EP2147985A1 - Sintered acoustic and oscillation dampening material - Google Patents

Sintered acoustic and oscillation dampening material Download PDF

Info

Publication number
EP2147985A1
EP2147985A1 EP09009342A EP09009342A EP2147985A1 EP 2147985 A1 EP2147985 A1 EP 2147985A1 EP 09009342 A EP09009342 A EP 09009342A EP 09009342 A EP09009342 A EP 09009342A EP 2147985 A1 EP2147985 A1 EP 2147985A1
Authority
EP
European Patent Office
Prior art keywords
graphite
carbide
proportion
metal
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09009342A
Other languages
German (de)
French (fr)
Other versions
EP2147985B1 (en
Inventor
Thomas Dipl.-Ing Hutsch
Bernd Prof. Dr.-Ing. Dipl.-Phys. Kieback
Thomas Dr.-Ing. Dipl.-Ing. Weissgärber
Jürgen Dr. rer.nat. Dipl.-Chem. Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2147985A1 publication Critical patent/EP2147985A1/en
Application granted granted Critical
Publication of EP2147985B1 publication Critical patent/EP2147985B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/165Particles in a matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/23Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • C22C1/055Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds using carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to sintered sound and vibration damping materials, which have the property to damp unwanted noise and vibration. This mechanical energy is absorbed and released in the form of heat in their environment.
  • a reinforcing component graphite or lead or magnesium
  • the consolidation of the mixture includes compression molding, capsule molding, subsequent deformation (eg rolling) and heat treatment of the plastically deformed capsule and its contents.
  • the heat treatment temperature must be kept above the recrystallization temperature of the matrix.
  • the aim here is that the matrix recrystallizes and aggregates the reinforcing component in the form of spindles at the grain boundaries or in the matrix grains. This procedure is very complicated and expensive, but at the same time this method is limited to reinforcing components which are spindle-shaped.
  • a metal / metal composite is described.
  • an aluminum alloy is preferable.
  • the metallic second phase has a partially martensitic structure.
  • mainly alloys with nickel and titanium are used.
  • additives that stabilize martensite can be used.
  • the object of the invention is to provide a material which is formed with a metal or a metal alloy as a base material and a second phase, with which an increased damping can be achieved and which additionally has a strength that it can be used as a construction material can.
  • this object is achieved with a material having the features of claim 1. It can be produced by a method according to claim 5. Advantageous embodiments and further developments of the invention can be achieved with features described in the subordinate claims.
  • the material according to the invention produced by targeted sintering is at least one metal or a metal alloy and carbon in Form of graphite formed.
  • the proportion of graphite is kept at least 50 vol .-%.
  • the metal or metal alloy is selected so that carbide formation can be possible by chemical reaction.
  • the proportion of carbide in the finished material is below the graphite content. It can be adjusted by influencing the sintering leading to heat treatment, with small portions are preferred. It should be at least less than 35% by volume, preferably less than 30% by volume.
  • the damping properties can be improved.
  • the material according to the invention has a higher modulus of elasticity than was expected. It can be greater than 50 GPa in at least one axial direction. Values of at least 70 GPa and very particularly preferably values above 130 GPa for the modulus of elasticity are preferred.
  • graphite is used as a second phase in order to significantly improve the damping properties of the base material.
  • the properties of modulus of elasticity and damping factor can be adapted to the conditions of use.
  • iron As a suitable metal or a suitable metal alloy iron, tungsten, molybdenum, vanadium or tantalum and their alloys are used.
  • carbide-forming metal may be higher.
  • Aluminum or copper should not or only with very small proportions if necessary be included as an alloying ingredient. This also applies to silicon.
  • the proportion of these chemical elements should be less than 2% by mass.
  • a homogeneous powder mixture can be prepared so that the second phase particles are completely enveloped by the base material powder.
  • the powder mixture used to make the material there should be no carbide or at least no carbide of the carbide-forming metal or metal alloy used.
  • the carbide contained in the finished material can be formed exclusively by a chemical reaction of the metal powder used with the carbon in the heat treatment.
  • Suitable methods for this purpose are, for example, inductively or conductively heated hot pressing and modified methods.
  • Spark Plasma Sintering (SPS) and Field Assisted Sintering (FAST) are considered as particularly suitable examples.
  • a corresponding amount of the powder mixture can be filled into a die (for example made of graphite) or a capsule and optionally precompressed with a pressure of a few MPa.
  • the filled matrix can be placed in a corresponding hot press and then evacuated.
  • the proportion of carbide contained in the finished material can be increased by lower heating rates, longer retention time and lower cooling rate. Carbide formation is prevented or reduced if high heating and high cooling rates and / or shorter holding times of the maximum temperature during sintering are selected.
  • the maximum temperature also influences the formation of carbide. At higher maximum temperatures, a higher proportion may have been formed.
  • the heating rate should be at least 20 K / min. As already mentioned, significantly higher heating rates can be used to maintain a smaller carbide content, which can be above 100 K / min.
  • the maximum temperature is essentially determined by the metal used or a metal alloy and its sintering behavior.
  • the average particle size d 50 should preferably be less than 5 ⁇ m for metal smaller than 10 ⁇ m.
  • the mean flake size of the graphite used should be kept in the range from 30 to 900 .mu.m, preferably in the range from 60 to 120 .mu.m.
  • the procedure should be such and starting powders are used that a material according to the invention has a theoretical density of at least 80%, preferably at least 90% after sintering.
  • the material of the invention is characterized not only by its good damping properties but also by its mechanical properties, such as strength and rigidity. These are significantly better than comparable materials that are formed with copper or aluminum and graphite.
  • FIG. 1 a transverse section through an example of a material according to the invention, which is formed with iron and graphite in a proportion of 60 vol .-% and
  • FIG. 2 a diagram illustrating the dependence of the product of modulus and damping factor of graphite contained in the material according to the invention, which is also formed with iron, is illustrated.
  • 400.5 g of iron powder having an average particle diameter of less than 5 ⁇ m and 152.68 g of graphite having an average flake size of 80 ⁇ m were intimately mixed with one another.
  • 70 g of the powder mixture were filled into a graphite die having a diameter of 45 mm, inserted into a spark plasma sintering plant and evacuated to a pressure of 10 -2 mbar under a prepressing pressure of 5 MPa. Subsequently, the pressing pressure was increased to 20 MPa and heated at a heating rate of 300 K / min up to 1050 ° C. After a holding time of 10 s, the mixture was cooled to 400 ° C. at an average cooling rate of about 150 K / min.
  • the mechanical pressure was reduced to 0 MPa and the vacuum chamber was vented at a temperature of about 100 ° C.
  • the proportion of graphite was greater than 55 vol .-%, the proportion of iron carbide was less than 5 vol .-% and the remainder was iron.
  • 400.5 g of iron powder having an average particle diameter of less than 5 ⁇ m and 152.68 g of graphite having an average flake size of 80 ⁇ m were intimately mixed with one another.
  • 70 g of the powder mixture were filled into a graphite die having a diameter of 45 mm, inserted into a spark plasma sintering plant and evacuated to a pressure of 10 -2 mbar under a prepressing pressure of 5 MPa. Subsequently, the pressing pressure was increased to 20 MPa and heated at a heating rate of 300 K / min to a temperature of 1050 ° C. After a holding time of 20 minutes, the mixture was cooled to 400 ° C. at an average cooling rate of about 150 K / min.
  • the mechanical pressure was reduced to 0 MPa and the vacuum chamber was vented at a temperature of about 100 ° C.
  • the proportion of graphite in the range of 50 to 60 vol .-%, the proportion of iron carbide was less than 20 vol .-% and the remainder was made of iron.
  • the mixture was cooled to 400 ° C. at an average cooling rate of about 150 K / min. Thereafter, the mechanical pressure was reduced to 0 MPa and the vacuum chamber was vented at a temperature of about 100 ° C.
  • the proportion of graphite was greater than 68 vol .-%
  • the proportion of tungsten carbide was about 20 vol .-% and the rest was made of tungsten.
  • Example 1 The materials produced in Examples 1 to 3 were characterized in terms of density, geometry-independent damping factor Q -1 and elastic modulus E (Table 1).
  • the attenuation factor Q -1 and E modulus E were determined by means of the impulse excitation method with an RFDA System 23 RFDF-Mf measuring instrument from IMCE NV.
  • Table 1 Properties of the embodiments 1 to 3 example 1
  • Example 2 Example 3 Density [g / cm 3 ] 4.5 4.6 8.0 Damping factor Q -1 0,007 0.005 0,007 Young's modulus E [GPa] 80 82 170 E * Q -1 0.56 0.41 1.19
  • the austenitic stainless steel powder 316L had a composition of 2 mass% Mn, 0.045 mass% P, 16.5 mass% to 18.5 mass% Cr, 2 mass% to 2.5 mass% Mo, 10 mass% % to 13 mass% Ni with a residual iron.
  • the proportion of Si was below 1 mass%. From the thus prepared powder mixture 70 g were filled into a graphite die with a diameter of 45 mm, then inserted into a spark plasma sintering system and evacuated under a prepressing pressure of 5 MPa to a pressure of 10 -2 mbar.
  • the pressing pressure was increased to 20 MPa and heated to a temperature of 1150 ° C at a heating rate of 400 K / min. After a holding time of 10 s, the mixture was cooled to 400 ° C. at an average cooling rate of 150 K / min. Subsequently, the mechanical pressure was reduced to 0 MPa and the evacuated chamber was vented at a temperature of about 100 ° C.
  • the material thus produced had a thermal conductivity in at least one axial direction of 170 W / mK, a thermal expansion in at least one axial direction of 12.3 ppm / K, an E-modulus of 80 GPa, a physical density of 4.57 g / cm 3 and a factor of modulus and geoemetry-independent damping factor of 0.4 GPa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

