EP2184744B1 - Fil électrique à gaine de PTFE robuste et à faible constante diélectrique, et ses procédé et outil de fabrication - Google Patents

Fil électrique à gaine de PTFE robuste et à faible constante diélectrique, et ses procédé et outil de fabrication Download PDF

Info

Publication number
EP2184744B1
EP2184744B1 EP09174913.5A EP09174913A EP2184744B1 EP 2184744 B1 EP2184744 B1 EP 2184744B1 EP 09174913 A EP09174913 A EP 09174913A EP 2184744 B1 EP2184744 B1 EP 2184744B1
Authority
EP
European Patent Office
Prior art keywords
conductor
section
extrudate
covering
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09174913.5A
Other languages
German (de)
English (en)
Other versions
EP2184744A1 (fr
Inventor
Sophie Perez
Chor Yeung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axon Cable SA
Original Assignee
Axon Cable SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axon Cable SA filed Critical Axon Cable SA
Publication of EP2184744A1 publication Critical patent/EP2184744A1/fr
Application granted granted Critical
Publication of EP2184744B1 publication Critical patent/EP2184744B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/141Insulating conductors or cables by extrusion of two or more insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0233Cables with a predominant gas dielectric

Definitions

  • the invention relates to an electrical wire comprising at least one single-stranded or stranded electrical conductor, in a sheath based on PTFE (polytetrafluoroethylene), and a method and a manufacturing tool that make it possible to manufacture it. It also relates to the coaxial cable that can be formed around such an electric wire.
  • PTFE polytetrafluoroethylene
  • conductor here denotes a bare conductor, but may optionally include a conductive outer plating, for example a silver plating or other.
  • the conductor can be single-stranded or stranded.
  • PTFE-based sheath is meant here a sheath predominantly composed of PTFE, which may further comprise other fillers such as dyes, etc.
  • the electrical wire targeted by the invention is a wire intended for the transmission of a signal, in particular at high or very high frequency.
  • Insulation plays a very important role in the electrical performance of an electrical cable, and particularly in the field of high frequency signal transmission.
  • the speed of propagation of electromagnetic waves depends on the dielectric constant ⁇ of the insulator, and is inversely proportional to the square root of the latter.
  • the attenuation of the transmitted signals is a function involving the frequency and the dielectric constant of the insulating medium. Materials which have the lowest possible dielectric constant for insulation are thus sought, so as to produce low attenuation cables.
  • Fluorinated polymers, PTFE in particular are often chosen for this application because they have dielectric constants ⁇ very low, from 2.0 to 2.1.
  • a first solution is to choose an insulating material further comprising the porous material. This brings a considerable improvement in performance because the dielectric constant of the air is only 1; the presence of air in the insulation thus makes it possible to lower the dielectric constant.
  • cables insulated with expanded PTFE may have a dielectric constant between 1.7 and 1.3 depending on the porosity of the PTFE.
  • the patent WO 2005/066979 to EI Dupont de Nemours thus describes a method of manufacturing electrical wires comprising one or more conductors, protected by a PTFE sheath, the sheath comprising continuous longitudinal cells.
  • the cells of the electric wire obtained are separated from the conductor by a layer of PTFE.
  • This electrical wire 10 comprises a central conductor 12, and a sheath 14.
  • the conductor 12 is a single-strand copper conductor of circular section.
  • the sheath 14 is a hollow sheath of substantially cylindrical shape (on a substantially straight section of wire), inside which are formed four continuous longitudinal cells 16.
  • the cells 16 are separated in pairs by separating partitions or spacers 18
  • the conductor is housed in a sheath 20 which is directly in contact with its outer surface, on which the radially inner ends of the struts 18 rest.
  • the presence of the sheath 20 causes the cells 16 to be at a distance from the conductor 12. which limits their ability to reduce the dielectric constant of the electric wire.
  • a first object of the invention is therefore to propose an electrical wire comprising at least one conductor held by at least one spacer in a PTFE-based sheath, the sheath and said at least one spacer further forming at least one substantially longitudinal cell. continuous, said at least one cell being at least partially defined by the conductor, the electric wire having high performance, that is to say a dielectric constant ⁇ very low, and having one or more cells having a high resistance to 'crushing.
  • the PTFE fibers of said at least one spacer are mainly directed in a substantially radial direction.
  • the dielectric constant of this electric wire may be less than 1.7.
  • the spacer or spacers ensure the relative positioning of the conductor in the sheath. Because the PTFE fibers of this or these spacers are predominantly (and in fact in general, essentially) directed in the radial direction, the spacers or spacers have a high compressive strength and therefore the cells themselves. have a very good resistance to compression. It follows that the electric wire has a high durability, with a risk of crushing cells and therefore loss of dielectric properties very low.
  • the direction 'radial' designates the direction in which are formed the spacer or spacers, that is to say, usually the radial direction.
  • this direction may possibly not be radial; in this case, the radial direction designates the direction in which the spacers extend, according to the section of the electric wire.
  • a single cell is formed. There is therefore only one spacer for the maintenance of the driver.
  • the angular position of the cell and the spacer vary along the wire. Note that it may also be useful to provide this same arrangement (angular position of the variable cell along the wire) in the case where the wire is formed with several cells.
  • the electrical wire according to the invention can in particular be formed with two to four cells, or more; two to four drivers, or more.
  • the sheath is kept at a distance from the conductor by said at least one spacer, the latter comprising a substantially radial junction portion, and a holding portion enlarged in contact with the conductor.
  • the term 'enlarged' indicates here that the holding portion is wider than the joining portion.
  • the enlarged part ensures a better support of the conductor by the spacer (compared to a spacer which does not include an enlarged part), without significantly penalizing neither the dielectric constant nor the weight of the cable, the junction part of the remaining spacer relatively thin.
  • the invention also relates to a coaxial cable comprising a central conductor, an insulating intermediate sheath based on PTFE, an outer conductor, an outer protective sheath and whose central conductor considered with the intermediate sheath is an electric wire as defined above according to the invention.
  • a second object of the invention is to define a method for manufacturing an electrical wire comprising at least one conductor in a PTFE-based sheath, the sheath and said at least one spacer forming at least one continuous longitudinal cell, which is passed a PTFE-based extrudate in an extrusion passage around said at least one conductor so as to form the sheath, and which allows the formation of a cell delimited at least partially by the driver, and thus the obtaining a very low dielectric constant electric wire E.
  • the process thus comprises two successive steps.
  • the shaping takes place for the most part, during which the sheath generally takes on its final shape (in particular, with the shrinkage).
  • this formatting requires machine settings known for the implementation of the PTFE, in particular to obtain fibrillation of PTFE.
  • the sheath is formed, at least a portion of the sheath being formed at a distance from the conductor, leaving a space between a free surface of the conductor, which remains exposed, and the sheath portion intended to become the outer wall of the cell.
  • This sheath portion is formed to its definitive shape, which means that it is formed with the shape that it will retain in the manufactured electrical wire.
  • the cells will be formed, forming connecting struts between the aforementioned sheath portion and the conductor.
  • These spacers are formed because during the progression of the extrudate in the tooling, from the expansion section, the guide which separated the outer portion of the sheath, the driver, is replaced by one or more profiles.
  • This profile (It may be several profiles) extends downstream in the extension that a portion of the guide, and at least one expansion channel is formed between the walls of the profile (s) ).
  • the extrudate As the extrudate progresses in the extrusion passage, as soon as the extrudate reaches the expansion section, it fills this expansion channel, and thus forms one or more struts connecting the outer sheath to the conductor. .
  • the material of the spacers therefore comes from the material of the outer sheath, which flows radially towards the conductor or conductors to form the spacers. These spacers form the walls of the cell or alveoli.
  • the formation of the spacers is not accompanied by the covering of the free surfaces of the conductor by the extrudate, for reasons indicated below. Also, the free surface (s) remain free, thus making it possible to obtain an electrical wire of particularly low dielectric constant.
  • the originality of the method thus lies in the fact that although the sheath is essentially shaped during the first stage (upstream of the expansion section), the extrudate retains a residual capacity of expansion, advantageously used in the process to form from the expansion section or spacers connecting the sheath to the conductor and constituting the radial or lateral walls of the cells. These spacers ensure the correct positioning of the conductor relative to the sheath.
  • the formation of the spacers only after the forming of the sheath prevents the appearance of PTFE on the free surface of the conductor, and keeps it naked within the cell.
  • the viscosity of the PTFE extrudate is very high, and the extrudate only flows under a very strong pressure. If necessary, depending on the viscosity of the PTFE, it may be useful to reduce this viscosity by increasing the proportion of lubricant in the extrudate (that is to say in the mixture to be extruded at the time of preparation of the latter). this). Increasing the proportion of lubricant modulates the creep of the extrudate occurring during extrusion. According to the invention, the extrudate flows from and downstream of the expansion section, releasing the residual stresses that are in it and whose relaxation is critical.
  • the reduction ratio immediately downstream of the expansion section is smaller than the reduction ratio of a so-called 'maximum reduction' section located at or upstream of the expansion section in the extrusion passage.
  • the reduction ratio is equal to the ratio between the area of a section of the compression chamber at the upstream portion of the tooling and the area of the section considered of the die.
  • the pressure in the extrusion passage is less at the (or immediately downstream of) the expansion section than the level of the maximum reduction section. Because of this, the filling of the expansion channel (s) with PTFE is measured, and the invasion of the volume of the cells by the extrudate is avoided.
  • the reduction ratio immediately downstream of the expansion section is 10% or more lower than that of the maximum reduction section.
  • the expansion section is located at a distance downstream of an extrusion orifice of the tool located downstream of an extrusion chamber of decreasing section.
  • the extrudate shaped at the the vicinity of the extrusion orifice thus has a period of time allowing it to stabilize during its progression between the extrusion orifice and the expansion section.
  • the contact between the extrudate and the conductor takes place substantially at the level of the expansion section, at which point the respective axial speeds of the extrudate and the conductor are substantially equal. In this way, the shear forces applying to the interface between the extrudate and the conductor are minimized, which avoids the risk of breakage of the conductor during manufacture.
  • a third objective of the invention is to define a tool for manufacturing an electrical wire comprising at least one conductor in a PTFE-based sheath, the sheath and said at least one spacer forming at least one continuous longitudinal cell delimited at least partially by the conductor, and which allows the manufacture of an electric wire of very low dielectric constant.
  • the inner diameter of the minimum diameter of the guide - or the extension thereof - in fact substantially corresponds to the diameter that must have the driver, to allow effective guidance of the driver without unnecessary play.
  • the profile extends substantially to this surface, during the manufacture of the electric wire, the surface internal profile is in the vicinity of the driver. Thanks to this, the risk of invasion by the PTFE of the space between the conductor and the profile remains limited: PTFE having a high viscosity, when this space is reduced, the PTFE does not penetrate, allowing to preserve the free surface or surfaces of the driver.
  • the machine in which the tooling is mounted must include means for using the extrudate, which allow the formation and fibrillation of the PTFE contained in the extrudate, when the extrudate is shaped in the passage extrusion.
  • the tooling immediately downstream of the expansion section a passage surface of the extrudate greater than that of a so-called 'maximum reduction' section of the tool located further upstream.
  • the passage area of the extrudate immediately downstream of the expansion section may be 10% greater than that of the maximum reduction section.
  • the expansion section is located downstream of an extrusion orifice of the tool located downstream of an extrusion chamber of decreasing section.
  • the tooling comprises at least one adjustable portion, for axially varying the position of the expansion section in the tooling.
  • the viscosity of the extrudate can vary depending on the operating conditions and the raw material used. These variations lead to more or less filling of the expansion channels.
  • the position of the expansion channels it is possible to trigger the filling of these channels more or less long after forming the sheath, and thus to control the importance of filling these channels.
  • said at least one profile is a solid section.
  • a section is easy to achieve, and the process requires neither vacuum, nor air injection for the formation of cells.
  • the electrical wire 22 comprises a central conductor 24, and a sheath 26 based on PTFE.
  • the central conductor 24 is constituted by a copper core 23, having a thin silver plating 27.
  • the silver plating 27 has been shown with an exaggerated thickness on the figure 2 .
  • the sheath 26 is an outer sheath, substantially cylindrical and tubular.
  • the sheath 26 has a generally tubular shape; the spacers 30 make it possible to center the conductor 24 inside the sheath 26.
  • the struts 30 extend from the inner wall of the sheath 26 to the conductor 24 in a radial direction.
  • the spacers 30 comprise a substantially radial junction portion 32, which forms a relatively thin or thin partition wall between two adjacent cells 28, and an enlarged portion 34 formed at the point of contact between the spacer 30 and the conductor 24.
