EP2165347B1 - Magnetisches antriebssystem für eine schalteinrichtung - Google Patents

Magnetisches antriebssystem für eine schalteinrichtung Download PDF

Info

Publication number
EP2165347B1
EP2165347B1 EP08760338.7A EP08760338A EP2165347B1 EP 2165347 B1 EP2165347 B1 EP 2165347B1 EP 08760338 A EP08760338 A EP 08760338A EP 2165347 B1 EP2165347 B1 EP 2165347B1
Authority
EP
European Patent Office
Prior art keywords
armature
channels
drive system
holes
magnetic drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08760338.7A
Other languages
English (en)
French (fr)
Other versions
EP2165347A1 (de
Inventor
Ralf-Reiner Volkmar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2165347A1 publication Critical patent/EP2165347A1/de
Application granted granted Critical
Publication of EP2165347B1 publication Critical patent/EP2165347B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2209Polarised relays with rectilinearly movable armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F7/1615Armatures or stationary parts of magnetic circuit having permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • H01F2007/086Structural details of the armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1669Armatures actuated by current pulse, e.g. bistable actuators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1676Means for avoiding or reducing eddy currents in the magnetic circuit, e.g. radial slots

Definitions

  • the invention relates to a magnetic drive system for a switching device specified in the preamble of claim 1. Art.
  • Such a bipolar drive system is z. B. from the DE 197 09 089 A1 already known.
  • the anchor here consists of a solid magnetic iron material, which makes it cheaper to manufacture than an assembled from layered electrical sheets anchor and often will have a greater long-term stability.
  • For the massive anchor itself has the disadvantage that compared to anchors made of layered electrical steel more eddy current losses occur and a stronger remanence is present, which makes it difficult, inter alia, the release of the switching contacts when switching.
  • the armature is provided with elongated hollow channels, which consist of narrow slots and extend in the feed direction of the armature and thus in the direction of the magnetic field lines.
  • the slots provided on the narrow sides of the anchor weaken the cuboid anchor in each case over one third of its cross-sectional width and over its entire length. From the broad sides of the anchor next to each other several parallel slots are recessed, which do not extend over the entire length of the armature but end at a distance to the end faces of the armature. Overall, the mechanical stability of the armature but significantly affected by the slots. Therefore, it is provided to increase the stability of the anchor after introducing the slots by filling them with insulating material again. Precisely because these slots should be as tight as possible for technical reasons, that is Filling the slots technically but correspondingly difficult and significantly increases the cost of making the anchor.
  • the transitions between the contact surface of the armature and the yoke plates should be able to be adapted as needed. Although a reduction of the contact surface leads to an improved response in terms of a shorter switching time, but must be bought with the disadvantage of a reduced adhesive force of the anchor. Since too low adhesive force of the armature, however, adversely affects the reliability of the magnetic drive system, the known drive system can not meet the design requirements in many applications.
  • the invention is therefore based on the object to further develop a magnetic drive system specified in the preamble of claim 1 to the effect that the stability of the armature is not excessively reduced by the design for reducing the eddy current losses.
  • the magnetic drive system according to the invention for a switching device comprises a magnetic yoke, in which a solid armature of magnetic material is linearly slidably guided between two opposite end positions, and at least one permanent magnet for generating a magnetic flux in the magnet yoke and at least one coil, through which the armature between its end positions back and forth, the armature to avoid eddy current losses is provided with elongated channels and the channels are circumferentially closed in the anchor at its periphery.
  • circumferentially closed channels in the anchor is achieved in a simple manner that the stability of the armature is hardly affected.
  • the technically complex filling of the channels can be omitted.
  • the introduced into the anchor channels consist of holes with a relatively small hollow cross-section.
  • Such holes do not necessarily have to be circular, but can also z. B. have an oval cross-section. If possible, however, the hollow cross-section should be designed so that there are no sharp corners on the peripheral wall delimiting the hollow cross-section.
  • the holes are circular, because they can then be produced inexpensively with drill drills.
  • the holes in the anchor are straight through holes.
  • the holes may be formed as blind holes, which are drilled from both side surfaces.
  • the technical effect of a gap with respect to the reduction of eddy current losses can be approximately achieved when several channels of the armature are lined up with a small distance to a row of holes or multiple rows of holes. Several rows of holes are expediently aligned parallel to each other along a straight line.
  • the ends of the anchor block penetrated by the armature guide rods are connected via at least one row of holes or several, in particular two, three or four parallel rows of through holes which run parallel to the broad sides of the armature near the hole of the armature guide rod. At least one further row of holes or several, in particular two, three or four rows of holes can be provided centrally between these rows of holes, which extend or extend along the central longitudinal plane of the armature between its narrow sides.
  • Another technical improvement is achieved when the broad sides of the anchor block are perforated over several rows largely of through holes.
  • two fields with rows of holes can be arranged next to the transverse plane of the armature guide rod. If two armature guide rods are fastened in opposite blind holes of the armature, an armature area with solid material remaining between the blind hole ends can additionally be used for a central arrangement of a through-hole.
  • the anchor block interspersed with bores in all three spatial directions, not only reduces eddy current losses but also significantly reduces the remanence tendency.