The sintered acoustic and vibration dampening substance comprises metal or metal alloy, which enables a carbide formation by chemical reaction, and carbon in the form of graphite, where the amount of the graphite is 50 vol.%. The portion of carbide contained in the substance is less than 35 vol.%. The substance has an E-module of 50 GPa and the product of the E-module has a value of 0.4 GPa with a geometrical-independent damping factor in an axial direction. The theoretical thickness of the substance is 80%. An independent claim is included for a method for preparing a substance.

Description

Die Erfindung betrifft gesinterte schall- und schwingungsdämpfende Werkstoffe, die die Eigenschaft aufweisen, unerwünschte Geräusche und Vibrationen zu dämpfen. Dabei wird mechanische Energie absorbiert und in Form von Wärme in ihre Umgebung abgegeben.The invention relates to sintered sound and vibration damping materials, which have the property to damp unwanted noise and vibration. This mechanical energy is absorbed and released in the form of heat in their environment.

Unerwünschte Schwingungen/ Vibrationen, die ein großes Frequenzspektrum aufweisen können, entstehen in vielen Industriebereichen durch mechanische Bewegungen von Baugruppen. Die hohe Vibrationsbelastung in schwingenden Systemen führt zu verkürzten Lebensdauern und unerwünschten Ausfallzeiten bzw. Stillstandzeiten der beanspruchten Bauteile. Erhebliche Probleme entstehen auch durch die Lärmentwicklung aufgrund von Schwingungen.Unwanted oscillations / vibrations, which can have a large frequency spectrum, occur in many industrial sectors due to mechanical movements of assemblies. The high vibration load in oscillating systems leads to shortened lifetimes and unwanted downtime or downtime of the claimed components. Significant problems also arise due to the noise due to vibrations.

Die Aufnahme oder Minderung unerwünschter Schwingungsenergie beinhaltet die Umwandlung dieser Energieform in eine andere, in der Mehrzahl der Fälle in Wärme. Aus molekularer Sicht besteht der wichtigste Unterschied zwischen Wärmeenergie und Schwingungsenergie in der Zufälligkeit des Richtungsvektors für die Auslenkung der Atome um ihre Gleichgewichtslage. Die Schwingungsenergie ist sehr stark mit der Kollektivbewegung der Atome zur selben Zeit und in dieselbe Richtung verbunden. Wärmeenergie hingegen kann denselben oder einen größeren Energiewert aufweisen als die sich selbst fortpflanzende Schwingungsenergie. Der große Unterschied besteht jedoch darin, dass die Bewegung der Atome um ihre Gleichgewichtslage zufällig ist und gleichzeitig die mittlere Auslenkung nahezu den Wert Null aufweist.The absorption or reduction of unwanted vibrational energy involves the transformation of this energy form into another, in the majority of cases into heat. From a molecular point of view, the most important difference between thermal energy and vibrational energy lies in the randomness of the direction vector for the deflection of the atoms around their equilibrium position. The vibrational energy is strongly related to the collective motion of the atoms at the same time and in the same direction. By contrast, thermal energy can have the same or a greater energy value than the self-propagating vibrational energy. The big difference, however, is that the motion of the atoms around their equilibrium position is random and at the same time the mean deflection is almost zero.

