EP2102981A2 - Amplificateur de puissance reconfigurable et utilisation d'un tel amplificateur pour la realisation d'un etage d'amplification multistandard pour la telephonie mobile - Google Patents

Amplificateur de puissance reconfigurable et utilisation d'un tel amplificateur pour la realisation d'un etage d'amplification multistandard pour la telephonie mobile

Info

Publication number
EP2102981A2
EP2102981A2 EP08761931A EP08761931A EP2102981A2 EP 2102981 A2 EP2102981 A2 EP 2102981A2 EP 08761931 A EP08761931 A EP 08761931A EP 08761931 A EP08761931 A EP 08761931A EP 2102981 A2 EP2102981 A2 EP 2102981A2
Authority
EP
European Patent Office
Prior art keywords
amplifier
circuit
stage
amplification
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08761931A
Other languages
German (de)
English (en)
Inventor
Didier Belot
Yann Deval
Nathalie Deltimple
Eric Kerherve
Pierre Jarry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2102981A2 publication Critical patent/EP2102981A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • H03F1/0266Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics

Definitions

  • the invention relates to high frequency power amplifiers and more particularly relates to reconfigurable power amplifiers.
  • a particularly interesting application of such amplifiers relates to the development of an amplification stage for a mobile telephone station and, more particularly, the design of multistandard reconfigurable power amplifiers, that is to say capable of adapting to the specifications of different telecommunication standards.
  • such a reconfigurable power amplifier must be able to operate as well according to UMTS standards (WCDMA) and according to GSM, DCS or PCS standards.
  • WCDMA UMTS standards
  • GSM Global System for Mobile communications
  • DCS DCS
  • PCS PCS
  • the object of the invention is therefore, according to a first aspect, a reconfigurable power amplifier, comprising at least one amplification circuit and means for controlling said circuit. amplifier for adapting its operation according to an input signal applied to it.
  • control means comprise means for modifying the compression point of said amplification circuit and for adapting the gain of the circuit in such a way as to increase the power-added efficiency (PAE). English) of the circuit for the modified compression point.
  • PAE power-added efficiency
  • the compression point is varied so as to adapt the linearity of the amplifier according to the operating conditions and the PAE is dynamically modified so as to obtain a maximum PAE at the modified compression point. It has indeed been found that the output of the amplifier is maximum for the maximum power output, the efficiency being lower for lower power output levels.
  • control means comprise means for adapting the level of a bias current applied to said circuit.
  • the power amplifier is a two - stage amplifier and has a first amplification stage and a second amplification stage.
  • the control means then comprise first and second control means for respectively adapting the operation of the first and second amplification stages.
  • the first control means comprise means for adapting the compression point of the first stage.
  • the amplifier further comprises means for modifying the amplification class of said amplification circuit.
  • these means comprise means for modifying the equivalent impedance of an output network of the circuit.
  • the amplifier thus comprises switching means for selectively connecting a capacitance and an inductance connected in parallel with the output of the circuit.
  • switching means for selectively connecting a capacitance and an inductance connected in parallel with the output of the circuit advantageously comprise, in one embodiment, a set of current sources selectively connectable in parallel to each other.
  • FIG. 1 is a table illustrating the specifications of different telecommunication standards (GSM, DCS and UMTS);
  • FIG. 2 is a block diagram illustrating the general structure of a reconfigurable power amplifier according to the invention
  • FIG. 3 illustrates the general principle of the dynamic compensation implemented within the amplifier of FIG. 1;
  • FIG. 4 is a block diagram illustrating the development of the bias current of the amplification circuits of the amplifier of FIG. 2;
  • FIGS. 5 and 6 illustrate the variation of the compression point of the first amplification stage of the amplifier of FIG. 2;
  • FIGS. 7 and 8 illustrate the evolution of the effective combined power of the amplifier of FIG. 2.
  • a reconfigurable power amplifier must satisfy several requirements specific to each telecommunication standard according to which it is intended to operate. Current standards indeed use different types of modulation that imply differences in the forms of the RF signals conveyed.
  • GSM and GSM 1800 (DCS) standards use a Gaussian Minimum Shift Keying (GMSK) type modulation
  • GMSK Gaussian Minimum Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • the transmitted signals have a non-constant envelope, which means that the envelope of the RF signal varies as a function of time. But it must be preserved in order to prevent the information contained in it from being altered. It is therefore necessary that the RF amplifiers used for signal processing have good linearity in order to avoid distortion of the envelope during amplification. But the demands in terms of power output are less restrictive. On the contrary, with regard to GSM and GSM standards
  • the envelope is relatively constant so that it is not necessary to provide an amplification having a very high linearity.
  • the power output must be relatively high.