  • the reduction of the remanence is even greater, although the cooperating with the abutment surfaces of the armature mating surfaces of one or more rows of holes are perforated.
  • the magnet system has the advantage over the known system with slots as hollow channels that the formation of eddy currents in all three axial directions obstructed and thus reduced.
  • the reliability remains almost undiminished, since the adhesive force is only slightly reduced at the same Bacindutation and simultaneously decreases the remanence of the magnetic circuit.
  • the latter effect is based essentially on the fact that the magnetic induction in the anchor increases only locally targeted in the saturation region and thereby the local permeability is lowered.
  • the numerous channels in the armature anchor mass is also lower, so that overall results in a lower remanence combined with improved dynamic properties of the armature or the entire magnet system.
  • FIG. 1 is a supporting structure 1 of a not shown in the entirety permanent magnetic drive system to operate a switching device to see.
  • This structure 1 comprises a cuboidal frame, which is composed of two magnet yokes 2 and 3 with the interposition of two bearing plates 4 and 5.
  • Both magnetic yokes 2 and 3 are designed mirror-symmetrically and have at both ends in each case angled by 90 degrees yoke legs, so that they are designed approximately U-shaped with respect to their basic shape.
  • the flat end surfaces of the oppositely directed yoke legs of the magnetic yokes 2 and 3 are up flat on the facing side surface of the bearing plate 4 and down to the facing side surface of the bearing plate 5, wherein the corresponding yoke legs are connected to each other via the bearing plates 4 and 5 respectively.
  • the armature 8 also comprises two armature guide rods 9 which project centrally from the upper side or the lower side of the armature block and are arranged geometrically coaxial with one another.
  • the armature guide rods 9 pass through a bearing bore 10 in their associated bearing plate 4 and 5 with little circumferential clearance and stand out with an end portion of the bearing bore 10 of their bearing plate 4 and 5, so that the armature 8 is vertically linearly slidably guided by the guide rods 9.
  • the yoke frame would be in assembly still with two coils Polschenkeln and yoke legs provided by the magnetic field of the armature 8 would be shifted with appropriate polarity after overcoming its attachment to the bearing plate 5 in its upper end position in which its feed by striking the bottom of the Bearing plate 4 would be limited. After reversal of the polarity of the magnetic field he would be depressed after overcoming the adhesion by magnetic forces back down to the end position shown on the bearing plate 5 and held in the contact position.
  • the mode of action of such magnetic drives is known as such, so that no further explanation is provided here.
  • the magnetic yokes 2 and 3 consist here of a plurality of thin yoke plates, which are joined to the shown thick Jochblechstapel.
  • the armature 8 and the bearing plates 4 and 5 consist of blocks of ferromagnetic material of known type, in particular of a corresponding iron alloy.
  • a plurality of channels (hollow channels) 11, 12 and 13 are integrated in the solid block of the armature 8, which here have a matching diameter of 2 mm to 3 mm , all as through holes are formed and differ only in their length, since they enforce the block of the armature 8 in different directions.
  • the channels 11, 12 and 13 may alternatively be formed as blind holes, which are drilled from both side surfaces.
  • the channels 11 go from the upper end face of the armature 8, parallel to the central longitudinal axis of the anchor guide rods 9 and thus perpendicular to the flat end face until they open on the opposite end.
  • two rows, each with six channels 11 are present, wherein the channels 11 in each of the two rows each have a distance of about 4 mm to the adjacent channel 11.
  • These rows extend parallel to the long side edges of the end faces and on opposite sides of a centrally located on the front side blind hole bore 14 with internal thread, in which the armature guide rod 9 is screwed.
  • the channels 12 are arranged, which emanate from a narrow side of the armature 8 and open on the opposite narrow side of the armature 8.
  • This total of five channels 12 form a straight row, which is arranged centrally between the long side edges of the narrow side, as in connection with FIG. 4 beyond doubt.
  • these channels 12 thereby also run centrally between the two rows with the channels 11 and penetrate the assembly plane of the armature guide rods 9.
  • the channels 12 may therefore alternatively be formed as blind holes and in one Distance before the blind hole 14 ends.
  • Such blind holes as channels 12 should then end as possible at the same distance from the blind hole 14 as the lateral distance of the channels 11 on the front side of the armature 8. This distance is in the frontal plan view according to FIG. 7 clearly visible. In this case, however, the channels 12 would have to be drilled from the opposite end sides, which would result in a corresponding additional expenditure in the production of the armature 8.
  • the channels 13 are introduced, all of which extend at right angles to the longitudinal center plane of the armature 8.
  • the channels 13 go from one broad side of the armature 8 and open into the opposite broad side.
  • the hole pattern on the broad side comprises two rectangular hole fields, which consist of three parallel rows, each with six hollow channels 13, wherein the hollow channels 13 in the row and laterally have a matching distance from each other. These hole fields are on both sides of a central region of the armature 8, in which the armature guide rods 9 are arranged.
  • a single channel 13 ' is additionally centrally disposed, which also forms a connecting the broad sides through hole.
  • the hollow passage 13 ' in this case a solid material area of the anchor block, which has remained between the ends of the two blind holes 14.
  • channels in the armature 8 are also in the bearing plates 4 and 5 channels 15 which extend axially parallel to the channels 11.
  • the channels (hollow channels) 15 two rows, each with six channels 15 are present, the are preferably arranged congruent to the channels 11 in the armature 8.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)
  • Electromagnets (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

