant de l'énergie mécanique, par exemple à une génératrice électrique. L'hélice amont est toujours en mode compresseur pour élever le nombre de Mach de l'écoulement d'air à Machi au niveau du col en amont de la turbine. Cette condition est le principe de base utilisé dans ce document afin de récupérer une partie de l'énergie interne du fluide dans la détente qui a lieu dans la turbine (passage de Machi à MachO en sortie).It includes a continuously driving upstream propeller to supply energy to the fluid (either fan or compressor). The rotary means is a generator turbine supplying mechanical energy, for example to an electric generator. The upstream propeller is still in compressor mode to raise the Mach number from the airflow to Machi at the neck upstream of the turbine. This condition is the basic principle used in this document in order to recover a part of the internal energy of the fluid in the expansion which takes place in the turbine (passage from Machi to MachO at the outlet).
Ce document prévoit également le cas où deux hélices motrices sont placées en amont de la turbine. Comme ci-dessus, elles ont un rôle de compresseur pour élever l'écoulement à Machi au col. Elles sont toujours consommatrices d'énergie. L'hélice intercalée entre la première hélice et la turbine nécessite moins d'énergie que la première hélice située dans le plan de l'ouverture d'admission et sans vent, permet de démarrer la première hélice via la turbine, par entraînement mécanique d'un arbre de transmission.This document also provides for the case where two propellers are placed upstream of the turbine. As above, they act as a compressor to raise the flow to Machi at the neck. They are always energy consumers. The propeller interposed between the first propeller and the turbine requires less energy than the first propeller located in the plane of the intake opening and without wind, allows to start the first propeller via the turbine, by mechanical drive. a transmission shaft.
Dans tous les cas, la (ou les) hélice(s) placée(s) en amont du moyen rotatif constitué uniquement par une turbine fonctionne(nt) en mode compresseur, quel que soit la vitesse naturelle du vent. La forme extérieure n'a aucune incidence particulière sur le fonctionnement de l 'aérogénérateur car, bien que potentiellement déprimogène, l'angle de convergence du tronçon convergent T2 est trop élevé et provoque un décollement du flux glissant sur la surface extérieure, supprimant toute influence de l'écoulement externe sur l'écoulement interne. Le rapport entre le diamètre du col et le diamètre de l'ouverture d'admission est sensiblement égal à 0,3. Ce rapport très faible est une nécessité pour parvenir à une vitesse proche de Machi au col, cette condition de vitesse, évoquée dans le document WO2006/054290, étant la conséquence de l'utilisation d'une turbine pour l'accouplement à la génératrice électrique, ladite turbine étant destinée à récupérer une partie de l'énergie interne du fluide par détente dans la turbine. Objet de l'inventionIn all cases, the (or) propeller (s) placed (s) upstream of the rotary means consisting solely of a turbine operates (s) in compressor mode, regardless of the natural wind speed. The outer shape has no particular effect on the operation of the aerogenerator because, although potentially depressing, the convergence angle of the convergent section T2 is too high and causes the sliding flux to detach on the outer surface, eliminating any influence of the external flow on the internal flow. The ratio between the neck diameter and the diameter of the intake opening is substantially equal to 0.3. This very low ratio is a necessity to achieve a speed close to Machi at the neck, this speed condition, mentioned in WO2006 / 054290, being the consequence of the use of a turbine for coupling to the electric generator. , said turbine being intended to recover a portion of the internal energy of the fluid by expansion in the turbine. Object of the invention
L'objet de l'invention consiste à réaliser un aérogénérateur ayant un rendement général augmenté.The object of the invention is to provide an aerogenerator having increased overall efficiency.
L'aérogénérateur selon l'invention est remarquable en ce que : le moyen rotatif est constitué par une deuxième hélice montée à rotation par rapport au corps tubulaire et configurée de manière à tourner en sens inverse par rapport à la première hélice, - le rapport entre le diamètre du col et le diamètre de l'ouverture d'admission est compris entre 0,6 et 0,8, la surface extérieure comporte un tronçon divergent relié à l'ouverture d'admission et un tronçon convergent relié à l'ouverture d'échappement, conformés pour constituer une surface de révolution dont l'axe de révolution coïncide avec l'axe d'écoulement et dont une courbe génératrice est constituée par l'extrados d'une aile d'avion, une deuxième machine génératrice réversible à laquelle est liée la première hélice et reliée à des moyens de régulation adaptant le fonctionnement de la première hélice en fonction d'au moins un paramètre physique lié au fonctionnement de la deuxième hélice.The aerogenerator according to the invention is remarkable in that: the rotary means is constituted by a second propeller rotatably mounted relative to the tubular body and configured to rotate in the opposite direction with respect to the first propeller, the ratio between the diameter of the neck and the diameter of the intake opening is between 0.6 and 0.8, the outer surface has a diverging section connected to the intake opening and a convergent section connected to the opening of exhaust, shaped to form a surface of revolution whose axis of revolution coincides with the axis of flow and a generating curve is formed by the extrados of an aircraft wing, a second reversible generating machine to which is connected to the first helix and connected to regulating means adapting the operation of the first helix as a function of at least one physical parameter related to the operation of the second helix ice.
Par rapport à l'aérogénérateur du document WO2006/054290, l'aérogénérateur selon l'invention n'a pas pour objectif de récupérer l'énergie interne du fluide, se contentant de considérer les échanges énergie cinétique/énergie de pression. C'est pourquoi le moyen rotatif disposé à proximité du col et accouplé à la première machine génératrice est constitué par une hélice qui ne nécessite pas de condition sévère de vitesse de l'air pour son fonctionnement. Ainsi la vitesse au col est approximativement égale à Mach 0,3, grâce au rapport assez élevé (compris entre 0,6 et 0,8) entre le diamètre du col et le diamètre de l'ouverture d'admission. Ce rapport peut être d'autant plus grand par l'utilisation de la surface extérieure en forme de profil d'aile d'avion qui permet d'accélérer fortement le flux de l'air glissant sur la surface extérieure, sans décollement du flux grâce à un angle de convergence adapté, et de générer une dépression à l'arrière de l'aérogénérateur suffisante pour accroître la vitesse de fluide provenant du passage d'air. Contrairement à l'art antérieur, le fonctionnement de la première hélice est conditionné à un paramètre physique lié à la deuxième hélice placée au col, pouvant varier entre un fonctionnement ventilateur, et un fonctionnement libre pour elle-même générer de l'énergie par accouplement à une génératrice propre.Compared to the wind turbine of document WO2006 / 054290, the aerogenerator according to the invention does not have the objective of recovering the internal energy of the fluid, merely considering the kinetic energy / pressure energy exchanges. This is why the rotating means disposed near the neck and coupled to the first generating machine is constituted by a propeller which does not require a severe condition of air speed for its operation. Thus the velocity at the neck is approximately equal to Mach 0.3, thanks to the relatively high ratio (between 0.6 and 0.8) between the neck diameter and the diameter of the inlet opening. This ratio can be even greater by the use of the outer surface in the form of Aircraft wing profile which greatly accelerates the flow of air sliding on the outer surface, without detachment of the flow through a suitable convergence angle, and generate a depression at the rear of the wind turbine sufficient to increase the velocity of fluid from the air passage. Unlike the prior art, the operation of the first helix is conditioned to a physical parameter related to the second helix placed at the neck, which can vary between a fan operation, and a free operation for itself to generate energy by coupling. to a clean generator.
