EP2148155A1 - Kühlvorrichtung - Google Patents

Kühlvorrichtung Download PDF

Info

Publication number
EP2148155A1
EP2148155A1 EP09405117A EP09405117A EP2148155A1 EP 2148155 A1 EP2148155 A1 EP 2148155A1 EP 09405117 A EP09405117 A EP 09405117A EP 09405117 A EP09405117 A EP 09405117A EP 2148155 A1 EP2148155 A1 EP 2148155A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
cooling
heat
medium
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09405117A
Other languages
English (en)
French (fr)
Other versions
EP2148155B1 (de
Inventor
Max Aeberhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UL Tech AG
Original Assignee
UL Tech AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH01149/08A external-priority patent/CH699233A2/de
Application filed by UL Tech AG filed Critical UL Tech AG
Publication of EP2148155A1 publication Critical patent/EP2148155A1/de
Application granted granted Critical
Publication of EP2148155B1 publication Critical patent/EP2148155B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems

Definitions

  • the invention relates to a cooling device and a method for cooling a first medium according to the preamble of claims 1 and 7.
  • Cooling devices are widely used for cooling room air and / or water in buildings. Heat or waste heat generating processes, components or machines can also be maintained by means of cooling devices at or below a predetermined temperature level.
  • cooling devices typically include one or more chillers or heat pumps operating on the principle of reversing the Carnot process.
  • free-cooling devices instead of chillers at sufficiently low outside temperatures to cool a medium.
  • Switching from free-cooling to cooling by means of a chiller and vice versa can be automatic when exceeding or falling below a temperature limit of the outside air detected by a temperature sensor respectively.
  • a disadvantage of such solutions is that the potential of cost-effective and energy-efficient cooling by outside air is only insufficiently exhausted.
  • the medium to be cooled releases heat to a fluid heat carrier, eg water, in a first heat exchanger.
  • a fluid heat carrier eg water
  • the fluid heat carrier is exclusively recooled by a preferably designed as a hybrid recooler outdoor heat exchanger - ie by free-cooling - and returned to the first heat exchanger. With increasing outside temperature, this is no longer sufficient to extract sufficient heat from the heat transfer medium.
  • the heat transfer medium or coolant is additionally deprived of heat by means of a chiller if the sole direct heat removal by free-cooling is no longer sufficient to cool the medium to the desired temperature.
  • the proportion of the chiller provided Cooling capacity is continuously regulated according to the respective requirements.
  • the flow rate of the coolant to the chiller can be controlled or regulated by means of a continuously or continuously adjustable actuator (eg a modulatable multi-way valve) depending on the outside temperature and the load of a controller.
  • a continuously or continuously adjustable actuator eg a modulatable multi-way valve
  • the setting of the actuator is continuously, continuously or stepwise adapted to the particular circumstances in accordance with a predetermined function of the controller.
  • the proportion of cooling power provided by the chiller is thus increased based on this function.
  • a plurality of actuators may also be provided, in particular also further continuously adjustable or adjustable actuators in order to control or regulate the cooling device in the manner according to the invention.
  • the proportion of cooled by the chiller heat transfer stream can be adapted to the respective conditions, for example by one or more funding or pumps with controllable or variable flow rate, so that the cooling potential of the outside air is optimally utilized.
  • the outer heat exchanger or hybrid Recooler not only used for heat dissipation during direct free-cooling, but also for discharging the heat given off by the chiller to the environment or to the outside air. This is a particularly space-saving, cost-effective and energy-efficient variant.
  • a hybrid recooler which dissipates heat to the outside air
  • other heat exchangers could be provided which release heat to another medium such as surface water or to the soil. In a system with the inventive cooling device energy consumption and operating costs are small compared to conventional solutions.
  • the Figures 1a, 1b and 1c schematically show a part of a first embodiment of the inventive cooling device for cooling a first medium at different temperatures of a heat receiving additional medium such as outside air.
  • the first medium can be, for example, room air or outside air, which is supplied to a room, for example a computer or server room of a data center.
  • the first medium may also be, for example, water or another cooling fluid or generally a fluid heat carrier which is used, for example, for cooling equipment, machines or components.
  • active Connecting lines, through which a coolant or a fluid heat carrier flows, are each highlighted by bold, broken lines.
  • the simple cooling device in the Figures 1a, 1b and 1c comprises a first heat exchanger 1, in which the first medium emits heat to a fluid heat carrier, said heat carrier is conveyed by a pump or a conveyor 9 in a cooling network and circulated in lines of this cooling network.
  • the first heat exchanger 1 is, for example, a fin heat exchanger and the first medium is, for example, room air.
  • the first heat exchanger 1 and a second heat exchanger 3 are connected on the primary side via a first connecting line 5 and a second connecting line 7 with each other to a pitch circle of the cooling network.
  • a pump is designed as conveying means 9 for the fluid heat carrier (for example water or another coolant) in this cooling network.
  • the first medium 1 heat is removed in the first heat exchanger.
  • the heat carrier or the coolant releases heat to a second medium.
  • the recooled coolant is fed back to the first heat exchanger 1 via a continuously or continuously adjustable actuator 11.
  • This actuator 11 is a modulating multi-way valve, wherein the supplying portion of the first connection line 5 with one of two inputs of this multi-way valve and the diverting Section of the first connecting line 5 is connected to the output of this multi-way valve.
  • the cooling network additionally comprises a third heat exchanger 13, which is assigned to a recooler 15, and in which heat can be withdrawn from the fluid heat carrier and released to a third medium.
  • the recooler 15 is formed as a hybrid recooler 15, wherein the third heat exchanger 13 is sprayed with water to allow improved heat dissipation to the outside air.
  • the third heat exchanger 13 could also be designed for heat dissipation to the ground or to surface water.
  • the third heat exchanger 13 is coupled to the pitch circle of the cooling network, with a third connecting line 17 connected to a second input of the multiway valve and a fourth connecting line 19 to the second connecting line 7 between the first heat exchanger 1 and the second heat exchanger 3.
  • the third connecting line 17 is also connected via a fifth connecting line 21 to the second connecting line 7, wherein the mouth of this fifth connecting line 21 is closer to the second heat exchanger 3 as the confluence of the fourth connecting line 19, and wherein between these two mouths a further actuator 23 for Breaking and releasing the second connection line 7 is arranged.
  • the actuators 11 and 23 and the conveyor 9 and any other actuators and / or funding are controlled by a (not shown) control or controllable.
  • the controller detects the measurement quantities required for operation, eg the outside temperature and the room temperature to be cooled by means of suitable sensors (not shown) and preferably has an interface for prescribing operating parameters such as a lower limit temperature T1 for the outside air, below that a cooling of the first Medium exclusively by heat to the outside air with the third heat exchanger 13 is possible, and an upper limit temperature T2 for the outside temperature above which cooling of the first medium by direct heat to the outside air or by pure free-cooling is no longer possible.