  • Die Erfindung bezieht sich auf ein magnetisches Antriebssystem für eine Schalteinrichtung der im Oberbegriff von Patentanspruch 1 angegebenen Art.
  • Eine derartiges bipolares Antriebssystem ist z. B. aus der DE 197 09 089 A1 bereits bekannt. Der Anker besteht hierbei aus einem massiven magnetischen Eisenwerkstoff, wodurch er sich kostengünstiger fertigen lässt als ein aus geschichteten Elektroblechen zusammengesetzter Anker und häufig auch eine größere Langzeitstabilität aufweisen wird. Dafür hat der massive Anker an sich den Nachteil, dass gegenüber Ankern aus geschichtetem Elektroblech mehr Wirbelstromverluste auftreten und eine stärkere Remanenz vorhanden ist, die u. a. das Lösen der Schaltkontakte beim Umschalten erschwert. Um die Wirbelstromverluste zu reduzieren, ist der Anker mit länglichen Hohlkanälen versehen, die aus schmalen Schlitzen bestehen und sich in Vorschubrichtung des Ankers und somit in Richtung der magnetischen Feldlinien erstrecken. Die vorgesehenen Schlitze an den Schmalseiten des Ankers schwächen den quaderförmigen Anker dabei über jeweils ein Drittel seiner Querschnittsbreite und über seine gesamte Länge. Aus den Breitseiten des Ankers sind zudem nebeneinander mehrere parallele Schlitze ausgespart, die sich allerdings nicht über die gesamte Länge des Ankers erstrecken sondern in einem Abstand zu den Stirnseiten des Ankers enden. Insgesamt ist die mechanische Stabilität des Ankers aber durch die Schlitze erheblich beeinträchtigt. Deshalb ist vorgesehen, die Stabilität des Ankers nach Einbringen der Schlitze durch Füllen derselben mit Isoliermaterial wieder zu erhöhen. Gerade weil diese Schlitze aus technischen Gründen möglichst eng sein sollen, ist das Auffüllen der Schlitze technisch aber entsprechend schwierig und verteuert die Herstellung des Ankers erheblich.
    Um der stärkeren Remanenz des Ankers zu begegnen, sollen die Übergänge zwischen der Kontaktfläche des Ankers und den Jochblechen bedarfsgerecht angepasst werden können. Eine Verminderung der Kontaktfläche führt zwar zu einem verbesserten Ansprechverhalten im Sinne einer kürzeren Schaltzeit, muss jedoch mit dem Nachteil einer reduzierten Haftkraft des Ankers erkauft werden. Da eine zu geringe Haftkraft des Ankers sich jedoch nachteilig auf die Betriebssicherheit des magnetischen Antriebssystems auswirkt, wird das bekannte Antriebssystem den konstruktiven Anforderungen bei vielen Anwendungsfällen nicht gerecht werden können.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein magnetisches Antriebssystem der im Oberbegriff von Anspruch 1 angegebenen Art dahingehend weiterzuentwickeln, dass die Stabilität des Ankers durch dessen Gestaltung zur Reduzierung der Wirbelstromverluste nicht übermäßig reduziert ist.
  • Diese Aufgabe wird durch die Merkmale von Patentanspruch 1 gelöst.
  • Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Das erfindungsgemäße magnetische Antriebssystem für eine Schalteinrichtung umfasst ein Magnetjoch, in dem ein massiver Anker aus magnetischem Werkstoff zwischen zwei entgegen gesetzten Endlagen linear schiebegeführt ist, und wenigstens einen Permanentmagneten zur Erzeugung eines magnetischen Flusses in dem Magnet joch und wenigstens eine Spule, durch die der Anker zwischen seinen Endlagen hin- und her bewegbar ist, wobei der Anker zur Vermeidung von Wirbelstromverlusten mit länglichen Kanälen versehen ist und die Kanäle im Anker an ihrem Umfang umlaufend geschlossen sind.
  • Durch die Anordnung von umlaufend geschlossenen Kanälen (Hohlkanälen) im Anker wird auf einfache Weise erreicht, dass die Stabilität des Ankers kaum beeinträchtigt wird. Somit kann das technisch aufwändige Füllen der Kanäle entfallen.
  • Vorzugsweise bestehen die in den Anker eingebrachten Kanäle aus Bohrungen mit relativ geringem Hohlquerschnitt. Solche Bohrungen müssen nicht zwingend kreisrund sein, sondern können auch z. B. einen ovalen Querschnitt aufweisen. Möglichst sollte der Hohlquerschnitt aber so gestaltet sein, dass an der den Hohlquerschnitt begrenzende Umfangswand keine scharfen Ecken vorhanden sind.
  • Bei nachträglich in den Ankerblock eingebrachten Bohrungen ist es aber vorteilhaft, wenn die Bohrungen kreisrund sind, weil sie sich dann kostengünstig mit Drillbohrern erzeugen lassen.
  • Vor der technischen Wirkung her und auch fertigungstechnisch ist es günstig, wenn die Bohrungen im Anker gerade Durchgangsbohrungen sind. Alternativ können die Bohrungen als Sacklochbohrungen ausgebildet sein, die von beiden Seitenflächen aus gebohrt werden.
  • Die technische Wirkung eines Spalts im Hinblick auf die Reduzierung der Wirbelstromverluste lässt sich näherungsweise erreichen, wenn mehrere Kanäle des Ankers mit geringem Abstand zu einer Lochreihe oder zu mehreren Lochreihen aneinandergereiht sind. Mehrere Lochreihen werden dabei zweckmäßig parallel zueinander jeweils entlang einer geraden Linie ausgerichtet.
  • Besonders wirkungsvoll ist es, wenn die von den Ankerführungsstangen durchdrungenen Stirnseiten des Ankerblocks über mindestens eine Lochreihe oder mehrere, insbesondere zwei, drei oder vier parallele Lochreihen von Durchgangslöchern verbunden sind, die parallel zu den Breitseiten des Ankers nahe dem Loch der Ankerführungsstange verlaufen. Mittig zwischen diesen Lochreihen kann mindestens eine weitere Lochreihe oder mehrere, insbesondere zwei, drei oder vier Lochreihen vorgesehen werden, die sich entlang der Mittellängsebene des Ankers zwischen dessen Schmalseiten erstreckt bzw. erstrecken.