Description sommaire des dessinsBrief description of the drawings
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels : la figure 1 est une vue en coupe axiale d'un exemple d 'aérogénérateur selon l'invention, la figure 2 est une vue de gauche de l'aérogénérateur de la figure 1 , - la figure 3 représente un dispositif de commande de l'aérogénérateur des figures précédentes, la figure 4 est une vue identique à la figure 1 , mais détaillant l'écoulement de l'air.Other advantages and features will emerge more clearly from the following description of particular embodiments of the invention given by way of non-limiting example and represented in the accompanying drawings, in which: FIG. 1 is an axial sectional view 2 is a left-hand view of the aerogenerator of FIG. 1; FIG. a view identical to Figure 1, but detailing the flow of air.
Description d'un mode préférentiel de l'inventionDescription of a preferred embodiment of the invention
En référence aux figures 1 à 4, l'exemple d'aérogénérateur selon l'invention comporte un corps tubulaire 10 monté à rotation suivant un axe vertical au sommet d'une structure porteuse 11. Le corps tubulaire 10 présente une forme générale de révolution et possède donc un axe de révolution, qui correspondra par la suite à l'axe d'écoulement X de l'air, rectiligne et horizontal. L'orientation du corps tubulaire 10 par rapport à la structure porteuse 11 se pratique automatiquement, c'est-à-dire de manière libre en fonction de l'orientation du vent, ou bien par un mécanisme d'orientation s'assurant que l'axe d'écoulement X est colinéaire à la direction du vent.With reference to FIGS. 1 to 4, the example of an aerogenerator according to the invention comprises a tubular body 10 mounted to rotate along a vertical axis at the top of a supporting structure 11. The tubular body 10 has a general shape of revolution and therefore has an axis of revolution, which will subsequently correspond to the flow axis X of the air, rectilinear and horizontal. The orientation of the tubular body 10 with respect to the carrying structure 11 is practiced automatically, that is to say freely depending on the orientation of the wind, or by an orientation mechanism ensuring that the X axis of flow is collinear with the direction of the wind.
À une extrémité (à gauche sur les figures 1 , 3, 4), le corps tubulaire 10 délimite une ouverture d'admission OA de forme circulaire, pour l'admission de l'air en cas de vent. À l'extrémité opposée (à droite sur les figures 1 , 3, 4), le corps tubulaire 10 délimite une ouverture d'échappement OE de forme circulaire dont le diamètre peut être légèrement inférieur à celui de l'ouverture d'admission OA (comme cela est représenté), voire égal ou légèrement supérieur. L'ouverture d'échappement OE permet à l'air admis par l'ouverture d'admission OA de s'échapper du corps tubulaire 10.At one end (left in Figures 1, 3, 4), the tubular body 10 defines a circular inlet opening OA, for the admission of air in windy conditions. At the opposite end (on the right in FIGS. 1, 3, 4), the tubular body 10 delimits an escape opening OE of circular shape whose diameter may be slightly smaller than that of the intake opening OA ( as shown), even equal or slightly higher. The exhaust opening OE allows the air admitted by the intake opening OA to escape from the tubular body 10.
Le corps tubulaire 10 comporte une surface extérieure 12 présentant un profil aérodynamique en forme d'aile d'avion, avec un bombement constituant un tronçon divergent T1 partant de l'ouverture d'admission OA et le long duquel le diamètre extérieur augmente progressivement, et un tronçon convergent T2 reliant le tronçon T1 et l'ouverture d'échappement OE et long duquel le diamètre extérieur diminue progressivement. Un tel profil aérodynamique, a pour effet de produire une dépression au niveau de l'ouverture d'échappement OE. La surface extérieure 12 est donc déprimogène entre l'ouverture d'admission OA et l'ouverture d'échappement OE.The tubular body 10 has an outer surface 12 having an aerofoil shaped aircraft wing, with a bulge constituting a divergent section T1 from the inlet opening OA and along which the outer diameter increases gradually, and a convergent section T2 connecting the section T1 and the exhaust opening OE and along which the outer diameter decreases gradually. Such an aerodynamic profile, has the effect of producing a vacuum at the OE exhaust opening. The outer surface 12 is therefore deprimogenic between the inlet opening OA and the exhaust opening OE.
Plus précisément, les tronçons T1 et T2 sont conformés pour constituer une surface de révolution dont l'axe de révolution coïncide avec l'axe d'écoulement X et dont une courbe génératrice est constituée par l'extrados d'une aile d'avion. Les caractéristiques dimensionnelles de l'extrados pourront être adaptées en fonction de la vitesse naturelle attendue du vent (corde, cambrure, angle d'attaque, angle de convergence, angle de divergence, angle de fuite...). Le corps tubulaire 10 délimite intérieurement une surface intérieure 13 présentant un profil aérodynamique en forme d'intrados d'aile, avec un bombement constituant un tronçon convergent T3 relié à l'ouverture d'admission OA et le long duquel le diamètre intérieur diminue progressivement, et un tronçon divergent T4 reliant le tronçon convergent T3 et l'ouverture d'échappement OE et long duquel le diamètre intérieur augmente progressivement. Les deux tronçons T3 et T4 de la surface intérieure 13 sont reliés par un col 14. La surface intérieure 13 délimite un passage d'air 15 en forme de tuyère reliant les ouvertures OA et OE, et dans lequel l'air s'écoule selon l'axe d'écoulement X depuis l'ouverture d'admission OA jusqu'à s'échapper par l'ouverture d'échappement OE. Le rapport entre le diamètre du col 14 et le diamètre de l'ouverture d'admission OA est compris entre 0,6 et 0,8. Le rapport entre la longueur axiale de l 'aérogénérateur et le diamètre de l'ouverture d'admission OA est supérieur à 1 ,4, préférentiellement compris entre 1 ,5 et 2.More specifically, the sections T1 and T2 are shaped to form a surface of revolution whose axis of revolution coincides with the axis of flow X and a generating curve is formed by the extrados of an aircraft wing. The dimensional characteristics of the extrados can be adapted according to the expected natural wind speed (rope, camber, angle of attack, angle of convergence, angle of divergence, angle of leakage ...). The tubular body 10 delimits internally an inner surface 13 having an aerodynamic profile in the form of wing-bottom, with a bulge constituting a convergent section T3 connected to the inlet opening OA and along which the internal diameter decreases progressively, and a diverging section T4 connecting the convergent section T3 and the exhaust opening OE and along which the inner diameter increases progressively. The two sections T3 and T4 of the inner surface 13 are connected by a neck 14. The inner surface 13 delimits an air passage 15 in the form of a nozzle connecting the openings OA and OE, and in which the air flows according to the flow axis X from the intake opening OA to escape through the exhaust opening OE. The ratio between the diameter of the neck 14 and the diameter of the inlet opening OA is between 0.6 and 0.8. The ratio between the axial length of the aerogenerator and the diameter of the intake opening OA is greater than 1, 4, preferably between 1, 5 and 2.