  • T1 for the outside air
  • T2 an upper limit temperature
  • the control valve 23 is open. This situation corresponds to summer operation, the outside temperature being above the upper limit temperature T2. According to the situation FIG. 1b the outside temperature is below the lower limit temperature T1. This corresponds to winter operation. The recooling of the coolant is 100% by the third Heat exchanger 13.
  • the control valve 23 is closed. According to the situation Figure 1c the outside temperature is between the lower limit temperature T1 and the upper limit temperature T2. This corresponds to the mixed operation.
  • the re-cooling of the coolant takes place both through the second heat exchanger 3 and through the third heat exchanger 13, wherein the percentage of the heat transfer medium flowing through the second heat exchanger 3 on the entire heat transfer flow flowing through the first heat exchanger 1, or an equivalent size in each case by the Position of the multi-way valve 11 is determined.
  • Both the first input and the second input of the multi-way valve 11 are connected to the output thereof, wherein the free opening cross-sections are each given complementary to each other by the respective working position of the multi-way valve 11.
  • the control valve 23 is closed.
  • FIG. 2 shows a further embodiment of the cooling device.
  • the second heat exchanger 3 is designed here as an evaporator of a refrigerating machine 25 and connected in a refrigerant circuit via a compressor 27 with a fourth heat exchanger 29 acting as a condenser.
  • the condenser in turn is connected to the second heat exchanger 3 via a connecting line with an expansion valve 31.
  • the recooler 15 may additionally comprise a fifth heat exchanger 33 arranged in the fourth connecting line 19 in front of the third heat exchanger 13, and a further conveying means 9 and a sixth connecting line 35 with a further actuator 23 between the third connecting line 17 and the fourth connecting line 19 at the beginning of the fifth Heat exchanger 33. Am on the basis of FIGS.
  • the fifth heat exchanger 33 in conjunction with the third heat exchanger 13 and the further conveying means 9 and the opened further adjusting means 23, can be a separate cooling device operable independently of the first pitch circle with the first heat exchanger 1 and the second heat exchanger 3.
  • an independent heat exchanger is provided for removing heat from the refrigerating machine 25, namely the fourth heat exchanger 29.
  • FIG. 3 A preferred further variant of the cooling device is shown in FIG. 3 shown.
  • the fourth heat exchanger 29 acting as a condenser is assigned to the recooler 15.
  • the fourth heat exchanger 29 is analogous to the fifth heat exchanger 33 in an arrangement according to FIG. 2 arranged in the fourth connecting line 19 between the third heat exchanger 13 and the first heat exchanger 1.
  • the chiller 25 can deliver heat to the heat carrier in the cooling network, which can then be dissipated in the third heat exchanger 13 to the environment.
  • the third heat exchanger 13 can thus be used depending on the position of the actuator 11 for the direct removal of heat by means of free-cooling and / or for the indirect removal of heat which is discharged from the chiller 25 at a higher temperature level, the proportion of the chiller 25 recooled heat transfer stream continuously on the entire flowing through the first heat exchanger 1 heat transfer stream between 0% and 100% is adjustable.
  • the fourth heat exchanger 29 absorbs no heat from the chiller 25 and thus serves only as a flow line.
  • Compared to an embodiment according to FIG. 2 can save the space and the cost of a separate heat exchanger of the chiller 25.
  • FIG. 4 shows a schematic representation of another cooling device in which the chiller 25, and the conveying and adjusting means of the hydraulic system are combined to form a unit 26.
  • the first heat exchanger 1 is connected via two main lines 37a, 37b to the heat exchanger 13 of the hybrid recooler 15, wherein in the one main line 37a two circulation pumps 9a, 9b are arranged as conveying means 9.
  • the main lines 37a, 37b are connected to each other via two transverse lines 39a, 39b, each with a control valve 41a, 41b, wherein the transverse lines 39a, 39b between the two circulation pumps 9a, 9b open into the main line 37a.
  • the first transverse line 39a is connected via two connecting lines 43a, 43b to the cooling heat exchanger 3 of the chiller 25, wherein in the connecting line 43a, a pump 9c is arranged with a continuously variable flow rate.
  • the second transverse line 39b is connected via two connecting lines 43c, 43d to the heat-emitting heat exchanger 29 of the chiller 25, wherein in the connecting line 43c, a pump 9d is arranged with continuously variable flow rate.
  • Spray unit 45 for spraying the fins of the heat exchanger 13 with water
  • a catch basin 47 below the inclined heat exchanger 13 for collecting the dripping spray water
  • a pump 49 for conveying the spray water from the catch basin 47 to the spray unit 45.
  • a fan 51 for conveying Outside air through the slats of the heat exchanger 13 (shown by the arrow P). The air flow (supported by evaporating water spray) cools the circulating heat transfer medium in the pipe network.
  • FIGS. 1a, 1b, 1c Analogous to the continuously adjustable multiway valve in the embodiments of the invention according to the FIGS. 1a, 1b, 1c .
  • the heat carrier can be additionally cooled by the chiller 25 with insufficient cooling capacity of the external heat exchanger 13 by the flow rates from the first main line 37a via the cooling heat exchanger 3 of the refrigerator 25 to the second main line 37b and from the second main line 37b via the heat-emitting heat exchanger 29 of the Cooling machine 25 to the first main line 37a of the (not shown) control means of the pumps 9c, 9d controlled or regulated.
  • FIG. 5 shows in principle the proportions of the discharged from the chiller 25 cooling load (curve A) and from the outdoor heat exchanger 13 by pure free-cooling directly discharged cooling load (curve B) on the total discharged cooling load as a function of Ambient or outside temperature T EXT , below the lower limit temperature T1 only the outer heat exchanger 13 is used (chiller not active), and wherein above the second limit temperature T2, the entire heat load is dissipated via the heat exchanger 3 of the chiller.
  • the characteristic curves A and B do not necessarily have to be linear with the outside temperature. They are generally stored as continuous functions of the outside temperature and possibly other parameters in the controller.
  • the control of the heat dissipation by the chiller 25 can be done, for example, solely on the basis of the outside temperature: If the outside temperature is below a lower limit temperature T1, it is ensured by the position of continuously adjustable actuators 11 and / or the respective delivery rate of conveying means 9 with continuously variable delivery rate the first medium - eg room air - is cooled only by free-cooling or by cooling the heat carrier by direct heat dissipation in the outer heat exchanger 13 only.
  • the controller changes the manipulated variables for the continuously adjustable actuators 11 and / or conveying means 9 continuously or continuously or in general according to a predetermined function in the control, whereby an increasing proportion of the coolant through the refrigerating machine 25 and a decreasing proportion of the coolant can be cooled only by pure free-cooling in the outer heat exchanger 13. If the outside temperature reaches an upper limit value, the actuators 11 or conveying means 9 are adjusted so that the total heat load in the heat exchanger 3 of the refrigerating machine 25 is released.
  • the control can also take into account other measured variables in order to calculate the suitable control variables for the actuators 11 or conveying means 9.
  • temperatures and / or volume flows of the coolant can be detected and processed at one or more points in the cooling network.
  • the temperature of the first medium to be cooled that is, for example, the room temperature of a data center to be cooled, belongs to the measured variables processed by the control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