Grundsätzlich sind zwei Möglichkeiten bekannt, mit deren Hilfe der einheitliche Richtungsvektor der Atome in einem Material verändert werden kann, während Energie in Form von Schwingungen durch das Material hindurchtransportiert wird.In principle, two possibilities are known with the aid of which the uniform directional vector of the atoms in a material can be changed, while energy in the form of vibrations is transported through the material.

Aus US 5,400,296 ist es bekannt zwei oder mehrere verschiedene Verstärkungspartikel in einer Matrix einzusetzen, um zufällige Reflexionen an den Grenzflächen zwischen Verstärkungspartikel und Matrixmaterial zu fördern. Allgemein anerkannt ist, dass Defekte der Mikrostruktur einen entscheidenden Einfluss auf das Dämpfungsverhalten von Materialien aufweisen. Aus diesen Überlegungen heraus wurde eine Vielzahl an Metall-Matrix-Verbundwerkstoffen (MMCs) entwickelt. Die gesteigerten Dämpfungseigenschaften werden durch Einbringen von Verstärkungskomponenten erzielt, die selbst eine hohe intrinsische Dämpfung aufweisen oder die Mikrostruktur der Matrix stark verändern. Als Verstärkungspartikel werden vorrangig SiC, Al2O3 und Graphit eingesetzt. Von R.K.Everett, R.J.Arsenault, Metal Matrix Composite Processing and Interfaces, Academic Press, Boston, MA, 1991 und P.K.Rohatgi et al. und S.G. Fishman et al., wurde in "Cast Reinforced Metal Composite", ASM, Materials Park, Ohio, 1988 , Seite 375 vorgeschlagen, durch Druckinfiltration MMCs vorrangig mit Aluminium bzw. Aluminiumlegierung als Matrix herzustellen. Für Aluminiumlegierungen ist dabei festzustellen, dass die Einlagerung von Graphitpartikeln das Dämpfungsverhalten verbessert. Der E-Modul nimmt jedoch mit steigendem Graphitgehalt ab.Out US 5,400,296 It is known to use two or more different reinforcing particles in a matrix to promote random reflections at the interfaces between reinforcing particles and matrix material. It is generally accepted that defects in the microstructure have a decisive influence on the damping behavior of materials. Based on these considerations, a variety of metal-matrix composites (MMCs) have been developed. The increased damping properties are achieved by introducing gain components which themselves have high intrinsic damping or greatly alter the microstructure of the matrix. The reinforcing particles used are primarily SiC, Al 2 O 3 and graphite. By RKEverett, RJ Arsenault, Metal Matrix Composite Processing and Interfaces, Academic Press, Boston, MA, 1991 and PKRohatgi et al. and SG Fishman et al., in Cast Reinforced Metal Composite, ASM, Materials Park, Ohio, 1988 , Page 375 proposed to produce by pressure infiltration MMCs primarily with aluminum or aluminum alloy as a matrix. For aluminum alloys, it should be noted that the incorporation of graphite particles improves the damping behavior. However, the modulus of elasticity decreases with increasing graphite content.

In US 4,946,647 werden metallische Verbundwerkstoffe mit Aluminiummatrix und Graphitpartikeln als Verstärkungskomponente beschrieben. Dem Zugewinn an Dämpfungseigenschaften gegenüber reinem Aluminium steht eine drastische Einbuße an Festigkeitswerten gegenüber. Dadurch sind die auf diesem Wege herstellbaren Werkstoffe als Konstruktionswerkstoff in den meisten Fällen ungeeignet. Abhilfe schafft die Beschränkung des Graphitanteils auf maximal 10 Masse-%.In US 4,946,647 describes metallic composites with aluminum matrix and graphite particles as reinforcing component. The gain in damping properties compared to pure aluminum is offset by a drastic loss of strength values. As a result, the materials that can be produced in this way are unsuitable as a construction material in most cases. Remedy the restriction of the graphite content to a maximum of 10% by mass.

Im US 4,236,925 wird vorgeschlagen einen Verbundwerkstoff mit gesteigerten Dämpfungseigenschaften herzustellen. Dabei sollen eine Verstärkungskomponente (Graphit oder Blei oder Magnesium) mit dem Matrixmetallpulver vermischt werden. Dieses können Eisen, Kupfer oder Aluminium bzw. deren Legierungen sein. Die Konsolidierung der Mischung beinhaltet Formpressen, Kapseln des Formkörpers, darauf folgende Verformung (z.B. Walzen) und Wärmebehandlung der plastisch verformten Kapsel samt Inhalt. Die Wärmebehandlungstemperatur muss dabei oberhalb der Rekristallisationstemperatur der Matrix gehalten sein. Ziel ist es dabei, dass die Matrix rekristallisiert und die Verstärkungskomponente in Form von Spindeln an den Korngrenzen bzw. in den Matrixkörnern aggregiert. Dieses Vorgehen ist sehr kompliziert und kostenintensiv, gleichzeitig ist diese Methode auf Verstärkungskomponenten beschränkt, die spindelförmig sind.in the US 4,236,925 It is proposed to produce a composite material with increased damping properties. In this case, a reinforcing component (graphite or lead or magnesium) are mixed with the matrix metal powder. These may be iron, copper or aluminum or their alloys. The consolidation of the mixture includes compression molding, capsule molding, subsequent deformation (eg rolling) and heat treatment of the plastically deformed capsule and its contents. The heat treatment temperature must be kept above the recrystallization temperature of the matrix. The aim here is that the matrix recrystallizes and aggregates the reinforcing component in the form of spindles at the grain boundaries or in the matrix grains. This procedure is very complicated and expensive, but at the same time this method is limited to reinforcing components which are spindle-shaped.

In US 6,346,132 wird ein Metall/Metall-Verbundwerkstoff beschrieben. Als Matrix wird eine Aluminiumlegierung bevorzugt. Die metallische Zweitphase weist ein teilweise martensitisches Gefüge auf. Dazu werden hauptsächlich Legierungen mit Nickel und Titan eingesetzt. Zusätzlich können Additive eingesetzt werden, die Martensit stabilisieren.In US 6,346,132 a metal / metal composite is described. As the matrix, an aluminum alloy is preferable. The metallic second phase has a partially martensitic structure. For this purpose, mainly alloys with nickel and titanium are used. In addition, additives that stabilize martensite can be used.

Die Aufgabe der Erfindung ist es, einen Werkstoff, der mit einem Metall oder einer Metalllegierung als Basismaterial und einer Zweitphase gebildet ist, zur Verfügung zu stellen, mit dem eine erhöhte Dämpfung erreichbar ist und der zusätzlich eine Festigkeit aufweist, dass er als Konstruktionswerkstoff eingesetzt werden kann.The object of the invention is to provide a material which is formed with a metal or a metal alloy as a base material and a second phase, with which an increased damping can be achieved and which additionally has a strength that it can be used as a construction material can.

Erfindungsgemäß wird diese Aufgabe mit einem Werkstoff, der die Merkmale des Anspruchs 1 aufweist, gelöst. Er kann mit einem Verfahren nach Anspruch 5 hergestellt werden. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung können mit in untergeordneten Ansprüchen bezeichneten Merkmalen erreicht werden.According to the invention, this object is achieved with a material having the features of claim 1. It can be produced by a method according to claim 5. Advantageous embodiments and further developments of the invention can be achieved with features described in the subordinate claims.

Der durch ein gezieltes Sintern hergestellte erfindungsgemäße Werkstoff ist dabei mindestens mit einem Metall oder einer Metalllegierung und Kohlenstoff in Form von Graphit gebildet. Der Anteil an Graphit ist bei mindestens 50 Vol.-% gehalten. Das Metall oder die Metalllegierung sind so ausgewählt, dass durch chemische Reaktion eine Carbidbildung möglich werden kann. Der Anteil an Carbid im fertig hergestellten Werkstoff liegt aber unterhalb des Graphitanteils. Er kann durch Beeinflussung bei der zur Sinterung führenden Wärmebehandlung eingestellt werden, wobei kleine Anteile bevorzugt sind. Er sollte zumindest kleiner 35 Vol.-%, bevorzugt kleiner 30 Vol.-% sein.The material according to the invention produced by targeted sintering is at least one metal or a metal alloy and carbon in Form of graphite formed. The proportion of graphite is kept at least 50 vol .-%. The metal or metal alloy is selected so that carbide formation can be possible by chemical reaction. However, the proportion of carbide in the finished material is below the graphite content. It can be adjusted by influencing the sintering leading to heat treatment, with small portions are preferred. It should be at least less than 35% by volume, preferably less than 30% by volume.

Durch Einlagerung von Graphit in zwei- bzw. dreidimensionaler Verteilung können die Dämpfungseigenschaften verbessert werden. Gleichzeitig weist der erfindungsgemäße Werkstoff einen höheren Elastizitätsmodul als zu erwarten war auf. Er kann dabei größer 50 GPa in mindestens einer Achsrichtung sein. Bevorzugt sind Werte von mindestens 70 GPa und ganz besonders bevorzugt Werte oberhalb 130 GPa für den E-Modul.By incorporating graphite in two- or three-dimensional distribution, the damping properties can be improved. At the same time, the material according to the invention has a higher modulus of elasticity than was expected. It can be greater than 50 GPa in at least one axial direction. Values of at least 70 GPa and very particularly preferably values above 130 GPa for the modulus of elasticity are preferred.

Gemäß der vorliegenden Erfindung wird Graphit als Zweitphase genutzt, um die Dämpfungseigenschaften des Basismaterials deutlich zu verbessern. Durch die Variation des Graphitgehaltes im erfindungsgemäßen Werkstoff können die Eigenschaften Elastizitätsmodul und Dämpfungsfaktor an die Einsatzbedingungen angepasst werden.According to the present invention, graphite is used as a second phase in order to significantly improve the damping properties of the base material. By varying the graphite content in the material according to the invention, the properties of modulus of elasticity and damping factor can be adapted to the conditions of use.

Als geeignetes Metall oder eine geeignete Metalllegierung werden Eisen, Wolfram, Molybdän, Vanadium oder Tantal sowie deren Legierungen eingesetzt.As a suitable metal or a suitable metal alloy iron, tungsten, molybdenum, vanadium or tantalum and their alloys are used.

Es können aber weitere Metalle, Metalllegierungen, Verstärkungskomponenten oder andere Zusatzstoffe zusätzlich enthalten sein. Dabei sollte der Anteil an Carbid bildendem Metall jedoch höher sein. Aluminium oder auch Kupfer sollten dabei nicht oder nur mit sehr kleinen Anteilen ggf. als Legierungsbestandteil enthalten sein. Dies trifft auch auf Silicium zu. Der Anteil dieser chemischen Elemente sollte dabei kleiner 2 Masse-% sein.However, other metals, metal alloys, reinforcing components or other additives may additionally be included. The proportion of However, carbide-forming metal may be higher. Aluminum or copper should not or only with very small proportions if necessary be included as an alloying ingredient. This also applies to silicon. The proportion of these chemical elements should be less than 2% by mass.

Durch inniges Mischen von metallischem Basismaterial und Graphit als Zweitphase kann eine homogene Pulvermischung hergestellt werden, so dass die Zweitphasenpartikel vollständig von dem Basismaterialpulver umhüllt sind. In der Pulvermischung, die zur Herstellung des Werkstoffs eingesetzt wird, sollte kein Carbid zumindest jedoch kein Carbid des eingesetzten carbidbildenden Metalls oder einer solchen Metalllegierung enthalten sein. Das im fertig hergestellten Werkstoff enthaltene Carbid kann ausschließlich durch eine chemische Reaktion des eingesetzten Metallpulvers mit dem Kohlenstoff bei der Wärmebehandlung gebildet werden.By intimately mixing metallic base material and graphite as a second phase, a homogeneous powder mixture can be prepared so that the second phase particles are completely enveloped by the base material powder. In the powder mixture used to make the material, there should be no carbide or at least no carbide of the carbide-forming metal or metal alloy used. The carbide contained in the finished material can be formed exclusively by a chemical reaction of the metal powder used with the carbon in the heat treatment.

Zur Konsolidierung eines erfindungsgemäßen Werkstoffes sind Verfahren, die in kurzer Zeit und somit auch kostengünstig eingesetzt werden können, zu bevorzugen. Hierfür geeignete Verfahren sind beispielsweise induktiv- oder konduktiv beheiztes Heißpressen und abgewandelte Verfahren. An dieser Stelle seien das Spark Plasma Sintern (SPS) und das Field Assisted Sintering (FAST) als besonders geeignete Beispiele angeführt. Eine entsprechende Menge der Pulvermischung kann in eine Matrize (beispielsweise aus Graphit) oder eine Kapsel gefüllt und gegebenenfalls mit einem Druck von einigen MPa vorverdichtet werden. Die befüllte Matrize kann in eine entsprechende Heisspresse eingesetzt und anschließend evakuiert werden. Durch Variation von Heiz- und Abkühlraten in Verbindung mit kurzen Sinterzeiten und definierten Pressdrücken gelingt es einerseits das matrixbildende Pulver zu sintern und gleichzeitig den Gehalt und die Ausprägung des Carbidnetzwerkes zu steuern. Ggf. nach einer Haltezeit bei der gewünschten Sintertemperatur kann eine Abkühlung durchgeführt, die Kammer belüftet und die Matrize samt Probe entnommen werden. Anschließend wird die Probe aus erfindungsgemäßem Werkstoff ausgeformt.To consolidate a material according to the invention, processes which can be used in a short time and thus also cost-effectively are to be preferred. Suitable methods for this purpose are, for example, inductively or conductively heated hot pressing and modified methods. At this point, Spark Plasma Sintering (SPS) and Field Assisted Sintering (FAST) are considered as particularly suitable examples. A corresponding amount of the powder mixture can be filled into a die (for example made of graphite) or a capsule and optionally precompressed with a pressure of a few MPa. The filled matrix can be placed in a corresponding hot press and then evacuated. By varying heating and cooling rates in conjunction With short sintering times and defined pressing pressures, it is possible on the one hand to sinter the matrix-forming powder and at the same time to control the content and the extent of the carbide network. Possibly. After a holding time at the desired sintering temperature, a cooling can be carried out, the chamber is ventilated and the matrix and sample are removed. Subsequently, the sample is formed from material according to the invention.

Der Anteil an im fertigen Werkstoff enthaltenem Carbid kann durch geringere Heizraten, längere Haltezeit und kleinere Kühlrate erhöht werden. Die Carbidbildung wird dabei verhindert bzw. reduziert, wenn hohe Heiz- und hohe Kühlraten und/oder kürzere Haltezeiten der maximalen Temperatur beim Sintern gewählt werden. Auch die maximale Temperatur hat Einfluss auf eine Bildung von Carbid. Bei höheren maximalen Temperaturen kann ein höherer Anteil gebildet worden sein. Die Heizrate sollte mindestens 20 K/min betragen. Wie bereits angesprochen können zur Einhaltung eines kleineren Carbidanteils auch deutlich höhere Heizraten genutzt werden, die oberhalb 100 K/min liegen können. Die maximale Temperatur wird im Wesentlichen vom eingesetzten Metall oder einer Metalllegierung und dessen/deren Sinterverhalten bestimmt.The proportion of carbide contained in the finished material can be increased by lower heating rates, longer retention time and lower cooling rate. Carbide formation is prevented or reduced if high heating and high cooling rates and / or shorter holding times of the maximum temperature during sintering are selected. The maximum temperature also influences the formation of carbide. At higher maximum temperatures, a higher proportion may have been formed. The heating rate should be at least 20 K / min. As already mentioned, significantly higher heating rates can be used to maintain a smaller carbide content, which can be above 100 K / min. The maximum temperature is essentially determined by the metal used or a metal alloy and its sintering behavior.

Die mittlere Partikelgröße d50 sollte bei Metall kleiner 10 µm bevorzugt kleiner 5 µm sein. Die mittlere Flockengöße des eingesetzten Graphits sollte im Bereich 30 bis 900 µm, bevorzugt im Bereich 60 bis 120 µm gehalten sein.The average particle size d 50 should preferably be less than 5 μm for metal smaller than 10 μm. The mean flake size of the graphite used should be kept in the range from 30 to 900 .mu.m, preferably in the range from 60 to 120 .mu.m.

Bei der Herstellung sollte so vorgegangen werden und Ausgangspulver eingesetzt werden, dass ein erfindungsgemäßer Werkstoff eine theoretische Dichte von mindestens 80 %, bevorzugt mindestens 90 % nach dem Sintern aufweist.In the production, the procedure should be such and starting powders are used that a material according to the invention has a theoretical density of at least 80%, preferably at least 90% after sintering.

Der erfindungsgemäße Werkstoff zeichnet sich neben seinen guten Dämpfungseigenschaften auch durch seine mechanischen Eigenschaften, wie Festigkeit und Steifigkeit aus. Diese sind deutlich besser als bei vergleichbaren Werkstoffen, die mit Kupfer oder Aluminium und Graphit gebildet sind.The material of the invention is characterized not only by its good damping properties but also by its mechanical properties, such as strength and rigidity. These are significantly better than comparable materials that are formed with copper or aluminum and graphite.

Nachfolgend soll die Erfindung beispielhaft näher erläutert werden.The invention will be explained in more detail by way of example in the following.

Dabei zeigen:Showing:

Figur 1 einen Querschliff durch ein Beispiel eines erfindungsgemäßen Werkstoffs, der mit Eisen und Graphit mit einem Anteil von 60 Vol.-% gebildet ist und FIG. 1 a transverse section through an example of a material according to the invention, which is formed with iron and graphite in a proportion of 60 vol .-% and

Figur 2 ein Diagramm, mit dem die Abhängigkeit des Produktes aus E-Modul und Dämpfungsfaktor vom im erfindungsgemäßen Werkstoff enthaltenen Graphit, der außerdem mit Eisen gebildet ist, verdeutlicht ist. FIG. 2 a diagram illustrating the dependence of the product of modulus and damping factor of graphite contained in the material according to the invention, which is also formed with iron, is illustrated.

Beispiel 1:Example 1:

400,5 g Eisenpulver mit einem mittleren Partikeldurchmesser kleiner 5 µm und 152,68 g Graphit mit einer mittleren Flockengröße von 80 µm wurden innig miteinander gemischt. Von der Pulvermischung wurden 70 g in eine Graphitmatrize mit einem Durchmesser von 45 mm gefüllt, in eine Spark Plasma Sinter Anlage eingesetzt und unter einem Vorpressdruck von 5 MPa bis auf einen Druck von 10-2 mbar evakuiert. Anschließend wurde der Pressdruck auf 20 MPa erhöht und mit einer Heizrate von 300 K/min bis auf 1050 °C aufgeheizt. Nach einer Haltezeit von 10 s wurde mit einer mittleren Kühlrate von ca. 150 K/min auf 400 °C abgekühlt. Danach wurde der mechanische Druck auf 0 MPa reduziert und die Vakuumkammer bei einer Temperatur von ca. 100 °C belüftet. Im fertigen Werkstoff war der Anteil an Graphit größer 55 Vol.-%, der Anteil an Eisencarbid lag bei einem Wert kleiner 5 Vol.-% und der Rest bestand aus Eisen.400.5 g of iron powder having an average particle diameter of less than 5 μm and 152.68 g of graphite having an average flake size of 80 μm were intimately mixed with one another. 70 g of the powder mixture were filled into a graphite die having a diameter of 45 mm, inserted into a spark plasma sintering plant and evacuated to a pressure of 10 -2 mbar under a prepressing pressure of 5 MPa. Subsequently, the pressing pressure was increased to 20 MPa and heated at a heating rate of 300 K / min up to 1050 ° C. After a holding time of 10 s, the mixture was cooled to 400 ° C. at an average cooling rate of about 150 K / min. Thereafter, the mechanical pressure was reduced to 0 MPa and the vacuum chamber was vented at a temperature of about 100 ° C. In the finished material, the proportion of graphite was greater than 55 vol .-%, the proportion of iron carbide was less than 5 vol .-% and the remainder was iron.

Beispiel 2:Example 2:

400,5 g Eisenpulver mit einem mittleren Partikeldurchmesser kleiner 5 µm und 152,68 g Graphit mit einer mittleren Flockengröße von 80 µm wurden innig miteinander vermischt. Von der Pulvermischung wurden 70 g in eine Graphitmatrize mit einem Durchmesser von 45 mm gefüllt, in eine Spark Plasma Sinter Anlage eingesetzt und unter einem Vorpressdruck von 5 MPa bis auf einen Druck von 10-2 mbar evakuiert. Anschließend wurde der Pressdruck auf 20 MPa erhöht und mit einer Heizrate von 300 K/min bis auf eine Temperatur von 1050 °C aufgeheizt. Nach einer Haltezeit von 20 min wurde mit einer mittleren Kühlrate von ca. 150 K/min auf 400 °C abgekühlt. Danach wurde der mechanische Druck auf 0 MPa reduziert und die Vakuumkammer bei einer Temperatur von ca. 100 °C belüftet. Im fertigen Werkstoff war der Anteil an Graphit im Bereich 50 bis 60 Vol.-%, der Anteil an Eisencarbid war kleiner 20 Vol.-% und der Rest bestand aus Eisen.400.5 g of iron powder having an average particle diameter of less than 5 μm and 152.68 g of graphite having an average flake size of 80 μm were intimately mixed with one another. 70 g of the powder mixture were filled into a graphite die having a diameter of 45 mm, inserted into a spark plasma sintering plant and evacuated to a pressure of 10 -2 mbar under a prepressing pressure of 5 MPa. Subsequently, the pressing pressure was increased to 20 MPa and heated at a heating rate of 300 K / min to a temperature of 1050 ° C. After a holding time of 20 minutes, the mixture was cooled to 400 ° C. at an average cooling rate of about 150 K / min. Thereafter, the mechanical pressure was reduced to 0 MPa and the vacuum chamber was vented at a temperature of about 100 ° C. In the finished material, the proportion of graphite in the range of 50 to 60 vol .-%, the proportion of iron carbide was less than 20 vol .-% and the remainder was made of iron.

Beispiel 3:Example 3:

220,73 g Wolframpulver mit einem mittleren Partikeldurchmesser kleiner 3 µm und 55,81 g Graphit mit einer mittleren Flockengröße von 80 µm wurden innig miteinander vermischt. Von der Pulvermischung wurden 90 g in eine Graphitmatrize mit einem Durchmesser von 45 mm gefüllt, in eine Spark Plasma Sinter Anlage eingesetzt und unter einem Vorpressdruck von 5 MPa bis auf einen Druck von 10-2 mbar evakuiert. Danach wurde der Pressdruck auf 20 MPa erhöht und mit einer Heizrate von 100 K/min bis auf 900 °C aufgeheizt und anschließend 5 min gehalten. Anschließend wurde unter einem mechanischen Druck von 40 MPa in 4 min auf 1995 °C aufgeheizt. Nach einer Haltezeit von 10 s wurde mit einer mittleren Kühlrate von ca. 150 K/min auf 400 °C abgekühlt. Danach wurde der mechanische Druck auf 0 MPa reduziert und die Vakuumkammer bei einer Temperatur von ca. 100 °C belüftet. Im fertigen Werkstoff war der Anteil an Graphit größer 68 Vol.-%, der Anteil an Wolframcarbid lag bei ca. 20 Vol.-% und der Rest bestand aus Wolfram.220.73 g of tungsten powder having an average particle diameter of less than 3 μm and 55.81 g of graphite having an average flake size of 80 μm became intimately mixed together. 90 g of the powder mixture were filled into a graphite die having a diameter of 45 mm, inserted into a spark plasma sintering plant and evacuated to a pressure of 10 -2 mbar under a prepressing pressure of 5 MPa. Thereafter, the pressure was increased to 20 MPa and heated at a heating rate of 100 K / min up to 900 ° C and then held for 5 min. The mixture was then heated to 1995 ° C. in 4 minutes under a mechanical pressure of 40 MPa. After a holding time of 10 s, the mixture was cooled to 400 ° C. at an average cooling rate of about 150 K / min. Thereafter, the mechanical pressure was reduced to 0 MPa and the vacuum chamber was vented at a temperature of about 100 ° C. In the finished material, the proportion of graphite was greater than 68 vol .-%, the proportion of tungsten carbide was about 20 vol .-% and the rest was made of tungsten.

Die in den Beispielen 1 bis 3 hergestellten Werkstoffe wurden hinsichtlich Dichte, geometrieunabhängigem Dämpfungsfaktor Q-1 und Elastizitätsmodul E charakterisiert (Tabelle 1). Der Dämpfungsfaktor Q-1 und E-modul E wurden mittels der Methode der Impulsanregung mit einem Messgerät RFDA System 23 RFDF-Mf der Firma IMCE NV bestimmt. Tabelle 1: Eigenschaften der Ausführungsbeispiele 1 bis 3 Beispiel 1 Beispiel 2 Beispiel 3 Dichte [g/cm3] 4,5 4,6 8,0 Dämpfungsfaktor Q-1 0,007 0,005 0,007 Elastizitätsmodul E [GPa] 80 82 170 E*Q-1 0,56 0,41 1,19 The materials produced in Examples 1 to 3 were characterized in terms of density, geometry-independent damping factor Q -1 and elastic modulus E (Table 1). The attenuation factor Q -1 and E modulus E were determined by means of the impulse excitation method with an RFDA System 23 RFDF-Mf measuring instrument from IMCE NV. Table 1: Properties of the embodiments 1 to 3 example 1 Example 2 Example 3 Density [g / cm 3 ] 4.5 4.6 8.0 Damping factor Q -1 0,007 0.005 0,007 Young's modulus E [GPa] 80 82 170 E * Q -1 0.56 0.41 1.19

Aus der Tabelle ist ersichtlich, dass ein der vorliegenden Erfindung gemäßer Werkstoff ausgezeichnete Dämpfungseigenschaften mit einem hohen E-Modul vereint.It can be seen from the table that a material according to the present invention combines excellent damping properties with a high modulus of elasticity.

Beispiel 4Example 4

Es wurden 152 g Edelstahlpulver mit einem mittleren Partikeldurchmesser kleiner 30 µm und 58 g Graphit mit einer mittleren Flockengröße von 90 µm innig miteinander vermischt. Das austenitische Edelstahlpulver 316L hatte eine Zusammensetzung 2 Masse-% Mn, 0,045 Masse-% P, 16,5 Masse-% bis 18,5 Masse-% Cr, 2 Masse-% bis 2,5 Masse-% Mo, 10 Masse-% bis 13 Masse-% Ni mit einem Restanteil Eisen. Der Anteil an Si lag unterhalb 1 Masse-%. Von der so vorbereiteten Pulvermischung wurden 70 g in eine Graphitmatrize mit einem Durchmesser von 45 mm gefüllt, dann in eine Spark-Plasma-Sinter-Anlage eingesetzt und unter einem Vorpressdruck von 5 MPa bis auf einen Druck von 10-2 mbar evakuiert. Im Anschluss wurde der Pressdruck auf 20 MPa erhöhte und mit einer Heizrate von 400 K/min bis auf eine Temperatur von 1150 °C erwärmt. Nach einer Haltezeit von 10 s wurde mit einer mittleren Kühlrate von 150 K/min auf 400 °C abgekühlt. Im Anschluss daran wurde der mechanische Druck auf 0 MPa reduziert und die evakuierte Kammer bei einer Temperatur von ca. 100 °C belüftet.152 g of stainless steel powder having a mean particle diameter of less than 30 μm and 58 g of graphite having a mean flake size of 90 μm were intimately mixed with one another. The austenitic stainless steel powder 316L had a composition of 2 mass% Mn, 0.045 mass% P, 16.5 mass% to 18.5 mass% Cr, 2 mass% to 2.5 mass% Mo, 10 mass% % to 13 mass% Ni with a residual iron. The proportion of Si was below 1 mass%. From the thus prepared powder mixture 70 g were filled into a graphite die with a diameter of 45 mm, then inserted into a spark plasma sintering system and evacuated under a prepressing pressure of 5 MPa to a pressure of 10 -2 mbar. Subsequently, the pressing pressure was increased to 20 MPa and heated to a temperature of 1150 ° C at a heating rate of 400 K / min. After a holding time of 10 s, the mixture was cooled to 400 ° C. at an average cooling rate of 150 K / min. Subsequently, the mechanical pressure was reduced to 0 MPa and the evacuated chamber was vented at a temperature of about 100 ° C.

Der so hergestellte Werkstoff hatte eine Wärmeleitfähigkeit in mindestens eine Achsrichtung von 170 W/mK, einen thermische Ausdehnung in mindestens eine Achsrichtung von 12,3 ppm/K, einen E-Modul von 80 GPa, eine physikalische Dichte von 4,57 g/cm3 und einen Faktor aus E-Modul und geoemetrieunabhängigem Dämpfungsfaktor von 0,4 GPa.The material thus produced had a thermal conductivity in at least one axial direction of 170 W / mK, a thermal expansion in at least one axial direction of 12.3 ppm / K, an E-modulus of 80 GPa, a physical density of 4.57 g / cm 3 and a factor of modulus and geoemetry-independent damping factor of 0.4 GPa.

Claims (9)

Gesinterter schall- und schwingungsdämpfender Werkstoff, der mit mindestens einem Metall oder einer Metalllegierung, ausgewählt ist aus Eisen, Wolfram, Molybdän, Vanadium und Tantal, mit dem/der durch chemische Reaktion eine Carbidbildung möglich ist, und mit Kohlenstoff in Form von Graphit gebildet ist, wobei der Anteil an Graphit mindestens 50 Vol.-% beträgt und der Anteil an Carbid im Werkstoff unterhalb des Anteils an Graphit liegt und kein oder ein sehr kleiner Anteil an Aluminium, Kupfer und Silicium enthalten ist.A sintered sound and vibration damping material selected from at least one metal or metal alloy selected from iron, tungsten, molybdenum, vanadium and tantalum, which is capable of carbide formation by chemical reaction, and formed with carbon in the form of graphite , wherein the proportion of graphite is at least 50 vol .-% and the proportion of carbide in the material is below the proportion of graphite and no or a very small proportion of aluminum, copper and silicon is included. Werkstoff nach Anspruch 1, dadurch gekennzeichnet, dass der Anteil an im Werkstoff enthaltenen Carbid kleiner 35 Vol.-% ist.Material according to claim 1, characterized in that the proportion of carbide contained in the material is less than 35 vol .-%. Werkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass er einen E-Modul von mindestens 50 GPa und das Produkt des E-Moduls mit einem geometrieunabhängigen Dämpfungsfaktor in mindestens eine Achsrichtung einen Wert von mindestens 0,4 GPa aufweist.Material according to one of the preceding claims, characterized in that it has an E-modulus of at least 50 GPa and the product of the modulus of elasticity with a geometry-independent damping factor in at least one axial direction has a value of at least 0.4 GPa. Werkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass er eine theoretische Dichte von mindestens 80 % aufweist.Material according to one of the preceding claims, characterized in that it has a theoretical density of at least 80%. Verfahren zur Herstellung eines Werkstoffs nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine mit Graphit und mindestens einem Metall oder Metalllegierung, mit dem/der durch chemische Reaktion eine Carbidbildung möglich ist, gebildete Pulvermischung in einer Matrize/Kapsel unter Druckkraftbeaufschlagung in eine vorgegebene Form gebracht und eine Sinterung mit einer Heiz- und Kühlrate von mindestens 20 K/min durchgeführt wird.Method for producing a material according to one of the preceding claims, characterized in that one with graphite and at least one metal or metal alloy, with in which a carbide formation is possible by chemical reaction, powder mixture formed in a die / capsule is pressurized to a predetermined shape and sintering is carried out at a heating and cooling rate of at least 20 K / min. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass eine Pulvermischung eingesetzt wird, in der kein Carbid enthalten ist.A method according to claim 5, characterized in that a powder mixture is used, in which no carbide is contained. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Sinterung in zwei Stufen durchgeführt wird.A method according to claim 5 or 6, characterized in that the sintering is carried out in two stages. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Sinterung in einer Spark Plasma Sinter- (SPS) oder einer Field Assisted Sintering-Anlage (FAST) durchgeführt wird.Method according to one of claims 5 to 7, characterized in that the sintering in a spark plasma sintering (PLC) or a field assisted sintering system (FAST) is performed. Verfahren nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass ein Metallpulver mit einer mittleren Partikelgröße kleiner 10 µm und Graphit mit einer mittleren Flockengröße im Bereich von 30 µm bis 900 µm eingesetzt wird.Method according to one of claims 5 to 8, characterized in that a metal powder having an average particle size of less than 10 microns and graphite having a mean flake size in the range of 30 microns to 900 microns is used.
EP20090009342 2008-07-17 2009-07-17 Sintered acoustic and oscillation dampening material Not-in-force EP2147985B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200810034257 DE102008034257B4 (en) 2008-07-17 2008-07-17 Sintered sound and vibration damping material and method for its production

Publications (2)

Publication Number Publication Date
EP2147985A1 true EP2147985A1 (en) 2010-01-27
EP2147985B1 EP2147985B1 (en) 2013-09-11

Family

ID=41259495

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20090009342 Not-in-force EP2147985B1 (en) 2008-07-17 2009-07-17 Sintered acoustic and oscillation dampening material

Country Status (2)

Country Link
EP (1) EP2147985B1 (en)
DE (1) DE102008034257B4 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236925A (en) 1977-08-10 1980-12-02 Hitachi, Ltd. Method of producing sintered material having high damping capacity and wearing resistance and resultant products
US4946647A (en) 1986-09-02 1990-08-07 Rohatgi Pradeep K Process for the manufacture of aluminum-graphite composite for automobile and engineering applications
US5400296A (en) 1994-01-25 1995-03-21 Poiesis Research, Inc. Acoustic attenuation and vibration damping materials
US5998733A (en) * 1997-10-06 1999-12-07 Northrop Grumman Corporation Graphite aluminum metal matrix composite microelectronic package
US6162497A (en) * 1991-07-17 2000-12-19 Materials Innovation, Inc. Manufacturing particles and articles having engineered properties
EP1168438A2 (en) 2000-06-23 2002-01-02 Sumitomo Electric Industries, Ltd. High thermal conductivity composite material, and method for producing the same
US6346132B1 (en) 1997-09-18 2002-02-12 Daimlerchrysler Ag High-strength, high-damping metal material and method of making the same
DE102006056988A1 (en) 2006-10-08 2008-04-10 General Electric Co. Heat transfer composite material, associated apparatus and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1496377A (en) * 1974-11-26 1977-12-30 Nippon Steel Corp Method of heat-treatment of welded pipe and apparatus therefor
DE4409377A1 (en) * 1994-03-18 1995-09-21 Jaehrig Heinz Peter Dr Ing Thermal and wear resistant material
AT503270B1 (en) * 2006-03-09 2008-03-15 Arc Seibersdorf Res Gmbh COMPOSITE MATERIAL AND METHOD FOR THE PRODUCTION THEREOF

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236925A (en) 1977-08-10 1980-12-02 Hitachi, Ltd. Method of producing sintered material having high damping capacity and wearing resistance and resultant products
US4946647A (en) 1986-09-02 1990-08-07 Rohatgi Pradeep K Process for the manufacture of aluminum-graphite composite for automobile and engineering applications
US6162497A (en) * 1991-07-17 2000-12-19 Materials Innovation, Inc. Manufacturing particles and articles having engineered properties
US5400296A (en) 1994-01-25 1995-03-21 Poiesis Research, Inc. Acoustic attenuation and vibration damping materials
US6346132B1 (en) 1997-09-18 2002-02-12 Daimlerchrysler Ag High-strength, high-damping metal material and method of making the same
US5998733A (en) * 1997-10-06 1999-12-07 Northrop Grumman Corporation Graphite aluminum metal matrix composite microelectronic package
EP1168438A2 (en) 2000-06-23 2002-01-02 Sumitomo Electric Industries, Ltd. High thermal conductivity composite material, and method for producing the same
DE102006056988A1 (en) 2006-10-08 2008-04-10 General Electric Co. Heat transfer composite material, associated apparatus and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R.K.EVERETT; R.J.ARSENAULT: "Metal Matrix Composite Processing and Interfaces", 1991, ACADEMIC PRESS
S.G.FISHMAN ET AL.: "Cast Reinforced Metal Composite", ASM, MATERIALS PARK, 1988, pages 375

Also Published As

Publication number Publication date
DE102008034257A1 (en) 2010-01-21
DE102008034257B4 (en) 2011-12-08
EP2147985B1 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
EP1469963B1 (en) Method for producing sintered components from a sinterable material
EP1470261B1 (en) Sinterable metal powder mixture for the production of sintered components
EP1400499B1 (en) Composite fibre-reinforced ceramic article and method for making same
DE102008061024A1 (en) Production of a composite material containing a titanium alloy matrix and a titanium boride reinforcement comprises mixing precursor materials, compressing the mixture and sintering
EP2374560A1 (en) Wear-resistant material
WO2005028692A1 (en) Ods-alloy of molybdenum, silicon and boron
WO2021148404A1 (en) Metal powder for an additive manufacturing process, uses of the metal powder, method for producing a component, and component
EP3069802A1 (en) Method for producing a component made of a compound material with a metal matrix and incorporated intermetallic phases
DE60317582T2 (en) METHOD FOR SINTERING ALUMINUM AND ALUMINUM ALLOY PARTS
DE19711642C2 (en) Method for producing a steel matrix composite material and composite material, produced by such a method
EP2147985B1 (en) Sintered acoustic and oscillation dampening material
EP1709209B1 (en) Light metal alloy sintering method
WO2007085249A1 (en) Titanium material and method for production thereof
EP1310469B1 (en) A process for production of ceramic bearing components
DE102018102616A1 (en) Process for producing carbide bodies
DE102011118295A1 (en) Producing an aluminum foam body, comprises providing a microporous body made of aluminum alloy reinforced with hard material particles, and melting the microporous body and then treating a melt under vacuum by acting upon with vibrations
WO2018095610A1 (en) Powder metallurgy produced steel material, method for producing a component from said type of steel material and component produced from the steel material
DE102020211428A1 (en) Process for the production of components from a ceramic composite material
JP2013541633A (en) Stainless steel alloy
DE202008001976U9 (en) Fluid-tight sintered metal parts
JP2013541633A5 (en)
AT513422B1 (en) Hexagonal WC powder, process for its preparation and use of the powder
DE102008034258B4 (en) Sintered material and process for its production
JP2018076582A (en) Powder high speed tool steel having fine carbide particle and manufacturing method therefor
WO2003015964A1 (en) Production of a metal foamed body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20100715

17Q First examination report despatched

Effective date: 20100813

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20130724

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 631682

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130911

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140717

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140717

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140717

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 631682

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140731

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090717

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911