L'aérogénérateur comporte une première hélice H1 placée dans le tronçon convergent T3 et un moyen rotatif placé au col 14 et convertissant le mouvement d'écoulement de l'air au col 14 en un mouvement de rotation d'un arbre lié à une première machine génératrice G1. Le moyen rotatif est constitué par une deuxième hélice H2 montée à rotation par rapport au corps tubulaire 10, dans une position axiale (selon l'axe X) à proximité du col 14. La deuxième hélice H2 est liée à la première machine génératrice G1 par l'intermédiaire d'un moyen d'accouplement tel qu'un tube fixe ou un arbre de liaison. L'axe de rotation des hélices H2 et H1 coïncide avec l'axe d'écoulement X. La première machine génératrice G1 est une machine électrodynamique générant de l'énergie électrique lorsque son rotor est animé d'un mouvement de rotation par rapport à son stator. De plus, la première hélice H1 est montée à rotation par rapport au corps tubulaire 10 en amont de la deuxième hélice H2, dans une position axiale (selon l'axe X) le long du tronçon convergent T3 de la surface intérieure 13. La première hélice H1 est liée à une deuxième machine génératrice G2 de type réversible. Plus précisément, la deuxième machine génératrice G2 est une machine électrodynamique réversible. Le diamètre de l'hélice H1 est supérieur à celui de l'hélice H2. Elle délimite, avec la surface intérieure 13 et le l'hélice H2, une chambre de compression et d'accélération CH de l'air admis par l'ouverture OA. Dans la chambre CH, l'air subit une augmentation de son énergie cinétique.The aerogenerator comprises a first helix H1 placed in the convergent section T3 and a rotating means placed at the neck 14 and converting the air flow movement at the neck 14 into a rotational movement of a shaft connected to a first machine generator G1. The rotary means is constituted by a second helix H2 rotatably mounted relative to the tubular body 10, in an axial position (along the X axis) near the neck 14. The second propeller H2 is connected to the first generating machine G1 by via a coupling means such as a fixed tube or a connecting shaft. The axis of rotation of the helices H2 and H1 coincides with the axis of flow X. The first generating machine G1 is an electrodynamic machine generating electric energy when its rotor is driven in a rotational movement relative to its axis. stator. In addition, the first helix H1 is rotatably mounted relative to the tubular body 10 upstream of the second helix H2, in an axial position (along the X axis) along the convergent section T3 of the inner surface 13. The first H1 propeller is linked to a second machine generating G2 reversible type. More specifically, the second generator machine G2 is a reversible electrodynamic machine. The diameter of the helix H1 is greater than that of the helix H2. It delimits, with the inner surface 13 and the propeller H2, a chamber for compression and acceleration CH of the air admitted through the opening OA. In the CH chamber, the air undergoes an increase in kinetic energy.
Les hélices H2 et H1 comportent chacune une pluralité de pales réparties angulairement selon un pas variable. De plus, l'hélice H2 est configurée de manière à tourner en sens inverse par rapport à la première hélice H1.The propellers H2 and H1 each comprise a plurality of blades angularly distributed in a variable pitch. In addition, the helix H2 is configured to rotate in the opposite direction with respect to the first helix H1.
Outre le corps tubulaire 10, les deux hélices H1 , H2 et les machines génératrices G1 , G2, l 'aérogénérateur comporte un dispositif électronique de commande (voir figure 3) comportant : des moyens de régulation 16 de la deuxième machine génératrice G2 réversible, par exemple intégré dans l'épaisseur du corps tubulaire 10, un capteur 17 mesurant un paramètre physique associé au fonctionnement de la deuxième hélice H2, un système de gestion d'énergie 18, par exemple intégré dans l'épaisseur du corps tubulaire 10, et raccordé à des moyens de stockage d'énergie 19, et/ou au réseau électrique 20 et à des moyens d'alimentation électrique extérieure 21 en énergie.In addition to the tubular body 10, the two propellers H1, H2 and the generators G1, G2, the aerogenerator comprises an electronic control device (see FIG. 3) comprising: regulation means 16 of the second reversible generator machine G2, by embedded example in the thickness of the tubular body 10, a sensor 17 measuring a physical parameter associated with the operation of the second helix H2, a power management system 18, for example integrated in the thickness of the tubular body 10, and connected energy storage means 19, and / or the electrical network 20 and external power supply means 21 in energy.
Les deux machines génératrices G1 et G2 sont reliées électriquement au système de gestion d'énergie 18, respectivement par le biais de connexions repérées 22 et 23. Le système de gestion d'énergie 18 est relié électriquement aux moyens de stockage d'énergie 19 par une connexion 24, et/ou au réseau électrique 20 par une connexion 25 et aux moyens d'alimentation électrique extérieure 21 par une connexion 26. Enfin, les moyens de régulation 16 de la deuxième machine génératrice G2 sont reliés électriquement au capteur 17 par une connexion 27 et à la deuxième machine génératrice G2 par une connexion 28.The two generating machines G1 and G2 are electrically connected to the energy management system 18, respectively via connections marked 22 and 23. The energy management system 18 is electrically connected to the energy storage means 19 through a connection 24, and / or to the electrical network 20 via a connection 25 and to the external power supply means 21 via a connection 26. Finally, the regulation means 16 of the second generating machine G2 are electrically connected to the sensor 17 via a connection 27 and to the second generating machine G2 by a connection 28.
La deuxième machine génératrice G2 étant réversible, elle peut être motrice lorsqu'elle alimentée en électricité, son rotor étant alors mis en rotation par rapport à son stator grâce à l'énergie apportée. La machine G2 peut aussi fonctionner en génératrice : elle génère de l'énergie électrique lorsque le l'hélice H1 impose au rotor de la machine G2 un mouvement de rotation par rapport à son stator.The second generating machine G2 is reversible, it can be driving when it is supplied with electricity, its rotor then being rotated relative to its stator with the energy provided. The machine G2 can also operate as a generator: it generates electrical energy when the propeller H1 imposes on the rotor of the machine G2 a rotational movement relative to its stator.
D'autre part, un système d'accouplement réversible non représenté (par exemple un embrayage centrifuge ou électromagnétique ou par commande électrique du moteur/générateur de la machine G2) est interposé entre l'hélice H1 et la deuxième machine génératrice G2, pour pouvoir assurer un montage de l'hélice H1 à rotation libre, en cas de désaccouplement. La connexion 28 assure la liaison entre le système d'accouplement et les moyens de régulation 16.On the other hand, a not shown reversible coupling system (for example a centrifugal or electromagnetic clutch or by electrical control of the engine / generator of the machine G2) is interposed between the helix H1 and the second generator machine G2, in order to be able to ensure that the freely rotating H1 propeller is mounted in case of uncoupling. The connection 28 provides the connection between the coupling system and the regulation means 16.
Lorsque l'hélice H1 est désaccouplée de la machine génératrice G2, l'hélice H1 est en mode « roue libre ». Dans le cas contraire, elle est soit en mode « moteur » (correspondant à un fonctionnement moteur de la machine génératrice G2), soit en mode « générateur » (correspondant à un fonctionnement en génératrice de la machine génératrice G2).When the propeller H1 is uncoupled from the generator machine G2, the propeller H1 is in "freewheeling" mode. In the opposite case, it is either in "motor" mode (corresponding to a motor operation of the generator machine G2), or in "generator" mode (corresponding to a generator operation of the generator machine G2).
Les moyens de régulation 16 ont pour rôle de sélectionner le mode de fonctionnement de la première hélice H1 (« moteur », « générateur », ou << roue libre ») qui est adapté à chaque instant. La sélection, à chaque instant, du mode de fonctionnement de l'hélice H1 permet d'adapter le fonctionnement de la première hélice H1 en fonction d'au moins un paramètre physique (pression, vitesse, température...) mesuré par le capteur 17 et lié au fonctionnement de la deuxième hélice H2. La sélection du mode de la première hélice H1 est réalisée par une action correspondante sur la deuxième machine génératrice G2 et sur le système d'accouplement, par l'intermédiaire de la connexion 28.The purpose of the regulation means 16 is to select the mode of operation of the first propeller H1 ("motor", "generator" or "free wheel") which is adapted at each instant. The selection, at any moment, of the operating mode of the H1 propeller makes it possible to adapt the operation of the first helix H1 as a function of at least one physical parameter (pressure, speed, temperature, etc.) measured by the sensor 17 and related to the operation of the second helix H2. The selection of the mode of the first propeller H1 is carried out by a corresponding action on the second generator machine G2 and on the coupling system, via the connection 28.