Die Kühlvorrichtung umfasst einen ersten Wärmetauscher (1) zum Kühlen eines ersten Mediums mittels eines fluiden Wärmeträgers und einen zweiten Wärmetauscher (3) und einen dritten Wärmetauscher (13) zum Abführen der vom Wärmeträger aufgenommenen Wärme. Der zweite Wärmetauscher (3) ist einer Kältemaschine (25) zugeordnet, der dritte Wärmetauscher (13) einer Free-cooling-Einrichtung. Mittels eines kontinuierlich verstellbaren Stellmittels wird der Wärmemittelstrom in Abhängigkeit der Aussentemperatur kontinuierlich verändert.

Description

  • Gegenstand der Erfindung ist eine Kühlvorrichtung und ein Verfahren zum Kühlen eines ersten Mediums gemäss dem Oberbegriff der Patentansprüche 1 und 7.
  • Kühlvorrichtungen werden verbreitet zur Kühlung von Raumluft und/oder Wasser in Gebäuden eingesetzt. Wärme bzw. Abwärme erzeugende Prozesse, Bauteile oder Maschinen können ebenfalls mittels Kühlvorrichtungen auf oder unter einem vorgebbaren Temperaturniveau gehalten werden. Insbesondere ist es bekannt, Computerarbeitsplätze und/oder Serverräume bzw. Einrichtungen für die elektronische Datenverarbeitung (EDV) durch Zufuhr kühler Luft und durch Abfuhr warmer Luft oder alternativ durch Abgabe von Wärme an ein fluides Kühlmittel zu kühlen. Solche Kühlvorrichtungen umfassen in der Regel eine oder mehrere Kältemaschinen bzw. Wärmepumpen, die nach dem Wirkprinzip der Umkehr des Carnot-Prozesses arbeiten.
    Des Weiteren ist es bekannt, bei genügend tiefen Aussentemperaturen anstelle von Kältemaschinen Free-cooling-Vorrichtungen zu nutzen, um ein Medium zu kühlen. Die Umschaltung von Free-cooling zur Kühlung mittels Kältemaschine und umgekehrt kann automatisch beim Überschreiten bzw. Unterschreiten einer von einem Temperaturfühler erfassten Grenztemperatur der Aussenluft erfolgen. Ein Nachteil solcher Lösungen liegt darin, dass das Potential der kostengünstigen und energieeffizienten Kühlung durch Aussenluft nur ungenügend ausgeschöpft wird.
  • Es ist deshalb Aufgabe der vorliegenden Erfindung, eine Kühlvorrichtung und ein Verfahren zum Kühlen eines Mediums zu schaffen, mit denen eine verbesserte Nutzung des Kühlpotentials der Aussenluft möglich ist.
  • Diese Aufgabe wird gelöst durch eine Kühlvorrichtung und durch ein Verfahren zum Kühlen eines ersten Mediums gemäss den Merkmalen der Patentansprüche 1 und 7.
  • Das zu kühlende Medium gibt in einem ersten Wärmetauscher Wärme an einen fluiden Wärmeträger, z.B. Wasser, ab. Ist die Aussentemperatur ausreichend tief, wird der fluide Wärmeträger ausschliesslich von einem vorzugsweise als hybrider Rückkühler ausgebildeten Aussenwärmetauscher - also durch Free-cooling - rückgekühlt und wieder zum ersten Wärmetauscher zurückgeführt. Mit zunehmender Aussentemperatur genügt dies nicht mehr, um dem Wärmeträger genügend Wärme zu entziehen. Erfindungsgemäss wird dem Wärmeträger bzw. Kühlmittel zusätzlich Wärme mittels einer Kältemaschine entzogen, wenn die alleinige direkte Wärmeabfuhr durch Free-cooling nicht mehr ausreicht, um das Medium auf die gewünschte Temperatur zu kühlen. Der Anteil der von der Kältemaschine erbrachten Kühlleistung wird entsprechend des jeweiligen Bedarfs stetig geregelt. So kann beispielsweise die Durchflussmenge des Kühlmittels zur Kältemaschine mittels eines stetig bzw. kontinuierlich einstellbaren Stellgliedes (z.B. eines modulierbaren Mehrwegventils) in Abhängigkeit der Aussentemperatur und der Last von einer Steuerung gesteuert oder geregelt werden. Dabei wird die Einstellung des Stellgliedes gemäss einer der Steuerung vorgegebenen Funktion kontinuierlich, stetig oder stufenweise an die jeweiligen Gegebenheiten angepasst. Mit zunehmender Aussentemperatur bzw. mit abnehmender direkter Free-cooling-Leistung wird somit der Anteil der von der Kältemaschine erbrachten Kühlleistung basierend auf dieser Funktion erhöht. Selbstverständlich können je nach Ausbildung der jeweiligen Kühleinrichtung auch mehrere Stellglieder vorgesehen sein, insbesondere auch weitere kontinuierlich ein- oder verstellbare Stellglieder, um die Kühleinrichtung in der erfindungsgemässen Weise zu steuern oder zu regeln. Alternativ oder zusätzlich kann der Anteil des von der Kältemaschine gekühlten Wärmeträgerstroms am gesamten Wärmeträgerstrom z.B. auch durch ein oder mehrere Fördermittel bzw. Pumpen mit steuer- oder regelbarer Fördermenge an die jeweiligen Bedingungen angepasst werden, so, dass das Kühlpotential der Aussenluft optimal ausgeschöpft wird.
    Bei einer besonders vorteilhaften Ausgestaltung der Erfindung wird der Aussenwärmetauscher bzw. hybride Rückkühler nicht nur zur Wärmeabfuhr beim direkten Free-cooling benutzt, sondern auch zum Abführen der von der Kältemaschine abgegebenen Wärme an die Umwelt bzw. an die Aussenluft. Dies ist eine besonders Platz sparende, kostengünstige und energieeffiziente Variante.
    Anstelle eines hybriden Rückkühlers, der Wärme an die Aussenluft abführt, könnten alternativ auch andere Wärmetauscher vorgesehen sein, welche Wärme an ein anderes Medium wie z.B. an Oberflächenwasser oder an das Erdreich abgegeben. Bei einer Anlage mit der erfindungsgemässen Kühlvorrichtung sind Energieverbrauch und Betriebskosten im Vergleich zu herkömmlichen Lösungen klein.