  • Each of the cells 28 is partially delimited by the conductor 24 at a free surface 25, which is not covered with PTFE and remains 'naked' inside the cell 28.
  • the electric wire 22 is shown during manufacture.
  • the cavities 28 are partly occupied by profiled tooling portions 29 (or sections 29, shown hatched) serving to form the cavities 28.
  • the cells 28 occupy the volume of these sections 29, as well as the volumes voids 31 which each extend between two spacers 30, the conductor 24 and a profile 29.
  • the formation of the spacers 30 is illustrated in particular by the detail left in the upper left on the figure 2 .
  • the sheath 26 is formed in a first step of manufacturing the electrical wire 22 in a first step of manufacturing the electrical wire 22, the sheath 26 is formed.
  • a portion of the extrudate constituting the sheath 26 flows radially inwards, along the arrows B, in the space provided between the sections 29, thus forming the spacers 30 between the walls of the profiles 29. flow is stopped by the driver 24; however, in contact with the latter at the end of the struts 30 the extrudate flow divides, and partially fills the annular space between the conductor 24 and the profiles 29, thereby forming one or more enlarged portions 34 to the end of the spacers 30.
  • the manufacturing tool is arranged and adjusted to limit this expansion. In particular, the high viscosity of the extrudate can be taken into account if necessary to reduce the extrudate entry into the space available between the conductor 24 and the profiles 29.
  • Each of the spacers 30 has a joining portion 32, and an enlarged portion 34.
  • the radial axis of the spacer 30 is represented by the dashed line A.
  • the width 38 of the enlarged portion 34 is greater than the width 36 of the joining portion 32 of the spacer 30, these two widths being measured perpendicularly to the radial axis A.
  • the portion 34 may be more or less wide depending on the setting of the manufacturing tool, thus allowing a arbitration between an electrical wire having a very low dielectric constant and wherein the spacers 30 provide less maintenance of the conductor 24 (because their enlarged portion 34 is little or not widened), or the opposite.
  • the section of the electric wire as represented on the figure 2 is invariant along the axis of it.
  • figure 2 shows the direction in which the PTFE fibers 33 are formed in the sheath and spacers, during the manufacture of the electrical wire.
  • the PTFE fibers in the spacers are mainly directed in a substantially radial direction, since this is the direction in which the spacers 30 extend to connect the outer sheath to the central conductor 24.
  • This orientation of the fibers 33 PTFE is due to the fact that during the manufacture of the wire, after the formation of the outer sheath of the wire, the formation of the spacers is done using the material of the outer sheath, the material of the outer sheath fluent in direction of the central electrical wire 24 so as to form the spacers 30.
  • This direction of extension of PTFE fibers 33 in the spacers gives them excellent crush resistance.
  • the figure 3 represents another electrical wire according to the invention, comprising two conductors 40, each conductor being surrounded by four cells 42.
  • An outer sheath 44 based on PTFE is formed around the conductors and their cells.
  • each of the cells 42 is partially delimited by one of the conductors 40.
  • the cells have been formed so as to minimize the dielectric constant of the wire.
  • the spacers 46 formed between adjacent cells, do not have an enlarged portion in contact with the conductor.
  • the cells 42 In a section perpendicular to the longitudinal axis of the wire (for example the section of the figure 3 ), the cells 42 have a shape of angular sector, relatively large center angle ⁇ , for example 80 degrees; the spacers 46 also have a substantially angular sector shape but their central angle ⁇ is reduced to about 10 to 20 degrees.
  • This electrical wire 50 comprises a single-strand electric conductor 52 disposed inside a sheath 54 made of PTFE-based material.
  • the sheath 54 is tubular. Inside the latter, the free space 56 between the central conductor 52 and the sheath 54 is only occupied by a helicoidal spacer 58 which connects the outer surface of the conductor 52 to the inner surface of the sheath 54.
  • E dielectric constant
  • the figure 5 has a coaxial cable incorporating an electrical wire according to the invention.
  • This coaxial cable 60 integrates, successively, a central electrical conductor 62, a tubular sheath 64 made of PTFE material, separated from the central conductor 62 by four cavities 66, a conductive layer 68 and finally an outer sheath 70. Thanks to the presence longitudinal cells 66, each being partially delimited by the conductor 62, the dielectric constant E of the coaxial cable is very small.
  • the figure 6 presents a production tooling 100 adapted for the implementation of the method according to the invention. It also has a portion of electrical wire 150 made by this tool.
  • the tool 100 mainly comprises a die 102 and a guide 104.
  • the die 102 has an internal passage 106 within which the sheathing of PTFE-based material takes place.
  • This passage 106 has a general shape of revolution around an extrusion axis B.
  • the axis B is a vertical axis and the extrusion takes place in the downward direction.
  • the guide 104 also has a general shape of revolution and is arranged coaxially with the axis B of the die 102, inside the internal passage 106 thereof.
  • the internal passage 106 of the die has three main parts, which correspond to the three main phases of the extrusion:
  • the internal passage 106 comprises a cylindrical chamber 108 or upstream compression chamber. During manufacture, this cylindrical chamber is filled with lubricated material ready for extrusion, forming the extrudate.
  • the extrudate is pushed down by a slide 110 sliding inside the chamber 108 around the guide 104. Under the effect of the pressure exerted by the slide or piston 110, the extrudate is pushed down to the interior of the cylindrical chamber 108, then in a convergent conical 112.
  • the inner passage 106 has a third portion which is the extrusion passage 114.
  • the extrusion passage is of substantially cylindrical and extends over a certain height below the outlet orifice 116 of the convergent 112.
  • the guide 104 also has an outer shape in three parts. Its cylindrical upper part 118 is adapted to allow the piston 110 to slide around it; this upper portion 118 is extended downwards by a conical portion 120. The cone of this portion 120 is adapted relative to the convergent 112 to allow a progressive pressure increase of the extrudate and an increase in the reduction ratio, as and when as the extrudate is lowered into the internal passage 106 of the die.
  • the guide 104 is finally extended by a downstream cylindrical portion 122. In the downward extension of this downstream cylindrical portion 122, four sections 124 extend, which serve to form the cells in the electrical wire manufactured by the tool. 100.
  • the four sections 124 each have the same shape; they extend inside the cylindrical envelope of the downstream cylindrical portion 122 of the guide 104, each occupying an angular sector within this volume. Between each pair of adjacent profiles 124 is formed an expansion channel 126.
  • the expansion channels 126 thus form four radial slits 0.8 mm wide, separating the profiles 124 at the end of the guide 104.
  • the guide 104 serves to guide a conductor 128, which is the central conductor of the electrical wire 150 manufactured with the tooling 100.
  • the four sections 124 extend radially inwardly substantially to the contact of the central conductor 128.
  • the inner diameter of the guide 104 is 2.8 mm, while the conductor 128 has an outer diameter of 2.27 mm . So, a light game is provided between the guide 104 and the conductor 128, which clearance is sufficient to allow the substantially frictionless circulation of the conductor in the tooling, but is sufficiently small to prevent any extrudate rising within the guide 104 in the passage provided for the driver 128.
  • the extrudate consists of a mixture consisting essentially of PTFE and lubricant.
  • a solvent based on aliphatic hydrocarbons may be used, for example in a proportion of 10 to 35%, and preferably 15 to 25%.
  • a conductor 128 is set up inside the guide 104, and the cylindrical chamber 108 is filled with extrudate ready for extrusion.
  • the amount of lubricant present in the extrudate is adjusted to allow sufficient creep thereof during extrusion.
  • the piston 110 descends gradually and, at the same time, the conductor 128 is driven downwards.
  • the extrudate is compressed in the cylindrical chamber 108, then inside the convergent 112 and engulfs via the outlet orifice 116 of the convergent 112 in the extrusion passage 114.
  • the extrusion passage 114 comprises a first upstream portion 101 for forming the sheath of the electrical wire, this upstream portion extending from the outlet of the convergent 116 to the downstream section of the guide said expansion section 130.
  • the extrudate During its passage in this first upstream part of the extrusion passage 114, the extrudate is subjected to fibrillation which makes it possible to form the sheath 160 of the electrical wire 150 manufactured, between the outer wall of the guide 104, of diameter 5 mm, and the inner wall of the die 102, with a diameter of 6 mm. It is therefore for the tooling a sheath formation part, in which the shape of the extrudate is stabilized in enjoy the game.
  • the extrudate is introduced into this first upstream portion, at the outlet orifice 116 of the internal passage 106, through a passage section which has the shape of the section of the outer sheath of the formed wire.
  • the sheath material expands and fills the four expansion channels 126. By filling these channels, the material of the sheath forms the spacers 158 joining and holding between the central conductor 128 and the sheath 160.
  • a second portion 103 of the extrusion passage, or strut forming part, extends from the expansion section 130 to the downstream section of the profiles 124.
  • the cell separation struts are formed.
  • the extrudate constituting the spacers is shaped and stabilized.
  • the formation of the spacers is by creep of the material of the outer sheath, taking advantage of the residual expansion capabilities that the PTFE constituting the sheath at this stage of the extrusion.
  • the tool is arranged in such a way that the material of the spacers can come only from the outer sheath.
  • upstream of each spacer 30 is the downstream cylindrical portion 122 of the guide 104. The latter makes it possible to form the inner surface of the outer sheath inside the first upstream portion 101, but thereby prevents the forming the spacers 30 in this part 101.
  • a downstream cylindrical portion 105 of the die 102 allows stabilization and ultimate maintenance of the sheath 160 before the output of the wire 150 to the outside of the tool 100.
  • the electrical wire 150 thus shaped then requires sintering to stabilize the structure of the sheath 160 and spacers 158 by thermal coalescence.
  • the cell manufacturing process can be better understood in relation to the Figures 7 and 8 .
  • the process of forming the electrical wire jacket is a continuous process that takes place during the progression of the extrudate along the B axis in the production tool 100. As it progresses, the extrudate crosses certain points on the axis B at which the shape of the tool 100 varies.
  • the extrudate progresses firstly in the compression chamber, to an X 0 abscissa on the B axis from which the guide 104 is of minimum diameter and is extended by a cylindrical portion 122. Further downstream, to the X1 abscissa, the extrudate reached, at the downstream end of the compression chamber, the orifice 116 or convergent outlet orifice 112 of the die 102. Downstream of this orifice 116, the extrudate progresses in a cylindrical portion of the die 102, around the guide 104.
  • the guide 104 terminates at the expansion section 130 at an abscissa X 2 .
  • the guide 104 is extended downstream of this expansion section 130 by the profiles 124, which serve to form the four cells of the electrical wire.
  • the profiles 124 extend to a section X 3 inside the die 102, and the die 102 extends downstream of these profiles to an abscissa X 4 (downstream of X 3 ).
  • the figure 8 presents the evolution of the reduction ratio in the manufacturing tool as the extrudate advances in it. From the injection of the extrudate upstream of the compression chamber, in a first step, the reduction ratio increases when the extrudate is compressed inside the convergent 112. From the abscissa X 0 , from which the guide adopts a cylindrical shape 122, the reduction ratio increases even faster to reach a maximum value R 1 from X 1 . This high value of the reduction ratio R 1 is chosen so as to allow fibrillation of the extrudate in the first portion 101 of the extrusion passage 114. Thus, this first portion 101 of the extrusion passage allows the forming of the sheath 160 of the electrical wire 150.
  • the extrudate passage space is increased due to the opening of the expansion passages 126 between the profiles 124.
  • the extrudate fills the expansion channels 126 and forms the separating walls between the cells, namely the spacers 158 for holding the sheath 160 of the electrical wire 150.
  • the reduction ratio decreases to a second value R2 less than R1.
  • the extrudate has taken its final form.
  • the length of this second portion 103 of the extrusion passage is chosen to be sufficient to allow the stabilization of the extrudate, which takes in this part 103 its substantially definitive form.
  • the profiles 124 terminate at abscissa X 3 , leaving the cells 158 filling with air.
  • This filling takes place inside the third portion 105 of the extrusion passage, in which the guide of the sheath by the die 102 promotes the maintenance of the shape of the sheath and prevents the collapse thereof on the alveoli.
  • the cable has an outside diameter of 5.3 mm.
  • the degree of vacuum in the dielectric is estimated at 28%, and the dielectric constant ⁇ is measured equal to 1.47, which confirms the efficiency of the structure chosen for the production of electric cables of low dielectric constant.
  • An important parameter for the setting of the tool and the development of the manufactured electrical wire is the position of the expansion section 130 (abscissa X2) in the tool. Indeed, the further the expansion section 130 is upstream, near the outlet port 116 of the convergent 112, the less the PTFE of the extrudate is stabilized in the sheath. Therefore, the closer the expansion section 130 is to this outlet port 116, the further the extrudate can enter the expansion channels 126 and, therefore, the spacers 158 will have an enlarged portion in contact with each other. of the driver.
  • the tooling 100 comprises an adjustable part comprising the cylindrical portion 122 of the guide associated with the profiles 124, this part being able to be displaced axially vertically in the direction of extrusion (arrow F) by an actuator 140, as a function of the greater or lesser importance that the widened part of the struts 158 of the wire 150 has to have.
  • the adjustable part By raising the adjustable part upwards (in the direction opposite to the arrow F, in figure 6 ), the length of the portion 101 of the extrusion passage 114 is reduced, thus the spacers 158 are allowed to be formed shortly after the formation of the sheath 160.
  • the sheath then being unstabilized, an increased amount of of PTFE moves radially between the profiles 124 to form the spacers 158, and accordingly these have a larger enlarged portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