Par exemple, par une sélection adaptée du mode de fonctionnement de l'hélice H1 à chaque instant, les moyens de régulation 16 peuvent assurer une modulation de la vitesse de rotation de la première hélice H1 en fonction de la vitesse de rotation de la deuxième hélice H2 mesurée par le capteur 17 lorsque ce dernier est un tachymètre. Ce type de modulation permet notamment, en régime établi, d'éviter ou pour le moins de réguler la rotation de l'air dans le passage 15.For example, by a suitable selection of the operating mode of the helix H1 at each instant, the regulation means 16 can provide a modulation of the speed of rotation of the first propeller H1 as a function of the speed of rotation of the second propeller H2 measured by the sensor 17 when the latter is a tachometer. This type of modulation makes it possible in particular, in steady state, to avoid or at least to regulate the rotation of the air in the passage 15.
À titre d'exemple pour réaliser une telle modulation en vitesse de la première hélice H1 , les moyens de régulation 16 intègrent une première loi de commande imposant à la première hélice H1 : le mode « moteur » tant que la vitesse de rotation de la deuxième hélice H2 est inférieure à un premier seuil prédéterminé Ω1 , le mode « générateur » lorsque la vitesse de rotation de la deuxième hélice H2 est supérieure à un deuxième seuil prédéterminé Ω2 supérieur à Ω1 , le mode « roue libre » lorsque la vitesse de rotation de la deuxième hélice H2 est comprise entre Ω1 et Ω2.As an example for carrying out such a modulation in speed of the first helix H1, the regulation means 16 integrate a first control law imposing on the first propeller H1: the "engine" mode as long as the rotation speed of the second helix H2 is less than a first predetermined threshold Ω1, the "generator" mode when the rotational speed of the second helix H2 is greater than a second predetermined threshold Ω2 greater than Ω1, the "freewheel" mode when the rotational speed of the second helix H2 is between Ω1 and Ω2.
Les moyens de régulation 16 peuvent aussi intégrer une deuxième loi de commande, prioritaire sur la première loi de commande, et imposant à la première hélice H1 le mode « moteur » dès que la différence entre la vitesse de rotation de la deuxième hélice H2 et la vitesse de rotation de la première hélice H1 est supérieure à un troisième seuil prédéterminé Ω3, lui-même pouvant éventuellement être fonction de Ω1.The regulating means 16 may also incorporate a second control law, which has priority over the first control law, and imposes on the first propeller H1 the "motor" mode as soon as the difference between the rotational speed of the second propeller H2 and the rotation speed of the first helix H1 is greater than a third predetermined threshold Ω3, itself possibly being a function of Ω1.
La sélection du mode de fonctionnement de la première hélice H1 est réalisée par les moyens de régulation 16 par l'intermédiaire de la connexion 28, à partir des informations reçues depuis le capteur 17 par l'intermédiaire de la connexion 27.The operating mode of the first helix H1 is selected by the regulation means 16 via the connection 28, based on the information received from the sensor 17 via the connection 27.
Quel que soit le mode de fonctionnement imposé à la première hélice H1 par les moyens de régulation 16, le système de gestion d'énergie 18 reçoit l'énergie électrique créée par la première machine génératrice G1 par l'intermédiaire de la connexion 22. Lorsque les moyens de régulation 16 imposent le mode « moteur » à la première hélice H1 , le système de gestion d'énergie 18 transmet l'énergie électrique nécessaire à la deuxième machine génératrice G2 par l'intermédiaire de la connexion 23. Lorsque les moyens de régulation 16 imposent le mode « générateur » à la première hélice H1 , le système de gestion d'énergie 18 reçoit l'énergie électrique produite par la deuxième machine génératrice G2 par l'intermédiaire de la connexion 23.Whatever the mode of operation imposed on the first propeller H1 by the regulation means 16, the energy management system 18 receives the electrical energy created by the first generating machine G1 via the connection 22. When the regulation means 16 impose the mode "engine" to the first propeller H1, the energy management system 18 transmits the electrical energy required for the second generator machine G2 via the connection 23. When the means of regulation 16 impose the mode "generator" to the first propeller H1, the energy management system 18 receives the electrical energy produced by the second generator machine G2 via the connection 23.
Enfin, lorsque les moyens de régulation 16 imposent le mode « roue libre » à la première hélice H1 , le système de gestion d'énergie 18 et la deuxième machine génératrice G2 n'échangent pas d'énergie électrique.Finally, when the regulation means 16 impose the "free wheel" mode on the first propeller H1, the energy management system 18 and the second generating machine G2 do not exchange electrical energy.
Parallèlement à ces échanges d'énergie avec les deux machines génératrices G1 , G2, le système de gestion d'énergie produite 18 : - transmet l'énergie reçue depuis la première machine génératrice G1 (et éventuellement depuis la deuxième machine génératrice G2 en cas de mode « générateur » de la première hélice H1) au réseau électrique 20 par la connexion 25 et/ou aux moyens de stockage d'énergie 19 par la connexion 24, - et éventuellement reçoit, en cas de mode « moteur » de la première hélice H1 , l'énergie nécessaire pour l'entraînement de la deuxième machine génératrice G2 depuis le réseau électrique 20 par la connexion 25 et/ou depuis les moyens de stockage d'énergie 19 par la connexion 24 et/ou depuis les moyens d'alimentation électrique extérieure 21 par la connexion 26.In parallel with these energy exchanges with the two generating machines G1, G2, the energy management system produced 18: transmits the energy received from the first generating machine G1 (and possibly from the second generating machine G2 in the case of "generator" mode of the first helix H1) to the electrical network 20 by the connection 25 and / or the energy storage means 19 by the connection 24, and possibly receives, in case of "motor" mode of the first propeller H1, the energy needed for training the second generating machine G2 from the power grid 20 by the connection 25 and / or from the energy storage means 19 via the connection 24 and / or from the external power supply means 21 via the connection 26.
Pour réaliser ces opérations, le système de gestion d'énergie 18 comporte une interface entre les signaux échangés avec les machines génératrices G1 , G2 et les signaux échangés avec le réseau électrique 20, les moyens de stockage d'énergie 19 et les moyens d'alimentation électrique extérieure 21. Une telle interface peut par exemple comporter des transformateurs, des convertisseurs en fréquence et des redresseurs.To carry out these operations, the energy management system 18 comprises an interface between the signals exchanged with the generating machines G1, G2 and the signals exchanged with the electrical network 20, the energy storage means 19 and the means for external power supply 21. Such an interface may for example include transformers, frequency converters and rectifiers.
La stratégie menée par le système de gestion d'énergie 18 en ce qui concerne sa manière d'ordonner ses échanges avec les autres organes du dispositif de commande et avec les deux machines génératrices G1 , G2 est paramétrable en fonction des applications. En particulier, la transmission au réseau électrique 20 peut être privilégiée dans certaines applications. Dans d'autres cas, le niveau d'énergie dans les moyens de stockage 19 et/ou la gestion des pics de consommation seront préférés.The strategy carried out by the energy management system 18 with regard to its manner of ordering its exchanges with the other organs of the control device and with the two generators G1, G2 can be parameterized according to the applications. In particular, transmission to the electrical network 20 may be preferred in certain applications. In other cases, the energy level in the storage means 19 and / or the management of consumption peaks will be preferred.