  • Durch geeignete Anordnung von Stellgliedern und Verbindungsleitungen sowie durch steuerungsseitige Anpassungen können bestehende Kühleinrichtungen mit herkömmlichen Free-cooling-Einheiten ergänzt und zu erfindungsgemässen Kühleinrichtungen umgewandelt werden.
  • Anhand einiger Figuren wird die Erfindung im Folgenden näher beschrieben. Dabei zeigen
  • Figur 1a
    eine schematische Darstellung einer ersten Kühlvorrichtung bei Sommerbetrieb (hohe Aussentemperatur),
    Figur 1b
    die Kühlvorrichtung aus Figur 1a bei Winterbetrieb (tiefe Aussentemperatur),
    Figur 1c
    die Kühlvorrichtung aus Figur 1a bei Mischbetrieb (mittlere Aussentemperatur),
    Figur 2
    eine schematische Darstellung einer zweiten Kühlvorrichtung,
    Figur 3
    eine schematische Darstellung einer dritten Kühlvorrichtung,
    Figur 4
    eine schematische Darstellung einer weiteren Kühlvorrichtung mit Fördermitteln, deren Förderleistung kontinuierlich veränderbar ist,
    Figur 5
    ein Diagramm zur Darstellung der prozentualen Anteile der Wärmeabfuhr über den Wärmetauscher der Kältemaschine und durch reines Free-cooling über den Wärmetauscher des hybriden Rückkühlers.
  • Die Figuren 1a, 1b und 1c zeigen schematisch einen Teil einer ersten Ausgestaltung der erfindungsgemässen Kühlvorrichtung zum Kühlen eines ersten Mediums bei unterschiedlichen Temperaturen eines Wärme aufnehmenden weiteren Mediums wie z.B. Aussenluft. Das erste Medium kann z.B. Raumluft oder Aussenluft sein, die einem Raum - z.B. einem Computer- oder Serverraum eines Datencenters - zugeführt wird. Alternativ kann das erste Medium z.B. auch Wasser oder eine andere Kühlflüssigkeit oder generell ein fluider Wärmeträger sein, der z.B. zum Kühlen von Anlage-, Maschinen- oder Bauteilen genutzt wird. Aktive Verbindungsleitungen, durch welche ein Kühlmittel bzw. ein fluider Wärmeträger strömt, sind jeweils durch fette, unterbrochene Linien hervorgehoben.
    Die einfache Kühlvorrichtung in den Figuren 1a, 1b und 1c umfasst einen ersten Wärmetauscher 1, in dem das erste Medium Wärme an einen fluiden Wärmeträger abgibt, wobei dieser Wärmeträger von einer Pumpe bzw. einem Fördermittel 9 in einem Kühlnetz gefördert wird und in Leitungen dieses Kühlnetzes zirkuliert. Der erste Wärmetauscher 1 ist z.B. ein Lamellenwärmetauscher und das erste Medium ist z.B. Raumluft.
    Der erste Wärmetauscher 1 und ein zweiter Wärmetauscher 3 sind primärseitig über eine erste Verbindungsleitung 5 und eine zweite Verbindungsleitung 7 miteinander zu einem Teilkreis des Kühlnetzes verbunden. In der zweiten Verbindungsleitung 7 ist eine Pumpe als Fördermittel 9 für den fluiden Wärmeträger (z.B. Wasser oder ein anderes Kühlmittel) in diesem Kühlnetz ausgebildet. Dem ersten Medium wird im ersten Wärmetauscher 1 Wärme entzogen. Im zweiten Wärmetauscher 3 gibt der Wärmeträger bzw. das Kühlmittel Wärme an ein zweites Medium ab. Das rückgekühlte Kühlmittel wird über ein kontinuierlich bzw. stetig verstellbares Stellglied 11 wieder dem ersten Wärmetauscher 1 zugeführt. Dieses Stellglied 11 ist ein modulierendes Mehrwegeventil, wobei der zuleitende Abschnitt der ersten Verbindungsleitung 5 mit einem von zwei Eingängen dieses Mehrwegeventils und der fortleitende Abschnitt der ersten Verbindungsleitung 5 mit dem Ausgang dieses Mehrwegeventils verbunden ist.
    Das Kühlnetz umfasst zusätzlich einen dritten Wärmetauscher 13, der einem Rückkühler 15 zugeordnet ist, und in welchem dem fluiden Wärmeträger Wärme entzogen und an ein drittes Medium abgegeben werden kann. In einer bevorzugten Ausgestaltung ist der Rückkühler 15 als hybrider Rückkühler 15 ausgebildet, wobei der dritte Wärmetauscher 13 mit Wasser besprüht wird, um eine verbesserte Wärmeabfuhr an die Aussenluft zu ermöglichen. Alternativ könnte der dritte Wärmetauscher 13 aber auch zur Wärmeabgabe an das Erdreich oder an Oberflächenwasser ausgebildet sein. Der dritte Wärmetauscher 13 ist mit dem Teilkreis des Kühlnetzes gekoppelt, wobei eine dritte Verbindungsleitung 17 mit einem zweiten Eingang des Mehrwegeventils und eine vierte Verbindungsleitung 19 mit der zweiten Verbindungsleitung 7 zwischen dem ersten Wärmetauscher 1 und dem zweiten Wärmetauscher 3 verbunden sind. Die dritte Verbindungsleitung 17 ist über eine fünfte Verbindungsleitung 21 ebenfalls mit der zweiten Verbindungsleitung 7 verbunden, wobei die Mündungsstelle dieser fünften Verbindungsleitung 21 näher beim zweiten Wärmetauscher 3 liegt als die Mündungsstelle der vierten Verbindungsleitung 19, und wobei zwischen diesen beiden Mündungsstellen ein weiteres Stellglied 23 zum Unterbrechen und Freigeben der zweiten Verbindungsleitung 7 angeordnet ist.
  • Die Stellglieder 11 und 23 und das Fördermittel 9 sowie allfällige weitere Stellglieder und/oder Fördermittel sind von einer (nicht dargestellten) Steuerung regel- oder steuerbar. Die Steuerung erfasst die zum Betrieb erforderlichen Messgrössen, also z.B. die Aussentemperatur und die zu kühlende Raumtemperatur mittels geeigneter Sensoren (nicht dargestellt) und hat vorzugsweise eine Schnittstelle zum Vorgeben von Betriebsparametern wie z.B. einer unteren Grenztemperatur T1 für die Aussenluft, unterhalb der eine Kühlung des ersten Mediums ausschliesslich durch Wärmeabgabe an die Aussenluft mit dem dritten Wärmetauscher 13 möglich ist, und einer oberen Grenztemperatur T2 für die Aussentemperatur, oberhalb der eine Kühlung des ersten Mediums durch direkte Wärmeabgabe an die Aussenluft bzw. durch reines Free-cooling nicht mehr möglich ist.