  • L'invention concerne un fil électrique comportant au moins un conducteur électrique monobrin ou multibrin, dans une gaine à base de PTFE (polytétrafluoréthylène), ainsi qu'un procédé et un outil de fabrication qui permettent de le fabriquer. Elle concerne également le câble coaxial pouvant être formé autour d'un tel fil électrique.
  • Le terme conducteur désigne ici un conducteur nu, pouvant toutefois éventuellement comporter un plaquage externe conducteur, par exemple un plaquage en argent ou autre. Le conducteur peut être monobrin ou multibrin.
  • Par 'gaine à base de PTFE', on désigne ici une gaine composée majoritairement de PTFE, pouvant comporter en outre d'autres charges comme des colorants, etc.
  • Le fil électrique visé par l'invention est un fil destiné à la transmission d'un signal, notamment à haute ou très haute fréquence. L'isolant joue un rôle très important dans la performance électrique d'un câble électrique, et en particulier dans le domaine de la transmission de signal à haute fréquence. La vitesse de propagation des ondes électromagnétiques dépend de la constante diélectrique ε de l'isolant, et est inversement proportionnelle à la racine carrée de cette dernière. En outre l'atténuation des signaux transmis est une fonction impliquant la fréquence et la constante diélectrique du milieu isolant. On cherche donc des matières ayant une constante diélectrique la plus basse possible pour l'isolation, de manière à réaliser des câbles de faible atténuation (« low loss»). Les polymères fluorés, le PTFE en particulier, sont souvent choisis pour cette application du fait qu'ils possèdent des constantes diélectriques ε très faibles, de 2,0 à 2,1.
  • Pour réduire encore la constante diélectrique, par rapport à ces matériaux, une première solution consiste à choisir un matériau isolant comportant de plus de la matière poreuse. Cela apporte une amélioration considérable de la performance parce que la constante diélectrique de l'air est seulement de 1 ; la présence d'air dans l'isolant permet donc de faire baisser la constante diélectrique. Par exemple, des câbles isolés par du PTFE expansé peuvent présenter une constante diélectrique comprise entre 1,7 et 1,3 suivant la porosité du PTFE.
  • Une autre solution pour faire baisser la constante diélectrique consiste à aménager dans l'isolant des alvéoles longitudinales continues emplies d'air.
  • Le brevet WO 2005/066979 de E.I. Dupont de Nemours décrit ainsi un procédé de fabrication de fils électriques comportant un ou plusieurs conducteurs, protégés par une gaine en PTFE, la gaine comportant des alvéoles longitudinales continues.
  • Dans le procédé de fabrication de fils électriques divulgué par ce document, les alvéoles du fil électrique obtenues sont séparées du conducteur par une couche de PTFE.
  • Une section transversale d'un tel fil électrique est illustrée par la figure 1. Ce fil électrique 10 comporte un conducteur central 12, et une gaine 14. Le conducteur 12 est un conducteur en cuivre monobrin de section circulaire. La gaine 14 est une gaine creuse de forme sensiblement cylindrique (sur un tronçon de fil sensiblement rectiligne), à l'intérieur de laquelle sont formées quatre alvéoles longitudinales continues 16. Les alvéoles 16 sont séparées deux à deux par des cloisons séparatrices ou entretoises 18. Le conducteur est logé dans un fourreau 20 qui est directement au contact de sa surface extérieure, sur lequel s'appuient les extrémités radialement internes des entretoises 18. La présence du fourreau 20 entraine que les alvéoles 16 sont à une certaine distance du conducteur 12, ce qui limite leur aptitude à réduire la constante diélectrique du fil électrique.
  • Un premier objet de l'invention est donc de proposer un fil électrique comportant au moins un conducteur maintenu par au moins une entretoise dans une gaine à base de PTFE, la gaine et ladite au moins une entretoise formant en outre au moins une alvéole sensiblement longitudinale continue, ladite au moins une alvéole étant délimitée au moins partiellement par le conducteur, le fil électrique présentant des performances élevées, c'est-à-dire une constante diélectrique ε très faible, et ayant une ou des alvéoles possédant une grande résistance à l'écrasement.
  • Cet objectif est atteint grâce au fait que vues dans une section perpendiculaire à un axe du fil, les fibres de PTFE de ladite au moins une entretoise sont majoritairement dirigées dans une direction sensiblement radiale.
  • Comme ladite au moins une alvéole (il peut s'agir de plusieurs alvéoles) est formée au contact du conducteur, son efficacité, en terme de réduction de la constante diélectrique E du conducteur, est maximale. En effet, plus les alvéoles sont proches du conducteur, plus leur efficacité pour réduire la constante diélectrique de l'isolant est grande. Avantageusement, la constante diélectrique de ce fil électrique peut être inférieure à 1,7.
  • Par ailleurs, la ou les entretoises assurent le positionnement relatif du conducteur dans la gaine. Du fait que les fibres de PTFE de cette ou de ces entretoises sont majoritairement (et en fait en général, essentiellement) dirigées suivant la direction radiale, la ou les entretoises présentent une grande résistance à la compression et par conséquent, les alvéoles elles-mêmes présentent une très bonne résistance à la compression. Il s'ensuit que le fil électrique présente une grande durabilité, avec un risque d'écrasement des alvéoles et donc de perte des propriétés diélectriques très faible.
  • Dans la phrase qui précède, la direction 'radiale' désigne la direction dans laquelle sont formées la ou les entretoises, c'est-à-dire habituellement la direction radiale. Cependant, cette direction peut éventuellement ne pas être radiale ; dans ce cas, la direction radiale désigne de la direction dans laquelle s'étendent les entretoises, suivant la section du fil électrique.
  • Selon un mode de réalisation, une alvéole unique est formée. Il n'y a donc qu'une entretoise pour le maintien du conducteur. De préférence dans ce cas, la position angulaire de l'alvéole et de l'entretoise varient le long du fil. Notons qu'il peut être également utile de prévoir cette même disposition (position angulaire de l'alvéole variable le long du fil) dans le cas où le fil est formé avec plusieurs alvéoles.
  • Le fil électrique selon l'invention peut notamment être formé avec deux à quatre alvéoles, voire davantage ; deux à quatre conducteurs, voire davantage.
  • Selon un mode de réalisation, la gaine est maintenue à distance du conducteur par ladite au moins une entretoise, celle-ci comportant une partie de jonction sensiblement radiale, et une partie de maintien élargie au contact du conducteur. Le terme 'élargie' indique ici que la partie de maintien est plus large que la partie de jonction. Avantageusement, la partie élargie assure un meilleur maintien du conducteur par l'entretoise (par rapport à une entretoise qui ne comporterait pas de partie élargie), sans pénaliser notablement ni la constante diélectrique, ni le poids du câble, la partie de jonction de l'entretoise restant relativement mince.
  • L'invention vise également un câble coaxial comprenant un conducteur central, une gaine intermédiaire isolante à base de PTFE, un conducteur extérieur, une gaine extérieure de protection et dont le conducteur central considéré avec la gaine intermédiaire est un fil électrique tel que défini précédemment selon l'invention.
  • Un second objectif de l'invention est de définir un procédé de fabrication d'un fil électrique comportant au moins un conducteur dans une gaine à base de PTFE, la gaine et ladite au moins une entretoise formant au moins une alvéole longitudinale continue, procédé dans lequel on fait passer un extrudat à base de PTFE dans un passage d'extrusion autour dudit au moins un conducteur de manière à former la gaine, et qui permette la formation d'une alvéole délimitée au moins partiellement par le conducteur, et ainsi l'obtention d'un fil électrique de constante diélectrique E très faible.
  • Cet objectif est atteint grâce au fait que
    • sur une première partie du passage d'extrusion, en amont d'une section d'expansion, au moins une partie de la gaine est formée sensiblement à sa forme définitive à distance du conducteur par un guide, celui-ci maintenant l'extrudat à distance d'au moins une surface, dite surface libre, du conducteur ;
    • en aval de la section d'expansion, ladite au moins une alvéole est formée sur ladite surface libre par au moins un profilé s'étendant dans le prolongement d'une partie du guide, la section de ladite alvéole correspondant à celle dudit profilé, au moins une entretoise de maintien de la partie de gaine sur le conducteur étant formée par remplissage d'au moins un canal d'expansion s'ouvrant entre des parois dudit au moins un profilé.
  • Le procédé comporte ainsi deux étapes successives. Lors de la première étape, a lieu pour l'essentiel la mise en forme de la gaine, au cours de laquelle celle-ci prend dans l'ensemble sa forme définitive (notamment, au retrait près). Naturellement, cette mise en forme nécessite des réglages de machine connus pour la mise en oeuvre du PTFE, permettant notamment d'obtenir la fibrillation du PTFE. A l'issue de cette première étape, immédiatement en amont de la section d'expansion, la gaine est formée, au moins une partie de la gaine étant formée à distance du conducteur, ménageant un espace entre une surface libre du conducteur, qui reste à nu, et la partie de gaine prévue pour devenir la paroi externe de l'alvéole. Cette partie de gaine est formée à sa forme définitive, ce qui signifie qu'elle est formée avec la forme qu'elle conservera dans le fil électrique fabriqué.
  • Lors de la seconde étape, les alvéoles vont être constituées, en formant des entretoises de liaison entre la partie de gaine précitée et le conducteur. Ces entretoises se forment du fait que lors de la progression de l'extrudat dans l'outillage, à partir de la section d'expansion, le guide qui séparait la partie extérieure de gaine, du conducteur, est remplacé par un ou plusieurs profilés. Ce profilé (Il peut s'agir de plusieurs profilés) ne s'étend vers l'aval dans le prolongement que d'une partie du guide, et au moins un canal d'expansion est formé entré des parois du ou des profilé(s).