  • Eine weitere technische Verbesserung wird erzielt, wenn auch die Breitseiten des Ankerblocks über mehrere Reihen weitgehend von Durchgangsbohrungen perforiert sind. Hier können neben der Querebene der Ankerführungsstange zwei Felder mit Bohrungsreihen angeordnet werden. Sind zwei Ankerführungsstangen in entgegen gesetzten Sacklochbohrungen des Ankers befestigt, so kann ein zwischen den Sacklochenden verbleibender Ankerbereich mit Vollmaterial zusätzlich noch für eine zentrale Anordnung einer Durchgangsbohrung genutzt werden.
  • Der in allen drei Raumrichtungen von Bohrungen durchsetzte Ankerblock sorgt neben der Reduzierung der Wirbelstromverluste auch bereits für eine deutliche Herabsetzung der Remanenzneigung. Die Verminderung der Remanenz wird nochmals größer, wenn auch die mit den Anschlagflächen des Ankers zusammenwirkenden Gegenflächen von jeweils einer oder von jeweils mehreren Lochreihen perforiert sind.
  • Das Magnetsystem hat insgesamt gegenüber dem bekannten System mit Schlitzen als Hohlkanäle den Vorteil, dass die Ausbildung von Wirbelströmen in allen drei Achsrichtungen behindert und somit reduziert wird. Die Betriebssicherheit bleibt dabei nahezu ungeschmälert erhalten, da sich die Haftkraft bei gleicher Gesamtinduktion nur unwesentlich reduziert und gleichzeitig die Remanenzinduktion des Magnetkreises absinkt. Letzterer Effekt beruht im Wesentlichen darauf, dass die magnetische Induktion im Anker lediglich lokal gezielt in den Sättigungsbereich hinein erhöht und dadurch die lokale Permeabilität abgesenkt wird. Infolge der zahlreichen Kanäle im Anker ist zudem die Ankermasse geringer, so dass sich insgesamt eine geringere Remanenz verbunden mit verbesserten dynamischen Eigenschaften des Ankers bzw. des gesamten Magnetsystems ergibt.
  • Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfindung sind der nachfolgenden Beschreibung eines Ausführungsbeispiels unter Bezug auf die Figuren der Zeichnung zu entnehmen, wobei einander entsprechende Bauteile mit gleichen Bezugszeichen versehen sind.
  • In den Zeichnungen zeigen:
  • Fig. 1
    eine Tragstruktur eines magnetischen Antriebssystems in perspektivischer Schrägansicht,
    Fig. 2
    einen Anker der Tragstruktur in perspektivischer Einzelansicht schräg von links,
    Fig. 3
    den Anker der Tragstruktur in perspektivischer Einzelansicht schräg von rechts,
    Fig. 4
    eine Frontalansicht einer Schmalseite des separaten Ankerblocks,
    Fig. 5
    eine Frontalansicht einer Breitseite des separaten Ankerblocks,
    Fig. 6
    einen Schnitt durch den Ankerblock gemäß der Schnittlinie VI-VI in Fig. 5 und
    Fig. 7
    eine Frontalansicht einer Stirnseite des separaten Ankerblocks.
  • In Figur 1 ist eine tragende Struktur 1 eines nicht in der Gesamtheit dargestellten permanentmagnetischen Antriebssystems zur Betätigung einer Schalteinrichtung zu sehen. Diese Struktur 1 umfasst einen quaderförmigen Rahmen, der aus zwei Magnet jochen 2 und 3 unter Zwischenfügung von zwei Lagerplatten 4 und 5 zusammengesetzt ist. Beide Magnetjoche 2 und 3 sind spiegelsymmetrisch gestaltet und besitzen an den beiden Enden jeweils um 90 Grad abgewinkelte Jochschenkel, so dass sie hinsichtlich ihrer Grundform etwa U-förmig gestaltet sind. Die planen Endflächen der gegeneinander gerichteten Jochschenkel der Magnet joche 2 und 3 liegen oben flächig an der zugewandten Seitenfläche der Lagerplatte 4 und unten an der zugewandten Seitenfläche der Lagerplatte 5 an, wobei die korrespondierenden Jochschenkel über die Lagerplatten 4 bzw. 5 miteinander verbunden sind. Im Mittelbereich zwischen den Jochschenkeln ragt von den Magnet jochen 2 und 3 jeweils ein vorspringender Polschenkel ab, wobei die einander gegenüberliegenden Polschenkel entsprechend den Jochschenkeln gegeneinander gerichtet sind. Auf den einander mit Abstand gegenüberliegenden Enden der Polschenkel sind plattenförmige Permanentmagnete 6 bzw. 7 befestigt.
  • Zwischen den planparallelen Permanentmagneten 6 und 7 liegt mit geringem Abstand zu diesen ein quaderförmiger Anker 8 im Jochrahmen, der in der gezeichneten Position an der Lagerplatte 5 aufliegt. Der Anker 8 umfasst auch zwei Ankerführungsstangen 9 die mittig von der Oberseite bzw. der Unterseite des Ankerblocks abstehen und geometrisch koaxial zueinander angeordnet sind. Die Ankerführungsstangen 9 durchsetzen eine Lagerbohrung 10 in der ihnen zugeordneten Lagerplatte 4 bzw. 5 mit wenig Umfangsspiel und stehen mit einem Endbereich aus der Lagerbohrung 10 ihrer Lagerplatte 4 bzw. 5 heraus, so dass der Anker 8 mittels der Führungsstangen 9 vertikal linear schiebegeführt ist. Der Jochrahmen wäre im Zusammenbau noch mit zwei Spulen den Polschenkeln und den Jochschenkeln versehen, durch deren Magnetfeld der Anker 8 bei entsprechender Polrichtung nach Überwindung seiner Anhaftung an der Lagerplatte 5 in seine obere Endlage verschoben würde, in der sein Vorschub durch Anschlagen an der Unterseite der Lagerplatte 4 begrenzt würde. Nach Umkehrung der Polrichtung des Magnetfeldes würde er nach Überwindung der Anhaftung durch Magnetkräfte wieder nach unten in die gezeigte Endlage auf die Lagerplatte 5 niedergedrückt und in der Anlagestellung gehalten. Die Wirkungsweise solcher Magnetantriebe ist als solche bekannt, so dass hier auf weitergehende Erläuterungen verzichtet wird.
  • Die Magnetjoche 2 und 3 bestehen hier aus einer Vielzahl dünner Jochbleche, die zu dem gezeigten, dicken Jochblechstapel gefügt sind. Demgegenüber bestehen der Anker 8 sowie die Lagerplatten 4 und 5 aus Blöcken ferromagnetischen Materials bekannter Art, insbesondere aus einer entsprechenden Eisenlegierung.
  • Zur Reduzierung der Wirbelstromverluste und der Remanenz des Ankers 8 sowie der Lagerplatten 4 und 5 sind in den massiven Block des Ankers 8 eine Vielzahl von Kanälen (Hohlkanälen) 11, 12 und 13 integriert, die hier einen übereinstimmenden Durchmesser von 2 mm bis 3 mm aufweisen, alle als Durchgangsbohrungen ausgebildet sind und sich nur hinsichtlich ihrer Länge unterscheiden, da sie den Block des Ankers 8 in unterschiedlichen Richtungen durchsetzen. Die Kanäle 11, 12 und 13 können alternativ auch als Sacklochbohrungen ausgebildet sein, die von beiden Seitenflächen aus gebohrt werden.
  • Wie in Verbindung mit den Figuren 2 und 3 deutlicher zu erkennen ist, gehen die Kanäle 11 von der oberen Stirnseite des Ankers 8 aus, verlaufen parallel zur Mittellängsachse der Ankerführungstangen 9 und somit rechtwinklig zur planen Stirnseite bis sie auf der gegenüberliegenden Stirnseite münden. Dabei sind zwei Reihen mit jeweils sechs Kanälen 11 vorhanden, wobei die Kanäle 11 in jeder der beiden Reihen jeweils einen Abstand von ca. 4 mm zum benachbarten Kanal 11 aufweisen. Diese Reihen verlaufen parallel zu den langen Seitenkanten der Stirnseiten und auf entgegen gesetzten Seiten einer mittig in auf der Stirnseite angeordnete Sacklochbohrung 14 mit Innengewinde, in welche die Ankerführungsstange 9 hineingedreht ist. Quer zu diesen Kanälen 11 sind die Kanäle 12 angeordnet, die von einer Schmalseite des Ankers 8 ausgehen und auf der gegenüberliegenden Schmalseite des Ankers 8 münden. Diese insgesamt fünf Kanäle 12 bilden eine gerade Reihe, die mittig zwischen den langen Seitenkanten der Schmalseite angeordnet ist, wie in Verbindung mit Figur 4 zweifelsfrei zu sehen ist. Diese Kanäle 12 verlaufen dadurch aber auch mittig zwischen den beiden Reihen mit den Kanälen 11 und durchdringen auch die Anordnungsebene der Ankerführungsstangen 9. Falls keine Schwächung der Bohrungswand der Sacklochbohrungen 14 erfolgen soll, können die Kanäle 12 deshalb alternativ auch als Sacklochbohrungen ausgebildet sein und in einem Abstand vor der Sacklochbohrung 14 enden. Solche Sacklochbohrungen als Kanäle 12 sollten dann möglichst im gleichen Abstand von der Sacklochbohrung 14 enden wie der seitliche Abstand der Kanäle 11 auf der Stirnseite des Ankers 8. Dieser Abstand ist in der frontalen Draufsicht gemäß Figur 7 gut zu erkennen. In diesem Fall müssten die Kanäle 12 aber von den entgegen gesetzten Stirnseiten aus gebohrt werden, was einen entsprechenden Mehraufwand bei der Herstellung des Ankers 8 zur Folge hätte.
  • Ebenfalls quer zu den Kanälen 11 und in erheblich größerer Anzahl sind die Kanäle 13 eingebracht, die sich alle rechtwinklig zur Längsmittelebene des Ankers 8 erstrecken. Dabei gehen die Kanäle 13 von einer Breitseite des Ankers 8 aus und münden in die gegenüberliegende Breitseite ein. Das Lochbild auf der Breitseite umfasst dabei zwei rechteckige Lochfelder, die aus drei parallelen Reihen mit jeweils sechs Hohlkanälen 13 bestehen, wobei die Hohlkanäle 13 in der Reihe und seitlich einen übereinstimmenden Abstand voneinander aufweisen. Diese Lochfelder liegen beidseitig eines Mittelbereichs des Ankers 8, in dem die Ankerführungsstangen 9 angeordnet sind.
  • Zwischen den beiden Lochfeldern aus Hohlkanälen 13 ist zusätzlich zentral ein einzelner Kanal 13' angeordnet, der ebenfalls eine die Breitseiten verbindende Durchgangsbohrung bildet. Wie aus der Frontalansicht nach Figur 5 in Verbindung mit der Schnittdarstellung nach Figur 6 zu ersehen ist, passiert der Hohlkanal 13' hierbei einen Vollmaterialbereich des Ankerblocks, der zwischen den Enden der beiden Sacklochbohrungen 14 verblieben ist. Somit wird die Stabilität des Ankers 8 durch den Kanal 13' nicht nennenswert beeinträchtigt.
  • Neben den Kanälen im Anker 8 befinden sich auch in den Lagerplatten 4 und 5 Kanäle 15, die sich achsparallel zu den Kanälen 11 erstrecken. Von den Kanälen (Hohlkanälen) 15 sind zwei Reihen mit jeweils sechs Kanälen 15 vorhanden, die vorzugsweise kongruent zu den Kanälen 11 im Anker 8 angeordnet sind.
  • Bezugszeichenliste
  • 1
    Struktur
    2
    Magnetjoch
    3
    Magnetjoch
    4
    Lagerplatte
    5
    Lagerplatte
    6
    Permanentmagnet
    7
    Permanentmagnet
    8
    Anker
    9
    Ankerführungsstangen
    10
    Lagerbohrung
    11
    Kanal (Hohlkanal) Anker
    12
    Kanal (Hohlkanal) Anker
    13
    Kanal (Hohlkanal) Anker
    13'
    Kanal (Hohlkanal) Anker
    14
    Sacklochbohrung
    15
    Kanal (Hohlkanal) Lagerplatte