    Bei der in Figur 1a dargestellten Situation erfolgt die Rückkühlung des Kühlmittels zu 100% durch den zweiten Wärmetauscher 3. Beim Mehrwegeventil 11 ist nur der erste Eingang mit dem Ausgang verbunden, nicht jedoch der zweite Eingang. Das Stellventil 23 ist geöffnet. Diese Situation entspricht dem Sommerbetrieb, wobei die Aussentemperatur oberhalb der oberen Grenztemperatur T2 liegt.
    Bei der Situation gemäss Figur 1b liegt die Aussentemperatur unterhalb der unteren Grenztemperatur T1. Dies entspricht dem Winterbetrieb. Die Rückkühlung des Kühlmittels erfolgt zu 100% durch den dritten Wärmetauscher 13. Beim Mehrwegeventil 11 ist nur der zweite Eingang mit dem Ausgang verbunden, nicht jedoch der erste Eingang. Das Stellventil 23 ist geschlossen.
    Bei der Situation gemäss Figur 1c liegt die Aussentemperatur zwischen der unteren Grenztemperatur T1 und der oberen Grenztemperatur T2. Dies entspricht dem Mischbetrieb. Die Rückkühlung des Kühlmittels erfolgt sowohl durch den zweiten Wärmetauscher 3 als auch durch den dritten Wärmetauscher 13, wobei der prozentuale Anteil des durch den zweiten Wärmetauscher 3 fliessenden Wärmeträgerstroms am gesamten Wärmeträgerstrom, der durch den ersten Wärmetauscher 1 fliesst, oder eine äquivalente Grösse jeweils durch die Stellung des Mehrwegventils 11 bestimmt wird. Sowohl der erste Eingang als auch der zweite Eingang des Mehrwegventils 11 sind mit dessen Ausgang verbunden, wobei die freien Öffnungsquerschnitte jeweils komplementär zueinander durch die jeweilige Arbeitsstellung des Mehrwegeventils 11 vorgegeben sind. Das Stellventil 23 ist geschlossen. Dies bewirkt, dass das vom Fördermittel 9 geförderte Kühlmittel zu 100% zuerst durch den dritten Wärmetauscher 13 geleitet wird, wo es durch Aussenluft gekühlt wird, und anschliessend zum Teil direkt über das Mehrwegeventil 11 zurück zum ersten Wärmetauscher 1 gelangt, und zum anderen Teil via die fünfte Verbindungsleitung 21, den zweiten Wärmetauscher 3 und das Mehrwegeventil 11.
  • Figur 2 zeigt eine weitere Ausgestaltung der Kühlvorrichtung. Der zweite Wärmetauscher 3 ist hier als Verdampfer einer Kältemaschine 25 ausgebildet und in einem Kältemittelkreislauf über einen Kompressor 27 mit einem als Kondensator wirkenden vierten Wärmetauscher 29 verbunden. Der Kondensator wiederum ist über eine Verbindungsleitung mit einem Entspannungsventil 31 mit dem zweiten Wärmetauscher 3 verbunden.
    Der Rückkühler 15 kann zusätzlich einen in der vierten Verbindungsleitung 19 vor dem dritten Wärmetauscher 13 angeordneten fünften Wärmetauscher 33 umfassen, sowie ein weiteres Fördermittel 9 und eine sechste Verbindungsleitung 35 mit einem weiteren Stellglied 23 zwischen der dritten Verbindungsleitung 17 und der vierten Verbindungsleitung 19 eingangs des fünften Wärmetauschers 33.
    Am anhand der Figuren 1a, 1b, 1c erläuterten Prinzip der Rückkühlung des Wärmeträgers in kontinuierlich veränderbarer Weise über den zweiten Wärmetauscher 3 und den dritten Wärmetauscher 13 ändert sich dabei nichts Wesentliches. Es ist aber ersichtlich, dass der fünfte Wärmetauscher 33 in Verbindung mit dem dritten Wärmetauscher 13 und dem weiteren Fördermittel 9 und dem geöffneten weiteren Stellmittel 23 eine eigenständige, vom ersten Teilkreis mit dem ersten Wärmetauscher 1 und dem zweiten Wärmetauscher 3 unabhängig betreibbare Kühlvorrichtung sein kann.
  • Bei der in Figur 2 dargestellten Ausführungsform ist zum Abführen von Wärme von der Kältemaschine 25 ein unabhängiger Wärmetauscher vorgesehen, nämlich der vierte Wärmetauscher 29. Eine bevorzugte weitere Variante der Kühlvorrichtung ist in Figur 3 dargestellt. Dort ist der als Kondensator wirkende vierte Wärmetauscher 29 dem Rückkühler 15 zugeordnet. Der vierte Wärmetauscher 29 ist analog zum fünften Wärmetauscher 33 bei einer Anordnung gemäss Figur 2 in der vierten Verbindungsleitung 19 zwischen dem dritten Wärmetauscher 13 und dem ersten Wärmetauscher 1 angeordnet. Im vierten Wärmetauscher 29 kann die Kältemaschine 25 Wärme an den Wärmeträger im Kühlnetz abgeben, welche dann im dritten Wärmetauscher 13 an die Umgebung abgeführt werden kann. Der dritte Wärmetauscher 13 kann somit je nach Stellung des Stellgliedes 11 zum direkten Abführen von Wärme mittels Free-cooling und/oder zum indirekten Abführen von Wärme, die von der Kältemaschine 25 auf einem höheren Temperaturniveau abgegeben wird, genutzt werden, wobei der Anteil des von der Kältemaschine 25 rückgekühlten Wärmeträgerstroms am gesamten durch den ersten Wärmetauscher 1 fliessenden Wärmeträgerstrom kontinuierlich zwischen 0% und 100% einstellbar ist.
    Bei reinem Free-cooling-Betrieb nimmt der vierte Wärmetauscher 29 keine Wärme von der Kältemaschine 25 auf und dient somit lediglich als Durchflussleitung.