  • the efficiency of the amplifier and its efficiency must be sufficient.
  • FIG. 2 shows a reconfigurable power amplifier capable of responding to the specific constraints of each standard and, in particular, of privileging either the linearity criterion or the efficiency criterion, depending on the standard used.
  • this high frequency power amplifier is adapted to dynamically modify the compression point (CP) of the amplifier stage (s) that it comprises and to modify the amplification class. of these stages in order either to improve the linearity of the amplifier or to improve the efficiency.
  • the amplifier comprises two amplification stages E 1 and E 2 constituting one a driving stage (E 1) and the other a power stage (E 2).
  • each stage comprises a transistor Qd and Qp, respectively.
  • the transistor Qd of the first stage E1 is associated with two inductors LI1 and L12 connected to a DC voltage source Vcc and the other to ground.
  • the transistor Q p is associated with two inductors L21 and L22 connected to the voltage Vcc and the other to ground.
  • the first stage transistor Qd control electrode receives a high frequency RF signal 1n through an input matching network 1.
  • the common node between the inductance LI 1 and the transistor Qd is connected to the control electrode of the transistor Q p of the second stage 2 via a conventional interstage matching network 2.
  • the common node between the inductor L21 and the transistor Q p provides an amplified signal S via an output network 3 essentially comprising an RLC network.
  • each stage is provided with a bias circuit, respectively 4 and 5, for biasing the transistor Qd
  • the amplifier is provided by a processing unit 6 receives, as input, the RF signal 1n and controlling the bias circuits 4 and 5 for biasing the transistors Qd and Qp of the amplification stages E l and E 2 depending on the signal input involved in the amplifier.
  • the first bias circuit 4 of the first stage E 1 is adapted to develop a bias current Ibiasd for the control electrode of the transistor Qd in order to vary its compression point (CP).
  • the second bias circuit 5 of the second stage E2 is, meanwhile, for developing a bias current Ibiasp for the second transistor Q p .
  • the processing unit 6 acts on the output network 3 in order to modify the operating class of the power stage by modifying the equivalent impedance of this output network 3.
  • This PAE operating parameter is in fact constituted by the ratio between the added power, that is to say the linear difference between the output power and the input power, at a frequency
  • the PAE is given, for a two - stage amplifier, by the following relation: p - pl RF (out) 1 RF (In)
  • Ii and I 2 denote currents flowing through transistors Qd and As previously indicated, sinusoidal class amplifiers, such as class A, B, AB and C amplifiers exhibit good linearity but relatively low efficiency.
  • the switching transistors of class D, E and F, in which the transistors operate in switching mode, have a lower linearity but a higher output.
  • class A amplifier is usually used as UMTS standard to realize the control stage and a class AB amplifier to realize the power stage, while it is preferable to use an amplifier.
  • class AB to realize the control stage
  • a high - efficiency amplifier (class F) to realize the power stage as standard GSM, DCS or PCS.
  • the amplifier modifies the polarization current
  • the PAE is maximum for the maximum power output, while for the lower power levels, the efficiency is lower.
  • the modification of the compression point is combined with a gain compensation in order to adjust the PAE curve so as to obtain a maximum PAE at the compression point CP 1 thus modified.
  • OCP 1 and ICP 1 denote respectively the output power and the input power at the 1 dB compression point, as previously indicated, the variation of the compression point is obtained by modifying the polarization current It ⁇ asd-
  • the bias circuit 4 may consist of a succession of current sources II, 12, ... I n arranged in parallel and each associated with a switch C 1, C 2, C 3,... CN, driven by the central unit 6 as a function of the RF signal 1n so as to develop the bias current Ib ias d applied to the transistor Qd.
  • the processing unit 6 is provided with a detector providing detection of the power level of the RF input signal 1n for example, to lower the compression point when the input power decreases. Referring to FIG. 5, this can be done by increasing or lowering the bias current Ibiasd as a function of the input power level. Similarly, referring to FIGS. 7 and 8, the PAE can be modified by increasing or lowering the bias current
  • the amplification class modification of the amplifier is performed by modifying the equivalent impedance of the output network 3.
  • the output network 3 of the second stage E2 is provided with a resonator formed by the parallel association of an inductance L 'and a capacitance C at the output of the associated second stage E2 two switches 7 and 8 interposed one, namely the switch designated by the reference 7 between the second stage E2, with interposition of a decoupling capacitor C "and the resonator L 'C, and the other between the resonator
  • the switches 7 and 8 are controlled by the central unit 6 so as to bypass the LC resonator via a branch line 9.
  • the output network 3 can thus be selectively configured, under the control of the central unit 6 so as to configure the power stage 2 either in the form of a class AB transistor, or in the form of a transistor class F, for example depending on the power level detected nce of the RF input signal 1n .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

Cet amplificateur de puissance reconfigurable comprend au moins un circuit d'amplification (E1, E2), et des moyens de commande (6) dudit circuit d'amplification pour adapter son fonctionnement selon un signal d'entrée (RF<SUB>in</SUB>)qui lui est appliqué. Les moyens de commande comprennent des moyens (4, 5) pour modifier le point de compression dudit circuit d'amplification et pour adapter le gain du circuit de manière à augmenter la puissance additionnée efficace du circuit pour le point de compression modifié.

Description

Amplificateur de puissance reconfigurable et utilisation d'un tel amplificateur pour la réalisation d'un étage d'amplification multistandard pour la téléphonie mobile
L 'invention se rapporte aux amplificateurs de puissance à haute fréquence et concerne plus particulièrement les amplificateurs de puissance reconfigurables.
Une application particulièrement intéressante de tels amplificateurs concerne l' élaboration d'un étage d' amplification pour poste de téléphonie mobile et, plus particulièrement, la conception d'amplificateurs de puissance reconfigurables multistandard, c 'est-à- dire capable de s 'adapter aux spécifications de différents standards de télécommunications.
Ainsi, par exemple, un tel amplificateur de puissance reconfigurable doit pouvoir être capable de fonctionner aussi bien selon les standards UMTS (WCDMA) que selon les standards GSM, DCS ou PCS .
La notion de reconfigurabilité indique que ces amplificateurs doivent être capables de modifier dynamiquement leurs propriétés en fonction du standard utilisé à un moment donné mais également du niveau de puissance d'un signal incident qui lui est appliqué afin qu' il travaille à un niveau de puissance optimum.
En effet, selon certains standards, en particulier les standards GSM et GSM 1800 (DCS), en raison du type de modulation utilisée, la puissance des signaux est relativement élevée, ce qui implique une contrainte particulière pour les applications RF.
C ' est ainsi que le but de l' invention est de proposer un amplificateur de puissance reconfigurable, en particulier en puissance, afin de répondre dynamiquement aux contraintes spécifiques qui lui sont imposées.
L 'invention a donc pour objet, selon un premier aspect, un amplificateur de puissance reconfigurable, comprenant au moins un circuit d' amplification et des moyens de commande dudit circuit d'amplification pour adapter son fonctionnement selon un signal d' entrée qui lui est appliqué.
Selon une caractéristique générale de cet amplificateur, les moyens de commande comprennent des moyens pour modifier le point de compression dudit circuit d' amplification et pour adapter le gain du circuit de manière à augmenter le rendement à puissance ajoutée (PAE pour Power Added Efficiency, en anglais) du circuit pour le point de compression modifié.
Ainsi, on fait varier le point de compression de manière à adapter la linéarité de l' amplificateur en fonction des conditions de fonctionnement et l'on modifie dynamiquement la PAE de manière à obtenir une PAE maximale au point de compression modifié. Il a en effet été constaté que le rendement de l' amplificateur est maximum pour le maximum de puissance de sortie, le rendement étant plus faible pour des niveaux de puissance de sortie plus faibles.
Régler la PAE maximale au niveau du point de compression modifié permet ainsi d' améliorer le rendement de l'amplificateur aux faibles puissances.
Selon une autre caractéristique de l' invention, les moyens de commande comprennent des moyens pour adapter le niveau d'un courant de polarisation appliqué audit circuit.
De préférence, l' amplificateur de puissance est un amplificateur bi-étagé et comporte un premier étage d'amplification et un deuxième étage d' amplification. Les moyens de commande comprennent alors des premier et deuxième moyens de commande pour adapter respectivement le fonctionnement des premier et deuxième étages d'amplification.
Ainsi, par exemple, les premiers moyens de commande comprennent des moyens pour adapter le point de compression du premier étage.
En ce qui concerne les deuxièmes moyens de commande, ceux- ci comprennent avantageusement des moyens pour adapter le gain du deuxième étage. Selon une autre caractéristique de l'invention, l'amplificateur comporte en outre des moyens pour modifier la classe d' amplification dudit circuit d' amplification.
Dans un mode de réalisation, ces moyens comprennent des moyens pour modifier l' impédance équivalente d'un réseau de sortie du circuit.
Par exemple, l' amplificateur comporte ainsi des moyens de commutation pour raccorder sélectivement une capacité et une inductance montée en parallèle à la sortie du circuit. En ce qui concerne les moyens pour adapter le niveau du courant de polarisation, ceux-ci comprennent avantageusement, dans un mode de réalisation, un ensemble de sources de courant sélectivement raccordables en parallèle les unes aux autres.
D ' autres buts, caractéristique et avantages de l' invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels :
- la figure 1 est un tableau illustrant les spécifications de différents standards de télécommunication (GSM, DCS et UMTS) ;
- la figure 2 est un schéma synoptique illustrant la structure générale d'un amplificateur de puissance reconfigurable conforme à l' invention ;
- la figure 3 illustre le principe général de la compensation dynamique mise en œuvre au sein de l' amplificateur de la figure 1 ;
- la figure 4 est un schéma synoptique illustrant l'élaboration du courant de polarisation des circuits d' amplification de l' amplificateur de la figure 2 ; - les figures 5 et 6 illustrent la variation du point de compression du premier étage d' amplification de l' amplificateur de la figure 2 ; et
- les figures 7 et 8 illustrent l'évolution de la puissance additionnée efficace de l' amplificateur de la figure 2. En se référant tout d'abord à la figure 1 , un amplificateur de puissance reconfigurable doit satisfaire à plusieurs exigences spécifiques à chaque standard de télécommunication selon lequel il est destiné à fonctionner. Les standards actuels utilisent en effet des modulations de types différents qui impliquent des différences en ce qui concerne les formes des signaux RF véhiculés.
A titre d' exemple, les standards GSM et GSM 1800 (DCS) utilisent une modulation de type GMSK (« Gaussian Minimum Shift Keying », en anglais) tandis que le standard UMTS utilise la modulation QPSK (« Quaternary Phase Shift Keying », en anglais).
En ce qui concerne le standard UMTS, les signaux transmis ont une enveloppe non constante, ce qui signifie que l'enveloppe du signal RF varie en fonction du temps. Mais elle doit être préservée afin d' éviter que l' information qu'elle contient ne soit altérée. Il est donc nécessaire que les amplificateurs RF utilisés pour le traitement des signaux présentent une bonne linéarité afin d'éviter que n' apparaisse une distorsion de l' enveloppe au cours de l'amplification. Mais les exigences en termes de puissance de sortie sont moins contraignantes. Au contraire, en ce qui concerne les standards GSM et GSM
1800 (DCS), selon la modulation GMSK utilisée, l'enveloppe est relativement constante de sorte qu' il n' est pas nécessaire de prévoir une amplification ayant une très grande linéarité. Par contre, comme l' indique le tableau visible que la figure 1 , la puissance de sortie doit être relativement élevée. Afin de réduire la consommation, ce qui est un critère relativement contraignant lorsqu' il s' agit de réaliser un amplificateur de puissance reconfigurable pour poste de téléphonie mobile, l' efficacité de l'ampli et son rendement doivent être suffisants. C 'est la raison pour laquelle on utilise généralement des classes de fonctionnement sinusoïdales, en particulier des amplificateurs de puissance de classe A ou de classe AB pour la réalisation d' étages de puissance pour poste de télécommunication destiné à fonctionner selon le standard UMTS, en raison de leur bonne linéarité, tandis que l 'on utilise plutôt des amplificateurs de puissance de classe F pour l' élaboration d' étages de puissance pour équipements de télécommunication destinés à fonctionner selon les standards GSM, DCS ou PCS . On a représenté sur la figure 2 un amplificateur de puissance reconfigurable capable de répondre aux contraintes spécifiques de chaque standard et, en particulier, de privilégier soit le critère de linéarité, soit le critère de rendement, en fonction du standard utilisé.
Comme cela sera détaillé par la suite, cet amplificateur de puissance à haute fréquence est adapté pour modifier, de manière dynamique, le point de compression (CP) du ou des étages d'amplification qu' il comporte et de modifier la classe d' amplification de ces étages afin, soit d' améliorer la linéarité de l' amplificateur, soit d' améliorer le rendement. Dans l' exemple de réalisation représenté à la figure 2, l' amplificateur comporte deux étages d'amplification E l et E2 constituant l'un un étage de pilotage (E l ) et l'autre un étage de puissance (E2).
Comme cela est classique, chaque étage comprend un transistor, respectivement Qd et Qp. Comme on le voit sur la figure, le transistor Qd du premier étage E l est associé à deux inductances L I l et L 12 raccordées l'une à une source de tension continue Vcc et l' autre à la masse.
De même, le transistor Qp est associé à deux inductances L21 et L22 raccordées l'une à la tension Vcc et l' autre à la masse.
L ' électrode de commande du transistor Qd du premier étage reçoit un signal RF1n à haute fréquence par l' intermédiaire d'un réseau d' adaptation d' entrée 1.
Le nœud commun entre l'inductance L I l et le transistor Qd est raccordé à l' électrode de commande du transistor Qp du deuxième étage 2 par l' intermédiaire d'un réseau d' adaptation inter-étages 2 conventionnel. Le nœud commun entre l'inductance L21 et le transistor Qp fournit un signal amplifié S par l' intermédiaire d'un réseau de sortie 3 comprenant, essentiellement, un réseau RLC.
Par ailleurs, chaque étage est pourvu d'un circuit de polarisation, respectivement 4 et 5 , servant à polariser le transistor Qd
L ' amplificateur est complété par une unité de traitement 6 recevant, en entrée, le signal RF1n et pilotant les circuits de polarisation 4 et 5 pour polariser les transistors Qd et Qp des étages d'amplification E l et E2 en fonction du signal d' entrée impliqué à l' amplificateur.
Plus particulièrement, le premier circuit de polarisation 4 du premier étage E l est adapté pour élaborer un courant de polarisation Ibiasd destiné à l'électrode de commande du transistor Qd afin de faire varier son point de compression (CP).
Le deuxième circuit de polarisation 5 du deuxième étage E2 est, quant à lui, destiné à élaborer un courant de polarisation Ibiasp destiné au deuxième transistor Qp. En outre, l'unité de traitement 6 agit sur le réseau de sortie 3 afin de modifier la classe de fonctionnement de l' étage de puissance en modifiant l' impédance équivalente de ce réseau de sortie 3.
Ainsi, selon l' amplificateur visible sur la figure 2, il s' agit essentiellement de modifier le point de compression de l'amplificateur et la classe de fonctionnement afin soit d' améliorer la linéarité, soit d' améliorer le rendement à puissance ajoutée (PAE).
Ce paramètre de fonctionnement PAE est en effet constitué par le rapport entre la puissance aj outée, c'est-à-dire la différence linéaire entre la puissance de sortie et la puissance d' entrée, à une fréquence
RF désirée sur le produit de la somme des courants traversant chaque étage et de la tension continue Vcc-
En d' autres termes, la PAE est donnée, pour un amplificateur à deux étages, par la relation suivante : p — p l RF(out) 1 RF(In)
PAE = O)
(I1 + I2 )- Vcce
dans laquelle :
- PRF(0Ut) désigne la puissance de sortie de l' amplificateur à la fréquence RF ;
- PRF(M) désigne la puissance du signal d' entrée RF1n ; et
- Ii et I2 désignent les courants traversant les transistors Qd et Comme indiqué précédemment, les amplificateurs de classe sinusoïdale, tels que les amplificateurs de classe A, B, AB et C présentent une bonne linéarité mais un rendement relativement faible.
Au contraire, les transistors de commutation, de classe D, E et F selon laquelle les transistors fonctionnent en mode de commutation, présentent une moins bonne linéarité mais un rendement plus important.
C ' est la raison pour laquelle on utilise généralement en standard UMTS un amplificateur de classe A pour réaliser l' étage de pilotage et un amplificateur de classe AB pour réaliser l' étage de puissance, tandis qu' il est préférable d'utiliser un amplificateur de classe AB pour réaliser l' étage de pilotage et un amplificateur à haut rendement (classe F) pour réaliser l' étage de puissance en standard GSM, DCS ou PCS .
Afin de pouvoir faire fonctionner l' amplificateur en multistandard, il est souhaitable de pouvoir faire passer la configuration classe A/classe AB en classe AB/classe F.
Dans la suite de la description, on considérera ainsi qu' il s' agit essentiellement de pouvoir dynamiquement faire passer la configuration d'un amplificateur bi-étagé des classes A/AB en classe AB/F. Mais l' invention s ' applique également « mutatis mutandis » à la reconfiguration d'amplificateurs de puissance fonctionnant selon d' autres standards de télécommunications. Les architectures des transistors des classes AB et F sont relativement proches. Elles ne diffèrent essentiellement que de par leur point de polarisation et leur impédance de sortie.
Ainsi, en agissant sur le courant de polarisation Ibiasd et Ibiasp et en modifiant la configuration de l' étage de sortie, il est possible de modifier la classe de fonctionnement de chaque transistor Qd et Qp.
En se référant à la figure 3 , sur laquelle la courbe I désigne l'évolution de la puissance de sortie Pout en fonction de la puissance d' entrée P1n et la courbe II désigne l'évolution de la PAE en fonction de la puissance d'entrée, l'amplificateur, et en particulier le circuit de polarisation 4 du premier étage E l modifie le courant de polarisation
Ibiasd du transistor Qd de manière à abaisser le point de compression
CP l correspondant à un point de fonctionnement (Pout, a ; P1n, a) vers le point de fonctionnement CP l ' , correspondant au point de fonctionnement (Pout, b ; P1n, b) comme illustré par la flèche F.
Mais, comme cela est connu en soi, la PAE est maximale pour le maximum de puissance de sortie, tandis que pour les niveaux de puissance plus bas, le rendement est plus faible.
Aussi, la modification du point de compression est combinée à une compensation de gain afin d'ajuster la courbe de PAE de manière à obtenir une PAE maximale au point de compression CP l ' ainsi modifié.
En se référant aux figures 4 et 5 et à la figure 6, sur laquelle
OCP l et ICP l désignent respectivement la puissance de sortie et la puissance d' entrée au point de compression à 1 dB, comme précédemment indiqué, la variation du point de compression est obtenue en modifiant le courant de polarisation Itπasd-
Par exemple, le circuit de polarisation 4 peut être constitué par une succession de sources de courant I I , 12, ... In agencées en parallèle et associées chacune à un commutateur C l , C2, C3 , ... CN, piloté par l'unité centrale 6 en fonction du signal RF1n de manière à élaborer le courant de polarisation Ibiasd appliqué au transistor Qd.
A cet effet, l'unité de traitement 6 est pourvue d'un détecteur assurant une détection du niveau de puissance du signal d' entrée RF1n afin, par exemple, d' abaisser le point de compression lorsque la puissance d' entrée diminue. En se référant à la figure 5 , ceci peut être effectué en augmentant ou en abaissant le courant de polarisation Ibiasd en fonction du niveau de puissance d'entrée. De même, en se référant aux figures 7 et 8, la PAE peut être modifiée en augmentant ou en abaissant le courant de polarisation
Abiasd-
En se référant à nouveau à la figure 2, la modification de classe d'amplification de l' amplificateur, et en particulier du deuxième étage E2, est réalisée en modifiant l'impédance équivalente du réseau de sortie 3.
Ainsi, comme le montre la figure 2, le réseau de sortie 3 du deuxième étage E2 est pourvu d'un résonateur formé par l' association en parallèle d'une inductance L ' et d'une capacité C en sortie du deuxième étage E2 associé à deux commutateurs 7 et 8 interposés l'un, à savoir le commutateur désigné par la référence 7 entre le deuxième étage E2, avec interposition d'une capacité de découplage C " et le résonateur L 'C , et l' autre entre le résonateur L' C et l' impédance de sortie RLC du réseau de sortie 3. Les commutateurs 7 et 8 sont pilotés par l'unité centrale 6 de manière à court-circuiter le résonateur LC par l' intermédiaire d'une ligne de dérivation 9. Le réseau de sortie 3 peut ainsi être sélectivement configuré, sous le contrôle de l'unité centrale 6 de manière à configurer l' étage de puissance 2 soit sous la forme d'un transistor de classe AB, soit sous la forme d'un transistor de classe F, par exemple en fonction du niveau de puissance détecté du signal d' entrée RF1n.

Claims

REVENDICATIONS
1. Amplificateur de puissance reconfigurable, comprenant au moins un circuit d' amplification (E l , E2), et des moyens de commande (6) dudit circuit d' amplification pour adapter son fonctionnement selon un signal d' entrée (RF1n) qui lui est appliqué, caractérisé en ce que les moyens de commande comprennent des moyens (4) pour modifier le point de compression (CP l , CP l ') dudit circuit d'amplification et pour adapter le gain du circuit de manière à augmenter le rendement à puissance ajoutée (PAE) du circuit pour le point de compression modifié.
2. Amplificateur selon la revendication 1 , caractérisé en ce que les moyens de commande comprennent des moyens pour adapter le niveau d'un courant de polarisation (IBIASD) appliqué audit circuit.
3. Amplificateur selon l'une des revendications 1 et 2, caractérisé en ce qu' il comprend un premier étage d' amplification (E l ) et un deuxième étage d' amplification (E2), les moyens de commande comprenant des premiers et deuxièmes moyens (4, 5) pour adapter respectivement le fonctionnement des premier et deuxième étages (E l , E2) d' amplification.
4. Amplificateur selon la revendication 3 , caractérisé en ce que les premiers moyens de commande comprennent des moyens pour adapter le point de compression du premier étage (E l ).
5. Amplificateur selon l'une des revendications 3 et 4, caractérisé en ce que les deuxièmes moyens de commande comprennent des moyens (5) pour adapter le gain du deuxième étage.
6. Amplificateur selon l'une quelconque des revendications 1 à 5 , caractérisé en ce qu' il comporte en outre des moyens pour modifier la classe de fonctionnement dudit circuit d' amplification.
7. Amplificateur selon la revendication 6, caractérisé en ce que les moyens pour modifier la classe de fonctionnement du circuit d'amplification comprennent des moyens pour modifier l' impédance équivalente d'un réseau de sortie (3) du circuit.
8. Amplificateur selon la revendication 7, caractérisé en ce qu'il comporte des moyens de commutation (7, 8) pour raccorder sélectivement une capacité (C) et une inductance (L ') montées en parallèle à la sortie dudit circuit.
9. Amplificateur selon l'une quelconque des revendications 2 à
8, caractérisé en ce que les moyens pour adapter le niveau du courant de polarisation comprennent un ensemble de sources de courant (I I , 12, ... In) sélectivement raccordables en parallèle les unes aux autres.
10. Utilisation d'un amplificateur de puissance selon l'une quelconque des revendications 1 à 9, pour la réalisation d'un étage d'amplification multistandard pour poste téléphonique mobile.
EP08761931A 2007-01-16 2008-01-14 Amplificateur de puissance reconfigurable et utilisation d'un tel amplificateur pour la realisation d'un etage d'amplification multistandard pour la telephonie mobile Withdrawn EP2102981A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0752699A FR2911447B1 (fr) 2007-01-16 2007-01-16 Amplificateur de puissance reconfigurable et utilisation d'un tel amplificateur pour la realisation d'un etage d'amplification multistandard pour la telephonie mobile
PCT/FR2008/050059 WO2008099113A2 (fr) 2007-01-16 2008-01-14 Amplificateur de puissance reconfigurable et utilisation d'un tel amplificateur pour la realisation d'un etage d'amplification multistandard pour la telephonie mobile

Publications (1)

Publication Number Publication Date
EP2102981A2 true EP2102981A2 (fr) 2009-09-23

Family

ID=38283897

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08761931A Withdrawn EP2102981A2 (fr) 2007-01-16 2008-01-14 Amplificateur de puissance reconfigurable et utilisation d'un tel amplificateur pour la realisation d'un etage d'amplification multistandard pour la telephonie mobile

Country Status (5)

Country Link
US (1) US8115547B2 (fr)
EP (1) EP2102981A2 (fr)
JP (1) JP5095755B2 (fr)
FR (1) FR2911447B1 (fr)
WO (1) WO2008099113A2 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024746A1 (fr) 2008-09-01 2010-03-04 Telefonaktiebolaget L M Ericsson (Publ) Amplificateur en classe hybride
US8344801B2 (en) 2010-04-02 2013-01-01 Mks Instruments, Inc. Variable class characteristic amplifier
EP2501035B1 (fr) * 2011-03-15 2020-09-30 Nxp B.V. Amplificateur
US9143204B2 (en) 2011-06-17 2015-09-22 Tensorcom, Inc. Direct coupled biasing circuit for high frequency applications
JP2019068404A (ja) * 2017-10-04 2019-04-25 株式会社村田製作所 電力増幅回路
CN110311640B (zh) * 2019-06-27 2024-04-09 杭州电子科技大学 宽带混合f/j类功率放大器及其设计方法
CN112821874B (zh) * 2020-12-30 2022-10-28 Oppo(重庆)智能科技有限公司 压缩点的调节方法及装置、及功放供电电路
WO2023000164A1 (fr) * 2021-07-20 2023-01-26 香港中文大学(深圳) Système amplificateur à faible bruit de suppression de signal de blocage