En référence à la figure 4, l 'aérogénérateur peut fictivement être décomposé en trois zones successives A, B, C décalées suivant la direction de l'axe d'écoulement X et dans le sens de passage de l'air. La partie arrière de l 'aérogénérateur, au-delà de l'ouverture d'échappement OE, constitue une zone supplémentaire D. La zone A de l 'aérogénérateur correspond à la partie d 'aérogénérateur située entre le plan passant par l'ouverture d'admission OA et le plan passant par l'extrémité du tronçon divergent T1 de la surface extérieure 12. La zone B de l 'aérogénérateur correspond à la partie d 'aérogénérateur comprise entre la zone A et le plan passant par l'extrémité du tronçon convergent T3 de la surface intérieure 13. La zone C de l 'aérogénérateur est, quant à elle, constituée par la partie d 'aérogénérateur comprise entre la zone B et le plan passant par l'ouverture d'échappement OE. Comme l'illustre la figure 4, la chambre de compression et d'accélération CH est incluse dans la zone B de l'aérogénérateur.With reference to FIG. 4, the aerogenerator can be fictitiously decomposed into three successive zones A, B, C offset in the direction of the flow axis X and in the direction of passage of the air. The rear part of the aerogenerator, beyond the exhaust opening OE, constitutes an additional zone D. The zone A of the aerogenerator corresponds to the part of the aerogenerator located between the plane passing through the opening of the The inlet OA and the plane passing through the end of the diverging section T1 of the outer surface 12. The zone B of the aerogenerator corresponds to the part of the aerogenerator between the zone A and the plane passing through the end of the section. Convergent T3 of the inner surface 13. The zone C of the aerogenerator is, in turn, constituted by the part of the aerogenerator between zone B and the plane passing through the exhaust opening OE. As illustrated in FIG. 4, the compression and acceleration chamber CH is included in the zone B of the aerogenerator.
Dans la zone A, quel que soit le mode de fonctionnement de la première hélice H1 , le flux de l'écoulement d'air dans le passage 15 est accéléré par rapport au vent dans lequel est placé l'aérogénérateur. Le flux de l'écoulement d'air glissant sur la surface extérieure 12 est lui aussi accéléré par rapport au vent, mais d'une valeur inférieure à l'accélération subie par l'air dans le passage 15.In zone A, whatever the mode of operation of the first helix H1, the flow of the air flow in the passage 15 is accelerated relative to the wind in which the wind turbine is placed. The flow of the airflow sliding on the outer surface 12 is also accelerated relative to the wind, but of a value lower than the acceleration experienced by the air in the passage 15.
Dans la zone B, le diamètre extérieur diminue progressivement, ce qui a pour effet de créer une dépression et donc une accélération du flux de l'écoulement d'air glissant sur la surface extérieure 12. Le flux de l'écoulement d'air dans le passage 15 est lui aussi accéléré sur toute la longueur de la zone B à cause du caractère convergent du tronçon T3. Ces accélérations intérieure et extérieure se produisent quel que soit le mode de fonctionnement de la première hélice H1. Le flux de l'écoulement d'air dans le passage 15 subit, parallèlement à son accélération, une augmentation continue et progressive de pression sur toute la longueur de la zone B. L'augmentation de pression est plus forte dans la chambre CH que sur le reste de la zone B, à plus forte raison lorsque l'hélice H1 fonctionne selon le mode « moteur ».In zone B, the outside diameter decreases progressively, which has the effect of creating a depression and therefore an acceleration of the flow of the air flow sliding on the outer surface 12. The flow of the air flow in the passage 15 is also accelerated along the entire length of the zone B because of the convergent nature of the section T3. These inner and outer accelerations occur regardless of the operating mode of the first H1 propeller. The flow of the air flow in the passage 15 undergoes, parallel to its acceleration, a continuous and progressive increase in pressure along the entire length of zone B. The pressure increase is greater in chamber CH than on the rest of zone B, especially when the H1 propeller operates in the "engine" mode.
Dans la zone C, le flux de l'écoulement d'air glissant sur la surface extérieure 12 continue d'accélérer. Le diamètre intérieur augmente progressivement jusqu'à l'ouverture d'échappement OE ce qui a pour effet de créer une dépression supplémentaire.In zone C, the flow of the airflow sliding on the outer surface 12 continues to accelerate. The inner diameter gradually increases to the OE exhaust opening which has the effect of creating an additional depression.
Dans la zone D, l'air sortant par l'ouverture d'échappement OE est accéléré par le flux de l'écoulement d'air glissant sur la surface extérieure 12 qui possède une vitesse plus élevée. Il en résulte la création d'une dépression supplémentaire en arrière de l 'aérogénérateur et un rejet des perturbations aérodynamiques vers l'arrière de l 'aérogénérateur. La dépression engendrée dans la zone D contribue à maintenir le processus décrit précédemment. Cette action aérodynamique globale permet d'accélérer le flux à l'entrée de l'aérogénérateur.In zone D, the air exiting through the exhaust opening OE is accelerated by the flow of the airflow sliding on the outer surface 12 which has a higher speed. This results in the creation of an additional depression behind the aerogenerator and a rejection of aerodynamic disturbances to the rear of the aerogenerator. The depression generated in zone D helps to maintain the process described previously. This global aerodynamic action makes it possible to accelerate the flow at the inlet of the aerogenerator.
Des cellules photovoltaïques 31 peuvent être prévues sur toute ou partie de la surface extérieure 12 pour constituer les moyens d'alimentation électrique extérieure 21. Toutefois, ces moyens peuvent être réalisés par toute solution adaptée telle qu'une source hydraulique ou un générateur auxiliaire.Photovoltaic cells 31 may be provided on all or part of the outer surface 12 to form the external power supply means 21. However, these means may be made by any suitable solution such as a hydraulic source or an auxiliary generator.
Les machines génératrices G1 , G2 peuvent être compactes et disposées sur l'axe d'écoulement X. Dans d'autres variantes, les machines génératrices G1 , G2 peuvent être en couronne, c'est-à-dire que les hélices H1 , H2 associé constitue lui-même le rotor de la machine génératrice G1 , G2 et le stator est constitué par une couronne périphérique portée en vis-à-vis par la surface intérieure 13.The generating machines G1, G2 can be compact and arranged on the flow axis X. In other variants, the generating machines G1, G2 can be in a ring, that is to say that the propellers H1, H2 associated itself constitutes the rotor of the generating machine G1, G2 and the stator is constituted by a peripheral ring carried vis-a-vis by the inner surface 13.
De manière optionnelle et comme représenté, il est possible de prévoir un écran aérodynamique 30 s'étendant axialement entre les hélices H1 , H2, par exemple ayant une forme extérieure cylindrique, pour éviter les perturbations aérodynamiques à proximité de l'axe d'écoulement X. Il est clair qu'un tel écran aérodynamique 30 doit maintenir le désaccouplement mécanique des hélices H1 , H2. De plus, il est possible d'envisager de loger la deuxième machine génératrice G2 à l'intérieur de l'écran aérodynamique.Optionally and as shown, it is possible to provide an aerodynamic screen 30 extending axially between the helices H1, H2, for example having a cylindrical outer shape, to avoid aerodynamic disturbances near the X axis of flow. It is clear that such an aerodynamic screen 30 must maintain the mechanical uncoupling of the propellers H1, H2. In addition, it is possible to consider housing the second generating machine G2 inside the aerodynamic screen.
Dans l'exemple décrit précédemment, l'axe d'écoulement X est horizontal. Le corps tubulaire 10 comporte un appendice aérodynamique déprimogène 29 en saillie de la surface extérieure 12 à proximité de l'ouverture d'échappement OE. Cet appendice 29 permet d'accentuer l'accélération subie par le flux de l'écoulement d'air glissant le tronçon convergent T2 de la surface extérieure 12, et atténue considérablement le bruit produit par l'écoulement d'air sur la surface extérieure 12. L'effet « parachute » (apparition de turbulences en sortie du corps tubulaire 10) se produit pour des vitesses de vent nettement supérieures qu'en cas d'absence d'appendice 29. D'autre part l'écran aérodynamique réalise une déviation centrifuge de l'écoulement par rapport à l'axe X, augmentant encore la dépression à l'arrière de l 'aérogénérateur. Autrement dit, il génère une divergence du flux d'air glissant sur la surface extérieure 12 et une dépression d'air en arrière de l 'aérogénérateur.In the example described above, the flow axis X is horizontal. The tubular body 10 has a depressing aerodynamic appendage 29 projecting from the outer surface 12 near the exhaust opening OE. This appendix 29 makes it possible to accentuate the acceleration subjected to the flow of the air flow sliding the convergent section T2 of the outer surface 12, and considerably reduces the noise produced by the flow of air on the outer surface 12. The "parachute" effect (appearance of turbulence at the outlet of the tubular body 10) occurs for much higher wind speeds than in the absence of appendix 29. On the other hand the aerodynamic screen performs a centrifugal deviation of the flow relative to the X axis, further increasing the depression at the rear of the turbine. In other words, it generates a divergence of the air flow sliding on the outer surface 12 and an air depression behind the wind turbine.
L'appendice aérodynamique 29 a la forme d'une couronne maintenue à distance autour du corps tubulaire 10 et ayant une face intérieure tournée vers la face extérieure 12, et une face extérieure opposée. Dans un plan de coupe passant par l'axe d'écoulement X, la face intérieure de la couronne a un profil aérodynamique convexe avec un bombement dirigé vers la surface extérieure 12, tandis que la face extérieure de la couronne présente un profil aérodynamique concave avec un creux dirigé vers la surface extérieure 12. Le rapport entre le diamètre de l'appendice aérodynamique 29 et le diamètre de l'ouverture d'admission OA est inférieur à 1 ,3, pour limiter l'encombrement général de l'aérogénérateur.The aerodynamic appendix 29 has the shape of a ring held at a distance around the tubular body 10 and having an inner face facing the outer face 12, and an opposite outer face. In a sectional plane passing through the flow axis X, the inner face of the crown has a convex aerodynamic profile with a bulge directed towards the outer surface 12, while the outer face of the crown has a concave aerodynamic profile with a hollow directed towards the outer surface 12. The ratio between the diameter of the aerodynamic appendix 29 and the diameter of the intake opening OA is less than 1.3, to limit the overall size of the wind turbine.
Il est possible de prévoir un frein mécanique associé aux hélices H1 , H2. D'autre part, le dispositif de commande décrit précédemment peut inclure des fonctions pour réaliser des bilans économiques et énergétiques ainsi que des prévisions de maintenance.It is possible to provide a mechanical brake associated with propellers H1, H2. On the other hand, the control device described above can include functions to perform economic and energy assessments and maintenance forecasts.
Enfin, plusieurs aérogénérateurs selon l'invention peuvent être rassemblés en cascades horizontales, sur un axe circulaire et/ou sur des axes et plans différents. Pour identifier chacun des aérogénérateurs, un dispositif radiofréquence peut être associé à chaque aérogénérateur. En résumé, l 'aérogénérateur selon l'invention n'utilise pas l'énergie interne de l'air traversant le passage 15. L'ensemble de l'écoulement reste, quel que soit le fonctionnement, à Mach inférieur à 0.3. Principalement, seuls les échanges énergie cinétique/énergie de pression sont considérés, en négligeant en pratique les variations d'énergie interne du fluide.Finally, several wind turbines according to the invention can be assembled in horizontal cascades, on a circular axis and / or on different axes and planes. To identify each of the wind turbines, a radiofrequency device can be associated with each wind turbine. In summary, the aerogenerator according to the invention does not use the internal energy of the air passing through the passage 15. The whole flow remains, whatever the operation, Mach less than 0.3. Mainly, only the kinetic energy / pressure energy exchanges are considered, neglecting in practice the internal energy variations of the fluid.
L'hélice H1 sert à accélérer le flux en mode moteur, pour les faibles vents uniquement. Ce fonctionnement déclenche le démarrage de l'hélice H2 et permet de fonctionner plus efficacement avec des vents faibles. En effet, dans cette plage de fonctionnement le débit étant plus élevé, la deuxième hélice H2 a un rendement sensiblement meilleur. Ce type de fonctionnement est imposé tant que la somme des énergies fournies par l'hélice H1 et consommée par l'hélice H2 est supérieure à la somme des énergies fournies par les deux hélices fonctionnant toute les deux en génératrice.The H1 propeller is used to accelerate the flow in engine mode, for low winds only. This operation triggers the start of the H2 propeller and makes it possible to operate more efficiently with low winds. Indeed, in this operating range the flow being higher, the second propeller H2 has a significantly better performance. This type of operation is imposed as long as the sum of the energies supplied by the helix H1 and consumed by the helix H2 is greater than the sum of the energies supplied by the two propellers both operating as generators.
La convergence de l'écoulement interne est utilisée pour augmenter la vitesse axiale de l'écoulement sans augmenter sensiblement la masse volumique de l'air : la vitesse plus élevée au col permet d'utiliser une hélice H2 plus rapide, avec un meilleur rendement. L'hélice H1 , en fonctionnement génératrice, utilise l'énergie du vent liée à la composante axiale de la vitesse et restitue une vitesse ayant une composante en rotation (relation d'Euler). Cette composante en rotation est récupérée par l'hélice H2 qui restitue un écoulement purement axial en sortie d'appareil. Sans l'hélice H1 , la vitesse de l'écoulement en sortie de l'hélice H2 aurait forcément une composante en rotation (relation d'Euler). L'énergie cinétique correspondante serait alors perdue. Globalement les hélices H1 , H2 contra-rotatives ont un rendement meilleur qu'une seule hélice H2, malgré les pertes par frottement plus importantes. La forme de la surface intérieure 12, la forme de la surface intérieure 13, le choix de prendre une hélice constituant le moyen rotatif au col, et le choix d'un col à relativement faible étranglement, sont choisis pour ramener le point d'attaque aussi près que possible de l'ouverture d'admission OA, contrairement à l'art antérieur. The convergence of the internal flow is used to increase the axial velocity of the flow without substantially increasing the density of the air: the higher velocity at the neck makes it possible to use a faster H2 helix, with a better efficiency. The helix H1, in generating operation, uses the wind energy linked to the axial component of the speed and restores a speed having a component in rotation (Euler relation). This rotating component is recovered by the helix H2 which restores a purely axial flow at the device outlet. Without the helix H1, the speed of the flow at the output of the helix H2 would necessarily have a component in rotation (Euler relation). The corresponding kinetic energy would then be lost. Overall, contra-rotating H1, H2 propellers have better performance than a single H2 propeller, despite the greater friction losses. The shape of the inner surface 12, the shape of the inner surface 13, the choice to take a helix constituting the rotary means to the neck, and the choice of a neck with a relatively small constriction, are chosen to reduce the point of attack. as close as possible to the OA inlet opening, contrary to the prior art.

Claims

Revendications claims
1. Aérogénérateur ayant un corps tubulaire (10) comprenant : - une ouverture circulaire d'admission (OA) d'air, une ouverture circulaire d'échappement (OE), une surface extérieure (12) déprimogène entre l'ouverture d'admissionAn aerogenerator having a tubular body (10) comprising: - a circular inlet opening (OA) of air, a circular opening of exhaust (OE), an outer surface (12) of pressure between the inlet opening
(OA) et l'ouverture d'échappement (OE), une surface intérieure (13) délimitant un passage d'air (15) reliant lesdites ouvertures (OA, OE), ayant un axe d'écoulement (X) rectiligne horizontal, et présentant un tronçon convergent (T3) relié à l'ouverture d'admission (OA), et un tronçon divergent (T4) relié à l'ouverture d'échappement (OE), lesdits tronçons (T3, T4) étant reliés par un col(OA) and the exhaust opening (OE), an inner surface (13) delimiting an air passage (15) connecting said openings (OA, OE), having a horizontal rectilinear flow axis (X), and having a convergent section (T3) connected to the inlet opening (OA), and a diverging section (T4) connected to the exhaust opening (OE), said sections (T3, T4) being connected by a collar
(14), - un moyen rotatif axialement positionné à proximité du col (14) et convertissant le mouvement d'écoulement de l'air au col (14) en un mouvement de rotation d'un moyen d'accouplement lié à une première machine génératrice (G1 ), et une première hélice (H1 ) montée à rotation par rapport au corps tubulaire (10), en amont du moyen rotatif, axialement placée dans le tronçon convergent (T3) de la surface intérieure (13), caractérisé en ce que : le moyen rotatif est constitué par une deuxième hélice (H2) montée à rotation par rapport au corps tubulaire (10) et configurée de manière à tourner en sens inverse par rapport à la première hélice (H1 ), le rapport entre le diamètre du col (14) et le diamètre de l'ouverture d'admission (OA) est compris entre 0,6 et 0,8, la surface extérieure (12) comporte un tronçon divergent (T1 ) relié à l'ouverture d'admission (OA) et un tronçon convergent (T2) relié à l'ouverture d'échappement (OE), conformés pour constituer une surface de révolution dont l'axe de révolution coïncide avec l'axe d'écoulement (X) et dont une courbe génératrice est constituée par l'extrados d'une aile d'avion, une deuxième machine génératrice (G2) réversible à laquelle est liée la première hélice (H1) et reliée à des moyens de régulation adaptant le fonctionnement de la première hélice (H1 ) en fonction d'au moins un paramètre physique lié au fonctionnement de la deuxième hélice (H2).(14), a rotating means axially positioned near the neck (14) and converting the air flow movement to the neck (14) into a rotational movement of a coupling means connected to a first machine generator (G1), and a first helix (H1) rotatably mounted with respect to the tubular body (10), upstream of the rotary means, axially placed in the convergent section (T3) of the inner surface (13), characterized in that that: the rotating means is constituted by a second helix (H2) rotatably mounted relative to the tubular body (10) and configured to rotate in opposite directions relative to the first helix (H1), the ratio between the diameter of the collar (14) and the diameter of the inlet opening (OA) is between 0.6 and 0.8, the outer surface (12) has a diverging section (T1) connected to the inlet opening ( OA) and a convergent section (T2) connected to the exhaust opening (OE), shaped for c onstitute a surface of revolution whose axis of revolution coincides with the axis of flow (X) and a generating curve is constituted by the extrados of an aircraft wing, a second reversible generating machine (G2) to which is connected the first propeller (H1) and connected to regulating means adapting the operation of the first helix (H1) as a function of at least one physical parameter related to the operation of the second helix (H2).
2. Aérogénérateur selon la revendication 1 , caractérisé en ce que le corps tubulaire (10) comporte un appendice aérodynamique (29) déprimogène en saillie de la surface extérieure (12) à proximité de l'ouverture d'échappement (OE), générant une divergence du flux d'air glissant sur la surface extérieure (12) et une dépression d'air en arrière de l 'aérogénérateur.Aerogenerator according to Claim 1, characterized in that the tubular body (10) has a pressure-reducing aerodynamic appendage (29) projecting from the outer surface (12) in the vicinity of the exhaust opening (OE), generating a divergence of the airflow sliding on the outer surface (12) and an air depression behind the wind turbine.
3. Aérogénérateur selon l'une des revendications 1 et 2, caractérisé en ce que les moyens de régulation (16) assurent une modulation de la vitesse de rotation de la première hélice (H1) en fonction de la vitesse de rotation de la deuxième hélice (H2).3. Aerogenerator according to one of claims 1 and 2, characterized in that the regulating means (16) provide a modulation of the speed of rotation of the first propeller (H1) as a function of the speed of rotation of the second propeller (H2).
4. Aérogénérateur selon l'une des revendications 1 à 3, caractérisé en ce que les première et deuxième machines génératrices (G1 , G2) sont reliées à un système de gestion d'énergie (18), relié à des moyens de stockage d'énergie (19) et/ou au réseau électrique (20).4. Aerogenerator according to one of claims 1 to 3, characterized in that the first and second generating machines (G1, G2) are connected to a power management system (18), connected to storage means of energy (19) and / or the electrical network (20).
5. Aérogénérateur selon la revendication 4, caractérisé en ce que le système de gestion d'énergie (18) est relié à des moyens d'alimentation extérieure (21) en énergie.5. Aerogenerator according to claim 4, characterized in that the energy management system (18) is connected to external power supply means (21) in energy.
6. Aérogénérateur selon l'une des revendications 1 à 5, caractérisé en ce qu'un écran aérodynamique (30) s'étend axialement entre les première et deuxième hélices (H2, H1 ). 6. The aerogenerator according to one of claims 1 to 5, characterized in that an aerodynamic screen (30) extends axially between the first and second propellers (H2, H1).
7. Aérogénérateur selon l'une des revendications 1 à 6, caractérisé en ce que le rapport entre le diamètre de l'appendice aérodynamique (29) et le diamètre de l'ouverture d'admission (OA) est inférieur à 1 ,3. 7. Wind generator according to one of claims 1 to 6, characterized in that the ratio between the diameter of the aerodynamic appendix (29) and the diameter of the inlet opening (OA) is less than 1, 3.
EP08869640A 2007-10-11 2008-10-10 Wind generator with two successive rotors Withdrawn EP2198150A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0707124A FR2922272A1 (en) 2007-10-11 2007-10-11 Aerogenerator for producing electrical energy, has rotor placed in upstream of another rotor and axially in convergent section, where rotors and internal surface delimit intake air compression and acceleration chamber
PCT/FR2008/001425 WO2009087288A2 (en) 2007-10-11 2008-10-10 Wind generator with two successive rotors

Publications (1)

Publication Number Publication Date
EP2198150A2 true EP2198150A2 (en) 2010-06-23

Family

ID=39434035

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08869640A Withdrawn EP2198150A2 (en) 2007-10-11 2008-10-10 Wind generator with two successive rotors

Country Status (11)

Country Link
US (1) US20100310361A1 (en)
EP (1) EP2198150A2 (en)
JP (1) JP2011503407A (en)
CN (1) CN101918705A (en)
AU (1) AU2008346296A1 (en)
BR (1) BRPI0818168A2 (en)
CA (1) CA2699774A1 (en)
FR (1) FR2922272A1 (en)
IL (1) IL204929A0 (en)
RU (1) RU2010118313A (en)
WO (1) WO2009087288A2 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110002781A1 (en) * 2007-03-23 2011-01-06 Flodesign Wind Turbine Corporation Wind turbine with pressure profile and method of making same
US20090230691A1 (en) * 2007-03-23 2009-09-17 Presz Jr Walter M Wind turbine with mixers and ejectors
US20100316493A1 (en) * 2007-03-23 2010-12-16 Flodesign Wind Turbine Corporation Turbine with mixers and ejectors
US20110008164A1 (en) * 2007-03-23 2011-01-13 Flodesign Wind Turbine Corporation Wind turbine
US8376686B2 (en) * 2007-03-23 2013-02-19 Flodesign Wind Turbine Corp. Water turbines with mixers and ejectors
WO2009141155A2 (en) * 2008-05-22 2009-11-26 Hermann Rich Poppe Energy generation device comprising rotors
KR100962774B1 (en) * 2009-11-09 2010-06-10 강현문 Wind power generator
KR101169135B1 (en) * 2009-12-30 2012-07-30 최해용 Symetric dual-structured wind gerneration system
JP2011140887A (en) * 2010-01-05 2011-07-21 Kokusai Shigen Katsuyo Kyokai Wind collecting type wind turbine
SE537137C2 (en) * 2010-06-18 2015-02-17 David Zazi An apparatus, a system installation and a method for generating electricity from gas streams in a building
US8466572B2 (en) 2010-06-22 2013-06-18 David ZAZI Device, a system installation and a method
WO2012000040A1 (en) * 2010-06-30 2012-01-05 Sebastian Wojnar A wind turbine air flow device
CN102444548A (en) * 2010-10-15 2012-05-09 韩拉妹 Wind power generating equipment
FR2969423B1 (en) * 2010-12-15 2013-08-30 Alain Coty MIXED PHOTOVOLTAIC ENGINE
BR112013017020A2 (en) * 2010-12-31 2019-09-24 Abb Oy propulsion system
US20120175882A1 (en) * 2011-01-10 2012-07-12 Peter John Sterling Injector venturi accelerated, wind turbine
KR101183624B1 (en) 2011-01-14 2012-09-17 김춘식 An aerogenerator with at least two generators
RU2011106274A (en) * 2011-02-14 2012-08-20 Сергей Нестерович Белоглазов (RU) TURBO COMPRESSOR WIND GENERATOR
DE102011110982A1 (en) * 2011-08-18 2013-03-28 Andrej Kohlmann Turbine for operating power generator for generating current from renewable energy, has screw blades provided parallel to rotor axis, where torque of rotors is produced by difference of static pressures of countersides of screw blades
US8678310B2 (en) * 2011-08-22 2014-03-25 Honeywell International Inc. Ducted ram air generator assembly
DE202012013622U1 (en) * 2011-11-17 2018-09-07 Doosan Heavy Industries & Construction Co., Ltd. Multiple wind turbine
US9261073B2 (en) * 2012-04-29 2016-02-16 LGT Advanced Technology Limited Wind energy system and method for using same
KR101288177B1 (en) * 2012-09-07 2013-07-19 이대우 Self-controlled rotor blades according to variable air directions without external power
ITMI20121662A1 (en) * 2012-10-04 2014-04-05 Saipem Spa MODULE, SYSTEM AND METHOD TO GENERATE ELECTRICITY WITHIN A PIPE
KR101446106B1 (en) * 2014-03-04 2014-10-06 허만철 generate facilities using twin blade wind power generator of moving type
US20150260155A1 (en) * 2014-03-12 2015-09-17 Phillip Ridings Wind turbine generator
US20150300183A1 (en) * 2014-04-16 2015-10-22 Ogin, Inc. Fluid Turbine With Turbine Shroud And Ejector Shroud Coupled With High Thrust-Coefficient Rotor
US10161382B2 (en) * 2015-07-10 2018-12-25 Alexander G. Kogan Induced-flow wind power system
US10399694B2 (en) * 2015-09-02 2019-09-03 Ge Aviation Systems Llc Ram air turbine system
JP6638952B2 (en) * 2015-09-24 2020-02-05 株式会社G・T・R W turbine generator with wind tunnel
US9970419B1 (en) 2017-03-29 2018-05-15 Tarek O. Souryal Energy collection pod
US9784244B1 (en) 2017-03-29 2017-10-10 Tarek O. Souryal Energy collection pod
CN107642461A (en) * 2017-10-26 2018-01-30 沈宏 A kind of high-efficient wind generating equipment
DE102019002907A1 (en) * 2018-04-19 2019-11-14 Heinz Penning Wind turbine
MX2021003946A (en) * 2018-10-05 2021-09-08 Organoworld Inc Powered augmented fluid turbines.
CN110285012A (en) * 2019-07-19 2019-09-27 沈阳航空航天大学 A kind of double-layer structure energy gathering cap suitable for horizontal-shaft wind turbine
CN114270029A (en) * 2019-08-20 2022-04-01 阿尔弗雷多·劳尔·卡列·马德里 Wind wall
CN110486221A (en) * 2019-08-30 2019-11-22 沈阳航空航天大学 Plasma discharge Synergistic type double-layer structure energy gathering cap suitable for horizontal-shaft wind turbine
KR102305435B1 (en) * 2020-03-05 2021-09-27 이동규 Light device having air-flowing generator using ultra-low pressure conditions
IT202000007105A1 (en) * 2020-04-03 2021-10-03 Cristian Bregoli Wind energy recovery device for motor vehicles and motor vehicle comprising such device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB162999A (en) * 1920-10-25 1921-05-12 Andrew Fraser Improvements in or relating to windmills
FR2425002A1 (en) * 1978-05-02 1979-11-30 Snecma Wind powered energy generator - has rotor at entry of casing forming divergent passage and including blades to maintain heading
FR2461831A1 (en) * 1979-07-18 1981-02-06 Barracho Joaquin WIND TURBINE
DE29617306U1 (en) * 1996-10-04 1996-12-12 Freimund, Wolfgang, 22179 Hamburg Jacketed wind turbine
US20010004439A1 (en) * 1999-12-15 2001-06-21 Bolcich Alejandro Juan Alfredo Energy converter
IL165233A (en) * 2004-11-16 2013-06-27 Israel Hirshberg Energy conversion device
GB0520496D0 (en) * 2005-10-07 2005-11-16 Walsh Stephen Venturi electrical generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009087288A3 *

Also Published As

Publication number Publication date
AU2008346296A8 (en) 2010-05-27
AU2008346296A1 (en) 2009-07-16
WO2009087288A3 (en) 2010-10-07
RU2010118313A (en) 2011-11-20
US20100310361A1 (en) 2010-12-09
CA2699774A1 (en) 2009-07-16
BRPI0818168A2 (en) 2017-05-16
JP2011503407A (en) 2011-01-27
FR2922272A1 (en) 2009-04-17
CN101918705A (en) 2010-12-15
IL204929A0 (en) 2010-11-30
WO2009087288A2 (en) 2009-07-16

Similar Documents

Publication Publication Date Title
WO2009087288A2 (en) Wind generator with two successive rotors
EP1177380B1 (en) Wind machine with slanted blades
EP0107543B1 (en) Increased thrust tail rotor arrangement for a rotor craft
FR2796671A1 (en) Wind energy electricity generator having mast mounted section with helices/capture units driving electrical generator and power electronics section independently adjusting rotors.
EP2572100B1 (en) Turbogenerator with rotor having blades adapting to the apparent wind
FR3082230A1 (en) NON-HULL ROTOR AIRCRAFT ENGINE WITH ADAPTATION OF STATOR BLADES
CA2936324A1 (en) Blade for a turbine engine propeller, in particular a propfan engine, propeller, and turbine engine comprising such a blade
CA3117485A1 (en) Turbomachine with unducted twin propellers
EP2699792A1 (en) Runner for a hydraulic machine, hydraulic machine provided with such a runner, and power-conversion equipment including such a hydraulic machine
EP3325771B1 (en) Aircraft comprising two contra-rotating fans to the rear of the fuselage, with spacing of the blades of the downstream fan
FR2976980A1 (en) Wind control device i.e. wind gear box, for supplying wind to wind mill that is installed on e.g. car, for electric power supply, has rotor including guides and internal ducts for forming venturi to regulate velocity of air
FR2857062A1 (en) SELF-DIRECTING CARENEE WIND
EP2395231A2 (en) Arrangement of blades of a rotary mobile such as a marine turbine
WO2013131688A1 (en) Device for converting the kinetic energy of a fluid into mechanical energy, with regulation of the collected power
CA2755083A1 (en) Rotor for a power generator, in particular for wind turbines
FR2891026A1 (en) Windmill with vertical vanes, especially for generating electricity, has at least one vaned wheel with a vertical axis of rotation, connected to a generator
FR2959281A1 (en) Device for increasing rotational speed of intra-animated rotation propeller or turbine of windmill to generate electricity for e.g. aircraft, has air outlet formed at end of blade to discharge air for exerting natural pressure on propeller
EP1819926A1 (en) Vertical-axis wind turbine
FR3039206A1 (en) TURBOMACHINE FOR AIRCRAFT COMPRISING A FREE TURBINE IN THE PRIMARY FLOW
FR2488337A1 (en) Horizontal axis medium power wind turbine - uses small short bladed turbines mounted in enclosing nozzle, and shutter over entrance to turbine to control speed
WO2017118791A1 (en) System for changing the pitch of a turboprop engine comprising an upstream pair of contrarotating propellers
FR2859247A1 (en) Wind turbine, has air passage reducing unit to reduce air passage through small opening until it is sealed, in case of useful wind, and to liberate opening fully, in case of high-powerful wind
EP2657516B1 (en) Wind turbine including an electromagnetic retarder for slowing the blade rotation speed
FR2855563A1 (en) Wind turbine, has median fairing centered on rotating axis of blades and defining convergent/divergent external static diffuser to concentrate air flow by end of blades
FR2485106A1 (en) Small diameter wind turbine - uses stator which channels wind onto rotor blades tangentially to rotor to compensate loss of efficiency

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100315

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

R17D Deferred search report published (corrected)

Effective date: 20101007

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140501