  • Im Vergleich zu einer Ausführungsform gemäss Figur 2 können der Platz und die Kosten für einen separaten Wärmetauscher der Kältemaschine 25 eingespart werden.
  • Figur 4 zeigt eine schematische Darstellung einer weiteren Kühlvorrichtung, bei welcher die Kältemaschine 25, sowie die Förder- und Stellmittel der Hydraulik zu einer Einheit 26 zusammengefasst sind. Der erste Wärmetauscher 1 ist über zwei Hauptleitungen 37a, 37b mit dem Wärmetauscher 13 des hybriden Rückkühlers 15 verbunden, wobei in der einen Hauptleitung 37a zwei Zirkulationspumpen 9a, 9b als Fördermittel 9 angeordnet sind. Die Hauptleitungen 37a, 37b sind über zwei Querleitungen 39a, 39b mit je einem Steuerventil 41a, 41b miteinander verbunden, wobei die Querleitungen 39a, 39b zwischen den beiden Zirkulationspumpen 9a, 9b in die Hauptleitung 37a münden. Die erste Querleitung 39a ist über zwei Anschlussleitungen 43a, 43b mit dem kühlenden Wärmetauscher 3 der Kältemaschine 25 verbunden, wobei in der Anschlussleitung 43a eine Pumpe 9c mit kontinuierlich veränderbarer Fördermenge angeordnet ist. Die zweite Querleitung 39b ist über zwei Anschlussleitungen 43c, 43d mit dem Wärme abgebenden Wärmetauscher 29 der Kältemaschine 25 verbunden, wobei in der Anschlussleitung 43c eine Pumpe 9d mit kontinuierlich veränderbarer Fördermenge angeordnet ist. Beim Rückkühler 15 sind zum besseren Verständnis zusätzlich einige Details dargestellt, nämlich eine Sprühanlage 45 zum Besprühen der Lamellen des Wärmetauschers 13 mit Wasser, ein Auffangbecken 47 unterhalb des geneigt angeordneten Wärmetauschers 13 zum Auffangen des abtropfenden Sprühwassers sowie eine Pumpe 49 zum Fördern des Sprühwassers vom Auffangbecken 47 zur Sprühanlage 45. Zusätzlich ist auch ein Ventilator 51 zum Fördern von Aussenluft durch die Lamellen des Wärmetauschers 13 (dargestellt durch den Pfeil P). Durch den Luftstrom wird (unterstützt durch verdunstendes Sprühwasser) der im Leitungsnetz zirkulierende Wärmeträger gekühlt. Analog zum kontinuierlich verstellbaren Mehrwegventil bei den Ausführungsformen der Erfindung gemäss den Figuren 1a, 1b, 1c, 2, 3 und 4 kann der Wärmeträger bei ungenügender Kühlleistung des Aussenwärmetauschers 13 zusätzlich durch die Kältemaschine 25 gekühlt werden, indem die Durchflussmengen von der ersten Hauptleitung 37a über den kühlenden Wärmetauscher 3 der Kältemaschine 25 zur zweiten Hauptleitung 37b und von der zweiten Hauptleitung 37b über den Wärme abgebenden Wärmetauscher 29 der Kühlmaschine 25 zur ersten Hauptleitung 37a von der (nicht dargestellten) Steuerung mittels der Pumpen 9c, 9d gesteuert oder geregelt werden. Das Diagramm in Figur 5 zeigt prinzipiell die Anteile der von der Kältemaschine 25 abgeführten Kühllast (Kurve A) und der vom Aussenwärmetauscher 13 durch reines Free-cooling direkt abgeführten Kühllast (Kurve B) an der gesamten abgeführten Kühllast in Abhängigkeit der Umgebungs- bzw. Aussentemperatur TEXT, wobei unterhalb der unteren Grenztemperatur T1 nur der Aussenwärmetauscher 13 genutzt wird (Kältemaschine nicht aktiv), und wobei oberhalb der zweiten Grenztemperatur T2 die gesamte Wärmelast über den Wärmetauscher 3 der Kältemaschine abgeführt wird.
    Die Kennlinien A und B müssen nicht zwingend linear mit der Aussentemperatur verlaufen. Sie sind allgemein als stetige Funktionen der Aussentemperatur und gegebenenfalls weiterer Parameter in der Steuerung gespeichert.
    Die Steuerung der Wärmeabfuhr durch die Kältemaschine 25 kann z.B. allein aufgrund der Aussentemperatur erfolgen: Liegt die Aussentemperatur unterhalb einer unteren Grenztemperatur T1, wird durch die Stellung von kontinuierlich einstellbaren Stellgliedern 11 und/oder die jeweilige Förderleistung von Fördermitteln 9 mit kontinuierlich veränderbarer Förderleistung sichergestellt, dass das erste Medium - z.B. Raumluft - nur durch Free-cooling bzw. durch nur durch Kühlung des Wärmeträgers durch direkte Wärmeabgabe im Aussenwärmetauscher 13 gekühlt wird.
    Mit weiter zunehmender Aussentemperatur ändert die Steuerung die Stellgrössen für das bzw. die kontinuierlich einstellbaren Stellglieder 11 und/oder Fördermittel 9 stetig bzw. kontinuierlich oder allgemein entsprechend einer in der Steuerung vorgegebenen Funktion, wobei ein zunehmender Anteil des Kühlmittels durch die Kältemaschine 25 und ein abnehmender Anteil des Kühlmittels nur durch reines Free-cooling im Aussenwärmetauscher 13 gekühlt werden. Erreicht die Aussentemperatur einen oberen Grenzwert, werden die Stellglieder 11 bzw. Fördermittel 9 so eingestellt, dass die gesamte Wärmelast im Wärmetauscher 3 der Kältemaschine 25 abgegeben wird. Selbstverständlich kann die Steuerung zusätzlich oder alternativ zur Aussentemperatur auch andere Messgrössen berücksichtigen, um die geeigneten Stellgrössen für die Stellglieder 11 bzw. Fördermittel 9 zu berechnen. Insbesondere können an einer oder mehreren Stellen im Kühlnetz Temperaturen und/oder Volumenströme des Kühlmittels erfasst und verarbeitet werden. Selbstverständlich gehört auch die Temperatur des zu kühlenden ersten Mediums, also z.B. die Raumtemperatur eines zu kühlenden Datencenters, zu den von der Steuerung verarbeiteten Messgrössen.