  • Lors de la progression de l'extrudat dans le passage d'extrusion, dès que l'extrudat atteint la section d'expansion, il remplit ce canal d'expansion, et forme ainsi une ou plusieurs entretoises reliant la partie extérieure de gaine au conducteur. Le matériau des entretoises provient donc du matériau de la gaine extérieure, qui flue radialement vers le ou les conducteurs pour former les entretoises. Ces entretoises forment les parois de l'alvéole ou des alvéoles. Cependant, la formation des entretoises ne s'accompagne pas du recouvrement des surfaces libres du conducteur par l'extrudat, pour des raisons indiquées ci-dessous. Aussi, la ou les surfaces libres, restent libres, permettant ainsi l'obtention d'un fil électrique de constante diélectrique particulièrement faible.
  • L'originalité du procédé réside ainsi dans le fait que bien que la gaine soit mise en forme pour l'essentiel lors de la première étape (en amont de la section d'expansion), l'extrudat conserve une faculté d'expansion résiduelle, avantageusement utilisée dans le procédé pour former à partir de la section d'expansion la ou les entretoises reliant la gaine au conducteur et constituant les parois radiales ou latérales des alvéoles. Ces entretoises assurent le bon positionnement du conducteur par rapport à la gaine.
  • La formation des entretoises seulement postérieurement au formage de la gaine évite l'irruption du PTFE sur la surface libre du conducteur, et permet de conserver celle-ci à nu au sein de l'alvéole.
  • En effet, en général, la viscosité de l'extrudat de PTFE est très élevée, et l'extrudat ne flue que sous une pression très forte. Si nécessaire, en fonction de la viscosité du PTFE, il peut être utile de diminuer cette viscosité en augmentant la proportion de lubrifiant dans l'extrudat (c'est-à-dire dans le mélange à extruder au moment de la préparation de celui-ci). Augmenter la proportion de lubrifiant permet de moduler le fluage de l'extrudat se produisant lors de l'extrusion. Selon l'invention, l'extrudat flue à partir de et en aval de la section d'expansion, libérant les contraintes résiduelles qui sont en lui et dont la relaxation est déterminante. En ajustant de manière adéquate le pourcentage de lubrifiant dans le mélange à extruder, la taille de l'entretoise, ainsi que l'espace entre le guide et le conducteur, on peut agir si nécessaire sur la quantité de PTFE qui vient en contact sur la ou les surface(s) libre(s) du conducteur.
  • Selon un mode de réalisation, le rapport de réduction immédiatement en aval de la section d'expansion est inférieur au rapport de réduction d'une section dite 'de réduction maximale' située au niveau de ou en amont de la section d'expansion dans le passage d'extrusion. Le rapport de réduction est égal au rapport entre l'aire d'une section de la chambre de compression en partie amont de l'outillage et l'aire de la section considérée de la filière. Dans ce mode de réalisation, la pression dans le passage d'extrusion est moindre au niveau de la section d'expansion (ou immédiatement en aval de celle-ci) par rapport au niveau de la section de réduction maximale. Grâce à cela, le remplissage du ou des canaux d'expansion par le PTFE se fait de manière mesurée, et l'envahissement du volume des alvéoles par l'extrudat est évité. Dans ce but, on peut prévoir en particulier que selon une variante de ce mode de réalisation, le rapport de réduction immédiatement en aval de la section d'expansion soit inférieur de 10% ou plus par rapport à celui de la section de réduction maximale.
  • Selon un mode de réalisation, la section d'expansion est située à une distance en aval d'un orifice d'extrusion de l'outil situé à l'aval d'une chambre d'extrusion de section décroissante. L'extrudat mis en forme au voisinage de l'orifice d'extrusion bénéficie ainsi d'un laps de temps lui permettant de se stabiliser pendant sa progression entre l'orifice d'extrusion et la section d'expansion.
  • Selon un mode de réalisation, le contact entre l'extrudat et le conducteur a lieu sensiblement au niveau de la section d'expansion, niveau auquel les vitesses axiales respectives de l'extrudat et du conducteur sont sensiblement égales. De la sorte, les forces de cisaillement s'appliquant à l'interface entre l'extrudat et le conducteur sont réduites au minimum, ce qui permet d'éviter le risque de rupture du conducteur pendant la fabrication.
  • Un troisième objectif de l'invention est de définir un outillage de fabrication d'un fil électrique comportant au moins un conducteur dans une gaine à base de PTFE, la gaine et ladite au moins une entretoise formant au moins une alvéole longitudinale continue délimitée au moins partiellement par le conducteur, et qui permette la fabrication d'un fil électrique de constante diélectrique très faible.
  • Cet objectif est atteint grâce au fait que l'outillage comporte
    • en amont d'une section d'expansion, un guide apte à former une partie extérieure de gaine sensiblement à sa forme définitive autour du conducteur, ce guide étant apte à maintenir l'extrudat à distance d'au moins une surface, dite surface libre, du conducteur ;
    • en aval de la section d'expansion, dans le prolongement d'une première partie du guide, au moins un profilé, ce profilé étant apte à former ladite au moins une alvéole sur ladite surface libre ; des parois dudit au moins un profilé définissant au moins un canal d'expansion, dont le remplissage permet la formation d'au moins une entretoise de maintien de la partie de gaine extérieure sur le conducteur,
    ledit au moins un profilé s'étendant radialement sensiblement jusqu'à la surface interne de diamètre minimal du guide, afin d'empêcher l'irruption d'extrudat sur la surface libre du conducteur.
  • La surface interne de diamètre minimal du guide - ou le prolongement de celle-ci - correspond en effet sensiblement au diamètre que doit avoir le conducteur prévu, afin de permettre un guidage efficace du conducteur, sans jeu inutile. Lorsque le profilé s'étend sensiblement jusqu'à cette surface, pendant la fabrication du fil électrique, la surface interne du profilé est au voisinage du conducteur. Grâce à cela, le risque d'envahissement par le PTFE de l'espace situé entre le conducteur et le profilé reste limité : Le PTFE ayant une viscosité importante, lorsque cet espace est réduit, le PTFE n'y pénètre pas, ce qui permet de préserver la ou les surfaces libres du conducteur.
  • Naturellement, la machine dans laquelle est monté l'outillage doit comprendre des moyens de mise en oeuvre de l'extrudat, qui permettent le formage et la fibrillation du PTFE contenu dans l'extrudat, lorsque l'extrudat est mis en forme dans le passage d'extrusion.
  • Selon un mode de réalisation, l'outillage présente immédiatement en aval de la section d'expansion, une surface de passage de l'extrudat supérieure à celle d'une section dite 'de réduction maximale' de l'outillage située plus en amont. Notamment, la surface de passage de l'extrudat immédiatement en aval de la section d'expansion peut être supérieure de 10% à celle de la section de réduction maximale.
  • Selon un mode de réalisation, la section d'expansion est située en aval d'un orifice d'extrusion de l'outil situé à l'aval d'une chambre d'extrusion de section décroissante.
  • Selon un mode de réalisation, l'outillage comporte au moins une partie réglable, permettant de faire varier axialement la position de la section d'expansion dans l'outillage. En effet, en fonction des conditions de mise en oeuvre et de la matière première employée, la viscosité de l'extrudat peut varier. Ces variations conduisent à un remplissage plus ou moins important des canaux d'expansion. En faisant varier suivant l'axe du passage d'extrusion, la position des canaux d'expansion, il est possible de déclencher le remplissage de ces canaux plus ou moins longtemps après le formage de la gaine, et ainsi de maîtriser l'importance du remplissage de ces canaux.
  • Selon un mode de réalisation, ledit au moins un profilé est un profilé plein. Avantageusement, un tel profilé est facile à réaliser, et le procédé ne nécessite ni mise sous vide, ni injection d'air pour la formation des alvéoles.
  • L'invention sera bien comprise et ses avantages apparaîtront mieux à la lecture de la description détaillée qui suit, de modes de réalisation représentés à titre d'exemples non limitatifs. La description se réfère aux dessins annexés, sur lesquels :
    • la figure 1 est une section, perpendiculairement à son axe, d'un fil électrique connu comportant un conducteur central dans une gaine en PTFE, le conducteur comportant quatre alvéoles longitudinales continues ;
    • la figure 2 présente un fil électrique selon l'invention comportant un conducteur dans une gaine à base de PTFE, le fil comportant quatre alvéoles longitudinales continues, chacune de ces alvéoles étant partiellement délimitée par un conducteur, le fil étant représenté en cours de fabrication sur l'outillage de fabrication;
    • la figure 3 présente une section perpendiculairement à son axe d'un fil électrique selon l'invention comportant deux conducteurs dans une gaine commune à base de PTFE, chaque conducteur étant entouré par quatre alvéoles partiellement délimitées par un conducteur ;
    • la figure 4 présente un fil électrique comportant une alvéole unique, formée en hélice autour d'un conducteur unique ;
    • la figure 5 présente une vue en perspective schématique d'un câble coaxial comportant un fil électrique selon l'invention ;
    • la figure 6 est une vue schématique en perspective d'un outillage de fabrication de fils électriques selon l'invention ;
    • la figure 7 représente une coupe longitudinale d'un outillage de fabrication d'un fil électrique selon l'invention ;
    • la figure 8 est un diagramme représentant l'évolution du rapport de réduction dans l'outillage de fabrication représenté sur la figure 6.