Claims (11)

  1. Magnetisches Antriebssystem für eine Schalteinrichtung mit einem Magnetjoch (2, 3), in dem ein massiver Anker (8) aus magnetischem Werkstoff zwischen zwei entgegengesetzten Endlagen linear schiebegeführt ist, mit wenigstens einem Permanentmagneten (6, 7) zur Erzeugung eines magnetischen Flusses in dem Magnetjoch (2, 3) und mit wenigstens einer Spule, durch die der Anker (8) zwischen seinen Endlagen hin- und her bewegbar ist, wobei der Anker (8) zur Vermeidung von Wirbelstromverlusten mit länglichen Kanälen (11, 12, 13, 13') versehen ist,
    dadurch gekennzeichnet, dass
    die Kanäle (11, 12, 13, 13') im Anker (8) an ihrem Umfang umlaufend geschlossen sind.
  2. Magnetisches Antriebssystem nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Kanäle (11, 12, 13, 13') des Ankers (8) aus Bohrungen bestehen.
  3. Magnetisches Antriebssystem nach Anspruch 2,
    dadurch gekennzeichnet, dass
    die Kanäle (11, 12, 13, 13') des Ankers (8) Durchgangsbohrungen oder Sacklochbohrungen sind.
  4. Magnetisches Antriebssystem nach Anspruch 1,
    dadurch gekennzeichnet, dass
    mehrere umlaufend geschlossene Kanäle (11, 12, 13, 15) des Antriebssystems zu einer Lochreihe aneinandergereiht sind.
  5. Magnetisches Antriebssystem nach Anspruch 4,
    dadurch gekennzeichnet, dass
    mehrere von Kanälen (11, 12, 13, 15) gebildete Lochreihen parallel zueinander verlaufen.
  6. Magnetisches Antriebssystem nach Anspruch 5,
    dadurch gekennzeichnet, dass
    die von Ankerführungsstangen (9) durchsetzten Stirnseiten des quaderförmigen Ankers (8) mit mindestens einer Lochreihe von Kanälen (11) versehen sind.
  7. Magnetisches Antriebssystem nach Anspruch 2,
    dadurch gekennzeichnet, dass
    der Anker (8) quer zu seiner Vorschubrichtung von einer Kanalanordnung durchsetzt ist.
  8. Magnetisches Antriebssystem nach Anspruch 7,
    dadurch gekennzeichnet, dass
    die Kanalanordnung mindestens eine mittig entlang den Schmalseiten des Ankers (8) verlaufende Reihe von Kanälen (12) aufweist.
  9. Magnetisches Antriebssystem nach Anspruch 7,
    dadurch gekennzeichnet, dass
    die Kanalanordnung zwei seitlich auf den Breitseiten des Ankers (8) in einem Abstand voneinander angeordnete Lochfelder umfasst, die jeweils aus mehreren von Kanälen (13) gebildeten Lochreihen zusammengesetzt sind.
  10. Magnetisches Antriebssystem nach Anspruch 7,
    dadurch gekennzeichnet, dass
    die Breitseiten des Ankers (8) mittig über einen zentralen Kanal (13') miteinander verbunden sind, der zwischen Sacklochbohrungen (14) zur Aufnahme der Ankerführungsstangen (9) im Vollmaterial des Ankers (8) verläuft.
  11. Magnetisches Antriebssystem nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die mit den Anschlagflächen des Ankers (8) zusammenwirkenden Gegenflächen am Jochkreis mindestens eine Lochreihe mit Kanälen (15) aufweisen.
EP08760338.7A 2007-06-15 2008-06-02 Magnetisches antriebssystem für eine schalteinrichtung Active EP2165347B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007028203A DE102007028203B3 (de) 2007-06-15 2007-06-15 Magnetisches Antriebssystem für eine Schalteinrichtung
PCT/EP2008/056751 WO2008151959A1 (de) 2007-06-15 2008-06-02 Magnetisches antriebssystem für eine schalteinrichtung