Claims (7)

  1. Kühlvorrichtung zum Kühlen eines ersten Mediums in einem ersten Wärmetauscher (1) durch Abgabe von Wärme an einen in einem Kühlnetz förderbaren fluiden Wärmeträger, dadurch gekennzeichnet, dass das Kühlnetz einen zweiten Wärmetauscher (3) zum Rückkühlen des Wärmeträgers mittels einer Kühlmaschine (25) und einen dritten Wärmetauscher (13) zum Rückkühlen des Wärmeträgers durch Wärmeabgabe an ein Aussenmedium umfasst, und dass im Kühlnetz mindestens ein Stellmittel zum kontinuierlichen Verändern des Anteils des durch den zweiten Wärmetauscher (3) fliessenden Wärmeträgerstroms am gesamten, durch den ersten Wärmetauscher (1) fliessenden Wärmeträgerstrom angeordnet ist.
  2. Kühlvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Stellmittel ein kontinuierlich verstellbares Stellglied (11) bzw. ein modulierendes Mehrwegeventil ist.
  3. Kühlvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Stellmittel eine Pumpe (9c, 9d) mit kontinuierlich einstellbarem Volumenstrom ist.
  4. Kühlvorrichtung nach einem der Ansprüche 1 bis 3, wobei der Wärmetauscher (25) einen als Kondensator wirkenden vierten Wärmetauscher (29) umfasst, dadurch gekennzeichnet, dass dieser vierte Wärmetauscher (29) zum Abführen von Wärme an das Aussenmedium mit dem dritten Wärmetauscher (13) verbunden oder verbindbar ist.
  5. Kühlvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das kontinuierlich verstellbare Stellmittel von einer Steuerung in Abhängigkeit der von einem Temperatursensor erfassten Aussentemperatur steuer- oder regelbar ist.
  6. Kühlvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das zu kühlende erste Medium einem Raum zuzuführende Luft oder Wasser oder ein weiteres Kühlmittel zum Kühlen von Maschinen oder Bauteilen ist.
  7. Verfahren zum Kühlen eines ersten Mediums mit einer Kühlvorrichtung gemäss einem der Patentansprüche 1 bis 6, dadurch gekennzeichnet, dass eine Steuerung den Wärmeträgerstrom durch den zweiten Wärmetauscher (3) der Kältemaschine (25) stetig in Abhängigkeit der Aussentemperatur steuert oder regelt.
EP09405117.4A 2008-07-21 2009-07-20 Kühlvorrichtung Active EP2148155B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01149/08A CH699233A2 (de) 2008-07-21 2008-07-21 Kühlvorrichtung.
CH01443/08A CH699225A1 (de) 2008-07-21 2008-09-10 Kühlvorrichtung.

Publications (2)

Publication Number Publication Date
EP2148155A1 true EP2148155A1 (de) 2010-01-27
EP2148155B1 EP2148155B1 (de) 2017-09-06

Family

ID=41327312

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09405117.4A Active EP2148155B1 (de) 2008-07-21 2009-07-20 Kühlvorrichtung

Country Status (2)

Country Link
EP (1) EP2148155B1 (de)
CH (1) CH699225A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012122150A3 (en) * 2011-03-10 2012-11-01 Parker Hannifin Corporation Cooling system
US20170077970A1 (en) * 2014-04-03 2017-03-16 Redline Communications Inc. Systems and methods for increasing the effectiveness of digital pre-distortion in electronic communications
US9807908B2 (en) 2011-06-30 2017-10-31 Parker-Hannifin Corporation Pumped liquid cooling system using a phase change fluid with additional subambient cooling
EP3757481A4 (de) * 2018-02-22 2021-02-17 Mitsubishi Electric Corporation Klimaanlage und luftbehandlungseinheit
US11022349B2 (en) 2015-07-22 2021-06-01 Carrier Corporation Hydronic system for combining free cooling and mechanical cooling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406138A (en) * 1981-11-18 1983-09-27 Honeywell Inc. Load management control air conditioning system
EP0584733A1 (de) * 1992-08-22 1994-03-02 DaimlerChrysler Aerospace Airbus Gesellschaft mit beschränkter Haftung Kühlsystem in Luftfahrzeugen
US6293106B1 (en) * 2000-05-18 2001-09-25 Praxair Technology, Inc. Magnetic refrigeration system with multicomponent refrigerant fluid forecooling
EP1164338A1 (de) * 1999-02-24 2001-12-19 Hachiyo Engineering Co., Ltd. Einen ammoniakkreislauf und einen kohlendioxidkreislauf kombinierende wärmepumpe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4238364A1 (de) * 1992-11-13 1994-05-26 Behr Gmbh & Co Einrichtung zum Kühlen von Antriebskomponenten und zum Heizen eines Fahrgastraumes eines Elektrofahrzeugs
FR2740397B1 (fr) * 1995-10-26 1997-12-05 Valeo Climatisation Dispositif de chauffage-climatisation de l'habitacle d'un vehicule automobile a moteur electrique
AU4360699A (en) * 1998-06-22 2000-01-10 Silentor Notox A/S Waste heat recovery system
EP1515098A1 (de) * 2003-09-12 2005-03-16 Ingenjörsfirma Kontrollelektronik Hjärtström & Kalén Aktiebolag Umgebungskonditionierungsgerät und Verfahren dafür