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174559A (ja) * 1998-12-03 2000-06-23 Mitsubishi Electric Corp マイクロ波電力増幅装置
US6684064B2 (en) * 2000-03-29 2004-01-27 Interdigital Technology Corp. Dynamic bias for RF power amplifiers
US6529080B1 (en) * 2001-09-11 2003-03-04 Sirenza Microdevices, Inc. TOI and power compression bias network
JP2004356729A (ja) * 2003-05-27 2004-12-16 Toshiba Corp 高周波回路および通信装置
JP3841416B2 (ja) * 2003-10-07 2006-11-01 松下電器産業株式会社 送信装置、送信出力制御方法、および無線通信装置
EP1526636A1 (fr) * 2003-10-23 2005-04-27 Broadcom Corporation Amplificateur de puissance à haute linéarité et haute efficacité à optimisation de linéarité assisté par traitement numérique de signal
CN1926759B (zh) * 2004-01-05 2010-04-28 日本电气株式会社 放大器
JP2005217562A (ja) * 2004-01-28 2005-08-11 Renesas Technology Corp 高周波電力増幅回路
JP2007005996A (ja) * 2005-06-22 2007-01-11 Renesas Technology Corp 通信用半導体集積回路および無線通信装置
KR100880448B1 (ko) * 2007-08-10 2009-01-29 한국전자통신연구원 저소비전력 혼합모드 전력증폭장치
US7564311B2 (en) * 2007-09-28 2009-07-21 Intel Corporation Method and apparatus to enhance linearity and efficiency in an RF power amplifier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008099113A3 *

Also Published As

Publication number Publication date
JP5095755B2 (ja) 2012-12-12
WO2008099113A3 (fr) 2009-01-15
FR2911447A1 (fr) 2008-07-18
US8115547B2 (en) 2012-02-14
WO2008099113A2 (fr) 2008-08-21
US20100109770A1 (en) 2010-05-06
JP2010516214A (ja) 2010-05-13
FR2911447B1 (fr) 2011-12-16

Similar Documents

Publication Publication Date Title
WO2008099113A2 (fr) Amplificateur de puissance reconfigurable et utilisation d&#39;un tel amplificateur pour la realisation d&#39;un etage d&#39;amplification multistandard pour la telephonie mobile
EP0029767B1 (fr) Procédé de commande d&#39;un montage Darlington et montage Darlington à faibles pertes
FR2959077A1 (fr) Amplificateur a faible facteur de bruit, a gain variable et de puissance
FR2873247A1 (fr) Emetteur radio avec adaptation d&#39;impedance variable
FR2836305A1 (fr) Melangeur differentiel classe ab
EP2243268A1 (fr) Systeme d&#39;emission radiofrequence
EP0660512A1 (fr) Amplificateur déphaseur et son application à un circuit recombineur
EP3304717B1 (fr) Bloc convertisseur continu-continu, convertisseur continu-continu le comprenant et système de suivi d&#39;enveloppe associé
EP0022015A1 (fr) Dispositif amplificateur et procédé d&#39;amplification pour audio-fréquences
EP3381123A2 (fr) Bloc convertisseur continu-continu a multiples tensions d&#39;alimentation, convertisseur continu-continu a multiples tensions d&#39;alimentation le comprenant et systeme de suivi d&#39;enveloppe associe
FR2730363A1 (fr) Amplificateur a gain eleve en hautes frequences et oscillateur a circuit resonant muni d&#39;un tel amplificateur
EP3482493B1 (fr) Systeme de suivi de la puissance crete d&#39;un signal de telecommunication et procede de calcul de valeur de crete et de selection de tension d&#39;alimentation associe
EP2182631A2 (fr) Cellule amplificatrice hyperfréquences large bande à gain variable et amplificateur comportant une telle cellule
KR20050035271A (ko) 증폭기 시스템 및 송신기
EP0948019B1 (fr) Dispositif de commutation d&#39;antenne entre des étages d&#39;émission et de réception
EP1251634A1 (fr) Etage de transconductance et dispositif de communication par voie hertzienne equipé d&#39;un tel étage
WO2009092963A1 (fr) Systeme d&#39;emission radiofrequence
FR2814607A1 (fr) Polarisation d&#39;un melangeur
EP1187316B1 (fr) Procédé et circuit de contrôle permettant l&#39;utilisation d&#39;un amplificateur de puissance en technologie HBT dans un émetteur en architecture à fréquence intermédiaire nulle
EP1017171B1 (fr) Dispositif de contrôle de phase constitué de multiples structures amplificatrices distribuées à éléments actifs commutables pour former une ligne à longueur programmable
EP0372643A1 (fr) Dispositif semiconducteur intégré comprenant un étage amplificateur de puissance en hyperfréquences
JP2002100935A (ja) 電力増幅装置及び方法
FR2683686A1 (fr) Amplificateur de puissance micro-ondes.
EP0465314B1 (fr) Amplificateur à sortie en double bande
EP0801466A1 (fr) Amplificateur adapteur haute impédance pour recevoir des signaux hyperfréquences à très large bande d&#39;une source de courant capacitive à haute impédance telle qu&#39;une photodiode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090616

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180801