Publications (2)

Publication Number Publication Date
EP2165347A1 EP2165347A1 (de) 2010-03-24
EP2165347B1 true EP2165347B1 (de) 2016-03-16

Family

ID=39718525

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08760338.7A Active EP2165347B1 (de) 2007-06-15 2008-06-02 Magnetisches antriebssystem für eine schalteinrichtung

Country Status (7)

Country Link
US (1) US20100176902A1 (de)
EP (1) EP2165347B1 (de)
CN (1) CN101772820B (de)
DE (1) DE102007028203B3 (de)
ES (1) ES2569903T3 (de)
MX (1) MX2009013440A (de)
WO (1) WO2008151959A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2704173A1 (de) * 2012-08-27 2014-03-05 ABB Technology AG Elektromagnetischer Aktuator für einen Mittelspannungs-Vakuum-Schutzschalter
JP6707204B2 (ja) * 2017-08-21 2020-06-10 三菱電機株式会社 電磁操作機構および遮断器
US10297376B2 (en) * 2017-09-25 2019-05-21 The United States Of America As Represented By The Administrator Of Nasa Bi-stable pin actuator
WO2019117649A1 (ko) * 2017-12-14 2019-06-20 최태광 자기력 제어 장치 및 이를 이용한 자성체 홀딩 장치
FR3084772B1 (fr) * 2018-08-01 2021-06-18 Schneider Electric Ind Sas Actionneur electromagnetique et appareil de commutation electrique comportant cet actionneur

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2021659C3 (de) * 1970-05-02 1974-10-03 Siemens Ag Aus Blechen zusammengesetzter Magnetkern
DE3332093A1 (de) * 1983-09-02 1985-03-21 Siemens AG, 1000 Berlin und 8000 München Schaltstueck fuer eine vakuumschaltroehre
JPS61164456A (ja) * 1985-01-11 1986-07-25 Diesel Kiki Co Ltd 電磁アクチユエ−タ
US5207410A (en) * 1992-06-03 1993-05-04 Siemens Automotive L.P. Means for improving the opening response of a solenoid operated fuel valve
DE19709089A1 (de) * 1997-03-06 1998-09-10 Abb Patent Gmbh Permanentmagnetischer Antrieb für einen Schalter
DE29706491U1 (de) * 1997-04-11 1998-08-06 FEV Motorentechnik GmbH & Co. KG, 52078 Aachen Elektromagnetischer Aktuator mit wirbelstromarmem Anker
AU2583201A (en) * 1999-12-21 2001-07-03 Gary E. Bergstrom Flat lamination solenoid
DE10319285B3 (de) * 2003-04-29 2004-09-23 Compact Dynamics Gmbh Brennstoff-Einspritzventil für Brennkraftmaschinen
DE102005026415A1 (de) * 2005-06-03 2006-12-07 Siemens Ag Elektromagnetische Antriebseinrichtung

Also Published As

Publication number Publication date
DE102007028203B3 (de) 2008-12-04
CN101772820B (zh) 2013-07-10
CN101772820A (zh) 2010-07-07
MX2009013440A (es) 2010-01-27
EP2165347A1 (de) 2010-03-24
US20100176902A1 (en) 2010-07-15
WO2008151959A1 (de) 2008-12-18
ES2569903T3 (es) 2016-05-13

Similar Documents

Publication Publication Date Title
EP1704574A1 (de) Elektromagnetischer linearantrieb
DE10146899A1 (de) Elektromagnetischer Aktuator, insbesondere elektromagnetischer Antrieb für ein Schaltgerät
EP2165347B1 (de) Magnetisches antriebssystem für eine schalteinrichtung
DE3527174C2 (de)
DE10310448B4 (de) Elektromagnetische Stellvorrichtung
DE102011014192B4 (de) Elektromagnetische Aktuatorvorrichtung
EP0686989B1 (de) Bistabile Schaltvorrichtung
EP1897108B1 (de) Elektrische schaltvorrichtung mit magnetischen verstellelementen für ein schaltelement
EP0203496B1 (de) Elektromagnetisches Relais
EP0883146B1 (de) Permanentmagnetischer Antrieb für einen Schalter
EP0251075B1 (de) Magnetventil für flüssige und gasförmige Medien
EP2846070B1 (de) Magnetventil
DE102006059375A1 (de) Elektromagnetischer Aktuator sowie Verfahren zur Herstellung eines Bauteils für einen elektromagnetischen Aktuator
DE3338602C2 (de)
DE102017211257B4 (de) Elektromagnetischer Antrieb und damit ausgestattetes Ventil
DE602005002195T2 (de) Linear Betätiger mit direktem Antrieb
DE1489975A1 (de) Jochsystem fuer Elektromagnete
DE3528090C1 (de) Elektromagnetisches Relais
DE102007041969B3 (de) Magnetisches Antriebssystem für eine Schalteinrichtung
DE4417142C2 (de) Gleichstrom-Hubmagnet und Verfahren zu dessen Herstellung
DE102004039985A1 (de) Relais
DE8205174U1 (de) Magnetventil
DE29502797U1 (de) Bistabile elektrische Magnetvorrichtung
DE10261473B4 (de) Elektromagnetisches Relais
DE1979712U (de) Polarisiertes elektromagnetisches relais.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20141216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150914

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 781864

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20160420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008013928

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2569903

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160513

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160610

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008013928

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

26N No opposition filed

Effective date: 20161219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160616

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160602

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080602

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160602

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230512

Year of fee payment: 16

Ref country code: NL

Payment date: 20230605

Year of fee payment: 16

Ref country code: FR

Payment date: 20230619

Year of fee payment: 16

Ref country code: DE

Payment date: 20220630

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230601

Year of fee payment: 16

Ref country code: SE

Payment date: 20230608

Year of fee payment: 16

Ref country code: AT

Payment date: 20230508

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230627

Year of fee payment: 16

Ref country code: ES

Payment date: 20230918

Year of fee payment: 16

Ref country code: CH

Payment date: 20230907

Year of fee payment: 16