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406138A (en) * 1981-11-18 1983-09-27 Honeywell Inc. Load management control air conditioning system
EP0584733A1 (de) * 1992-08-22 1994-03-02 DaimlerChrysler Aerospace Airbus Gesellschaft mit beschränkter Haftung Kühlsystem in Luftfahrzeugen
EP1164338A1 (de) * 1999-02-24 2001-12-19 Hachiyo Engineering Co., Ltd. Einen ammoniakkreislauf und einen kohlendioxidkreislauf kombinierende wärmepumpe
US6293106B1 (en) * 2000-05-18 2001-09-25 Praxair Technology, Inc. Magnetic refrigeration system with multicomponent refrigerant fluid forecooling

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012122150A3 (en) * 2011-03-10 2012-11-01 Parker Hannifin Corporation Cooling system
US9807908B2 (en) 2011-06-30 2017-10-31 Parker-Hannifin Corporation Pumped liquid cooling system using a phase change fluid with additional subambient cooling
US20170077970A1 (en) * 2014-04-03 2017-03-16 Redline Communications Inc. Systems and methods for increasing the effectiveness of digital pre-distortion in electronic communications
US9819373B2 (en) 2014-04-03 2017-11-14 Redline Communications Inc. Systems and methods for increasing the effectiveness of digital pre-distortion in electronic communications
US11022349B2 (en) 2015-07-22 2021-06-01 Carrier Corporation Hydronic system for combining free cooling and mechanical cooling
EP3757481A4 (de) * 2018-02-22 2021-02-17 Mitsubishi Electric Corporation Klimaanlage und luftbehandlungseinheit

Also Published As

Publication number Publication date
EP2148155B1 (de) 2017-09-06
CH699225A1 (de) 2010-01-29

Similar Documents

Publication Publication Date Title
DE102006005035B3 (de) Kühlsystem
WO2017067831A1 (de) Wärmesytsem für ein elektro- oder hybridfahrzeug sowie verfahren zum betrieb eines solchen wärmesystems
DE102017201202A1 (de) Abwärmenutzungseinrichtung für ein Elektrofahrzeug
DE102019207993A1 (de) Thermomanagementsystem für ein Fahrzeug
DE102020112360A1 (de) Fahrzeugmontierte Temperatursteuerungseinrichtung
DE112008003700B4 (de) Vorrichtung zur Steigerung der Heiz- und Kühlleistung einer Wärmepumpe in der Wärmerückgewinnung in Lüftungsgeräten
EP2148155B1 (de) Kühlvorrichtung
WO2019096696A1 (de) Kühlsystem für ein kraftfahrzeug und kraftfahrzeug mit einem solchen kühlsystem
DE102015212726B4 (de) Wärmesystem für ein Fahrzeug und Verfahren zur Klimatisierung eines Fahrzeugs
DE102020117471B4 (de) Wärmepumpenanordnung mit indirekter Batterieerwärmung für batteriebetriebene Kraftfahrzeuge und Verfahren zum Betreiben einer Wärmepumpenanordnung
EP2199706B1 (de) Schaltschrank-Klimagerät und Verfahren zum Betreiben eines Solchen
WO2014032654A1 (de) Wärmetauscher für die schaltschrankkühlung und eine entsprechende kühlanordnung
DE112007002526T5 (de) Temperatursteuersystem mit Wärmetauschermodulen mit indirekter Expansionskühlung und innenliegender elektrischer Beheizung
EP1698837A2 (de) Wärmerückgewinnungssystem mit Nachtkältegewinnung
DE19937949C2 (de) Vorrichtung und Verfahren zum Heizen und/oder Kühlen eines Fahrzeuginnenraums
EP2527147B1 (de) Temperiersystem für Druckmaschinen mit mehreren Temperaturniveaus
EP1792126B1 (de) Vorrichtung zur wärmezu- und/oder -abfuhr zu zumindest einem verbraucher
DE102018113687B4 (de) Vorrichtung und Verfahren zur Kühlung von Batteriezellenmodulen
DE102016112784A1 (de) Kollektorfeld, Energieversorgungssystem mit einem Kollektorfeld sowie Verfahren zum Betreiben eines Energieversorgungssystems
EP2445769B1 (de) Energieoptimiertes klimasystem für lokomotiven mit zwei führerständen
EP3515733B1 (de) Klimatisierungsvorrichtung für ein kraftfahrzeug und verfahren zu deren betrieb
EP2837275B1 (de) Kühlgerät für einen schaltschrank sowie ein entsprechendes verfahren
EP1980803B1 (de) Verfahren zum Betrieb einer Wärmepumpe
DE102018116609A1 (de) Verfahren zum Betrieb eines integralen Heiz-/Klimatisierungs- und Kühlsystems sowie integrales Heiz-/Klimatisierungs- und Kühlsystem mit primärem und sekundärem Kältekreislauf
CH699233A2 (de) Kühlvorrichtung.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20100318

17Q First examination report despatched

Effective date: 20100414

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170320

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: GACHNANG AG PATENTANWAELTE, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 926320

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009014325

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170906

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180106

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009014325

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

26N No opposition filed

Effective date: 20180607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230719

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230724

Year of fee payment: 15

Ref country code: CH

Payment date: 20230802

Year of fee payment: 15

Ref country code: AT

Payment date: 20230718

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009014325

Country of ref document: DE

Representative=s name: KANDLBINDER, MARKUS, DIPL.-PHYS., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230720

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN