EP2140739B1 - Nozzle for a liquid-cooled plasma burner, arrangement thereof with a nozzle cap and liquid-cooled plasma burner comprising such an arrangement - Google Patents

Nozzle for a liquid-cooled plasma burner, arrangement thereof with a nozzle cap and liquid-cooled plasma burner comprising such an arrangement Download PDF

Info

Publication number
EP2140739B1
EP2140739B1 EP09729367.4A EP09729367A EP2140739B1 EP 2140739 B1 EP2140739 B1 EP 2140739B1 EP 09729367 A EP09729367 A EP 09729367A EP 2140739 B1 EP2140739 B1 EP 2140739B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
coolant
deflecting
section
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09729367.4A
Other languages
German (de)
French (fr)
Other versions
EP2140739A1 (en
Inventor
Frank Laurisch
Volker Krink
Timo Grundke
Ralf-Peter Reinke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kjellberg Finsterwalde Plasma und Maschinen GmbH
Original Assignee
Kjellberg Finsterwalde Plasma und Maschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kjellberg Finsterwalde Plasma und Maschinen GmbH filed Critical Kjellberg Finsterwalde Plasma und Maschinen GmbH
Priority to PL09729367T priority Critical patent/PL2140739T3/en
Publication of EP2140739A1 publication Critical patent/EP2140739A1/en
Application granted granted Critical
Publication of EP2140739B1 publication Critical patent/EP2140739B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/28Cooling arrangements

Definitions

  • the present invention relates to a nozzle for a liquid-cooled plasma torch, an arrangement of the same and a nozzle cap and a liquid-cooled plasma torch with such an arrangement.
  • Plasma is a thermally highly heated electrically conductive gas, which consists of positive and negative ions, electrons and excited and neutral atoms and molecules.
  • the plasma gas used is a variety of gases, for example the monatomic argon and / or the diatomic gases hydrogen, nitrogen, oxygen or air. These gases ionize and dissociate through the energy of an arc. The narrowed by a nozzle arc is then referred to as plasma jet.
  • the plasma jet can be greatly influenced in its parameters by the design of the nozzle and electrode. These parameters of the plasma jet are, for example, the beam diameter, the temperature, the energy density and the flow velocity of the gas.
  • the plasma is constricted through a nozzle, which may be gas or water cooled.
  • a nozzle which may be gas or water cooled.
  • energy densities up to 2x10 6 W / cm 2 can be achieved.
  • Temperatures of up to 30,000 ° C are generated in the plasma jet, which, in combination with the high flow velocity of the gas, produce very high cutting speeds on materials.
  • Plasma torches can be operated directly or indirectly.
  • the current from the power source flows through the electrode of the plasma torch, the arc generated by the arc and constricted by the nozzle directly back to the power source via the workpiece.
  • electrically conductive materials can be cut.
  • the current flows from the power source through the electrode of the plasma torch, the plasma jet generated by the arc and constricted by the nozzle and the nozzle back to the power source.
  • the nozzle is even more heavily loaded than with direct plasma cutting, because it not only constricts the plasma jet, but also realizes the starting point of the arc.
  • both electrically conductive and non-conductive materials can be cut.
  • the nozzle is then inserted into a plasma torch whose main components are a plasma torch head, a nozzle cap, a plasma gas guide member, a nozzle, a nozzle holder, an electrode holder, an electrode holder with electrode insert and in modern plasma torches a nozzle cap holder and a nozzle cap.
  • the electrode holder fixes a tungsten tip insert which is suitable for the use of non-oxidizing gases as plasma gas, for example an argon-hydrogen mixture.
  • a so-called flat electrode whose electrode insert consists for example of hafnium, is also suitable for the use of oxidizing gases as plasma gas, for example air or oxygen.
  • oxidizing gases for example air or oxygen.
  • the nozzle In order to achieve a long service life for the nozzle, it is cooled here with a liquid, for example water.
  • the coolant is directed towards the nozzle via a water feed and a water return from the nozzle and flows through a coolant space which is delimited by the nozzle and the nozzle cap.
  • a nozzle In DD 36014 B1 a nozzle is described. This consists of a highly conductive material, for example copper, and has a geometric shape associated with the respective plasma torch type, for example a conical discharge space with a cylindrical nozzle exit.
  • the outer shape of the nozzle is formed as a cone, wherein an approximately equal wall thickness is achieved, which is dimensioned so that a good stability of the nozzle and a good heat conduction to the coolant is ensured.
  • the nozzle sits in a nozzle holder.
  • the nozzle holder is made of corrosion-resistant material, such as brass, and has inside a centering for the nozzle and a groove for a rubber seal, which seals the discharge space against the coolant.
  • nozzle holder for the coolant supply and return.
  • the nozzle cap also made of corrosion-resistant material, such as brass, is formed at an acute angle and has a useful for the dissipation of radiant heat to the coolant wall thickness.
  • the smallest inner diameter is provided with a round ring.
  • the easiest way to cool water is to use water. This arrangement is intended to allow easy production of the nozzles with economical use of material and rapid replacement of these and by the acute-angled design pivoting of the plasma torch relative to the workpiece and thus bevel cuts.
  • a plasma torch preferably for plasma cutting of materials and for welding edge preparation is described.
  • the slim shape of the Burner head is achieved by the use of a particularly acute-angled cutting nozzle whose inner and outer angles are equal to each other and equal to the inner and outer angle of the nozzle cap.
  • a coolant space is formed, in which the nozzle cap is provided with a collar, which seals with the metal cutting nozzle, thereby creating a uniform annular gap as the coolant space.
  • the supply and discharge of the coolant generally water, is carried out by two 180 ° offset from each other arranged slots in the nozzle holder.
  • a plasma arc torch in particular for cutting or welding, is described, in which the electrode holder and the nozzle body form an exchangeable structural unit.
  • the outer coolant supply is essentially formed by a comprehensive the nozzle body cap.
  • the coolant flows via channels into an annular space, which is formed by the nozzle body and the cap.
  • DE 692 33 071 T2 relates to an arc plasma cutting device. Described herein is an embodiment of a plasma arc cutting nozzle nozzle formed of a conductive material and having a plasma jet jet exit and a hollow body portion configured to have a generally conical thin-walled configuration that extends in the direction is inclined to the outlet opening and has an enlarged head portion, which is formed integrally with the body portion, wherein the head portion is solid except for a central channel which is aligned with the outlet opening and having a generally conical outer surface, which is also in the direction of the outlet opening is inclined and has a diameter adjacent to that of the adjacent body portion exceeding the diameter of the body portion to form a recessed recess.
  • the arc plasma cutter has a secondary gas cap.
  • a water-cooled cap is disposed between the nozzle and the secondary gas cap to form a water-cooled chamber for the outer surface of the nozzle for a high-efficiency radiator.
  • the nozzle is characterized by a large head surrounding an exit port for the plasma jet and a sharp undercut or recess to a conical body. This nozzle design favors the cooling of the nozzle.
  • the coolant is led back to the nozzle via a water feed channel and away from the nozzle via a water return channel.
  • These channels are usually offset by 180 ° to each other and the coolant should flow as evenly as possible on the way from the forward to the return of the nozzle. Nevertheless, overheating near the nozzle channel is detected again and again.
  • FIG. 1 Another coolant guide for a burner, preferably plasma torches, in particular for plasma welding, plasma cutting, plasma melting and plasma spraying, which withstands high thermal stresses on the nozzle and the cathode is disclosed in US Pat DD 83890 B1 described.
  • the nozzle in the nozzle holding part easily deployable and removabledemedienleitring arranged to limit the cooling media on a thin layer of a maximum thickness of 3 mm along the outer nozzle wall has a circumferential Formnut, in the more than one, preferably two to four, and star-shaped to this radially and symmetrically to the nozzle axis and star connected to this at an angle between 0 and 90 ° mounted cooling lines so that it is adjacent by two cooling media outlets and each cooling medium outflow of two cooling medium inflows.
  • US 5,396,043 discloses a nozzle tip with a horizontally extending the deflecting portion arranged in the direction of the nozzle tip.
  • the invention is therefore based on the object to avoid overheating in the vicinity of the nozzle channel or the nozzle bore in a simple manner.
  • a nozzle for a liquid-cooled plasma torch comprising a nozzle bore for the exit of a plasma jet at a nozzle tip and a first portion, the outer surface except for at least one deflecting portion which widens conically at a respective angle ⁇ 1, ⁇ 2 towards the nozzle tip tapered towards the nozzle tip at an angle ⁇ conically.
  • the deflection section is located towards the nozzle tip in front of the narrowest point or the narrowest region of the nozzle bore.
  • the angle ⁇ is in the range of 20 ° to 120 °. More preferably, it is in the range of 30 ° to 90 °.
  • the angle ⁇ 1, ⁇ 2 is in the range of 20 ° to 120 °. More preferably, it is in the range of 30 ° to 90 °.
  • a plurality of deflection sections can be provided and deflection sections can be conically widened at the same angle ⁇ 1 or ⁇ 2.
  • angles ⁇ and ⁇ 1 or ⁇ 2 differ in their amount by a maximum of 30 °.
  • angles ⁇ and ⁇ 1 or ⁇ 2 are equal in magnitude.
  • an angle ⁇ which is formed by the conically tapering outer surface of the first section and the conically widening outer surface of the or a deflection section, is between 60 ° and 160 °. More preferably, it is in the range of 100 ° - 150 °.
  • an angle ⁇ which is formed by a leading edge of the nozzle or a deflecting section and the center axis of the nozzle, is between 75 ° and 105 °.
  • the angle ⁇ is preferably 90 °.
  • the parallel to the central axis of the nozzle extending lengths of the deflection or (s) are the same size.
  • the length or extending lengths of the deflection region or zones (s) running perpendicular to the center axis of the nozzle are or lie in the range of 1 to 4 mm.
  • the perpendicular to the central axis of the nozzle extending lengths of the or the deflection regions (s) are equal.
  • the nozzle has a second portion with a cylindrical outer surface for receiving in a burner holder.
  • the nozzle has a third portion with a substantially cylindrical outer surface, which is located with respect to the central axis of the nozzle immediately in front of the nozzle bore.
  • the nozzle has a third section with a substantially cylindrical outer surface, which is located at least partially relative to the nozzle bore with respect to the central axis of the nozzle.
  • this object is achieved by an arrangement of a nozzle according to one of the preceding claims and a nozzle cap, wherein the nozzle cap and the nozzle form a coolant space, which is in fluid communication with a coolant supply and a coolant return, and the nozzle cap at least in the region of the first Section of the nozzle has a conically tapering towards the nozzle tip inner surface.
  • the surface area of the annular surface of the coolant space in the direction of the nozzle tip along the central axis of the nozzle expediently decreases 1.5 to 8 times faster in the at least one deflection section than in front of the at least one deflection section.
  • the area of the annular surface of the coolant space in the direction of the nozzle tip along the central axis of the nozzle immediately after the at least one deflection section is 1.5 to 8 times larger than the smallest area of the deflection.
  • the annular surface of the coolant chamber jumps in the direction of the nozzle tip along the central axis of the nozzle immediately after the at least one deflection at least to the value he has immediately before the deflection.
  • the coolant supply and the coolant return are offset by 180 ° to each other.
  • this object is achieved by a liquid-cooled plasma torch with a coolant supply and a coolant return and with an arrangement according to one of claims 19 to 23.
  • the plasma torch in addition to a plasma gas supply to a secondary gas supply and a nozzle cap on.
  • the invention is based on the surprising finding that by providing at least one deflection section in a simple manner, the nozzle is flushed with coolant more uniformly than before, that is to say also, to a greater extent, coolant reaches the vicinity of the nozzle bore and / or the flow velocity of the nozzle Coolant is increased near the nozzle bore. To improve the cooling to increase the life of the nozzle no additional component is necessary. In addition, this can be achieved with a small design of the plasma torch. In addition, a simple and quick change of the nozzle can be realized. In addition, the plasma torch is still sufficiently acute-angled.
  • the in the FIGS. 1a . 1b and 2 shown plasma burner head 1 takes with an electrode holder 6, an electrode 7 with an electrode insert 7.1 in the present case via a thread (not shown).
  • the electrode 7 is formed as an electrode holder with a pointed electrode insert 7.1 made of tungsten.
  • an argon-hydrogen mixture may be used as the plasma gas.
  • a nozzle 4 is received by a cylindrical nozzle holder 5.
  • a nozzle cap 2 which is fastened via a thread on the plasma burner head 1, fixes the nozzle 4 and forms with it a coolant space 10.
  • the coolant space 10 is defined by a seal realized with a circular ring 4.16 which is located in a groove 4.15 of the nozzle 4. sealed between the nozzle 4 and the nozzle cap 2.
  • the nozzle cap 2 has a section 2.1, which is adjacent to the first section 4.17, and whose inner surface 2.2 likewise tapers in a substantially conical manner.
  • a coolant for example water or antifreeze added water, flows through the coolant chamber 10 from a coolant flow WV to a coolant return WR, which are arranged offset by 180 °.
  • a coolant flow WV to a coolant return WR, which are arranged offset by 180 °.
  • overheating of the nozzle in the area of the nozzle bore 4.10 always occurs. This is shown by discoloration of the copper of the nozzle after a short period of operation. The effect is particularly pronounced when the liquid-cooled plasma torch becomes indirect is operated. Here, even at currents of 40 A, strong discoloration occurs after a short time (5 minutes). Likewise, the sealing point between the nozzle and the nozzle cap is overloaded, resulting in damage to the circular ring 4.16 and thus leakage and coolant leakage.
  • the position, the surface area F and the shape of the annular surface A10a to A10g of the coolant chamber 10 are in the Figures 1b and 1c shown. It can be seen that the surface area F of the annuli in the first section 4.17 first decreases from 183 mm 2 (A10a) to 146 mm 2 (A10d) linearly with 8 mm 2 to 1 mm along the center axis M of the nozzle, before it thickens to 37 mm 2 1 mm along the central axis M in the range 10.1 reduced to 90 mm 2 (A10e1). Thereafter, the area F increases abruptly to 166 mm 2 (A10e2) and reaches a greater value than before its reduction in the range 10.1 (A10d). The same applies to the area 10.2.
  • the plasma burner head 1 is equipped with a nozzle protection cap holder 8 and a nozzle protection cap 9. Through this area flows a secondary gas SG, which surrounds the plasma jet.
  • the secondary gas SG flows through a secondary gas guide 9.1 and can be rotated by this.
  • FIG. 2 shows the nozzle 4 of the FIGS. 1a and 1b in individual representation in longitudinal section view. It has a second section with a cylindrical outer surface 4.1 for receiving in the nozzle holder 5. Furthermore, it has a first section with a substantially to the nozzle tip out at an angle ⁇ conically tapered outer surface 4.2 and a second portion having a substantially cylindrical outer surface 4.3.
  • the outer surface 4.2 has two deflection sections 4.21 and 4.22, the conically tapered outer surface 4.2 extend conically conically.
  • the nozzle 4 has a groove 4.15 for a round ring 4.16.
  • angles .alpha. And .beta.1 and .beta.2 are the same, and the dimensions a1 and a2 are the same.
  • FIGS. 3a to 3d show a plasma burner head with plasma and secondary gas supply with a nozzle according to another particular embodiment of the present invention.
  • a plasma burner head 1 takes with an electrode holder 6 an electrode 7 with an electrode insert 7.1, in this case via a thread (not shown).
  • the electrode 7 is formed as an electrode holder with a pointed electrode insert 7.1 made of tungsten.
  • an argon-hydrogen mixture can be used as the plasma gas.
  • a nozzle 4 is received by a cylindrical nozzle holder 5.
  • a nozzle cap 2 which is attached via a thread on the plasma burner head 1, fixes the nozzle 4 and forms with this a coolant chamber 10.
  • the coolant chamber 10 is sealed by a metallic seal between the nozzle 4 made of copper and the nozzle cap 2 made of brass.
  • Metallic seal in this case only means that in the front area of the burner, the seal between the nozzle and nozzle cap does not take place via a round ring, but by pressing together two metallic components.
  • the nozzle cap 2 has a section 2.1, which is adjacent to the first section 4.17, and whose inner surface 2.2 is likewise substantially conically tapered.
  • a coolant for example water or antifreeze added water, flows through the coolant chamber 10 from a coolant flow WV to a coolant return WR, which are arranged offset by 180 °.
  • FIGS. 3b and 3c The position, the surface area F and the shape of the annular surface A10a to A10i of the coolant space are in the FIGS. 3b and 3c shown. It can be seen that the surface area F of the circular rings in the conical region initially decreases from 258 mm 2 (A10a) to 218 mm 2 (A10c) linearly along the burner axis M in the range 10.1 to 158 mm 2 (A10d1). Thereafter, the area F increases abruptly to 252 mm 2 (A10d2) and reaches a greater value than before its reduction in the range 10.1 (A10c). The same applies to the areas 10.2 and 10.3.
  • the plasma burner head 1 is equipped with a nozzle protection cap holder 8 and a nozzle protection cap 9. Through this area flows a secondary gas SG, which surrounds the plasma jet.
  • FIG. 4 shows the plasma burner head of FIG. 1a with another nozzle.
  • FIG. 5 shows a further specific embodiment of the plasma torch according to the invention similar to FIG. 1a ,
  • the plasma torch is provided with a flat electrode 7 for oxygen-containing gases or nitrogen as the plasma gas.
  • the coolant space 10 has the same features as that in FIG. 1a on.
  • FIG. 6 also shows a plasma torch according to a particular embodiment of the present invention for oxygen-containing gases or nitrogen as a plasma gas.
  • the plasma torch and the nozzle 4 are not as acute as those in FIG. 1a designed, but the coolant space has the same features as in FIG. 5 , The associated nozzle 4 is in FIG. 6a shown individually.
  • FIGS. 7 to 11 show further particular embodiments of the plasma torch according to the invention, but for the indirect mode of operation for Ar / H 2 mixture as plasma gas and without protective cap holder and nozzle cap.
  • the nozzles for the indirect mode of operation differ from those for the direct mode of operation in that the conically widening part of the nozzle bore 4.10 towards the nozzle tip 4.11 is significantly longer than that of directly operated nozzles.
  • the coolant chamber 10 again has the features according to the invention.
  • FIG. 9 shows an arrangement with four such areas 10.1 to 10.4.
  • FIG. 12 shows a plasma torch for oxygen-containing gases or nitrogen as a plasma gas.
  • the coolant chamber 10 has two regions 10.1 and 10.2 in the coolant chamber 10 delimited by the nozzle 4 and the nozzle cap 2, which tapers conically towards the nozzle tip 4.11 and directs the coolant outward in the direction of the nozzle cap 2, before it surrounds the nozzle bore 4.10 Area 10.20 of the coolant chamber 10 flows and significantly improves the coolant effect.
  • FIG. 13 shows a longitudinal sectional view through a plasma burner head only with plasma gas supply, ie without nozzle cap holder and nozzle protection cap, in which also the nozzle of 3d figure fits.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Plasma Technology (AREA)
  • Arc Welding In General (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)

Description

Die vorliegende Erfindung betrifft eine Düse für einen flüssigkeitsgekühlten Plasmabrenner, eine Anordnung aus derselben und einer Düsenkappe sowie einen flüssigkeitsgekühlten Plasmabrenner mit einer derartigen Anordnung.The present invention relates to a nozzle for a liquid-cooled plasma torch, an arrangement of the same and a nozzle cap and a liquid-cooled plasma torch with such an arrangement.

Als Plasma wird ein thermisch hoch aufgeheiztes elektrisch leitfähiges Gas bezeichnet, das aus positiven und negativen Ionen, Elektronen sowie angeregten und neutralen Atomen und Molekülen besteht.Plasma is a thermally highly heated electrically conductive gas, which consists of positive and negative ions, electrons and excited and neutral atoms and molecules.

Als Plasmagas werden unterschiedliche Gase, zum Beispiel das einatomige Argon und/oder die zweiatomigen Gase Wasserstoff, Stickstoff, Sauerstoff oder Luft eingesetzt. Diese Gase ionisieren und dissoziieren durch die Energie eines Lichtbogens. Der durch eine Düse eingeschnürte Lichtbogen wird dann als Plasmastrahl bezeichnet.The plasma gas used is a variety of gases, for example the monatomic argon and / or the diatomic gases hydrogen, nitrogen, oxygen or air. These gases ionize and dissociate through the energy of an arc. The narrowed by a nozzle arc is then referred to as plasma jet.

Der Plasmastrahl kann in seinen Parametern durch die Gestaltung der Düse und Elektrode stark beeinflusst werden. Diese Parameter des Plasmastrahls sind zum Beispiel der Strahldurchmesser, die Temperatur, Energiedichte und die Strömungsgeschwindigkeit des Gases.The plasma jet can be greatly influenced in its parameters by the design of the nozzle and electrode. These parameters of the plasma jet are, for example, the beam diameter, the temperature, the energy density and the flow velocity of the gas.

Beim Plasmaschneiden beispielsweise wird das Plasma durch eine Düse, die gas- oder wassergekühlt sein kann, eingeschnürt. Dadurch können Energiedichten bis 2x106 W/cm2 erreicht werden. Im Plasmastrahl entstehen Temperaturen bis 30.000 °C, die in Verbindung mit der hohen Strömungsgeschwindigkeit des Gases sehr hohe Schneidgeschwindigkeiten an Werkstoffen realisieren.In plasma cutting, for example, the plasma is constricted through a nozzle, which may be gas or water cooled. As a result, energy densities up to 2x10 6 W / cm 2 can be achieved. Temperatures of up to 30,000 ° C are generated in the plasma jet, which, in combination with the high flow velocity of the gas, produce very high cutting speeds on materials.

Plasmabrenner können direkt oder indirekt betrieben werden. Bei der direkten Betriebsweise fließt der Strom von der Stromquelle über die Elektrode des Plasmabrenners, den mittels Lichtbogen erzeugten und durch die Düse eingeschnürten Plasmastrahl direkt über das Werkstück zur Stromquelle zurück. Mit der direkten Betriebsweise können elektrisch leitfähige Materialien geschnitten werden.Plasma torches can be operated directly or indirectly. In the direct mode of operation, the current from the power source flows through the electrode of the plasma torch, the arc generated by the arc and constricted by the nozzle directly back to the power source via the workpiece. With the direct mode of operation, electrically conductive materials can be cut.

Bei der indirekten Betriebsweise fließt der Strom von der Stromquelle über die Elektrode des Plasmabrenners, den mittels Lichtbogen erzeugten und durch die Düse eingeschnürten Plasmastrahl und die Düse zurück zur Stromquelle. Dabei wird die Düse noch stärker belastet als bei direktem Plasmaschneiden, da sie nicht nur den Plasmastrahl einschnürt, sondern auch den Ansatzpunkt des Lichtbogens realisiert. Mit der indirekten Betriebsweise können sowohl elektrisch leitende als auch nicht leitende Materialien geschnitten werden.In the indirect mode, the current flows from the power source through the electrode of the plasma torch, the plasma jet generated by the arc and constricted by the nozzle and the nozzle back to the power source. The nozzle is even more heavily loaded than with direct plasma cutting, because it not only constricts the plasma jet, but also realizes the starting point of the arc. With the indirect mode of operation, both electrically conductive and non-conductive materials can be cut.

Wegen der hohen thermischen Belastung der Düse wird diese in der Regel aus einem metallischen Werkstoff, vorzugsweise wegen seiner hohen elektrischen Leitfähigkeit und Wärmeleitfähigkeit aus Kupfer, hergestellt. Gleiches gilt für den Elektrodenhalter, der aber auch aus Silber hergestellt sein kann. Die Düse wird dann in einem Plasmabrenner, dessen Hauptbestandteile ein Plasmabrennerkopf, eine Düsenkappe, ein Plasmagasführungsteil, eine Düse, eine Düsenhalterung, eine Elektrodenaufnahme, ein Elektrodenhalter mit Elektrodeneinsatz und bei modernen Plasmabrennern eine Düsenschutzkappenhalterung und eine Düsenschutzkappe sind, eingesetzt. Der Elektrodenhalter fixiert einen spitzen Elektrodeneinsatz aus Wolfram, der für den Einsatz nicht oxidierender Gase als Plasmagas, zum Beispiel ein Argon-Wasserstoff-Gemisch geeignet ist. Eine sogenannte Flachelektrode, deren Elektrodeneinsatz beispielsweise aus Hafnium besteht, ist auch für den Einsatz oxidierender Gase als Plasmagas, zum Beispiel Luft oder Sauerstoff, geeignet. Um eine hohe Lebensdauer für die Düse zu erreichen, wird diese hier mit einer Flüssigkeit, zum Beispiel Wasser, gekühlt. Das Kühlmittel wird über einen Wasservorlauf zur Düse hin- und einen Wasserrücklauf von der Düse weggeführt und durchströmt dabei einen Kühlmittelraum, der durch die Düse und die Düsenkappe begrenzt wird.Because of the high thermal load of the nozzle, this is usually made of a metallic material, preferably because of its high electrical conductivity and thermal conductivity of copper. The same applies to the electrode holder, which can also be made of silver. The nozzle is then inserted into a plasma torch whose main components are a plasma torch head, a nozzle cap, a plasma gas guide member, a nozzle, a nozzle holder, an electrode holder, an electrode holder with electrode insert and in modern plasma torches a nozzle cap holder and a nozzle cap. The electrode holder fixes a tungsten tip insert which is suitable for the use of non-oxidizing gases as plasma gas, for example an argon-hydrogen mixture. A so-called flat electrode, whose electrode insert consists for example of hafnium, is also suitable for the use of oxidizing gases as plasma gas, for example air or oxygen. In order to achieve a long service life for the nozzle, it is cooled here with a liquid, for example water. The coolant is directed towards the nozzle via a water feed and a water return from the nozzle and flows through a coolant space which is delimited by the nozzle and the nozzle cap.

In DD 36014 B1 ist eine Düse beschrieben. Diese besteht aus einem gut leitenden Werkstoff, zum Beispiel Kupfer, und hat eine dem jeweiligen Plasmabrennertyp zugeordnete geometrische Form, zum Beispiel einen konisch ausgebildeten Entladungsraum mit einem zylindrischen Düsenausgang. Die äußere Form der Düse ist als Konus ausgebildet, wobei eine annähernd gleiche Wanddicke erzielt wird, die so bemessen ist, dass eine gute Stabilität der Düse und eine gute Wärmeleitung zum Kühlmittel gewährleistet ist. Die Düse sitzt in einem Düsenhalter. Der Düsenhalter besteht aus korrosionsfestem Material, zum Beispiel Messing, und hat innen eine Zentrieraufnahme für die Düse sowie eine Nut für einen Dichtungsgummi, der den Entladungsraum gegen das Kühlmittel abdichtet. Weiterhin befinden sich im Düsenhalter um 180° versetzte Bohrungen für den Kühlmittelzu- und -rücklauf. Auf dem äußeren Durchmesser des Düsenhalters befinden sich eine Nut für einen Rundgummi zur Abdichtung des Kühlmittelraums gegenüber der Atmosphäre sowie ein Gewinde und eine Zentrieraufnahme für eine Düsenkappe. Die Düsenkappe, ebenfalls aus korrosionsfestem Material, zum Beispiel Messing, ist spitzwinklig ausgebildet und hat eine zur Ableitung von Strahlungswärme an das Kühlmittel zweckmäßig bemessene Wandstärke. Der kleinste innere Durchmesser ist mit einem Rundring versehen. Als Kühlmittel wird am einfachsten Wasser verwendet. Diese Anordnung soll eine einfache Herstellung der Düsen bei sparsamem Materialeinsatz und ein schnelles Auswechseln dieser sowie durch die spitzwinklige Bauform ein Schwenken des Plasmabrenners gegenüber dem Werkstück und damit Schrägschnitte ermöglichen.In DD 36014 B1 a nozzle is described. This consists of a highly conductive material, for example copper, and has a geometric shape associated with the respective plasma torch type, for example a conical discharge space with a cylindrical nozzle exit. The outer shape of the nozzle is formed as a cone, wherein an approximately equal wall thickness is achieved, which is dimensioned so that a good stability of the nozzle and a good heat conduction to the coolant is ensured. The nozzle sits in a nozzle holder. The nozzle holder is made of corrosion-resistant material, such as brass, and has inside a centering for the nozzle and a groove for a rubber seal, which seals the discharge space against the coolant. Furthermore, there are 180 ° staggered holes in the nozzle holder for the coolant supply and return. On the outer diameter of the nozzle holder there is a groove for a round rubber for sealing the coolant space from the atmosphere and a thread and a centering for a nozzle cap. The nozzle cap, also made of corrosion-resistant material, such as brass, is formed at an acute angle and has a useful for the dissipation of radiant heat to the coolant wall thickness. The smallest inner diameter is provided with a round ring. The easiest way to cool water is to use water. This arrangement is intended to allow easy production of the nozzles with economical use of material and rapid replacement of these and by the acute-angled design pivoting of the plasma torch relative to the workpiece and thus bevel cuts.

In DE-OS 1 565 638 wird ein Plasmabrenner, vorzugsweise zum Plasmaschmelzschneiden von Werkstoffen und zur Schweißkantenvorbereitung, beschrieben. Die schlanke Form des Brennerkopfes wird durch die Verwendung einer besonders spitzwinkligen Schneiddüse erreicht, deren innerer und äußerer Winkel untereinander gleich und auch gleich dem inneren und äußeren Winkel der Düsenkappe sind. Zwischen der Düsenkappe und der Schneiddüse wird ein Kühlmittelraum gebildet, in dem die Düsenkappe mit einem Bund versehen ist, welcher mit der Schneiddüse metallisch dichtet, so dass dadurch ein gleichmäßiger Ringspalt als Kühlmittelraum entsteht. Die Zu- und Abführung des Kühlmittels, im allgemeinen Wasser, erfolgt durch zwei um 180° gegeneinander versetzt angeordnete Schlitze im Düsenhalter.In DE-OS 1 565 638 a plasma torch, preferably for plasma cutting of materials and for welding edge preparation is described. The slim shape of the Burner head is achieved by the use of a particularly acute-angled cutting nozzle whose inner and outer angles are equal to each other and equal to the inner and outer angle of the nozzle cap. Between the nozzle cap and the cutting nozzle, a coolant space is formed, in which the nozzle cap is provided with a collar, which seals with the metal cutting nozzle, thereby creating a uniform annular gap as the coolant space. The supply and discharge of the coolant, generally water, is carried out by two 180 ° offset from each other arranged slots in the nozzle holder.

In DE 25 25 939 wird ein Plasmalichtbogenbrenner, insbesondere zum Schneiden oder Schweißen, beschrieben, bei dem der Elektrodenhalter und der Düsenkörper eine austauschbare Baueinheit bilden. Die äußere Kühlmittelzuführung wird im wesentlichen durch eine den Düsenkörper umfassende Überwurfkappe gebildet. Das Kühlmittel strömt über Kanäle in einen Ringraum, welcher durch den Düsenkörper und die Überwurfkappe gebildet wird.In DE 25 25 939 a plasma arc torch, in particular for cutting or welding, is described, in which the electrode holder and the nozzle body form an exchangeable structural unit. The outer coolant supply is essentially formed by a comprehensive the nozzle body cap. The coolant flows via channels into an annular space, which is formed by the nozzle body and the cap.

DE 692 33 071 T2 betrifft eine Lichtbogen-Plasmaschneidvorrichtung. Es wird darin eine Ausführungsform einer Düse für einen Plasmalichtbogen-Schneidbrenner beschrieben, die aus einem leitenden Material gebildet ist und eine Austrittsöffnung für einen Plasmagasstrahl und einen hohlen Körperabschnitt, der so ausgebildet ist, dass er eine im allgemeinen konische dünnwandige Konfiguration hat, die in Richtung auf die Austrittsöffnung geneigt ist und einen vergrößerten Kopfabschnitt aufweist, der einstückig mit dem Körperabschnitt ausgebildet ist, wobei der Kopfabschnitt massiv mit Ausnahme eines zentralen Kanals ist, der mit der Austrittsöffnung fluchtet und eine im allgemeinen konische Außenfläche aufweist, die auch in Richtung auf die Austrittsöffnung geneigt ist und einen Durchmesser angrenzend an den des benachbarten Körperabschnitts besitzt, der den Durchmesser des Körperabschnitts übersteigt, um eine zurückgeschnittene Aussparung zu bilden. Die Lichtbogen-Plasmaschneidvorrichtung besitzt eine Sekundärgaskappe. Weiterhin ist zwischen der Düse und der Sekundärgaskappe eine wassergekühlte Kappe angeordnet, um eine wassergekühlte Kammer für die äußere Fläche der Düse für ein hochwirksames Kühler zu bilden. Die Düse ist durch einen großen Kopf, der eine Austrittsöffnung für den Plasmastrahl umgibt, und einen scharfen Hinterschnitt oder eine Aussparung zu einem konischen Körper gekennzeichnet. Diese Düsenkonstruktion begünstigt das Kühlen der Düse. DE 692 33 071 T2 relates to an arc plasma cutting device. Described herein is an embodiment of a plasma arc cutting nozzle nozzle formed of a conductive material and having a plasma jet jet exit and a hollow body portion configured to have a generally conical thin-walled configuration that extends in the direction is inclined to the outlet opening and has an enlarged head portion, which is formed integrally with the body portion, wherein the head portion is solid except for a central channel which is aligned with the outlet opening and having a generally conical outer surface, which is also in the direction of the outlet opening is inclined and has a diameter adjacent to that of the adjacent body portion exceeding the diameter of the body portion to form a recessed recess. The arc plasma cutter has a secondary gas cap. Further, a water-cooled cap is disposed between the nozzle and the secondary gas cap to form a water-cooled chamber for the outer surface of the nozzle for a high-efficiency radiator. The nozzle is characterized by a large head surrounding an exit port for the plasma jet and a sharp undercut or recess to a conical body. This nozzle design favors the cooling of the nozzle.

Bei den vorangehend beschriebenen Plasmabrennern wird das Kühlmittel über einen Wasservorlaufkanal zur Düse hin- und über einen Wasserrücklaufkanal von der Düse weggeführt. Diese Kanäle sind meist um 180° zueinander versetzt und das Kühlmittel soll auf dem Weg vom Vor- zum Rücklauf der Düse möglichst gleichmäßig umspülen. Dennoch werden immer wieder Überhitzung in der Nähe des Düsenkanals festgestellt.In the plasma torches described above, the coolant is led back to the nozzle via a water feed channel and away from the nozzle via a water return channel. These channels are usually offset by 180 ° to each other and the coolant should flow as evenly as possible on the way from the forward to the return of the nozzle. Nevertheless, overheating near the nozzle channel is detected again and again.

Eine andere Kühlmittelführung für einen Brenner, vorzugsweise Plasmabrenner, insbesondere für Plasmaschweiß-, Plasmaschneid-, Plasmaschmelz- und Plasmaspritzzwecke, die hohen thermischen Beanspruchungen der Düse und der Katode standhält, ist in DD 83890 B1 beschrieben. Hier ist für die Kühlung der Düse ein in das Düsenhalteteil leicht einsetzbarer und herausnehmbarer Kühlmedienleitring angeordnet, der zur Begrenzung der Kühlmedienführung auf eine dünne Schicht von maximal 3 mm Dicke entlang der äußeren Düsenwand eine umlaufende Formnut aufweist, in die mehr als eine, vorzugsweise zwei bis vier, und sternförmig zu dieser radial und symmetrisch zur Düsenachse und sternförmig zu dieser mit einem Winkel zwischen 0 und 90° angebrachte Kühlleitungen so einmünden, dass sie von je zwei Kühlmedienabflüssen und jeder Kühlmedienabfluss von zwei Kühlmedienzuflüssen benachbart ist.Another coolant guide for a burner, preferably plasma torches, in particular for plasma welding, plasma cutting, plasma melting and plasma spraying, which withstands high thermal stresses on the nozzle and the cathode is disclosed in US Pat DD 83890 B1 described. Here is for cooling the nozzle in the nozzle holding part easily deployable and removable Kühlmedienleitring arranged to limit the cooling media on a thin layer of a maximum thickness of 3 mm along the outer nozzle wall has a circumferential Formnut, in the more than one, preferably two to four, and star-shaped to this radially and symmetrically to the nozzle axis and star connected to this at an angle between 0 and 90 ° mounted cooling lines so that it is adjacent by two cooling media outlets and each cooling medium outflow of two cooling medium inflows.

US 5 396 043 offenbart eine Düsenspitze mit einer horizontal erweitern den Umlenkabschnitt in der Richtung der Düsenspitze angeordnet. US 5,396,043 discloses a nozzle tip with a horizontally extending the deflecting portion arranged in the direction of the nozzle tip.

Diese Anordnung hat wiederum den Nachteil, dass ein höherer Aufwand für die Kühlung durch die Verwendung eines zusätzlichen Bauteils, den Kühlmedienleitring, notwendig ist. Außerdem vergrößert sich dadurch die gesamte Anordnung.This arrangement in turn has the disadvantage that a higher outlay for the cooling by the use of an additional component, the Kühlmedienleitring, is necessary. In addition, this increases the entire arrangement.

Der Erfindung liegt somit die Aufgabe zugrunde, auf einfache Weise eine Überhitzung in der Nähe des Düsenkanals bzw. der Düsenbohrung zu vermeiden.The invention is therefore based on the object to avoid overheating in the vicinity of the nozzle channel or the nozzle bore in a simple manner.

Erfindungsgemäß wird diese Aufgabe gelöst durch eine Düse für einen flüssigkeitsgekühlten Plasmabrenner, umfassend eine Düsenbohrung für den Austritt eines Plasmagasstrahls an einer Düsenspitze und einen ersten Abschnitt, dessen Außenfläche sich bis auf mindestens einen sich zur Düsenspitze hin unter einem jeweiligen Winkel β1, β2 kegelig erweiternden Umlenkabschnitt zur Düsenspitze hin unter einem Winkel α kegelig verjüngt. Zumindest in einer besonderen Ausführungsform befindet sich der Umlenkabschnitt zur Düsenspitze hin vor der engsten Stelle oder dem engsten Bereich der Düsenbohrung.According to the invention this object is achieved by a nozzle for a liquid-cooled plasma torch, comprising a nozzle bore for the exit of a plasma jet at a nozzle tip and a first portion, the outer surface except for at least one deflecting portion which widens conically at a respective angle β1, β2 towards the nozzle tip tapered towards the nozzle tip at an angle α conically. In at least one particular embodiment, the deflection section is located towards the nozzle tip in front of the narrowest point or the narrowest region of the nozzle bore.

Dabei kann vorgesehen sein, dass der Winkel α im Bereich von 20° bis 120° liegt. Noch bevorzugter liegt er im Bereich von 30° bis 90°.It can be provided that the angle α is in the range of 20 ° to 120 °. More preferably, it is in the range of 30 ° to 90 °.

Vorteilhafterweise kann vorgesehen sein, dass der Winkel β1, β2 im Bereich von 20° bis 120° liegt. Noch bevorzugter liegt er im Bereich von 30° bis 90°.Advantageously, it can be provided that the angle β1, β2 is in the range of 20 ° to 120 °. More preferably, it is in the range of 30 ° to 90 °.

Gemäß einer weiteren besonderen Ausführungsform der Erfindung können mehrere Umlenkabschnitte vorgesehen sein und sich Umlenkabschnitte unter demselben Winkel β1 bzw. β2 kegelig erweitern.According to a further particular embodiment of the invention, a plurality of deflection sections can be provided and deflection sections can be conically widened at the same angle β1 or β2.

Andererseits ist auch denkbar, dass mehrere Umlenkabschnitte vorgesehen sind und zumindest zwei der Umlenkabschnitte sich unter unterschiedlichen Winkeln β1, β2 kegelig erweitern.On the other hand, it is also conceivable that a plurality of deflection sections are provided and at least two of the deflection sections widen conically at different angles β1, β2.

Vorteilhafterweise weichen die Winkel α und β1 bzw. β2 in ihrem Betrag um maximal 30° ab.Advantageously, the angles α and β1 or β2 differ in their amount by a maximum of 30 °.

Andererseits ist auch denkbar, dass die Winkel α und β1 bzw. β2 in ihrem Betrag gleich groß sind.On the other hand, it is also conceivable that the angles α and β1 or β2 are equal in magnitude.

Gemäß einer weiteren besonderen Ausführungsform der Erfindung kann vorgesehen sein, dass ein Winkel γ, der von der sich kegelig verjüngenden Außenfläche des ersten Abschnitts und der sich kegelig erweiternden Außenfläche des oder eines Umlenkabschnitts gebildet wird, zwischen 60° und 160° liegt. Noch bevorzugter liegt er im Bereich von 100° - 150°.According to another particular embodiment of the invention, it can be provided that an angle γ, which is formed by the conically tapering outer surface of the first section and the conically widening outer surface of the or a deflection section, is between 60 ° and 160 °. More preferably, it is in the range of 100 ° - 150 °.

Weiterhin kann günstigerweise vorgesehen sein, dass ein Winkel δ, der von einer zur Düsenspitze hin vorderen Kante des bzw. eines Umlenkabschnitts und der Mittelachse der Düse gebildet wird, zwischen 75° und 105° liegt.Furthermore, it can be advantageously provided that an angle δ, which is formed by a leading edge of the nozzle or a deflecting section and the center axis of the nozzle, is between 75 ° and 105 °.

Insbesondere beträgt der Winkel δ vorzugsweise 90°.In particular, the angle δ is preferably 90 °.

Vorteilhafterweise liegt oder liegen die parallel zur Mittelachse der Düse verlaufende Länge oder verlaufenden Längen des bzw. der Umlenkbereiche(s) im Bereich von 1 bis 3 mm.Advantageously, lies or lie parallel to the central axis of the nozzle extending length or extending lengths of the or the deflection (s) in the range of 1 to 3 mm.

Insbesondere kann dabei vorgesehen sein, dass die parallel zur Mittelachse der Düse verlaufenden Längen des bzw. der Umlenkbereiche(s) gleich groß sind.In particular, it may be provided that the parallel to the central axis of the nozzle extending lengths of the deflection or (s) are the same size.

Gemäß einer weiteren besonderen Ausführungsform der Erfindung kann vorgesehen sein, dass die senkrecht zur Mittelachse der Düse verlaufende Länge oder verlaufenden Längen des bzw. der Umlenkbereiche(s) im Bereich von 1 bis 4 mm liegt oder liegen.According to a further particular embodiment of the invention, it can be provided that the length or extending lengths of the deflection region or zones (s) running perpendicular to the center axis of the nozzle are or lie in the range of 1 to 4 mm.

Insbesondere kann vorgesehen sein, dass die senkrecht zur Mittelachse der Düse verlaufenden Längen des bzw. der Umlenkbereiche(s) gleich groß sind.In particular, it can be provided that the perpendicular to the central axis of the nozzle extending lengths of the or the deflection regions (s) are equal.

Zweckmäßigerweise weist die Düse einen zweiten Abschnitt mit einer zylindrischen Außenfläche zur Aufnahme in einer Brennerhalterung auf.Conveniently, the nozzle has a second portion with a cylindrical outer surface for receiving in a burner holder.

Günstigerweise weist die Düse einen dritten Abschnitt mit einer im wesentlichen zylindrischen Außenfläche auf, die sich bezogen auf die Mittelachse der Düse unmittelbar vor der Düsenbohrung befindet.Conveniently, the nozzle has a third portion with a substantially cylindrical outer surface, which is located with respect to the central axis of the nozzle immediately in front of the nozzle bore.

Vorteilhafterweise weist die Düse einen dritten Abschnitt mit einer im wesentlichen zylindrischen Außenfläche auf, die sich bezogen auf die Mittelachse der Düse zumindest teilweise gegenüber der Düsenbohrung befindet.Advantageously, the nozzle has a third section with a substantially cylindrical outer surface, which is located at least partially relative to the nozzle bore with respect to the central axis of the nozzle.

Weiterhin kann sich in der Nähe der Düsenspitze eine Nut für einen Rundring befinden.Furthermore, there may be a groove for a round ring near the nozzle tip.

Des weiteren wird diese Aufgabe gelöst durch eine Anordnung aus einer Düse nach einem der vorangehenden Ansprüche und einer Düsenkappe, wobei die Düsenkappe und die Düse einen Kühlmittelraum bilden, der mit einem Kühlmittelvorlauf und einem Kühlmittelrücklauf in Flüssigkeitsverbindung steht, und die Düsenkappe zumindest im Bereich des ersten Abschnitts der Düse eine sich zur Düsenspitze hin kegelig verjüngende Innenfläche aufweist.Furthermore, this object is achieved by an arrangement of a nozzle according to one of the preceding claims and a nozzle cap, wherein the nozzle cap and the nozzle form a coolant space, which is in fluid communication with a coolant supply and a coolant return, and the nozzle cap at least in the region of the first Section of the nozzle has a conically tapering towards the nozzle tip inner surface.

Günstigerweise verringert sich der Flächeninhalt der Kreisringfläche des Kühlmittelraumes in Richtung der Düsenspitze entlang der Mittelachse der Düse hin in dem mindestens einen Umlenkabschnitt 1,5 bis 8 mal schneller als vor dem mindestens einen Umlenkabschnitt.The surface area of the annular surface of the coolant space in the direction of the nozzle tip along the central axis of the nozzle expediently decreases 1.5 to 8 times faster in the at least one deflection section than in front of the at least one deflection section.

Außerdem ist der Flächeninhalt der Kreisringfläche des Kühlmittelraumes in Richtung der Düsenspitze entlang der Mittelachse der Düse unmittelbar nach dem mindestens einen Umlenkabschnitt 1,5 bis 8 mal größer als die kleinste Fläche des Umlenkbereiches.In addition, the area of the annular surface of the coolant space in the direction of the nozzle tip along the central axis of the nozzle immediately after the at least one deflection section is 1.5 to 8 times larger than the smallest area of the deflection.

Weiterhin ist denkbar, dass die Kreisringfläche des Kühlmittelraumes in Richtung der Düsenspitze entlang der Mittelachse der Düse unmittelbar nach dem mindestens einen Umlenkabschnitt zumindest auf den Wert springt, den er unmittelbar vor dem Umlenkabschnitt hat.Furthermore, it is conceivable that the annular surface of the coolant chamber jumps in the direction of the nozzle tip along the central axis of the nozzle immediately after the at least one deflection at least to the value he has immediately before the deflection.

In einer besonderen Ausführungsform der Erfindung sind der Kühlmittelvorlauf und der Kühlmittelrücklauf um 180° zueinander versetzt angeordnet.In a particular embodiment of the invention, the coolant supply and the coolant return are offset by 180 ° to each other.

Gemäß einem weiteren Aspekt wird diese Aufgabe gelöst durch einen flüssigkeitsgekühlten Plasmabrenner mit einem Kühlmittelvorlauf und einem Kühlmittelrücklauf und mit einer Anordnung nach einem der Ansprüche 19 bis 23.According to another aspect, this object is achieved by a liquid-cooled plasma torch with a coolant supply and a coolant return and with an arrangement according to one of claims 19 to 23.

In einer besonderen Ausführungsform weist der Plasmabrenner neben einer Plasmagaszuführung eine Sekundärgaszuführung und eine Düsenschutzkappe auf.In a particular embodiment, the plasma torch in addition to a plasma gas supply to a secondary gas supply and a nozzle cap on.

Der Erfindung liegt die überraschende Erkenntnis zugrunde, dass durch das Vorsehen mindestens eines Umlenkabschnitts auf einfache Weise die Düse gleichmäßiger als bisher mit Kühlmittel umspült wird, das heißt auch bzw. in einem größeren Maße Kühlmittel in die Nähe der Düsenbohrung gelangt und/oder die Strömungsgeschwindigkeit des Kühlmittels in der Nähe der Düsenbohrung erhöht wird. Zur Verbesserung der Kühlung zur Erhöhung der Lebensdauer der Düse ist kein zusätzliches Bauteil notwendig. Zudem lässt sich dies mit einer kleinen Bauform des Plasmabrenners erreichen. Außerdem lässt sich ein einfaches und schnelles Wechseln der Düse realisieren. Zudem ist der Plasmabrenner weiterhin ausreichend spitzwinklig.The invention is based on the surprising finding that by providing at least one deflection section in a simple manner, the nozzle is flushed with coolant more uniformly than before, that is to say also, to a greater extent, coolant reaches the vicinity of the nozzle bore and / or the flow velocity of the nozzle Coolant is increased near the nozzle bore. To improve the cooling to increase the life of the nozzle no additional component is necessary. In addition, this can be achieved with a small design of the plasma torch. In addition, a simple and quick change of the nozzle can be realized. In addition, the plasma torch is still sufficiently acute-angled.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den beigefügten Ansprüchen und der nachfolgenden Beschreibung, in der mehrere besondere Ausführungsformen der Erfindung anhand von schematischen Zeichnungen im einzelnen erläutert werden. Dabei zeigt:

Figur 1a
eine Längsschnittansicht durch einen Plasmabrennerkopf mit Plasma- und Sekundärgaszuführung mit einer Düse gemäß einer besonderen Ausführungsform der vorliegenden Erfindung;
Figur 1b
die Längsschnittansicht von Figur 1a mit Kennzeichnung von Abmessungen und Schnittebenen;
Figur 1c
Darstellungen von Flächeninhalten eines Kühlmittelraumes in den verschiedenen Schnittebenen;
Figur 2
eine Einzeldarstellung der Düse von Figur 1a in Längsschnittansicht;
Figur 3a
eine Längsschnittansicht durch einen Plasmabrennerkopf mit Plasma- und Sekundärgaszuführung mit einer Düse gemäß einer weiteren besonderen Ausführungsform der vorliegenden Erfindung;
Figur 3b
die Längsschnittansicht von Figur 3a mit Kennzeichnung von Abmessungen und Schnittebenen;
Figur 3c
Darstellungen von Flächeninhalten eines Kühlmittelraumes in den verschiedenen Schnittebenen;
Figur 3d
eine Einzeldarstellung der Düse von Figur 3a in Längsschnittansicht;
Figur 4
eine Längsschnittansicht durch einen Plasmabrennerkopf mit Plasma- und Sekundärgaszuführung mit einer Düse gemäß einer weiteren besonderen Ausführungsform der vorliegenden Erfindung;
Figur 5
eine Längsschnittansicht durch einen Plasmabrennerkopf mit Plasma- und Sekundärgaszuführung mit einer Düse gemäß einer weiteren besonderen Ausführungsform der vorliegenden Erfindung;
Figur 6
eine Längsschnittansicht durch einen Plasmabrennerkopf mit Plasma- und Sekundärgaszuführung mit einer Düse gemäß einer weiteren besonderen Ausführungsform der vorliegenden Erfindung;
Figur 6a
eine Einzeldarstellung der Düse von Figur 5 in Längsschnittansicht;
Figur 7
eine Längsschnittansicht durch einen indirekt betreibbaren Plasmabrennerkopf nur mit Plasmagaszuführung mit einer Düse gemäß einer weiteren besonderen Ausführungsform der vorliegenden Erfindung;
Figur 8
eine Einzeldarstellung der Düse von Figur 7 in Längsschnittansicht;
Figur 9
eine Längsschnittansicht durch einen indirekt betreibbaren Plasmabrennerkopf nur mit Plasmagaszuführung mit einer Düse gemäß einer weiteren besonderen Ausführungsform der vorliegenden Erfindung;
Figur 10
eine Einzeldarstellung der Düse von Figur 9 in Längsschnittansicht;
Figur 11
eine Längsschnittansicht durch einen indirekt betreibbaren Plasmabrennerkopf nur mit Plasmagaszuführung mit einer Düse gemäß einer weiteren besonderen Ausführungsform der vorliegenden Erfindung; und
Figur 12
eine Längsschnittansicht durch einen Plasmabrennerkopf nur mit Plasmagaszuführung mit einer Düse gemäß einer weiteren besonderen Ausführungsform der vorliegenden Erfindung; und
Figur 13
eine Längsschnittansicht durch einen Plasmabrennerkopf nur mit Plasmagaszuführung mit einer Düse gemäß einer weiteren besonderen Ausführungsform der vorliegenden Erfindung.
Further features and advantages of the invention will become apparent from the appended claims and the following description, in which several particular embodiments of the invention are explained in detail with reference to schematic drawings. Showing:
FIG. 1a
a longitudinal sectional view through a plasma burner head with plasma and secondary gas supply with a nozzle according to a particular embodiment of the present invention;
FIG. 1b
the longitudinal sectional view of FIG. 1a with identification of dimensions and cutting planes;
Figure 1c
Representations of areas of a coolant space in the different cutting planes;
FIG. 2
a single representation of the nozzle of FIG. 1a in longitudinal section view;
FIG. 3a
a longitudinal sectional view through a plasma burner head with plasma and secondary gas supply with a nozzle according to another particular embodiment of the present invention;
FIG. 3b
the longitudinal sectional view of FIG. 3a with identification of dimensions and cutting planes;
Figure 3c
Representations of areas of a coolant space in the different cutting planes;
3d figure
a single representation of the nozzle of FIG. 3a in longitudinal section view;
FIG. 4
a longitudinal sectional view through a plasma burner head with plasma and secondary gas supply with a nozzle according to another particular embodiment of the present invention;
FIG. 5
a longitudinal sectional view through a plasma burner head with plasma and secondary gas supply with a nozzle according to another particular embodiment of the present invention;
FIG. 6
a longitudinal sectional view through a plasma burner head with plasma and secondary gas supply with a nozzle according to another particular embodiment of the present invention;
FIG. 6a
a single representation of the nozzle of FIG. 5 in longitudinal section view;
FIG. 7
a longitudinal sectional view through an indirectly operable plasma burner head only with plasma gas supply with a nozzle according to another particular embodiment of the present invention;
FIG. 8
a single representation of the nozzle of FIG. 7 in longitudinal section view;
FIG. 9
a longitudinal sectional view through an indirectly operable plasma burner head only with plasma gas supply with a nozzle according to another particular embodiment of the present invention;
FIG. 10
a single representation of the nozzle of FIG. 9 in longitudinal section view;
FIG. 11
a longitudinal sectional view through an indirectly operable plasma burner head only with plasma gas supply with a nozzle according to another particular embodiment of the present invention; and
FIG. 12
a longitudinal sectional view through a plasma burner head only with plasma gas supply with a nozzle according to another particular embodiment of the present invention; and
FIG. 13
a longitudinal sectional view through a plasma burner head only with plasma gas supply with a nozzle according to another particular embodiment of the present invention.

Der in den Figuren 1a, 1b und 2 gezeigte Plasmabrennerkopf 1 nimmt mit einer Elektrodenaufnahme 6 eine Elektrode 7 mit einem Elektrodeneinsatz 7.1 im vorliegenden Fall über ein Gewinde (nicht dargestellt) auf. Die Elektrode 7 ist als Elektrodenhalter mit einem spitzen Elektrodeneinsatz 7.1 aus Wolfram ausgebildet. Für den Plasmabrenner kann zum Beispiel ein Argon-Wasserstoff-Gemisch als Plasmagas verwendet werden. Eine Düse 4 wird von einer zylindrischen Düsenhalterung 5 aufgenommen. Eine Düsenkappe 2, die über ein Gewinde am Plasmabrennerkopf 1 befestigt ist, fixiert die Düse 4 und bildet mit dieser einen Kühlmittelraum 10. Der Kühlmittelraum 10 wird durch eine mit einem Rundring 4.16 realisierte Dichtung, der sich in einer Nut 4.15 der Düse 4 befindet, zwischen der Düse 4 und der Düsenkappe 2 abgedichtet. Die Düse 4 weist einen ersten Abschnitt 4.17 auf, dessen Außenfläche 4.2 sich bis auf zwei sich zur Düsenspitze hin unter einem Winkel β = β1 = β2 kegelig erweiternde Umlenkabschnitte 4.21 und 4.22 zur Düsenspitze hin unter einem Winkel α kegelig verjüngt. Die Düsenkappe 2 weist einen zum ersten Abschnitt 4.17 benachbarten Abschnitt 2.1 auf, dessen Innenfläche 2.2 sich ebenfalls im wesentlichen kegelig verjüngt.The in the FIGS. 1a . 1b and 2 shown plasma burner head 1 takes with an electrode holder 6, an electrode 7 with an electrode insert 7.1 in the present case via a thread (not shown). The electrode 7 is formed as an electrode holder with a pointed electrode insert 7.1 made of tungsten. For the plasma torch, for example, an argon-hydrogen mixture may be used as the plasma gas. A nozzle 4 is received by a cylindrical nozzle holder 5. A nozzle cap 2, which is fastened via a thread on the plasma burner head 1, fixes the nozzle 4 and forms with it a coolant space 10. The coolant space 10 is defined by a seal realized with a circular ring 4.16 which is located in a groove 4.15 of the nozzle 4. sealed between the nozzle 4 and the nozzle cap 2. The nozzle 4 has a first section 4.17, the outer surface 4.2 tapers conically up to two to the nozzle tip at an angle β = β 1 = β 2 conically widening deflecting 4.21 and 4.22 towards the nozzle tip at an angle α. The nozzle cap 2 has a section 2.1, which is adjacent to the first section 4.17, and whose inner surface 2.2 likewise tapers in a substantially conical manner.

Ein Kühlmittel, zum Beispiel Wasser oder mit Gefrierschutzmittel versetztes Wasser, durchströmt den Kühlmittelraum 10 von einem Kühlmittelvorlauf WV zu einem Kühlmittelrücklauf WR, die 180° versetzt angeordnet sind. Bei Plasmabrennern im Stand der Technik kommt es immer wieder zur Überhitzung der Düse im Bereich der Düsenbohrung 4.10. Dies zeigt sich durch Verfärbung des Kupfers der Düse nach kurzer Betriebszeit. Besonders stark tritt der Effekt auf, wenn der flüssigkeitsgekühlte Plasmabrenner indirekt betrieben wird. Hier treten schon bei Strömen von 40 A starke Verfärbungen nach kurzer Zeit (5 Minuten) auf. Ebenso wird die Dichtstelle zwischen der Düse und der Düsenkappe überlastet, was zur Beschädigung des Rundringes 4.16 und damit zur Undichtigkeit und Kühlmittelaustritt führt. Untersuchungen haben ergeben, dass dieser Effekt besonders auf der dem Kühlmittelrücklauf WR zugewandten Seite der Düse auftritt. Es wird angenommen, dass das Kühlmittel den thermisch am höchsten beanspruchten Bereich, die Düsenbohrung 4.10 der Düse 4 unzureichend kühlt, weil das Kühlmittel den der Düsenbohrung am nächsten liegenden Teil 10.20 des Kühlmittelraumes 10 unzureichend durchströmt und/oder diesen insbesondere auf der dem Kühlmittelrücklauf WR zugewandten Seite gar nicht erreicht. Durch Schaffung der Bereiche 10.1 und 10.2 in dem von der Düse 4 und der Düsenkappe 2 begrenzten Kühlmittelraum 10, die die Strömungsrichtung des Kühlmittels nach außen in Richtung der Düsenkappe lenken, bevor es in den die Düsenbohrung 4.10 umgebenden Bereich 10.20 des Kühlmittelraumes 10 strömt, wird die Kühlwirkung erheblich verbessert. Durch die Schaffung der Bereiche 10.1 und 10.2 kam es in Versuchen auch nach mehr als einer Stunde Betriebszeit zu keiner Verfärbung der Düse im Bereich der Düsenbohrung 4.10. Auch traten Undichtigkeiten zwischen der Düse 4 und der Düsenkappe 2 nicht mehr auf und wurde der Rundring 4.16 nicht überhitzt. Es wird vermutet, dass das Kühlmittel beim Strömen im Kühlmittelraum 10 durch die Bereiche 10.1 und 10.2 zur Düsenspitze durch Umlenkung zur Düsenkappe 2 hin und die Verringerung des Spaltes zwischen der Düse 4 und der Düsenkappe 2 stärker verwirbelt und die Strömungsgeschwindigkeit des Kühlmittels erhöht wird. Zusätzlich wird anscheinend das Rückströmen des Kühlmittels vor dem Passieren des größten Teils des Kühlmittelraumes 10.20 um die Düsenbohrung 4.10 herum verhindert, so dass ein wirksamerer Wärmeübergang zwischen der Düse 4 und dem Kühlmittel erreicht wird. Das vorzeitige Rückströmen des Kühlmittels vom Bereich 10.20 des Kühlmittelraumes 10 wird durch die sprunghafte Verringerung des Spaltes zwischen der Düse 4 und der Düsenkappe 2 vom Bereich 10.20 zum verengten Bereich 10.2 des Kühlmittelraumes 10 verhindert, da der Bereich 10.2 für das rückströmende Kühlmittel eine Prallkante bildet.A coolant, for example water or antifreeze added water, flows through the coolant chamber 10 from a coolant flow WV to a coolant return WR, which are arranged offset by 180 °. In plasma torches in the prior art, overheating of the nozzle in the area of the nozzle bore 4.10 always occurs. This is shown by discoloration of the copper of the nozzle after a short period of operation. The effect is particularly pronounced when the liquid-cooled plasma torch becomes indirect is operated. Here, even at currents of 40 A, strong discoloration occurs after a short time (5 minutes). Likewise, the sealing point between the nozzle and the nozzle cap is overloaded, resulting in damage to the circular ring 4.16 and thus leakage and coolant leakage. Investigations have shown that this effect occurs especially on the coolant return WR facing side of the nozzle. It is assumed that the coolant inadequately cools the region which is subjected to the highest thermal stress, the nozzle bore 4.10 of the nozzle 4, because the coolant insufficiently flows through the part 10.20 of the coolant chamber 10 closest to the nozzle bore and / or faces it in particular on the coolant return WR Page not reached. By providing the regions 10.1 and 10.2 in the coolant space 10 delimited by the nozzle 4 and the nozzle cap 2, which direct the flow direction of the coolant outwards in the direction of the nozzle cap before it flows into the area 10.20 of the coolant space 10 surrounding the nozzle bore 4.10 significantly improves the cooling effect. By creating the areas 10.1 and 10.2, there was no discoloration of the nozzle in the area of the nozzle bore 4.10 in tests even after more than one hour of operation. Also leaks between the nozzle 4 and the nozzle cap 2 did not occur and the round ring was 4.16 not overheated. It is believed that the coolant when flowing in the coolant chamber 10 through the areas 10.1 and 10.2 to the nozzle tip by deflection to the nozzle cap 2 back and the reduction of the gap between the nozzle 4 and the nozzle cap 2 swirled more and the flow rate of the coolant is increased. In addition, it appears that reverse flow of the coolant before passing most of the coolant space 10.20 around the nozzle bore 4.10 is prevented so that more efficient heat transfer between the nozzle 4 and the coolant is achieved. The premature backflow of the coolant from the region 10.20 of the coolant chamber 10 is prevented by the sudden reduction of the gap between the nozzle 4 and the nozzle cap 2 from the region 10.20 to the constricted region 10.2 of the coolant chamber 10, since the area 10.2 forms a baffle for the recirculating coolant.

Die Lage, der Flächeninhalt F und die Form der kreisringförmigen Fläche A10a bis A10g des Kühlmittelraumes 10 sind in den Figuren 1b und 1c dargestellt. Daraus ist ersichtlich, dass sich der Flächeninhalt F der Kreisringe im ersten Abschnitt 4.17 zunächst von 183 mm2 (A10a) auf 146 mm2 (A10d) linear mit 8 mm2 auf 1 mm entlang der Mittelachse M der Düse verringert, bevor sie sich stärker mit 37 mm2 auf 1 mm entlang der Mittelachse M im Bereich 10.1 auf 90 mm2 (A10e1) verringert. Danach vergrößert sich der Flächeninhalt F sprunghaft auf 166 mm2 (A10e2) und erreicht einen größeren Wert als vor seiner Verringerung im Bereich 10.1 (A10d). Gleiches trifft auch auf den Bereich 10.2 zu.The position, the surface area F and the shape of the annular surface A10a to A10g of the coolant chamber 10 are in the Figures 1b and 1c shown. It can be seen that the surface area F of the annuli in the first section 4.17 first decreases from 183 mm 2 (A10a) to 146 mm 2 (A10d) linearly with 8 mm 2 to 1 mm along the center axis M of the nozzle, before it thickens to 37 mm 2 1 mm along the central axis M in the range 10.1 reduced to 90 mm 2 (A10e1). Thereafter, the area F increases abruptly to 166 mm 2 (A10e2) and reaches a greater value than before its reduction in the range 10.1 (A10d). The same applies to the area 10.2.

Weiterhin ist der Plasmabrennerkopf 1 mit einer Düsenschutzkappenhalterung 8 und einer Düsenschutzkappe 9 ausgestattet. Durch diesen Bereich strömt ein Sekundärgas SG, das den Plasmastrahl umgibt. Das Sekundärgas SG durchströmt eine Sekundärgasführung 9.1 und kann durch diese in Rotation versetzt werden.Furthermore, the plasma burner head 1 is equipped with a nozzle protection cap holder 8 and a nozzle protection cap 9. Through this area flows a secondary gas SG, which surrounds the plasma jet. The secondary gas SG flows through a secondary gas guide 9.1 and can be rotated by this.

Figur 2 zeigt die Düse 4 von den Figuren 1a und 1b in Einzeldarstellung in Längsschnittansicht. Sie weist einen zweiten Abschnitt mit einer zylindrischen Außenfläche 4.1 zur Aufnahme in der Düsenhalterung 5 auf. Weiterhin weist sie ein ersten Abschnitt mit einer sich im wesentlichen zur Düsenspitze hin unter einem Winkel α kegelig verjüngenden Außenfläche 4.2 und einen zweiten Abschnitt mit einer im wesentlichen zylindrischen Außenfläche 4.3 auf. Die Außenfläche 4.2 verfügt über zwei Umlenkabschnitte 4.21 und 4.22, die sich der kegelig verjüngenden Außenfläche 4.2 entgegengesetzt kegelig erweitern. Zudem verfügt die Düse 4 über eine Nut 4.15 für einen Rundring 4.16. FIG. 2 shows the nozzle 4 of the FIGS. 1a and 1b in individual representation in longitudinal section view. It has a second section with a cylindrical outer surface 4.1 for receiving in the nozzle holder 5. Furthermore, it has a first section with a substantially to the nozzle tip out at an angle α conically tapered outer surface 4.2 and a second portion having a substantially cylindrical outer surface 4.3. The outer surface 4.2 has two deflection sections 4.21 and 4.22, the conically tapered outer surface 4.2 extend conically conically. In addition, the nozzle 4 has a groove 4.15 for a round ring 4.16.

Wesentliche Abmessungen der Düse 4 sind:

  • D = 22mm
  • a1 = 1,5mm
  • a2 = 1,5mm
  • b1 = 1,9mm
  • b2 = 1,8mm
  • α = 50°
  • β1 = β2 = 50°
  • γ = 130°
  • δ = 90°
  • d11 = 14,7mm
  • d12 = 10,9mm
  • d13 = d21 = 11mm
  • d22 = 11,8mm
  • d23 = 12mm
  • d51 = 7mm.
Essential dimensions of the nozzle 4 are:
  • D = 22mm
  • a1 = 1.5mm
  • a2 = 1.5mm
  • b1 = 1.9mm
  • b2 = 1.8mm
  • α = 50 °
  • β1 = β2 = 50 °
  • γ = 130 °
  • δ = 90 °
  • d11 = 14.7mm
  • d12 = 10.9mm
  • d13 = d21 = 11mm
  • d22 = 11.8mm
  • d23 = 12mm
  • d51 = 7mm.

In dieser Ausführungsform sind die Winkel α und β1 sowie β2 gleich groß, ebenso sind die Maße a1 und a2 gleich groß.In this embodiment, the angles .alpha. And .beta.1 and .beta.2 are the same, and the dimensions a1 and a2 are the same.

Die Figuren 3a bis 3d zeigen einen Plasmabrennerkopf mit Plasma- und Sekundärgaszuführung mit einer Düse gemäß einer weiteren besonderen Ausführungsform der vorliegenden Erfindung. Ein Plasmabrennerkopf 1 nimmt mit einer Elektrodenaufnahme 6 eine Elektrode 7 mit einem Elektrodeneinsatz 7.1, in diesem Fall über ein Gewinde (nicht dargestellt) auf. Die Elektrode 7 ist als Elektrodenhalter mit einem spitzen Elektrodeneinsatz 7.1 aus Wolfram ausgebildet. Für diesen Plasmabrenner kann zum Beispiel ein Argon-Wasserstoff-Gemisch als Plasmagas verwendet werden. Eine Düse 4 wird von einer zylindrischen Düsenhalterung 5 aufgenommen. Eine Düsenkappe 2, die über ein Gewinde am Plasmabrennerkopf 1 befestigt ist, fixiert die Düse 4 und bildet mit dieser einen Kühlmittelraum 10. Der Kühlmittelraum 10 wird durch eine metallische Dichtung zwischen der Düse 4 aus Kupfer und der Düsenkappe 2 aus Messing abgedichtet. Metallische Dichtung in diesem Falle bedeutet nur, dass im vorderen Bereich des Brenners die Dichtung zwischen Düse und Düsenkappe nicht über einen Rundring, sondern durch Aufeinanderpressen zweier metallischer Bauteile erfolgt. Die Düse 4 weist einen ersten Abschnitt 4.17 auf, dessen Außenfläche sich bis auf drei sich zur Düsenspitze 4.11 hin unter einem Winkel β = β1 = β2 = β3 kegelig erweiternde Umlenkabschnitte 4.21, 4.22 und 4.23 zur Düsenspitze 4.11 hin unter einem Winkel α kegelig verjüngt. Die Düsenkappe 2 weist einen zum ersten Abschnitt 4.17 benachbarten Abschnitt 2.1 auf, dessen Innenfläche 2.2 sich ebenfalls im wesentlichen kegelig verjüngt. Ein Kühlmittel, zum Beispiel Wasser oder mit Gefrierschutzmittel versetztes Wasser, durchströmt den Kühlmittelraum 10 von einem Kühlmittelvorlauf WV zu einem Kühlmittelrücklauf WR, die 180° versetzt angeordnet sind.The FIGS. 3a to 3d show a plasma burner head with plasma and secondary gas supply with a nozzle according to another particular embodiment of the present invention. A plasma burner head 1 takes with an electrode holder 6 an electrode 7 with an electrode insert 7.1, in this case via a thread (not shown). The electrode 7 is formed as an electrode holder with a pointed electrode insert 7.1 made of tungsten. For this plasma torch, for example, an argon-hydrogen mixture can be used as the plasma gas. A nozzle 4 is received by a cylindrical nozzle holder 5. A nozzle cap 2, which is attached via a thread on the plasma burner head 1, fixes the nozzle 4 and forms with this a coolant chamber 10. The coolant chamber 10 is sealed by a metallic seal between the nozzle 4 made of copper and the nozzle cap 2 made of brass. Metallic seal in this case only means that in the front area of the burner, the seal between the nozzle and nozzle cap does not take place via a round ring, but by pressing together two metallic components. The nozzle 4 has a first section 4.17, the outer surface of which tapers conically up to an angle .alpha. At an angle .alpha. To the nozzle tip 4.11 at an angle .beta. = .Beta.1 = .beta.2 = .beta.3 conically widening deflecting sections 4.21, 4.22 and 4.23. The nozzle cap 2 has a section 2.1, which is adjacent to the first section 4.17, and whose inner surface 2.2 is likewise substantially conically tapered. A coolant, for example water or antifreeze added water, flows through the coolant chamber 10 from a coolant flow WV to a coolant return WR, which are arranged offset by 180 °.

Die Lage, der Flächeninhalt F und die Form der kreisringförmigen Fläche A10a bis A10i des Kühlmittelraumes sind in den Figuren 3b und 3c dargestellt. Daraus ist ersichtlich, dass sich der Flächeninhalt F der Kreisringe im kegeligen Bereich zunächst von 258 mm2 (A10a) auf 218 mm2 (A10c) linear englang der Brennerachse M im Bereich 10.1 auf 158 mm2 (A10d1) verringert. Danach vergrößert sich der Flächeninhalt F sprunghaft auf 252 mm2 (A10d2) und erreicht einen größeren Wert als vor seiner Verringerung im Bereich 10.1 (A10c). Gleiches trifft auch auf die Bereich 10.2 und 10.3 zu.The position, the surface area F and the shape of the annular surface A10a to A10i of the coolant space are in the FIGS. 3b and 3c shown. It can be seen that the surface area F of the circular rings in the conical region initially decreases from 258 mm 2 (A10a) to 218 mm 2 (A10c) linearly along the burner axis M in the range 10.1 to 158 mm 2 (A10d1). Thereafter, the area F increases abruptly to 252 mm 2 (A10d2) and reaches a greater value than before its reduction in the range 10.1 (A10c). The same applies to the areas 10.2 and 10.3.

Weiterhin ist der Plasmabrennerkopf 1 mit einer Düsenschutzkappenhalterung 8 und einer Düsenschutzkappe 9 ausgestattet. Durch diesen Bereich strömt ein Sekundärgas SG, das den Plasmastrahl umgibt.Furthermore, the plasma burner head 1 is equipped with a nozzle protection cap holder 8 and a nozzle protection cap 9. Through this area flows a secondary gas SG, which surrounds the plasma jet.

Figur 3d zeigt noch einmal die Düse 4 von Figur 3a, aber in Einzeldarstellung. Sie weist einen zweiten Abschnitt mit einer zylindrischen Außenfläche 4.1 zur Aufnahme in der Düsenhalterung 5, einen ersten Abschnitt mit einer sich kegelig zur Düsenspitze 4.11 hin verjüngenden Außenfläche 4.2 und einen dritten Abschnitt mit einer im wesentlichen zylindrischen Außenfläche 4.3 auf, die die Düsenbohrung 4.10 umgibt. Die Außenfläche 4.2 verfügt über drei Umlenkabschnitte 4.21, 4.22 und 4.23, die sich der sich kegelig insgesamt verjüngenden Außenfläche 4.2 abschnittweise entgegengesetzt kegelig erweitern. Wesentliche Abmessungen der Düse sind:

  • D = 22mm
  • a1 = 3,4mm
  • a2 = a3 = 1,7mm
  • b1 = 3,4mm
  • b2 = b3 = 1,7mm
  • α = 33°
  • β1 = β2 = β3 = β4 = 33°
  • γ = 147°
  • δ = 90°
  • d11 = 19,2mm
  • d12 = 19,7mm
  • d13 = d21 = 16,3mm
  • d22 = 17,7mm
  • d23 = d31 = 14,3mm
  • d32 = 15,7mm
  • d33 = 12mm
  • d50 = 10,5mm.
3d figure again shows the nozzle 4 of FIG. 3a , but in an individual presentation. It has a second section with a cylindrical outer surface 4.1 for receiving in the nozzle holder 5, a first section with a conically tapered to the nozzle tip 4.11 towards outer surface 4.2 and a third section with a substantially cylindrical outer surface 4.3, which surrounds the nozzle bore 4.10. The outer surface 4.2 has three deflection sections 4.21, 4.22 and 4.23, the conically tapering overall outer surface 4.2 sectionally opposite conically expand. Essential dimensions of the nozzle are:
  • D = 22mm
  • a1 = 3.4mm
  • a2 = a3 = 1.7mm
  • b1 = 3.4mm
  • b2 = b3 = 1.7mm
  • α = 33 °
  • β1 = β2 = β3 = β4 = 33 °
  • γ = 147 °
  • δ = 90 °
  • d11 = 19.2mm
  • d12 = 19.7mm
  • d13 = d21 = 16.3mm
  • d22 = 17.7mm
  • d23 = d31 = 14.3mm
  • d32 = 15.7mm
  • d33 = 12mm
  • d50 = 10.5mm.

Figur 4 zeigt den Plasmabrennerkopf von Figur 1a mit einer anderen Düse. Durch die Schaffung eines Bereiches 10.1 im von der Düse 4 und der Düsenkappe 2 begrenzten, zur Düsenspitze 4.11 hin kegelig verlaufenden Kühlmittelraum 10, der die Richtung des Kühlmittels nach außen in Richtung der Düsenkappe 2 lenkt, bevor es in den die Düsenbohrung 4.10 umgebenden Bereich 10.20 des Kühlmittelraums 10 strömt, wird die Kühlwirkung erheblich verbessert. Zusätzlich wird hier der Bereich 10.20 durch eine umlaufende Nase der Düse 4 verengt und in zwei Bereiche unterteilt. Gleichzeitig wird so die wärmeabführende Oberfläche der Düse 4 um die Düsenbohrung 4.10 vergrößert, was zusätzlich zur Verbesserung der Kühlung beiträgt. FIG. 4 shows the plasma burner head of FIG. 1a with another nozzle. By creating a region 10.1 in the limited by the nozzle 4 and the nozzle cap 2, to the nozzle tip 4.11 conically extending coolant chamber 10, which directs the direction of the coolant outward in the direction of the nozzle cap 2, before it in the nozzle bore 4.10 surrounding area 10.20 the coolant space 10 flows, the cooling effect is significantly improved. In addition, the area 10.20 here is narrowed by a circumferential nose of the nozzle 4 and divided into two areas. At the same time, the heat dissipating surface of the nozzle 4 is thus enlarged around the nozzle bore 4.10, which additionally contributes to the improvement of the cooling.

Figur 5 zeigt eine weitere spezielle Ausführungsform des erfindungsgemäßen Plasmabrenners ähnlich wie Figur 1a. Hier ist der Plasmabrenner mit einer Flachelektrode 7 für sauerstoffhaltige Gase oder Stickstoff als Plasmagas versehen. Der Kühlmittelraum 10 weist die gleichen Merkmale wie derjenige in Figur 1a auf. FIG. 5 shows a further specific embodiment of the plasma torch according to the invention similar to FIG. 1a , Here, the plasma torch is provided with a flat electrode 7 for oxygen-containing gases or nitrogen as the plasma gas. The coolant space 10 has the same features as that in FIG FIG. 1a on.

Figur 6 zeigt ebenfalls einen Plasmabrenner gemäß einer besonderen Ausführungsform der vorliegenden Erfindung für sauerstoffhaltige Gase oder Stickstoff als Plasmagas. Der Plasmabrenner und die Düse 4 sind nicht so spitzwinklig wie diejenigen in Figur 1a gestaltet, der Kühlmittelraum verfügt aber über die gleichen Merkmale wie in Figur 5. Die dazugehörige Düse 4 ist in Figur 6a einzeln dargestellt. FIG. 6 also shows a plasma torch according to a particular embodiment of the present invention for oxygen-containing gases or nitrogen as a plasma gas. The plasma torch and the nozzle 4 are not as acute as those in FIG. 1a designed, but the coolant space has the same features as in FIG. 5 , The associated nozzle 4 is in FIG. 6a shown individually.

Die Figuren 7 bis 11 zeigen weitere besondere Ausführungsformen des erfindungsgemäßen Plasmabrenners, jedoch für die indirekte Betriebsweise für Ar/H2-Gemisch als Plasmagas und ohne Schutzkappenhalterung und Düsenschutzkappe. Die Düsen für die indirekte Betriebsweise unterscheiden sich von denen für die direkte Betriebsweise dadurch, dass der zur Düsenspitze 4.11 hin gelegene, sich konisch erweiternde Teil der Düsenbohrung 4.10 deutlich länger ist als der bei direkt betriebenen Düsen. Der Kühlmittelraum 10 verfügt wieder über die erfindungsgemäßen Merkmale. In den Figuren 9 und 11 wird durch die Schaffung eines Bereiches 10.1 im von der Düse 4 und der Düsenkappe 2 begrenzten, zur Düsenspitze 4.11 hin kegelig verlaufenden Kühlmittelraum 10, der die Richtung des Kühlmittels nach außen in Richtung der Düsenkappe 2 lenkt, bevor es in den die Düsenbohrung 4.10 umgebenden Bereich 10.20 des Kühlmittelraumes 10 strömt, die Kühlwirkung erheblich verbessert. Figur 7 zeigt eine Anordnung mit vier derartigen Bereichen 10.1 bis 10.4.The FIGS. 7 to 11 show further particular embodiments of the plasma torch according to the invention, but for the indirect mode of operation for Ar / H 2 mixture as plasma gas and without protective cap holder and nozzle cap. The nozzles for the indirect mode of operation differ from those for the direct mode of operation in that the conically widening part of the nozzle bore 4.10 towards the nozzle tip 4.11 is significantly longer than that of directly operated nozzles. The coolant chamber 10 again has the features according to the invention. In the Figures 9 and 11 is created by creating an area 10.1 in the limited by the nozzle 4 and the nozzle cap 2, to the nozzle tip 4.11 conically extending coolant chamber 10, which directs the direction of the coolant outward in the direction of the nozzle cap 2, before it in the nozzle bore 4.10 surrounding area 10.20 of the coolant chamber 10 flows, the cooling effect significantly improved. FIG. 7 shows an arrangement with four such areas 10.1 to 10.4.

Figur 12 zeigt einen Plasmabrenner für sauerstoffhaltige Gase oder Stickstoff als Plasmagas. Der Kühlmittelraum 10 verfügt über zwei Bereich 10.1 und 10.2 im von der Düse 4 und der Düsenkappe 2 begrenzten Kühlmittelraum 10, der zur Düsenspitze 4.11 hin kegelig verläuft und das Kühlmittel nach außen in Richtung der Düsenkappe 2 lenkt, bevor es in den die Düsenbohrung 4.10 umgebenden Bereich 10.20 des Kühlmittelraums 10 strömt und die Kühlmittelwirkung erheblich verbessert. FIG. 12 shows a plasma torch for oxygen-containing gases or nitrogen as a plasma gas. The coolant chamber 10 has two regions 10.1 and 10.2 in the coolant chamber 10 delimited by the nozzle 4 and the nozzle cap 2, which tapers conically towards the nozzle tip 4.11 and directs the coolant outward in the direction of the nozzle cap 2, before it surrounds the nozzle bore 4.10 Area 10.20 of the coolant chamber 10 flows and significantly improves the coolant effect.

Figur 13 zeigt eine Längsschnittansicht durch einen Plasmabrennerkopf nur mit Plasmagaszuführung, das heißt ohne Düsenschutzkappenhalterung und Düsenschutzkappe, in die ebenfalls die Düse von Figur 3d passt. FIG. 13 shows a longitudinal sectional view through a plasma burner head only with plasma gas supply, ie without nozzle cap holder and nozzle protection cap, in which also the nozzle of 3d figure fits.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
PlasmabrennerkopfPlasma torch head
22
Düsenkappenozzle cap
2.12.1
Abschnitt der Düsenkappe 2Section of the nozzle cap 2
2.22.2
Innenfläche des Abschnitts 2.1Inner surface of section 2.1
33
PlasmagasführungPlasma gas management
44
Düsejet
4.14.1
zylindrische Außenfläche der Düse 4cylindrical outer surface of the nozzle 4th
4.24.2
kegelige Außenfläche der Düse 4Tapered outer surface of the nozzle 4
4.34.3
zylindrische Außenfläche der Düse 4cylindrical outer surface of the nozzle 4th
4.104.10
Düsenbohrungnozzle bore
4.114.11
Düsenspitzenozzle tip
4.154.15
Nutgroove
4.164.16
RundringO-ring
4.174.17
erster Abschnitt der Düse 4first section of the nozzle 4
4.21, 4.22, 4.23, 4.244.21, 4.22, 4.23, 4.24
Umlenkabschnittedeflecting
55
Düsenhalterungnozzle holder
66
Elektrodenaufnahmeelectrode holder
77
Elektrodenhalterelectrode holder
7.17.1
Elektrodeneinsatzelectrode insert
88th
DüsenschutzkappenhalterungNozzle protection cap holder
99
DüsenschutzkappeNozzle cap
9.19.1
SekundärgasführungSecondary gas guide
1010
KühlmittelraumCoolant space
10.1, 10.2, 10.3, 10.410.1, 10.2, 10.3, 10.4
verengte Abschnitte des Kühlmittelraumes 10narrowed portions of the coolant chamber 10th
10.2010:20
Teil des Kühlmittelraumes 10Part of the coolant chamber 10
A10a bis A10iA10a to A10i
Kreisringfläche des Kühlmittelraumes 10Annular ring surface of the coolant chamber 10
DD
Durchmesser der Düse 4Diameter of the nozzle 4
d11 bis d41d11 to d41
Durchmesser der Düse 4Diameter of the nozzle 4
d12 bis d42d12 to d42
Durchmesser der Düse 4Diameter of the nozzle 4
d13 bis d43d13 to d43
Durchmesser der Düse 4Diameter of the nozzle 4
d51d51
Durchmesser der Düse 4Diameter of the nozzle 4
FF
Flächeninhaltarea
MM
Mittelachse der Düse 4 bzw. Plasmabrennerkopfes 1Center axis of the nozzle 4 or plasma burner head 1
PGPG
Plasmagasplasma gas
SGSG
Sekundärgassecondary gas
WVWV
KühlmittelvorlaufCoolant supply
WRWR
KühlmittelrücklaufCoolant return
αα
Winkel der Außenfläche 4.2 der Düse 4Angle of the outer surface 4.2 of the nozzle 4
β1 bis β4 β 1 to β 4
Winkel der Umlenkabschnitte 4.21 bis 4.24Angle of the deflection sections 4.21 to 4.24
a1 bis a4a1 to a4
Längen der Umlenkabschnitte 4.21 bis 4.24Lengths of the deflecting sections 4.21 to 4.24

Claims (17)

  1. Nozzle (4) for a liquid-cooled plasma burner, comprising a nozzle bore (4.10) for the outlet of a plasma gas jet at a nozzle tip (4.11), and a first section (4.17), the outer surface (4.2) of which narrows conically at an angle α towards the nozzle tip (4.11), characterized in that at least one deflecting section (4.21; 4.22; 4.23; 4.24) that widens conically at a respective angle β1, β2 towards the nozzle tip (4.11) is arranged on the outer surface (4.2).
  2. Nozzle (4) according to Claim 1, characterized in that the angle α is in the range from 20° to 120°.
  3. Nozzle (4) according to Claim 1 or 2, characterized in that the angle β1, β2 is in the range from 20° to 120°.
  4. Nozzle (4) according to one of Claims 1 to 3, characterized in that a plurality of deflecting sections (4.21, 4.22, 4.23, 4.24) are provided, and deflecting sections (4.21, 4.22, 4.23, 4.24) widen conically at the same angle β1 or β2, or in that a plurality of deflecting sections (4.21, 4.22, 4.23, 4.24) are provided and at least two of the deflecting sections (4.21, 4.22, 4.23, 4.24) widen conically at different angles β1, β2.
  5. Nozzle (4) according to one of the preceding claims, characterized in that the values of the angles α and β1 and/or β2 deviate by at most 30°, or in that the values of the angles α and β1 and/or β2 are identical.
  6. Nozzle (4) according to one of the preceding claims, characterized in that an angle y, which is formed by the conically narrowing outer surface (4.2) of the first section (4.17) and the conically widening outer surface of the or a deflecting section (4.21; 4.22; 4.23; 4.24), is between 60° and 160°.
  7. Nozzle (4) according to one of the preceding claims, characterized in that an angle δ, which is formed by a front edge, towards the nozzle tip (4.11), of the or a deflecting section (4.21, 4.22, ...) and the centre axis (M) of the nozzle (4), is between 75° and 105°, in particular in that the angle δ is 90°.
  8. Nozzle (4) according to one of the preceding claims, characterized in that the length or lengths (a1, a2, ...), extending parallel to the centre axis (M) of the nozzle (4), of the deflecting region(s) (4.21, 4.22) is or are in the range of 1 to 3 mm, in particular in that the lengths (a1, a2, ...), extending parallel to the centre axis (M) of the nozzle (4), of the deflecting region(s) (4.21, 4.22) are identical.
  9. Nozzle (4) according to one of the preceding claims, characterized in that the length or lengths (b1, b2, ...), extending perpendicularly to the centre axis (M) of the nozzle (4), of the deflecting region(s) (4.21, 4.22) is or are in the range of 1 to 4 mm, in particular in that the lengths (b1, b2, ...), extending perpendicularly to the centre axis (M) of the nozzle (4), of the deflecting region(s) (4.21, 4.22) are identical.
  10. Nozzle (4) according to one of the preceding claims, characterized in that the nozzle (4) has a second section having a cylindrical outer surface (4.1) to be received in a nozzle holder (5).
  11. Nozzle (4) according to one of the preceding claims, characterized in that the nozzle (4) has a third section having a substantially cylindrical outer surface (4.3), which, with respect to the centre axis (M) of the nozzle (4), is located directly upstream of the nozzle bore (4.10), or in that the nozzle (4) has a third section having a substantially cylindrical outer surface (4.3), which, with respect to the centre axis (M) of the nozzle (4), is located at least partially opposite the nozzle bore (4.10).
  12. Nozzle (4) according to one of the preceding claims, characterized in that a groove (4.15) for an annular ring (4.16) is located in the vicinity of the nozzle tip (4.11).
  13. Arrangement composed of a nozzle (4) according to one of the preceding claims and a nozzle cap (2), wherein the nozzle cap (2) and the nozzle (4) form a coolant chamber (10) which is fluidically connected to a coolant feed (WV) and a coolant return (WR), and the nozzle cap (2) has an inner surface (2.2) that narrows conically towards the nozzle tip (4.11) at least in the region of the first section (4.17) of the nozzle (4), in particular in that the surface area (F) of the annular surface (A10a) of the coolant chamber (10) decreases 1.5 to 8 times more quickly in the at least one deflecting section (4.21, 4.22, 4.23, 4.24) than upstream of the at least one deflecting section along the centre axis (M) of the nozzle (4) in the direction of the nozzle tip (4.11).
  14. Arrangement according to Claim 13, characterized in that the surface area (F) of the annular surface (A10a, A10b, ...) of the coolant chamber (10) is 1.5 to 8 times greater than the smallest area (F) of the deflecting region (10.1) immediately downstream of the at least one deflecting section (4.21; 4.22; 4.23; 4.24) along the centre axis (M) of the nozzle (4) in the direction of the nozzle tip (4.11).
  15. Arrangement according to either of Claims 13 and 14, characterized in that the annular surface (A10a, A10b, ...) of the coolant chamber (10) jumps at least to the value that it has immediately upstream of the deflecting section (4.21; 4.22; 4.23; 4.24) immediately downstream of the at least one deflecting section (4.21; 4.22; 4.23; 4.24) along the centre axis (M) of the nozzle (4) in the direction of the nozzle tip (4.11).
  16. Arrangement according to one of Claims 13 to 15, characterized in that the coolant feed (WV) and the coolant return (WR) are arranged in a manner offset through 180° with respect to one another.
  17. Liquid-cooled plasma burner having a coolant feed (WV) and a coolant return (WR) and having an arrangement according to one of Claims 13 to 16, in particular comprising, in addiction to a plasma gas supply, a secondary gas supply and a nozzle protective cap (9).
EP09729367.4A 2008-04-08 2009-03-23 Nozzle for a liquid-cooled plasma burner, arrangement thereof with a nozzle cap and liquid-cooled plasma burner comprising such an arrangement Not-in-force EP2140739B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09729367T PL2140739T3 (en) 2008-04-08 2009-03-23 Nozzle for a liquid-cooled plasma burner, arrangement thereof with a nozzle cap and liquid-cooled plasma burner comprising such an arrangement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008018530A DE102008018530B4 (en) 2008-04-08 2008-04-08 A nozzle for a liquid-cooled plasma torch, arrangement of the same and a nozzle cap and liquid-cooled plasma torch with such an arrangement
PCT/DE2009/000395 WO2009124524A1 (en) 2008-04-08 2009-03-23 Nozzle for a liquid-cooled plasma burner, arrangement thereof with a nozzle cap and liquid-cooled plasma burner comprising such an arrangement

Publications (2)

Publication Number Publication Date
EP2140739A1 EP2140739A1 (en) 2010-01-06
EP2140739B1 true EP2140739B1 (en) 2014-04-23

Family

ID=41016884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09729367.4A Not-in-force EP2140739B1 (en) 2008-04-08 2009-03-23 Nozzle for a liquid-cooled plasma burner, arrangement thereof with a nozzle cap and liquid-cooled plasma burner comprising such an arrangement

Country Status (9)

Country Link
US (1) US8575510B2 (en)
EP (1) EP2140739B1 (en)
KR (1) KR20110013376A (en)
CN (1) CN102007821B (en)
BR (1) BRPI0911510A2 (en)
DE (1) DE102008018530B4 (en)
ES (1) ES2478285T3 (en)
PL (1) PL2140739T3 (en)
WO (1) WO2009124524A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010006786A1 (en) 2010-02-04 2011-08-04 Holma Ag Nozzle for a liquid-cooled plasma cutting torch
FR2987967A1 (en) * 2012-03-12 2013-09-13 Air Liquide Conduit, useful in plasma arc torch used for cutting metal part, comprises external envelope and removable internal element, where external surface of internal element covers specific percentage of internal surface of external envelope
US9114475B2 (en) 2012-03-15 2015-08-25 Holma Ag Plasma electrode for a plasma cutting device
EP2667689B1 (en) 2012-05-24 2018-10-24 Kjellberg-Stiftung Electrode for plasma cutting torch and use of same
CN105027684B (en) * 2013-01-31 2019-01-01 欧瑞康美科(美国)公司 The hot nozzle of optimization and the method for using it
CZ25961U1 (en) 2013-07-26 2013-10-14 Thermacut, S.R.O. Plasma torch head
US9981335B2 (en) 2013-11-13 2018-05-29 Hypertherm, Inc. Consumable cartridge for a plasma arc cutting system
US11684995B2 (en) 2013-11-13 2023-06-27 Hypertherm, Inc. Cost effective cartridge for a plasma arc torch
US11278983B2 (en) 2013-11-13 2022-03-22 Hypertherm, Inc. Consumable cartridge for a plasma arc cutting system
US10456855B2 (en) 2013-11-13 2019-10-29 Hypertherm, Inc. Consumable cartridge for a plasma arc cutting system
US11432393B2 (en) 2013-11-13 2022-08-30 Hypertherm, Inc. Cost effective cartridge for a plasma arc torch
EP2942144A1 (en) * 2014-05-07 2015-11-11 Kjellberg-Stiftung Plasma cutting torch assembly, as well as the use of wearing parts in a plasma cutting torch assembly
US9572242B2 (en) * 2014-05-19 2017-02-14 Lincoln Global, Inc. Air cooled plasma torch and components thereof
EP3180151B1 (en) * 2014-08-12 2021-11-03 Hypertherm, Inc. Cost effective cartridge for a plasma arc torch
US9833859B2 (en) * 2014-09-15 2017-12-05 Lincoln Global, Inc. Electric arc torch with cooling conduit
DE102015101532A1 (en) * 2015-02-03 2016-08-04 Kjellberg Stiftung Nozzle for plasma arc torch
US9867268B2 (en) * 2015-06-08 2018-01-09 Hypertherm, Inc. Cooling plasma torch nozzles and related systems and methods
JP7073251B2 (en) 2015-08-04 2022-05-23 ハイパーサーム インコーポレイテッド Cartridge frame for liquid-cooled plasma arc torch
RU180250U1 (en) 2015-08-04 2018-06-07 Гипертерм, Инк. ADVANCED SYSTEMS FOR PLASMA-ARC CUTTING, CONSUMABLE COMPONENTS AND METHODS OF WORK
JP6192701B2 (en) * 2015-11-26 2017-09-06 株式会社ヨシカワ Condensation prevention device and powder supply device for discharge chute
ITUB20159507A1 (en) * 2015-12-16 2017-06-16 Tec Mo S R L ELECTRODE FOR COOLED PLASMA TORCH
US10413991B2 (en) 2015-12-29 2019-09-17 Hypertherm, Inc. Supplying pressurized gas to plasma arc torch consumables and related systems and methods
KR20180000059U (en) 2016-06-27 2018-01-04 곽현만 Nozzle for plasma torch
DE102017112821A1 (en) * 2017-06-12 2018-12-13 Kjellberg-Stiftung Electrodes for gas- and liquid-cooled plasma torches, arrangement of an electrode and a cooling tube, gas guide, plasma torch, method for guiding gas in a plasma torch and method for operating a plasma torch
EP3421434B1 (en) 2017-06-30 2020-06-10 Heraeus Quarzglas GmbH & Co. KG Method for generating a strong joint connection between components made of quartz glass and a suitable heating burner
CZ308964B6 (en) 2018-09-30 2021-10-20 B&Bartoni, spol. s r.o. Nozzle assembly with adapter for use in a liquid-cooled two-gas plasma torch
CN109536874B (en) * 2019-01-22 2024-01-09 中国人民解放军陆军装甲兵学院 Inner hole plasma spraying device with deflection angle spraying function

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD36014A1 (en) * 1964-05-19 1965-02-05 Nozzle for plasma torch
DE1565638A1 (en) 1967-06-12 1970-04-16 Kjellberg Elektroden & Maschin Plasma torch
DD83686A1 (en) * 1969-07-15 1971-08-05 Liquid cooled nozzle for plasma torches, especially for plasma welding purposes
DD83890A1 (en) * 1970-05-27 1971-08-12 Cooling medium guide for burner
US3756511A (en) 1971-02-02 1973-09-04 Kogyo Kaihatsu Kenyusho Nozzle and torch for plasma jet
NL182526C (en) * 1973-03-21 1988-03-16 Esab Ab PLASMA torches.
DE2525939A1 (en) 1975-06-11 1976-12-23 Messer Griesheim Gmbh Plasma arc cutter and welder - has electrode centred by mounting holder via insulating ring to plasma nozzle
DE2651185A1 (en) * 1976-11-10 1978-05-11 Nuc Weld Gmbh Plasma burner cooling device - has nozzle which is ribbed on outside and coolant fluid is forced between ribs to achieve rapid heat transfer
US4236059A (en) * 1978-11-03 1980-11-25 United Technologies Corporation Thermal spray apparatus
US4405853A (en) * 1981-08-14 1983-09-20 Metco Inc. Plasma spray gun with cooling fin nozzle and deionizer
DE8132660U1 (en) 1981-11-07 1983-04-28 Haferkamp, Heinz, Prof. Dr.-Ing., 3340 Wolfenbüttel Plasma cutting torch
DE8425168U1 (en) 1984-08-25 1984-11-22 Teldix Gmbh, 6900 Heidelberg Multipole connector
US5396043A (en) 1988-06-07 1995-03-07 Hypertherm, Inc. Plasma arc cutting process and apparatus using an oxygen-rich gas shield
US4919334A (en) 1989-01-19 1990-04-24 Dynaquip Controls Corporation Blow gun assembly
US5008511C1 (en) * 1990-06-26 2001-03-20 Univ British Columbia Plasma torch with axial reactant feed
US5208448A (en) * 1992-04-03 1993-05-04 Esab Welding Products, Inc. Plasma torch nozzle with improved cooling gas flow
FR2703557B1 (en) * 1993-03-29 1995-05-05 Soudure Autogene Francaise Plasma torch and method of implementation for gouging parts.
US5635088A (en) * 1995-01-04 1997-06-03 Hypertherm, Inc. Liquid cooled plasma arc torch system and method for replacing a torch in such system
US5624586A (en) 1995-01-04 1997-04-29 Hypertherm, Inc. Alignment device and method for a plasma arc torch system
US5856647A (en) 1997-03-14 1999-01-05 The Lincoln Electric Company Drag cup for plasma arc torch
FR2774548B1 (en) 1998-02-02 2000-03-03 Soudure Autogene Francaise NOZZLE / NOZZLE HOLDER ASSEMBLY FOR PLASMA TORCH
ATE434921T1 (en) * 2000-03-31 2009-07-15 Thermal Dynamics Corp ARC PLASMA TORCH AND METHOD FOR INCREASE THE LIFE OF THE CONSUMABLE PARTS OF AN ARC PLASMA TORCH
GB0015053D0 (en) * 2000-06-21 2000-08-09 Fryer Paul C High temperature cooling
US6534747B1 (en) 2001-05-30 2003-03-18 Richard B. Rehrig Welding torch and handle
US7005600B2 (en) * 2002-04-19 2006-02-28 Thermal Dynamics Corporation Plasma arc torch tip
US7132619B2 (en) * 2003-04-07 2006-11-07 Thermal Dynamics Corporation Plasma arc torch electrode
JP2007514283A (en) 2003-12-09 2007-05-31 アーエムテー アーゲー Plasma spray equipment
DE102006038134B4 (en) 2006-08-16 2009-08-20 Kjellberg Finsterwalde Plasma Und Maschinen Gmbh Plasma burner head, plasma torch and plasma torch

Also Published As

Publication number Publication date
DE102008018530B4 (en) 2010-04-29
PL2140739T3 (en) 2014-09-30
CN102007821A (en) 2011-04-06
DE102008018530A1 (en) 2009-10-15
ES2478285T3 (en) 2014-07-21
WO2009124524A1 (en) 2009-10-15
US8575510B2 (en) 2013-11-05
US20110108528A1 (en) 2011-05-12
WO2009124524A8 (en) 2011-03-17
EP2140739A1 (en) 2010-01-06
KR20110013376A (en) 2011-02-09
CN102007821B (en) 2014-05-07
BRPI0911510A2 (en) 2016-09-13

Similar Documents

Publication Publication Date Title
EP2140739B1 (en) Nozzle for a liquid-cooled plasma burner, arrangement thereof with a nozzle cap and liquid-cooled plasma burner comprising such an arrangement
EP2175702B2 (en) Nozzle for a fluid-cooled plasma torch, nozzle cap for same and plasma torch head with same
EP2449862B1 (en) Nozzle for a liquid-cooled plasma torch and plasma torch head having the same
EP2417840B1 (en) Cooling pipes, electrode holders and electrode for an arc plasma torch and assemblies made thereof and arc plasma torch comprising the same
EP2465334B1 (en) Protective nozzle cap, protective nozzle cap retainer, and arc plasma torch having said protective nozzle cap and/or said protective nozzle cap retainer
EP2210455B1 (en) Electrode for a plasma burner
DE102004049445C5 (en) plasma torch
WO2018229308A2 (en) Electrodes for gas- and liquid-cooled plasma torches, system consisting of an electrode and a cooling tube, gas conducting unit, plasma torch, method for conducting gas in a plasma torch, and method for operating a plasma torch
EP2667689B1 (en) Electrode for plasma cutting torch and use of same
DE102009031857C5 (en) Nozzle for a liquid-cooled plasma torch and plasma torch head with the same
DE102007032496B3 (en) Apparatus for generating a plasma jet
DE102010053721B4 (en) Torch for tungsten inert gas welding and electrode for use in such a burner
DE102009060849A1 (en) Nozzle for plasma torch head of liquid-cooled plasma torch, is provided with nozzle bore for outlet of plasma gas jet at nozzle tip, section, outer surface of which is substantially cylindrical, and section
DE202009012491U1 (en) Nozzle for a liquid-cooled plasma torch and plasma torch head with the same
DE102018125772A1 (en) Connecting part for a processing head for thermal material processing, in particular for a plasma torch head, laser head, plasma laser head as well as a wearing part and a wearing part holder and a method for joining them
AT407022B (en) Plasma welding torch

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LAURISCH, FRANK

Inventor name: KRINK, VOLKER

Inventor name: GRUNDKE, TIMO

Inventor name: REINKE, RALF-PETER

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131118

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KJELLBERG FINSTERWALDE PLASMA UND MASCHINEN GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 664469

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009009246

Country of ref document: DE

Effective date: 20140605

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KAMINSKI HARMANN PATENTANWAELTE AG, LI

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2478285

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140721

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 16720

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140823

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140724

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009009246

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

26N No opposition filed

Effective date: 20150126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150325

Year of fee payment: 7

Ref country code: ES

Payment date: 20150325

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009009246

Country of ref document: DE

Effective date: 20150126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150319

Year of fee payment: 7

Ref country code: GB

Payment date: 20150324

Year of fee payment: 7

Ref country code: TR

Payment date: 20150311

Year of fee payment: 7

Ref country code: AT

Payment date: 20150320

Year of fee payment: 7

Ref country code: SE

Payment date: 20150324

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150330

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009009246

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150323

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

REG Reference to a national code

Ref country code: DE

Ref legal event code: R073

Ref document number: 502009009246

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R074

Ref document number: 502009009246

Country of ref document: DE

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: DE

Effective date: 20160225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 664469

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160323

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160323

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160323

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200323

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20200312

Year of fee payment: 12

Ref country code: SK

Payment date: 20200316

Year of fee payment: 12

Ref country code: BE

Payment date: 20200323

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20200914

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210323

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210401

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 16720

Country of ref document: SK

Effective date: 20210323

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220331

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009009246

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003