  • En faisant référence à la figure 2, un fil électrique selon l'invention va maintenant être décrit.
  • Le fil électrique 22 comporte un conducteur central 24, et une gaine 26 à base de PTFE. Le conducteur central 24 est constitué par une âme en cuivre 23, présentant un plaquage 27 mince en argent. Pour faciliter la compréhension, le plaquage 27 en argent a été représenté avec une épaisseur exagérée sur la figure 2. La gaine 26 est une gaine externe, sensiblement cylindrique et tubulaire.
  • A l'intérieur de la gaine 26 sont formées quatre alvéoles longitudinales continues 28. Ces alvéoles 28 sont séparées deux à deux par quatre parois séparatrices ou entretoises 30. La gaine 26 a une forme générale tubulaire ; les entretoises 30 permettent de centrer le conducteur 24 à l'intérieur de la gaine 26. Les entretoises 30 s'étendent de la paroi intérieure de la gaine 26 jusqu'au conducteur 24 suivant une direction radiale. Les entretoises 30 comportent une partie de jonction sensiblement radiale 32, qui forme une cloison séparatrice relativement mince ou fine entre deux alvéoles adjacentes 28, et une partie élargie 34 formée au point de contact entre l'entretoise 30 et le conducteur 24. Chacune des alvéoles 28 est délimitée partiellement par le conducteur 24 au niveau d'une surface libre 25, qui n'est pas recouverte de PTFE et reste 'à nu' à l'intérieur de l'alvéole 28.
  • Il faut noter que sur la figure 2, le fil électrique 22 est représenté en cours de fabrication. Au stade de fabrication représenté, les alvéoles 28 sont partiellement occupées par des parties d'outillage profilées 29 (ou profilés 29, représentés hachurés) servant à former les alvéoles 28. Les alvéoles 28 occupent le volume de ces profilés 29, ainsi que les volumes vides 31 qui s'étendent chacun entre deux entretoises 30, le conducteur 24 et un profilé 29.
  • La formation des entretoises 30 est illustrée en particulier par le détail sorti en haut à gauche sur la figure 2. Dans une première étape de fabrication du fil électrique 22, la gaine 26 est formée. Dans une seconde étape, une partie de l'extrudat constituant la gaine 26 flue radialement vers l'intérieur, suivant les flèches B, dans l'espace aménagé entre les profilés 29, formant ainsi les entretoises 30 entre les parois des profilés 29. Ce flux est arrêté par le conducteur 24 ; cependant, au contact de celui-ci à l'extrémité des entretoises 30 le flux d'extrudat se divise, et remplit partiellement l'espace annulaire entre le conducteur 24 et les profilés 29, formant ainsi une ou des parties élargies 34 à l'extrémité des entretoises 30. L'outillage de fabrication est agencé et réglé de manière à limiter cette expansion. En particulier, la forte viscosité de l'extrudat peut être prise en compte si nécessaire pour réduire l'entrée d'extrudat dans l'espace disponible entre le conducteur 24 et les profilés 29.
  • Chacune des entretoises 30 comporte une partie de jonction 32, et une partie élargie 34. Sur le détail sorti de la figure 2, l'axe radial de l'entretoise 30 est figuré par le trait mixte A. La largeur 38 de la partie élargie 34 est supérieure à la largeur 36 de la partie de jonction 32 de l'entretoise 30, ces deux largeurs étant mesurées perpendiculairement à l'axe radial A. Comme cela sera précisé dans ce qui suit, la partie 34 peut être plus ou moins large en fonction du réglage de l'outillage de fabrication, autorisant ainsi un arbitrage entre un fil électrique ayant une constante diélectrique très basse et dans lequel les entretoises 30 assurent moins bien le maintien du conducteur 24 (parce que leur partie élargie 34 est peu voire pas élargie), ou l'inverse.
  • Par ailleurs, habituellement, la section du fil électrique telle que représentée sur la figure 2 est invariante le long de l'axe de celui-ci. Cependant, il est possible de fabriquer le fil électrique selon l'invention en faisant tourner la position des alvéoles à l'intérieur de la gaine au cours de la fabrication, permettant ainsi d'obtenir un fil électrique dans lequel les alvéoles sont formées en hélice.
  • Enfin, la figure 2 fait apparaître la direction suivant laquelle se forment les fibres 33 de PTFE dans la gaine et les entretoises, au cours de la fabrication du fil électrique. Comme le présente cette figure, les fibres de PTFE dans les entretoises sont majoritairement dirigées dans une direction sensiblement radiale, puisque c'est la direction suivant laquelle s'étendent les entretoises 30 pour relier la gaine extérieure au conducteur central 24. Cette orientation des fibres 33 de PTFE est due au fait que lors de la fabrication du fil, après la formation de la gaine extérieure du fil, la formation des entretoises se fait à l'aide du matériau de la gaine extérieure, le matériau de la gaine extérieure fluant en direction du fil électrique central 24 de manière à former les entretoises 30. Cette direction d'extension des fibres 33 de PTFE dans les entretoises confère à celles-ci une excellente résistance à l'écrasement.
  • La figure 3 représente un autre fil électrique selon l'invention, comportant deux conducteurs 40, chaque conducteur étant entouré par quatre alvéoles 42. Une gaine externe 44 à base de PTFE est formée autour des conducteurs et de leurs alvéoles. Avantageusement, chacune des alvéoles 42 est partiellement délimitée par l'un des conducteurs 40.
  • Dans ce fil électrique, les alvéoles ont été formées de manière à minimiser la constante diélectrique du fil. Dans ce but, les entretoises 46, formées entre des alvéoles adjacentes, ne présentent pas de partie élargie au contact du conducteur. Dans une section perpendiculaire à l'axe longitudinal du fil (par exemple la section de la figure 3), les alvéoles 42 ont une forme de secteur angulaire, d'angle au centre β relativement important, par exemple de 80 degrés ; les entretoises 46 ont également sensiblement une forme de secteur angulaire mais leur angle au centre α est réduit à environ 10 à 20 degrés.
  • En faisant référence à la figure 4, un autre mode de réalisation de fil électrique selon l'invention va maintenant être décrit. Ce fil électrique 50 comporte un conducteur électrique 52 monobrin disposé à l'intérieur d'une gaine 54 en matériau à base de PTFE. La gaine 54 est tubulaire. A l'intérieur de celle-ci, l'espace libre 56 entre le conducteur central 52 et la gaine 54 est seulement occupé par une entretoise 58 de forme hélicoïdale qui relie la surface extérieure du conducteur 52 à la surface intérieure de la gaine 54. Grâce à cette configuration, le fil électrique 50 présente une constante diélectrique E extrêmement faible.
  • La figure 5 présente un câble coaxial intégrant un fil électrique selon l'invention. Ce câble coaxial 60 intègre, successivement, un conducteur électrique 62 central, une gaine tubulaire 64 en matériau à base de PTFE, séparée du conducteur central 62 par quatre alvéoles 66, une couche conductrice 68 et enfin une gaine externe 70. Grâce à la présence des alvéoles longitudinales 66, chacune étant partiellement délimitée par le conducteur 62, la constante diélectrique E du câble coaxial est très faible.
  • En faisant référence aux figures 6, 7 et 8, un outillage et un procédé de fabrication selon l'invention vont maintenant être présentés.
  • La figure 6 présente un outillage de fabrication 100 adapté pour la mise en oeuvre du procédé selon l'invention. Elle présente également une portion de fil électrique 150 fabriquée par cet outillage.
  • L'outillage 100 comporte principalement une filière 102 et un guide 104. La filière 102 comporte un passage interne 106 à l'intérieur duquel a lieu le formage de la gaine en matériau à base de PTFE. Ce passage 106 a une forme générale de révolution autour d'un axe d'extrusion B. L'axe B est un axe vertical et l'extrusion a lieu dans le sens descendant. Le guide 104 a également une forme générale de révolution et est disposé coaxialement à l'axe B de la filière 102, à l'intérieur du passage interne 106 de celle-ci.
  • Le passage interne 106 de la filière comporte trois parties principales, qui correspondent aux trois phases principales de l'extrusion :
  • En partie haute, le passage interne 106 comporte une chambre cylindrique 108 ou chambre de compression amont. Pendant la fabrication, cette chambre cylindrique est remplie de matière lubrifiée prête à l'extrusion, formant l'extrudat. L'extrudat est poussé vers le bas par un tiroir 110 coulissant à l'intérieur de la chambre 108 autour du guide 104. Sous l'effet de la pression exercée par le tiroir ou piston 110, l'extrudat est poussé vers le bas à l'intérieur de la chambre cylindrique 108, puis dans un convergent de forme conique 112. En bas du convergent 112, le passage interne 106 comporte une troisième partie qui est le passage d'extrusion 114. Le passage d'extrusion est de forme sensiblement cylindrique et s'étend sur une certaine hauteur en dessous de l'orifice de sortie 116 du convergent 112.
  • Corrélativement, le guide 104 présente également une forme extérieure en trois parties. Sa partie haute cylindrique 118 est adaptée pour permettre le coulissement du piston 110 autour d'elle ; cette partie haute 118 se prolonge vers le bas par une partie conique 120. Le cône de cette partie 120 est adapté par rapport au convergent 112 pour permettre une augmentation de pression progressive de l'extrudat et une augmentation du rapport de réduction, au fur et à mesure de la descente de l'extrudat dans le passage interne 106 de la filière. Le guide 104 se prolonge enfin par une partie cylindrique aval 122. Dans le prolongement vers le bas de cette partie cylindrique aval 122, s'étendent quatre profilés 124, qui servent à la formation des alvéoles dans le fil électrique fabriqué grâce à l'outil 100. Les quatre profilés 124 ont chacun la même forme ; ils s'étendent à l'intérieur de l'enveloppe cylindrique de la partie cylindrique aval 122 du guide 104, en occupant chacun un secteur angulaire à l'intérieur de ce volume. Entre chaque paire de profilés 124 adjacents, est formé un canal d'expansion 126. Les canaux d'expansion 126 forment ainsi quatre fentes radiales de largeur 0,8 mm, séparant les profilés 124 à l'extrémité du guide 104.
  • En outre, le guide 104 sert à guider un conducteur 128, qui est le conducteur central du fil électrique 150 fabriqué avec l'outillage 100. Dans l'outil représenté sur la figure 6, les quatre profilés 124 s'étendent radialement vers l'intérieur sensiblement jusqu'au contact du conducteur central 128. Le diamètre intérieur du guide 104 est de 2,8 mm, alors que le conducteur 128 a un diamètre extérieur de 2,27 mm. Ainsi, un léger jeu est prévu entre le guide 104 et le conducteur 128, jeu qui est suffisant pour permettre la circulation sensiblement sans frottement du conducteur dans l'outillage, mais est suffisamment faible pour empêcher toute remontée d'extrudat à l'intérieur du guide 104 dans le passage prévu pour le conducteur 128.
  • De manière générale, selon le mode de réalisation et en fonction de la viscosité de l'extrudat, un jeu plus ou moins important peut être conservé entre la surface radialement intérieure des profilés 124 et le conducteur 128.
  • Le fonctionnement de l'outil 100, et le procédé de fabrication d'un fil électrique selon l'invention, grâce à cet outil, vont maintenant être présentés.
  • Dans cet exemple de mise en oeuvre de l'invention, l'extrudat est constitué par un mélange constitué essentiellement de PTFE et de lubrifiant. On peut utiliser notamment comme lubrifiant, un solvant à base d'hydrocarbures aliphatiques, par exemple dans une proportion de 10 à 35%, et de préférence 15 à 25%.
  • Pour la fabrication d'un fil électrique avec l'outil 100, un conducteur 128 est mis en place à l'intérieur du guide 104, et la chambre cylindrique 108 est remplie d'extrudat prêt à l'extrusion. La quantité de lubrifiant présente dans l'extrudat est ajustée de manière à permettre un fluage suffisant de celui-ci lors de l'extrusion.
  • Le piston 110 descend progressivement et, dans le même temps, le conducteur 128 est entraîné vers le bas. L'extrudat est comprimé dans la chambre cylindrique 108, puis à l'intérieur du convergent 112 et s'engouffre via l'orifice de sortie 116 du convergent 112 dans le passage d'extrusion 114. Le passage d'extrusion 114 comporte une première partie amont 101 servant au formage de la gaine du fil électrique, cette partie amont s'étendant de l'orifice de sortie du convergent 116 jusqu'à la section aval du guide dite section d'expansion 130. Lors de son passage dans cette première partie amont du passage d'extrusion 114, l'extrudat est soumis à une fibrillation qui permet de former la gaine 160 du fil électrique 150 fabriqué, entre la paroi extérieure du guide 104, de diamètre 5 mm, et la paroi intérieure de la filière 102, de diamètre 6 mm. Il s'agit donc pour l'outillage d'une partie de formation de gaine, dans laquelle la forme de l'extrudat se stabilise en bonne partie. L'extrudat est introduit dans cette première partie amont, au niveau de l'orifice de sortie 116 du passage interne 106, à travers une section de passage qui a la forme de la section de la gaine extérieure du fil formé.
  • A partir de la section d'expansion 130 qui se situe à l'extrémité aval de la première partie amont, le matériau de la gaine subit une expansion et remplit les quatre canaux d'expansion 126. En remplissant ces canaux, le matériau de la gaine forme les entretoises 158 de jonction et de maintien entre le conducteur central 128 et la gaine 160.
  • Une deuxième partie 103 du passage d'extrusion, ou partie de formation d'entretoises, s'étend depuis la section d'expansion 130 jusqu'à la section aval des profilés 124. Dans cette partie, les entretoises de séparation des alvéoles sont formées, et l'extrudat constituant les entretoises est mis en forme et stabilisé. La formation des entretoises se fait par fluage du matériau de la gaine extérieure, mettant à profit les capacités d'expansion résidelles que présente le PTFE constituant la gaine à ce stade de l'extrusion. Dans cette partie 103, l'outillage est agencé de telle manière que le matériau des entretoises ne peut provenir que de la gaine extérieure. En effet, en amont de chaque entretoise 30 se trouve la partie cylindrique aval 122 du guide 104. Cette dernière permet de former la surface interne de la gaine extérieure à l'intérieur de la première partie amont 101, mais empêche par là-même la formation des entretoises 30 dans cette partie 101.
  • En aval de la section aval des profilés 124, sur une courte distance, une partie cylindrique aval 105 de la filière 102 permet une stabilisation et un maintien ultime de la gaine 160 avant la sortie du fil électrique 150 à l'extérieur de l'outil 100. De manière connue, le fil électrique 150 ainsi mis en forme nécessite alors un frittage permettant la stabilisation de la structure de la gaine 160 et des entretoises 158 par coalescence thermique.
  • Le processus de fabrication des alvéoles peut être mieux compris en relation avec les figures 7 et 8. Le processus de formation de la gaine du fil électrique est un processus continu qui a lieu lors de la progression de l'extrudat suivant l'axe B dans l'outil de fabrication 100. Au fur et à mesure de sa progression, l'extrudat franchit certains points sur l'axe B au niveau desquels la forme de l'outil 100 varie. L'extrudat progresse tout d'abord dans la chambre de compression, jusqu'à une abscisse X0 sur l'axe B à partir de laquelle le guide 104 est de diamètre minimum et se prolonge par une partie cylindrique 122. Plus en aval, à l'abscisse X1, l'extrudat atteint, à l'extrémité aval de la chambre de compression, l'orifice 116 ou orifice de sortie du convergent 112 de la filière 102. En aval de cet orifice 116, l'extrudat progresse dans une partie cylindrique de la filière 102, autour du guide 104.
  • Dans cette partie aval de la filière 102, le guide 104 se termine au niveau de la section d'expansion 130, à une abscisse X2. Le guide 104 est prolongé en aval de cette section d'expansion 130 par les profilés 124, qui servent à former les quatre alvéoles du fil électrique. Les profilés 124 s'étendent jusqu'à une section X3 à l'intérieur de la filière 102, et la filière 102 s'étend en aval de ces profilés jusqu'à une abscisse X4 (en aval de X3).
  • La figure 8 présente l'évolution du rapport de réduction dans l'outil de fabrication au fur et à mesure de l'avancée de l'extrudat dans celui-ci. A partir de l'injection de l'extrudat en amont de la chambre de compression, dans un premier temps, le rapport de réduction augmente lorsque l'extrudat est comprimé à l'intérieur du convergent 112. A partir de l'abscisse X0, à partir de laquelle le guide adopte une forme cylindrique 122, le rapport de réduction croît encore plus vite pour atteindre une valeur maximale R1 à partir de X1. Cette forte valeur du rapport de réduction R1 est choisie de manière à permettre la fibrillation de l'extrudat dans la première partie 101 du passage d'extrusion 114. Ainsi, cette première partie 101 du passage d'extrusion permet le formage de la gaine extérieure 160 du fil électrique 150.
  • A partir de la section d'expansion 130, l'espace offert au passage de l'extrudat est accru, du fait de l'ouverture des passages d'expansion 126 entre les profilés 124. L'extrudat emplit les canaux d'expansion 126 et forme les parois séparatrices entre les alvéoles, à savoir les entretoises 158 de maintien de la gaine 160 du fil électrique 150. Le rapport de réduction diminue jusqu'à une seconde valeur R2 inférieure à R1. Dans cette seconde partie 103 du passage d'extrusion, l'extrudat a pris sa forme définitive. La longueur de cette seconde partie 103 du passage d'extrusion est choisie pour être suffisante pour permettre la stabilisation de l'extrudat, qui prend dans cette partie 103 sa forme sensiblement définitive.
  • Lorsque cette stabilisation s'est suffisamment opérée pour éviter tout affaissement, les profilés 124 se terminent à l'abscisse X3, laissant les alvéoles 158 se remplir d'air. Cet emplissage se déroule à l'intérieur de la troisième partie 105 du passage d'extrusion, dans laquelle le guidage de la gaine par la filière 102 favorise le maintien de la forme de la gaine et évite l'affaissement de celle-ci sur les alvéoles.
  • De manière connue, après l'extrusion a lieu une étape de frittage de la gaine du câble, permettant de stabiliser la structure de la gaine. Après frittage, le câble présente un diamètre extérieur de 5,3 mm. Le taux de vide dans le diélectrique est estimé à 28%, et la constante diélectrique ε est mesurée égale à 1,47, ce qui confirme l'efficacité de la structure choisie pour la réalisation de câbles électriques de faible constante diélectrique. Un paramètre important pour le réglage de l'outil et la mise au point du fil électrique fabriqué est la position de la section d'expansion 130 (abscisse X2) dans l'outil. En effet, plus la section d'expansion 130 se trouve en amont, à proximité de l'orifice de sortie 116 du convergent 112, moins le PTFE de l'extrudat est stabilisé dans la gaine. Par conséquent, plus la section d'expansion 130 est proche de cet orifice de sortie 116, plus l'extrudat pourra pénétrer à l'intérieur des canaux d'expansion 126 et, par conséquent, plus les entretoises 158 auront une partie élargie au contact du conducteur.
  • Pour permettre ce réglage, l'outillage 100 comporte une partie réglable comportant la partie cylindrique 122 du guide associée aux profilés 124, cette partie pouvant être déplacée axialement verticalement suivant la direction d'extrusion (flèche F) par un actionneur 140, en fonction de l'importance plus ou moins grande que doit avoir la partie élargie des entretoises 158 du fil 150. En remontant la partie réglable vers le haut (dans le sens opposé à la flèche F, en figure 6), on réduit la longueur de la partie 101 du passage d'extrusion 114, on permet ainsi la formation des entretoises 158 peu de temps après la formation de la gaine 160. La gaine étant alors peu stabilisée, une quantité accrue de matériau à base de PTFE se déplace radialement entre les profilés 124 pour former les entretoises 158, et en conséquence celles-ci présentent une partie élargie plus importante.

Claims (13)

  1. Fil électrique (22, 50) comportant au moins un conducteur (24, 40, 52) maintenu par au moins une entretoise (30, 46, 58) dans une gaine (26, 44, 54) à base de PTFE, la gaine et ladite au moins une entretoise formant en outre au moins une alvéole (28, 42, 56) longitudinale continue, ladite au moins une alvéole étant délimitée au moins partiellement par le conducteur,
    le fil électrique se caractérisant en ce que vues dans une section perpendiculaire à un axe du fil, les fibres de PTFE de ladite au moins une entretoise sont majoritairement dirigées dans une direction sensiblement radiale.
  2. Fil électrique selon la revendication 1, dont la gaine est maintenue à distance du conducteur par ladite au moins une entretoise (30), celle-ci comportant une partie de jonction sensiblement radiale (32), et une partie de maintien (34) élargie au contact du conducteur.
  3. Câble coaxial (60) comprenant un conducteur central (62), une gaine intermédiaire (64) isolante à base de PTFE, un conducteur extérieur (68), une gaine extérieure de protection (70), caractérisé en ce que le conducteur central (62) considéré avec la gaine intermédiaire (64) est un fil électrique selon la revendication 1 ou 2.
  4. Procédé de fabrication d'un fil électrique comportant au moins un conducteur (24, 40) maintenu par au moins une entretoise dans une gaine (26, 44, 54) à base de PTFE, la gaine et ladite au moins une entretoise (30, 46, 58) formant au moins une alvéole sensiblement longitudinale continue (28, 42, 56),
    procédé dans lequel on fait passer un extrudat à base de PTFE dans un passage d'extrusion (114) autour dudit au moins un conducteur de manière à former la gaine,
    caractérisé en ce que
    - sur une première partie (101) du passage d'extrusion, en amont d'une section d'expansion (130), au moins une partie de la gaine est formée sensiblement à sa forme définitive à distance du conducteur par un guide, celui-ci maintenant l'extrudat à distance d'une surface libre du conducteur (25) ;
    - en aval de la section d'expansion, ladite au moins une alvéole est formée sur ladite surface libre (25) par au moins un profilé (124) s'étendant dans le prolongement d'une partie du guide (104), la section de ladite alvéole correspondant à celle dudit profilé, au moins une entretoise (158) de maintien de la partie de gaine sur le conducteur étant formée par remplissage d'au moins un canal d'expansion (126) s'ouvrant entre des parois dudit au moins un profilé.
  5. Procédé de fabrication selon la revendication 4, dans lequel le rapport de réduction (R) immédiatement en aval de la section d'expansion (130) est inférieur au rapport de réduction d'une section (X1) dite 'de réduction maximale' située au niveau de ou en amont de la section d'expansion (130) dans le passage d'extrusion (114).
  6. Procédé de fabrication selon la revendication 5, dans lequel le rapport de réduction (R) immédiatement en aval de la section d'expansion (130) est inférieur de 10% ou plus par rapport à celui de la section de réduction maximale.
  7. Procédé de fabrication selon l'une quelconque des revendications 4 à 6, dans lequel la section d'expansion (130) est située à une distance en aval d'un orifice d'extrusion (116) de l'outil (100) situé à l'aval d'une chambre d'extrusion de section décroissante (112).
  8. Procédé de fabrication selon l'une quelconque des revendications 4 à 7, dans lequel le contact entre l'extrudat et le conducteur a lieu sensiblement au niveau de la section d'expansion (130), niveau auquel les vitesses axiales respectives de l'extrudat et du conducteur (128) sont sensiblement égales.
  9. Outillage (100) de fabrication d'un fil électrique (150) comportant au moins un conducteur (128) maintenu par au moins une entretoise (30, 46, 58) dans une gaine (160) à base de PTFE, la gaine et ladite au moins une entretoise formant au moins une alvéole sensiblement longitudinale continue (28, 42, 56) délimitée au moins partiellement par le conducteur, l'outillage étant caractérisé en ce qu'il comporte
    en amont d'une section d'expansion (130), un guide (104) apte à former une partie extérieure de gaine sensiblement à sa forme définitive autour du conducteur, ce guide étant prévu pour maintenir l'extrudat à distance d'au moins une surface libre (25) du conducteur, que l'on ne souhaite pas recouvrir d'extrudat ;
    en aval de la section d'expansion, dans le prolongement d'une première partie du guide, au moins un profilé (124), ce profilé étant apte à former ladite au moins une alvéole sur ladite surface libre ; des parois dudit au moins un profilé définissant au moins un canal d'expansion (126), dont le remplissage permet la formation d'au moins une entretoise de maintien de la partie de gaine extérieure sur le conducteur ;
    ledit au moins un profilé s'étendant radialement sensiblement jusqu'à la surface interne de diamètre minimal du guide, afin d'empêcher l'irruption d'extrudat sur la surface libre (25) du conducteur (128).
  10. Outillage de fabrication (100) selon la revendication 9, présentant immédiatement en aval de la section d'expansion, une surface de passage de l'extrudat supérieure à celle d'une section dite de réduction maximale de l'outillage située plus en amont.
  11. Outillage de fabrication selon la revendication 9 ou 10, dont la section d'expansion (130) est située en aval d'un orifice d'extrusion (116) de l'outil situé à l'aval d'une chambre d'extrusion de section décroissante (112).
  12. Outillage de fabrication selon l'une quelconque des revendications 9 à 11, comportant au moins une partie réglable, permettant de faire varier axialement la position de la section d'expansion dans l'outillage.
  13. Outillage de fabrication selon l'une quelconque des revendications 9 à 12, dont ledit au moins un profilé est un profilé plein.
EP09174913.5A 2008-11-06 2009-11-03 Fil électrique à gaine de PTFE robuste et à faible constante diélectrique, et ses procédé et outil de fabrication Active EP2184744B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0857537A FR2938111B1 (fr) 2008-11-06 2008-11-06 Fil electrique a gaine de ptfe a faible constante dielectrique, et ses procede et outil de fabrication

Publications (2)

Publication Number Publication Date
EP2184744A1 EP2184744A1 (fr) 2010-05-12
EP2184744B1 true EP2184744B1 (fr) 2014-08-13

Family

ID=40627130

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09174913.5A Active EP2184744B1 (fr) 2008-11-06 2009-11-03 Fil électrique à gaine de PTFE robuste et à faible constante diélectrique, et ses procédé et outil de fabrication

Country Status (3)

Country Link
US (1) US8618417B2 (fr)
EP (1) EP2184744B1 (fr)
FR (1) FR2938111B1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014150766A1 (fr) * 2013-03-15 2014-09-25 Commscope, Inc. Of North Carolina Câble blindé possédant un environnement de paires de câbles utp
WO2016073862A2 (fr) 2014-11-07 2016-05-12 Cable Components Group, Llc Compositions destinées au mélangeage, à l'extrusion et au traitement de fusion de polymères cellulaires et expansibles exempts d'halogène
US10031301B2 (en) * 2014-11-07 2018-07-24 Cable Components Group, Llc Compositions for compounding, extrusion, and melt processing of foamable and cellular polymers
JP6977198B1 (ja) * 2021-10-05 2021-12-08 東京特殊電線株式会社 同軸ケーブル

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3086557A (en) * 1957-09-30 1963-04-23 Thomas F Peterson Conduit with preformed elements
US3771934A (en) * 1969-02-18 1973-11-13 Int Standard Electric Corp Apparatus for extending water-blocked cartwheel cable
FR2194545B1 (fr) * 1972-08-01 1976-01-23 Viennot Pierre Fr
US4713070A (en) * 1978-11-30 1987-12-15 Sumitom Electric Industries, Ltd. Porous structure of polytetrafluoroethylene and process for production thereof
US4430283A (en) * 1980-11-13 1984-02-07 The Dow Chemical Company Method for the extrusion of tetrafluoroethylene polymer tubes
US5505887A (en) * 1994-03-10 1996-04-09 Meadox Medicals, Inc. Extrusion process for manufacturing PTFE products
US6039755A (en) * 1997-02-05 2000-03-21 Impra, Inc., A Division Of C.R. Bard, Inc. Radially expandable tubular polytetrafluoroethylene grafts and method of making same
FR2747832B1 (fr) * 1996-04-23 1998-05-22 Filotex Sa Procede et dispositif de fabrication d'une gaine aeree en un materiau isolant autour d'un conducteur, et cable coaxial muni d'une telle gaine
US6239379B1 (en) * 1998-07-29 2001-05-29 Khamsin Technologies Llc Electrically optimized hybrid “last mile” telecommunications cable system
US6162992A (en) * 1999-03-23 2000-12-19 Cable Design Technologies, Inc. Shifted-plane core geometry cable
US6534715B1 (en) * 1999-08-30 2003-03-18 Pirelli Cavi E Sistemi S.P.A. Electrical cable with self-repairing protection and apparatus for manufacturing the same
US6506976B1 (en) * 1999-09-14 2003-01-14 Avaya Technology Corp. Electrical cable apparatus and method for making
US6566607B1 (en) * 1999-10-05 2003-05-20 Nordx/Cdt, Inc. High speed data communication cables
US6639152B2 (en) * 2001-08-25 2003-10-28 Cable Components Group, Llc High performance support-separator for communications cable
US6780360B2 (en) * 2001-11-21 2004-08-24 Times Microwave Systems Method of forming a PTFE insulation layer over a metallic conductor and product derived thereform
WO2004013870A1 (fr) * 2002-08-06 2004-02-12 Ube-Nitto Kasei Co., Ltd. Cable coaxial a faible diametre et procede de production associe
US7511225B2 (en) * 2002-09-24 2009-03-31 Adc Incorporated Communication wire
US7214880B2 (en) * 2002-09-24 2007-05-08 Adc Incorporated Communication wire
US7015398B2 (en) * 2003-03-10 2006-03-21 Gavriel Vexler Communications cable
US20050139377A1 (en) * 2003-12-31 2005-06-30 Levy Daniel N. Paste extruded insulator with air channels
US7202418B2 (en) * 2004-01-07 2007-04-10 Cable Components Group, Llc Flame retardant and smoke suppressant composite high performance support-separators and conduit tubes
FR2874736B1 (fr) * 2004-08-27 2006-11-03 Nexans Sa Dispositif de fabrication d'une gaine alveolee autour d'un conducteur
US20070102188A1 (en) * 2005-11-01 2007-05-10 Cable Components Group, Llc High performance support-separators for communications cable supporting low voltage and wireless fidelity applications and providing conductive shielding for alien crosstalk
US7271344B1 (en) * 2006-03-09 2007-09-18 Adc Telecommunications, Inc. Multi-pair cable with channeled jackets
US20080153936A1 (en) * 2006-12-21 2008-06-26 E. I. Du Pont De Nemours And Company Foamed Fluoropolymer Article
FR2919750B1 (fr) * 2007-08-02 2016-01-08 Axon Cable Sa Cable coaxial a faible constante dielectrique, et ses procede et outil de fabrication
EP2065156A1 (fr) * 2007-11-29 2009-06-03 Nexans Procédé destiné à la production d'un corps de formage à partir de polytétrafluorurethylènes expansés

Also Published As

Publication number Publication date
FR2938111A1 (fr) 2010-05-07
EP2184744A1 (fr) 2010-05-12
FR2938111B1 (fr) 2012-08-03
US20100108355A1 (en) 2010-05-06
US8618417B2 (en) 2013-12-31

Similar Documents

Publication Publication Date Title
EP0803878B1 (fr) Procédé et dispositif de fabrication d'une gaine aérée en un matériau isolant autour d'un conducteur, et câble coaxial muni d'une telle gaine
FR2919750A1 (fr) Cable coaxial a faible constante dielectrique, et ses procede et outil de fabrication
EP0576666B1 (fr) Procede de raccordement d'un cable electrique comportant une ame en metal leger sur un element d'extremite normalise, et piece de raccordement pour la mise en oeuvre de ce procede
EP2184744B1 (fr) Fil électrique à gaine de PTFE robuste et à faible constante diélectrique, et ses procédé et outil de fabrication
EP2601429B1 (fr) Manchon tubulaire de jonction en matiere plastique pour conduite comportant un chemisage interne
EP0027252B1 (fr) Dispositif pour la fabrication de corps à structure alvéolaire par extrusion d'une matière céramique, et procédé de fabrication dudit dispositif
EP0704735B1 (fr) Un isolateur électrique équipé de fibres optiques et son procédé de fabrication
WO2013135489A1 (fr) Cable de transport electrique en particulier pour ligne aerienne
FR2746539A1 (fr) Procede de fabrication de cables coaxiaux
EP1986199B1 (fr) Procédé de fabrication d'un conducteur électrique isolé de classe 5
BE1008956A3 (fr) Procede de fabrication d'un tuyau a base de matiere plastique, filiere d'extrusion et tuyau.
FR2689228A1 (fr) Flèche pour arc et son procédé de fabrication.
EP1121492B1 (fr) Deviateur pour cable de hauban
EP2091052A2 (fr) Cable électrique facilement dégainable
FR3002376A1 (fr) Bouchon d'etancheite pour cable electrique contre les infiltrations d'air dans les batiments et procede de pose du cable electrique
FR2720020A1 (fr) Procédé de fabrication et de montage de générateurs de turbulence en hélice en fil métallique dans des tubes d'échangeurs de chaleur et dispositif pour la mise en Óoeuvre du procédé.
FR2704280A1 (fr) Système de suppression des contraintes dans un moteur-fusée à combustible solide.
FR2735606A1 (fr) Cable coaxial
EP0938100B1 (fr) Câble de transmission à haute fréquence à deux groupes de conducteurs
EP4321323A1 (fr) Extrudeuse pour l'extrusion d'une couche électriquement isolante comprenant une vis d'extrusion ayant un canal d'injection de liquide
CH410700A (fr) Procédé de fabrication de pièces tubulaires et pièce tubulaire fabriquée selon ce procédé
EP1178496A1 (fr) Procédé de fabrication d'un isolateur électrique à tige
EP0763860B1 (fr) Procédé de fabrication d'un conducteur gainé torsadé en supraconducteur à haute température critique
EP0113631A2 (fr) Procédé de fabrication de bourres de plastique monobloc pour cartouches
EP1225672B1 (fr) Dispositif de contrôle d'arc interne pour module de raccordement d'une ligne haute tension à isolation gazeuse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20101102

17Q First examination report despatched

Effective date: 20110127

RIC1 Information provided on ipc code assigned before grant

Ipc: H01B 3/44 20060101ALI20140116BHEP

Ipc: H01B 13/14 20060101AFI20140116BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: H01B 13/14 20060101AFI20140122BHEP

Ipc: H01B 3/44 20060101ALI20140122BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140304

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 682641

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009025912

Country of ref document: DE

Effective date: 20140925

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140813

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 682641

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140813

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141213

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009025912

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141103

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20150515

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091103

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009025912

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 15

Ref country code: DE

Payment date: 20231107

Year of fee payment: 15