CN110311640B - 宽带混合f/j类功率放大器及其设计方法 - Google Patents

宽带混合f/j类功率放大器及其设计方法 Download PDF

Info

Publication number
CN110311640B
CN110311640B CN201910570054.4A CN201910570054A CN110311640B CN 110311640 B CN110311640 B CN 110311640B CN 201910570054 A CN201910570054 A CN 201910570054A CN 110311640 B CN110311640 B CN 110311640B
Authority
CN
China
Prior art keywords
transmission line
microstrip transmission
harmonic
impedance
microstrip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910570054.4A
Other languages
English (en)
Other versions
CN110311640A (zh
Inventor
刘国华
郭灿天赐
程知群
周国祥
董志华
王永慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou University Of Electronic Science And Technology Fuyang Institute Of Electronic Information Co ltd
Hangzhou Dianzi University
Original Assignee
Hangzhou University Of Electronic Science And Technology Fuyang Institute Of Electronic Information Co ltd
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou University Of Electronic Science And Technology Fuyang Institute Of Electronic Information Co ltd, Hangzhou Dianzi University filed Critical Hangzhou University Of Electronic Science And Technology Fuyang Institute Of Electronic Information Co ltd
Priority to CN201910570054.4A priority Critical patent/CN110311640B/zh
Publication of CN110311640A publication Critical patent/CN110311640A/zh
Application granted granted Critical
Publication of CN110311640B publication Critical patent/CN110311640B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2176Class E amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microwave Amplifiers (AREA)

Abstract

本发明公开了一种宽带混合F/J类功率放大器及其设计方法,包括输入匹配模块、偏置电路模块、晶体管、混合谐波控制模块,输出基波匹配模块,其中,混合谐波控制模块与晶体管的输出端相连接,采用多点混合谐波控制匹配实现至少三个频率点的谐波阻抗控制,其中,控制中间频率点的二次谐波阻抗短路同时三次谐波阻抗开路,以实现F类功率放大器的特征;以及控制另外两个频率点的二次谐波短路,以实现J类功率放大器的特征。实现功率放大器混合;输出基波匹配模块与混合谐波控制模块相连接,用于将谐波控制电路后的阻抗匹配至负载阻抗,以实现最大效率传输。采用本发明的技术方案,能够使功率放大器在宽带下保证高效率以及平坦度。

Description

宽带混合F/J类功率放大器及其设计方法
技术领域
本发明属于射频电路技术领域,涉及一种宽带混合F/J类功率放大器及其设计方法,用于在宽带下保证功率放大器的效率以及平坦度。
背景技术
随着移动通信的不断发展,功率放大器成为了非常重要的一部分。同时,通信带宽不断的增加,实现多频段下高效率功率放大器能够减少设计成本和提高使用率。而要实现多频段下的功率放大器就是要实现宽频带下的功率放大器,所以如何设计宽带功率放大器成为了研究热点。
然而功率放大器设计中,效率和带宽是相互对立的性能指标,带宽拓宽会导致效率下降,实现宽带功率放大器也因为此特性成为了设计难点。现有的设计中,大多采用了单类连续谐波控制功率放大器设计,为了提高功率放大器的带宽,需匹配阻抗由一个点变成一个动态区域。但是这种传统的谐波控制电路方式,很多情况下带宽拓宽以后会出现效率波动幅度过大以及在高次谐波控制时,增加了电路复杂度。而这大大影响了功率放大器的性能。
故,针对上述这种问题,有必要深入研究分析,提供一种性能更佳的宽带功率放大器设计方式。
发明内容
针对现有设计方式存在的缺陷,本发明提出一种宽带混合F/J类功率放大器及其设计方法,通过混合谐波控制,实现F类功率放大器和J类功率放大器特征以及多个频率点进行控制,从而不仅能够实现功率放大器在宽带下的高效率,又可以提高带宽内效率的平坦度。
为了解决现有技术存在的技术问题,本发明的技术方案如下:
宽带混合F/J类功率放大器,包括输入匹配模块、偏置电路模块、晶体管、混合谐波控制模块,输出基波匹配模块,其中,
所述的输入匹配模块与晶体管的输入端相连接,用于将射频源阻抗匹配到晶体管阻抗;
所述偏置电路模块包括栅极偏置电路模块和漏极偏置电路模块,分别与晶体管的输入端和输出端相连接,用于阻断射频信号流入电源以及设置静态工作点;
所述混合谐波控制模块与晶体管的输出端相连接,采用多点混合谐波控制匹配实现至少三个频率点的谐波阻抗控制以实现功率放大器混合,其中,控制中间频率点的二次谐波阻抗短路同时三次谐波阻抗开路,以实现F类功率放大器的特征;以及控制另外两个频率点的二次谐波短路,以实现J类功率放大器的特征;
所述输出基波匹配模块与混合谐波控制模块相连接,用于将谐波控制电路后的阻抗匹配至负载阻抗,以实现最大效率传输。
作为进一步的改进方案,采用混合谐波控制设计,用于实现F类和J类功率放大器特征,即F类功率放大器控制二次谐波短路,三次谐波开路,电流成半正弦波,电压为方波。J类功率放大器控制二次谐波短路,电压电流均为半正弦波,最后采用多点混合谐波控制匹配实现功率放大器混合。
作为进一步的改进方案,所述输入匹配模块至少设置隔直电容C1、微带传输线Z2、Z3、Z4、Z5、Z7和RC并联稳定电路,其中,隔直电容C1的一端与射频源输入端相连接,隔直电容C1的另一端与微带传输线Z2的一端相连接,微带传输线Z2的另一端与微带传输线Z3的一端和微带传输线Z4的一端相连接,微带传输线Z4的另一端与RC并联稳定电路的一端相连接,RC并联稳定电路的另一端与微带传输线Z5的一端相连接,微带传输线Z5的另一端与偏置电路模块和微带传输线Z7的一端相连接,微带传输线Z7的另一端与晶体管的输入端相连接。
作为进一步的改进方案,栅极偏置电路模块设置稳定电阻和耦合电容,漏极偏置电路模块设置耦合电容。
作为进一步的改进方案,所述栅极偏置电路模块至少设置微带传输线Z6、电阻R1和电容C3,其中,微带传输线Z6一端和电源以及电容一端C3相连接,电容C3的另一端接地;微带传输线Z6另一端和电阻R1的一端相连接,电阻R1的另一端和晶体管的输入端相连接;所述漏极偏置电路模块至少设置微带传输线Z15和电容C4,其中,微带传输线Z15一端和电源以及电容C4一端相连接;微带传输线Z15另一端和混合谐波控制模块的输出端相连接,电容C4的另一端接地。
作为进一步的改进方案,所述混合谐波控制模块至少设置微带传输线Z8、Z11、Z14、Z9、Z10、Z12和Z13,其中,微带传输线Z8一端和晶体管输出端相连接,微带传输线Z8另一端与微带传输线Z9的一端、微带传输线Z10的一端和微带传输线Z11一端相连接;微带传输线Z11的另一端与微带传输线Z12的一端、微带传输线Z13的一端和微带传输线Z14的一端相连接;微带传输线Z14的另一端作为混合谐波控制模块的输出端。
作为进一步的改进方案,所述输出基波匹配模块至少设置微带传输线Z16、Z18、Z20、Z17、Z19和Z21,其中,微带传输线Z16的一端与混合谐波控制模块的输出端相连接,微带传输线Z16的另一端与微带传输线Z17的一端和微带传输线Z18的一端相连接,微带传输线Z18的另一端与微带传输线Z19的一端和微带传输线Z20的一端相连接,微带传输线Z20的另一端与微带传输线Z21的一端和电容C5的一端相连接,电容C5的另一端作为输出基波匹配模块的输出端和负载端相连接。
本发明还公开了宽带混合F/J类功率放大器的设计方法,包括以下步骤:
步骤S1:至少选取三个控制频率点;
步骤S2:根据选取的控制频率点分别获取晶体管的栅极和漏极阻抗ZS和ZL
步骤S3:根据步骤S2获取的栅极阻抗ZS,设计输入匹配模块;
步骤S4:采用四分之一波长线设计偏置电路模块;
步骤S5:根据步骤S2获取的漏极高次谐波阻抗ZL(2f),ZL(3f),设计多频率点混合谐波控制模块;
步骤S6:根据步骤S2获取的漏极基波阻抗ZL(f),设计输出基波匹配模块;
其中,所述步骤S3中,利用公式(1)-(5)计算如下微带线参数,其中Z′n为微带线各段端口阻抗,Zn为传输线各段本身特征阻抗,θn为微带线电长度,n代表微带线序号,以下Zn,θn表示相同;
Z′3=Z′4//-jZ3cot(θ3) (4)
所述步骤S4中,四分之一波长微带线特征由公式(6)表示,其中Z0为微带线特征阻抗,当Zin=0,既短路时,Zout=∞,既为开路;
所述步骤S5中,计算公式如下(7)-(18),其中ZL(f1),ZL(f2),ZL(f3)为三个频率点的基波阻抗,ZL(2f1),ZL(2f2),ZL(2f3)为三个频率点的二次谐波阻抗,ZL(3f1),ZL(3f2),ZL(3f3)为三个频率点的三次谐波阻抗,ZA(2f1),Z′A(2f2)为不同平面下计算的二次谐波阻抗,ZA,Z′A,ZB,Z′B为不同平面下计算的基波阻抗,θ2f3f为二次谐波和三次谐波频率下微带线的电长度;
Z′A=ZA//-jZ9cot(θ9)//-jZ10cot(θ9) (16)
Z′B=ZB//-jZ12cot(θ12)//-jZ13cot(θ13) (18)
所述步骤S6中,利用如下计算公式:
使用三段并联微带线配合宽带匹配,其中,Zfw是利用公式迭代计算六段微带线后的阻抗,Z′L为前级基波阻抗。
作为进一步的改进方案,三个谐波控制频率点为f1=1.8GHz、f2=2.2GHz和f3=2.6GHz。
在上述技术方案中,宽带混合F/J类功率放大器实现步骤:一:输入匹配模块,输入匹配电路用于减小射频信号输入到晶体管的损耗。二:偏置电路模块设计,输入匹配模块采用阻断射频信号送入电源,同时设置静态工作点。三:谐波控制电路模块设计,既实现宽带混合F/J类功率放大器的设计重点。通过步骤一,二创造的条件,因为F和J类功率放大器的定义是通过控制高次谐波阻抗来实现的,所以通过阻抗控制方式不同,就可以实现宽带混合F/J类功率放大器,同时不采用传统的一个频率点设计方式,选取三个频率点,通过仿真到晶体管对应的二次,三次谐波阻抗,然后选取中间频率点实现F类功率放大器的特征,既控制该频率点的二次谐波阻抗短路,三次谐波阻抗开路,另外两个频率点实现J类功率放大器的特征,二次谐波短路。通过区别于传统的功率放大器单类功放和单频率点谐波控制设计,提高了功率放大器的综合性能。四:输出基波匹配模块设计,采用三段短路微带线和三段开路微带线实现宽带基波匹配,使得宽带下各频率点的性能趋于稳定。
上述技术方案中,射频信号从输入匹配端输入,通过输入匹配模块将射频信号以最小损耗方式送入晶体管,接着射频信号通过晶体管将信号放大,然后通过混合谐波控制模块对信号高次谐波进行控制,最后通过输出基波匹配模块实现最小损耗将功率传输到负载。相对现有技术,本发明不再是单一的谐波控制功率放大器,而是结合F类功率放大器和J类功率放大器两类功率放大器同时实现多点谐波匹配。由于两类功率放大器相组合,既无需采用F类多点同时控制二三次谐波,减少了微带线枝节,又弥补了J类功率放大器下效率不高的缺陷,既保证了F类有的高效率特性又有J类宽带的特性,由于组合谐波阻抗控制无需精准控制,这样大大减小了设计难度又实现了宽带高效率放大器。
与现有技术相比,本发明的技术效果如下:通过混合谐波控制设计,既保留了F类高效率的特征,也实现了J类功率放大器带宽特性。只采用F类功率放大器需要同时控制二次、三次谐波。本发明采用两点控制二次谐波,一点控制二、三谐波,大大减小了电路的计算难度,也缩小了电路的尺寸,同时还实现了宽带下优异的效率、功率性能。
附图说明
图1是本发明中宽带混合F/J类功率放大器原理框图。
图2是本发明中输入匹配模块和栅极偏置电路模块示意图
图3是本发明中混合谐波控制模块示意图。
图4是本发明中输出基波匹配模块和漏极偏置电路模块示意图。
图5是本发明中整体电路结构示意图。
图6是本发明中仿真结果示意图。
图7是本发明宽带混合F/J类功率放大器设计方法的流程框图。
具体实施方式
以下是本发明的具体实施例,对本方案做进一步阐述。但本发明并不限于这些实施例。
针对现有技术中单一类型功率放大器设计效率和带宽不能兼顾的缺陷,本发明通过大量的理论和实验研究,并对F类功率放大器和J类功率放大器的原理进行深入的分析,最终设计能够混合两类功率放大器,从而拓宽了功率放大器的带宽同时保证了其效率。
参见图1,所示为本发明宽带混合F/J类功率放大器原理框图,包括输入匹配模块、偏置电路模块、晶体管、混合谐波控制模块,输出基波匹配模块,其中,
所述的输入匹配模块与晶体管的输入端相连接,用于将射频源阻抗匹配到晶体管阻抗;
所述偏置电路模块包括栅极偏置电路模块和漏极偏置电路模块,分别与晶体管的输入端和输出端相连接,用于阻断射频信号流入电源以及设置静态工作点;
所述混合谐波控制模块与晶体管的输出端相连接,采用多点混合谐波控制匹配实现至少三个频率点的谐波阻抗控制以实现功率放大器混合,其中,控制中间频率点的二次谐波阻抗短路同时三次谐波阻抗开路,以实现F类功率放大器的特征;以及控制另外两个频率点的二次谐波短路,以实现J类功率放大器的特征;
所述输出基波匹配模块与混合谐波控制模块相连接,用于将谐波控制电路后的阻抗匹配至负载阻抗,以实现最大效率传输。
参见图2,所示为输入匹配模块的原理框图,至少设置隔直电容C1、微带传输线Z2、Z3、Z4、Z5、Z7和RC并联稳定电路,其中,隔直电容C1的一端与射频源输入端相连接,隔直电容C1的另一端与微带传输线Z2的一端相连接,微带传输线Z2的另一端与微带传输线Z3的一端和微带传输线Z4的一端相连接,微带传输线Z4的另一端与RC并联稳定电路的一端相连接,RC并联稳定电路的另一端与微带传输线Z5的一端相连接,微带传输线Z5的另一端与偏置电路模块和微带传输线Z7的一端相连接,微带传输线Z7的另一端与晶体管的输入端相连接。
栅极偏置电路模块设置稳定电阻和耦合电容,漏极偏置电路模块设置耦合电容。
栅极偏置电路模块至少设置微带传输线Z6、电阻R1和电容C3,其中,微带传输线Z6一端和电源以及电容一端C3相连接,电容C3的另一端接地;微带传输线Z6另一端和电阻R1的一端相连接,电阻R1的另一端和晶体管的输入端相连接;所述漏极偏置电路模块至少设置微带传输线Z15和电容C4,其中,微带传输线Z15一端和电源以及电容C4一端相连接;微带传输线Z15另一端和混合谐波控制模块的输出端相连接,电容C4的另一端接地。
参见图3,所示为混合谐波控制模块的原理框图,至少设置微带传输线Z8、Z11、Z14、Z9、Z10、Z12和Z13,其中,微带传输线Z8一端和晶体管输出端相连接,微带传输线Z8另一端与微带传输线Z9的一端、微带传输线Z10的一端和微带传输线Z11一端相连接;微带传输线Z11的另一端与微带传输线Z12的一端、微带传输线Z13的一端和微带传输线Z14的一端相连接;微带传输线Z14的另一端作为混合谐波控制模块的输出端。
参见图4,所示为输出基波匹配模块的原理框图,至少设置微带传输线Z16、Z18、Z20、Z17、Z19和Z21,其中,微带传输线Z16的一端与混合谐波控制模块的输出端相连接,微带传输线Z16的另一端与微带传输线Z17的一端和微带传输线Z18的一端相连接,微带传输线Z18的另一端与微带传输线Z19的一端和微带传输线Z20的一端相连接,微带传输线Z20的另一端与微带传输线Z21的一端和电容C5的一端相连接,电容C5的另一端作为输出基波匹配模块的输出端和负载端相连接。
上述技术方案中,通过宽带混合F/J类混合谐波控制设计,拓宽了功率放大器的带宽,同时保证效率不会因为带宽的增加而下降。同时,采用了F/J混合设计,不需要所有频率点采用F类的设计方式控制二、三次谐波,减小了电路的尺寸和整个频段效率的波动幅度。
所述的输入匹配模块包含三个部分,如图2所示,虚线框中为输入匹配模块,第一部分输出基波匹配部分,它包括Z2,Z4,Z5,Z7四段串联微带线和Z3一段串联微带线,将射频阻抗匹配到晶体管源阻抗。第二部分是RC选频网络,因为晶体管内部有负阻产生振荡导致电路不稳定,采用RC选频网路抵消负阻提高稳定性。第三部分是电容C1隔直电容用于隔离直流电源中的直流电。由于电容和RC电容主要与频率有关,其所选值较小,计算可以忽略,具体输入匹配计算公式如下:
Z′3=Z′4//-jZ3cot(θ3) (4)
所述的栅极和漏极偏置电路模块,如图2,3所示,虚线框以外为栅极和漏极偏置电路,第一部分是栅极偏置电路模块,它由Z6组成,采用传统短路短截线阻断射频信号流入电源,R为稳定电阻,C3为耦合电容,将小部分短截线没有阻断的射频信号短路到地,最后接入电源设置静态工作点。第二部分漏极偏置电路模块类似,采用/>短路短截线Z15以及耦合电容C4,同样接入电源设置静态工作点,具体利用公式如下:
所述的混合谐波控制模块包含Z8,Z11,Z14三段串联微带线和Z9,Z10,Z12,Z13四段并联微带线,如图3所示,虚线表示不同平面的阻抗。其中四段并联微带线分别为三个频率点的高次谐波控制微带线。通过选择三个频率点f1,f2,f3,频率点f1,f3采用J类功率放大器的控制方式只控制二次谐波短路,频率点f2采用F类功率放大器的控制方式控制二次谐波短路,三次谐波开路。Z8,Z11两段串联微带线用于将晶体管阻抗匹配到短路点,Z14用于阻抗调谐,具体计算公式如下:
Z′A=ZA//-jZ9cot(θ9)//-jZ10cot(θ9) (16)
Z′B=ZB//-jZ12cot(θ12)//-jZ13cot(θ13) (18)
所述输出基波匹配模块与输入匹配模块类似,它包Z17,Z19,Z21三段并联开路微带线,如图4所示,虚线框中为输出基波匹配模块。对应不同的负电抗值用于抵消输出基波匹配模块中Z16,Z18,Z20三段串联微带线中的电抗值。由于微带线计算公式是非线性,从而能够满足宽带中的基波匹配。利用的计算公式如下:
其中,Zfw是利用公式迭代计算六段微带线后的阻抗。
整体原理图如图5所示,两端分别加上一端微带线用于焊接射频输入端口以及负载测试端口。
参见图7,本发明还公开了一种宽带混合F/J类功率放大器的设计方法,包括以下步骤:
步骤S1:至少选取三个控制频率点;
步骤S2:根据选取的控制频率点分别获取晶体管的栅极和漏极阻抗ZS和ZL
步骤S3:根据步骤S2获取的栅极阻抗ZS,设计输入匹配模块;
步骤S4:采用四分之一波长线设计偏置电路模块;
步骤S5:根据步骤S2获取的漏极高次谐波阻抗ZL(2f),ZL(3f),设计多频率点混合谐波控制模块;
步骤S6:根据步骤S2获取的漏极基波阻抗ZL(f),设计输出基波匹配模块。
以下详述本发明宽带混合F/J类功率放大器的设计过程:
设计电路带宽为1-2.8GHz,中心频率设置为f0=1.8GHz,用于整个电路基波匹配。三个谐波控制频率点f1=1.8GHz、f2=2.2GHz、f3=2.6GHz。同时借助ADS软件进行负载牵引的到三个频率点基波阻抗、二次谐波阻抗、三次谐波阻抗。分别为,Zs=18.357+j*2.6,ZL(f1)=17.15+j*12.99,ZL(f2)=19.20+j*9.37,ZL(f3)=13.79+j*7.25,ZL(2f1)=17.84+j*7.34,ZL(2f2)=17.95-j*10.95,ZL(2f3)=24.78-j*11.2,ZL(3f2)=29.20-j*9.69,静态工作点VDS=28V,VGS=-2.7V其混合F/J类功率放大器通过如下步骤实现:
步骤一:设计输入匹配模块,因为输入匹配整个电路性能影响不大,只需要保证射频信号传输损耗较小,因此采用传统的T型直接匹配,采用计算公式(1)-(5),并利用工具仿真得出该频率点下的RC串联值以及电容值,同时为了便于焊接加上一段微带线Z1。最后通过ADS转换工具将阻抗Z和电长度θ转换成宽度W和长度L,以下表示相同。最终得到W1=3.7mm,L1=4.4mm,W2=5.3mm,L1=7.2mm,W3=1.5mm,L3=9.6mm,W4=2.8mm,L4=5.7mm,W5=10.4mm,L5=5.9mm,W7=10.4mm,L7=6.4mm。C1=18pF,C2=6pF,R=3Ω。
Z′3=Z′4//-jZ3cot(θ3) (4)
其中Z′n为微带线各段目标阻抗,Zn为传输线各段本身特征阻抗,θn为微带线电长度。
步骤二,设置栅极、漏极偏置电路模块,偏置电路采用常规线短路短截线,利用公式(6)可以得出短截线对于射频信号呈现开路,以此阻断射频信号进入电源,Z6,Z15特征阻抗自由设置,电阻常规采用50Ω,同时利用仿真工具仿真耦合电容以及微带线转换,最终得到W6=1mm,L6=19.3mm,W15=1mm,L15=20.6mm,C3=8pF,C4=11pF,R1=50Ω。
步骤三,混合谐波控制模块设计,因为采用多点谐波控制,采用Z9,Z10,Z12,Z13四段微带线对ZL(2f1),ZL(2f2),ZL(2f3)谐波阻抗进行短路控制,ZL(3f2)谐波阻抗开路控制,利用公式(7)-(8)另ZL(2f3)ZL(3f2)在A点短路,设置Z9波长为Z10波长为/>实现了f2三次谐波阻抗开路,f3二次谐波短路。同样利用公式(9)-(14)使ZL(2f1),ZL(2f2)在B点处短路,设置Z12波长为/>Z13波长为/>实现f1二次谐波阻抗开路,f2二次谐波短路。利用公式(15)-(18)算出微带线基波阻抗,Z14用于阻抗调谐,最终得到W8=1.4mm,L8=5.1mm,W9=3.5mm,L9=5.6mm,W10=3.2mm,L10=8.7mm,W11=2.1mm,L11=6.6mm,W12=1.1mm,L12=10.1mm,W13=1mm,L13=12mm,W14=1.8mm,L14=1.9mm。
Z′A=ZA//-jZ9cot(θ9)//-jZ10cot(θ9) (16)
Z′B=ZB//-jZ12cot(θ12)//-jZ13cot(θ13) (18)
其中,ZL(f1),ZL(f2),ZL(f3)为三个频率点的基波阻抗,ZL(2f1),ZL(2f2),ZL(2f3)为三个频率点的二次谐波阻抗,ZL(3f1),ZL(3f2),ZL(3f3)为三个频率点的三次谐波阻抗,ZA(2f1),Z′A(2f2)不同平面下计算的二次谐波阻抗,ZA,Z′A,ZB,Z′B为不同平面下计算的基波阻抗,θ2f3f为二次谐波和三次谐波的电长度。
步骤四:输出基波匹配模块设计,包括Z17,Z19,Z21三段并联开路微带线和Z16,Z18,Z20三段串联微带线,不同频率点下的基波阻抗匹配可以通过三段开路微带线相互调谐,使得基波阻抗电路平衡了整个频段下的性能,末端连接一个隔直电容,附加两段微带线用于电容焊接,通过计算公式(19)迭代,最终得到W16=2.4mm,L16=13.2mm,W17=5.4mm,L17=2.4mm,W18=2.3mm,L18=13.1mm,W19=5.8mm,L19=2.9mm,W20=1.7mm,L20=1mm,W21=1.6mm,L21=3.7mm,W22=1.26mm,L22=4mm,W23=1.26mm,L23=4mm。
其中Zfw是利用公式迭代计算六段微带线后的阻抗,Z′L为前级基波阻抗。
根据以上叙述的理论,通过ADS进行电路仿真,其仿真结果如图6所示,纵轴左边表示输出功率和增益,纵轴右边表示漏极效率。其中,在1-2.8GHz下漏极效率为65%-71%,效率幅度相差6%,输出功率为40-42dBm,增益大于10dB。
以上实施例只是用于帮助理解本发明的方法及核心思想,对应本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干的改进和修饰,这些改进和修饰也落入本发明权利要求保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本申请中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本申请所示的这些实施例,而是要符合与本申请所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

1.宽带混合F/J类功率放大器,其特征在于,包括输入匹配模块、偏置电路模块、晶体管、混合谐波控制模块,输出基波匹配模块,其中,
所述的输入匹配模块与晶体管的输入端相连接,用于将射频源阻抗匹配到晶体管阻抗;
所述偏置电路模块包括栅极偏置电路模块和漏极偏置电路模块,分别与晶体管的输入端和输出端相连接,用于阻断射频信号流入电源以及设置静态工作点;
所述混合谐波控制模块与晶体管的输出端相连接,采用多点混合谐波控制匹配实现至少三个频率点的谐波阻抗控制以实现功率放大器混合,其中,控制中间频率点的二次谐波阻抗短路同时三次谐波阻抗开路,以实现F类功率放大器的特征;以及控制另外两个频率点的二次谐波短路,以实现J类功率放大器的特征;
所述输出基波匹配模块与混合谐波控制模块相连接,用于将谐波控制电路后的阻抗匹配至负载阻抗,以实现最大效率传输。
2.根据权利要求1所述的宽带混合F/J类功率放大器,其特征在于,所述输入匹配模块至少设置隔直电容C1、微带传输线Z2、Z3、Z4、Z5、Z7和RC并联稳定电路,其中,隔直电容C1的一端与射频源输入端相连接,隔直电容C1的另一端与微带传输线Z2的一端相连接,微带传输线Z2的另一端与微带传输线Z3的一端和微带传输线Z4的一端相连接,微带传输线Z4的另一端与RC并联稳定电路的一端相连接,RC并联稳定电路的另一端与微带传输线Z5的一端相连接,微带传输线Z5的另一端与偏置电路模块和微带传输线Z7的一端相连接,微带传输线Z7的另一端与晶体管的输入端相连接。
3.根据权利要求1或2所述的宽带混合F/J类功率放大器,其特征在于,栅极偏置电路模块设置稳定电阻和耦合电容,漏极偏置电路模块设置耦合电容。
4.根据权利要求1或2所述的宽带混合F/J类功率放大器,其特征在于,所述栅极偏置电路模块至少设置微带传输线Z6、电阻R1和电容C3,其中,微带传输线Z6一端和电源以及电容一端C3相连接,电容C3的另一端接地;微带传输线Z6另一端和电阻R1的一端相连接,电阻R1的另一端和晶体管的输入端相连接;所述漏极偏置电路模块至少设置微带传输线Z15和电容C4,其中,微带传输线Z15一端和电源以及电容C4一端相连接;微带传输线Z15另一端和混合谐波控制模块的输出端相连接,电容C4的另一端接地。
5.根据权利要求1或2所述的宽带混合F/J类功率放大器,其特征在于,所述混合谐波控制模块至少设置微带传输线Z8、Z11、Z14、Z9、Z10、Z12和Z13,其中,微带传输线Z8一端和晶体管输出端相连接,微带传输线Z8另一端与微带传输线Z9的一端、微带传输线Z10的一端和微带传输线Z11一端相连接;微带传输线Z11的另一端与微带传输线Z12的一端、微带传输线Z13的一端和微带传输线Z14的一端相连接;微带传输线Z14的另一端作为混合谐波控制模块的输出端。
6.根据权利要求1或2所述的宽带混合F/J类功率放大器,其特征在于,所述输出基波匹配模块至少设置微带传输线Z16、Z18、Z20、Z17、Z19和Z21,其中,微带传输线Z16的一端与混合谐波控制模块的输出端相连接,微带传输线Z16的另一端与微带传输线Z17的一端和微带传输线Z18的一端相连接,微带传输线Z18的另一端与微带传输线Z19的一端和微带传输线Z20的一端相连接,微带传输线Z20的另一端与微带传输线Z21的一端和电容C5的一端相连接,电容C5的另一端作为输出基波匹配模块的输出端和负载端相连接。
7.宽带混合F/J类功率放大器的设计方法,其特征在于,包括以下步骤:
步骤S1:至少选取三个控制频率点;
步骤S2:根据选取的控制频率点分别获取晶体管的栅极和漏极阻抗ZS和ZL
步骤S3:根据步骤S2获取的栅极阻抗ZS,设计输入匹配模块;
步骤S4:采用四分之一波长线设计偏置电路模块;
步骤S5:根据步骤S2获取的漏极高次谐波阻抗ZL(2f),ZL(3f),设计多频率点混合谐波控制模块;
步骤S6:根据步骤S2获取的漏极基波阻抗ZL(f),设计输出基波匹配模块;
其中,所述步骤S3中,利用公式(1)-(5)计算如下微带线参数,其中Z′n为微带线各段端口阻抗,Zn为传输线各段本身特征阻抗,θn为微带线电长度,n代表微带线序号,以下Zn,θn表示相同;
Z′3=Z′4//-jZ3cot(θ3) (4)
所述步骤S4中,四分之一波长微带线特征由公式(6)表示,其中Z0为微带线特征阻抗,当Zin=0,既短路时,Zout=∞,既为开路;
所述步骤S5中,计算公式如下(7)-(18),其中ZL(f1),ZL(f2),ZL(f3)为三个频率点的基波阻抗,ZL(2f1),ZL(2f2),ZL(2f3)为三个频率点的二次谐波阻抗,ZL(3f1),ZL(3f2),ZL(3f3)为三个频率点的三次谐波阻抗,ZA(2f1),Z′A(2f2)为不同平面下计算的二次谐波阻抗,ZA,Z′A,ZB,Z′B为不同平面下计算的基波阻抗,θ2f3f为二次谐波和三次谐波频率下微带线的电长度;
Z′A=ZA//-jZ9cot(θ9)//-jZ10cot(θ9) (16)
Z′B=ZB//-jZ12cot(θ12)//-jZ13cot(θ13) (18)
所述步骤S6中,利用如下计算公式:
使用三段并联微带线配合宽带匹配,其中,Zfw是利用公式迭代计算六段微带线后的阻抗,Z′L为前级基波阻抗。
8.根据权利要求7所述的宽带混合F/J类功率放大器的设计方法,其特征在于,三个谐波控制频率点为f1=1.8GHz、f2=2.2GHz和f3=2.6GHz。
CN201910570054.4A 2019-06-27 2019-06-27 宽带混合f/j类功率放大器及其设计方法 Active CN110311640B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910570054.4A CN110311640B (zh) 2019-06-27 2019-06-27 宽带混合f/j类功率放大器及其设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910570054.4A CN110311640B (zh) 2019-06-27 2019-06-27 宽带混合f/j类功率放大器及其设计方法

Publications (2)

Publication Number Publication Date
CN110311640A CN110311640A (zh) 2019-10-08
CN110311640B true CN110311640B (zh) 2024-04-09

Family

ID=68077713

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910570054.4A Active CN110311640B (zh) 2019-06-27 2019-06-27 宽带混合f/j类功率放大器及其设计方法

Country Status (1)

Country Link
CN (1) CN110311640B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111181506A (zh) * 2020-01-20 2020-05-19 电子科技大学 一种具有新型输出匹配方法的宽带高效j类功率放大器
CN112737531B (zh) * 2021-04-02 2021-06-18 成都理工大学 一种j类功率放大器
CN113746433B (zh) * 2021-07-21 2023-12-08 中山市华南理工大学现代产业技术研究院 高效率宽频多模式Doherty功率放大器及构建方法
CN113794448A (zh) * 2021-08-18 2021-12-14 华南理工大学 一种调谐的双频匹配功率放大器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239882A (ja) * 2008-03-04 2009-10-15 Japan Radio Co Ltd 高周波電力増幅器
CN105631109A (zh) * 2015-12-24 2016-06-01 合肥师范学院 一种射频超宽带高效率功率放大器的设计方法及电路
CN107332527A (zh) * 2017-06-12 2017-11-07 杭州电子科技大学 一种基于紧凑型输出匹配网络的宽带高效j类功率放大器实现方法
CN107547050A (zh) * 2017-08-21 2018-01-05 天津大学 一种双级双频带高效功率放大器
CN109286376A (zh) * 2018-10-18 2019-01-29 成都嘉纳海威科技有限责任公司 一种基于二次谐波控制的高效率双频j类堆叠功率放大器
CN210053385U (zh) * 2019-06-27 2020-02-11 杭州电子科技大学富阳电子信息研究院有限公司 宽带混合f/j类功率放大器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2911447B1 (fr) * 2007-01-16 2011-12-16 St Microelectronics Sa Amplificateur de puissance reconfigurable et utilisation d'un tel amplificateur pour la realisation d'un etage d'amplification multistandard pour la telephonie mobile
KR100814415B1 (ko) * 2007-02-14 2008-03-18 포항공과대학교 산학협력단 하모닉 제어 회로를 이용한 고효율 도허티 전력 증폭기
WO2010024746A1 (en) * 2008-09-01 2010-03-04 Telefonaktiebolaget L M Ericsson (Publ) Hybrid class amplifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239882A (ja) * 2008-03-04 2009-10-15 Japan Radio Co Ltd 高周波電力増幅器
CN105631109A (zh) * 2015-12-24 2016-06-01 合肥师范学院 一种射频超宽带高效率功率放大器的设计方法及电路
CN107332527A (zh) * 2017-06-12 2017-11-07 杭州电子科技大学 一种基于紧凑型输出匹配网络的宽带高效j类功率放大器实现方法
CN107547050A (zh) * 2017-08-21 2018-01-05 天津大学 一种双级双频带高效功率放大器
CN109286376A (zh) * 2018-10-18 2019-01-29 成都嘉纳海威科技有限责任公司 一种基于二次谐波控制的高效率双频j类堆叠功率放大器
CN210053385U (zh) * 2019-06-27 2020-02-11 杭州电子科技大学富阳电子信息研究院有限公司 宽带混合f/j类功率放大器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
1.5~2.7GHz宽带高效率混合连续类功率放大器设计;何晋;何松柏;陈金虎;;成都信息工程学院学报(第05期);23-27 *
a broadband class f/j hybrid power amplifier;guohua liu等;microwave and optical technology letters;第62卷(第7期);2518-2524 *
integrated design of a class j power amplifier;aseed razaei等;IEEE transactions on microwave theory and techniques;1639-1648 *

Also Published As

Publication number Publication date
CN110311640A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
CN110311640B (zh) 宽带混合f/j类功率放大器及其设计方法
CN108712154B (zh) 一种宽带f类功率放大器及设计方法
CN109639243B (zh) 一种基于耦合环路谐振网络的f类功率放大器
CN109873612A (zh) 一种基于多阶梯枝节匹配网络的双频带高效率功率放大器
CN110708701B (zh) 一种宽带射频功放设计方法及5g低频段射频功放
CN110708029B (zh) 基于非等长传输线的双频带异向功率放大器及其设计方法
CN113162554A (zh) 一种基于谐波控制的混合高效功率放大器及其设计方法
CN210053385U (zh) 宽带混合f/j类功率放大器
CN109245726B (zh) 一种适用于极高频的双推式倍频器
CN106982031A (zh) 一种基于介质谐振器的滤波f类功率放大器
CN113765482A (zh) 一种频率可重构Doherty功率放大器
CN116599474A (zh) 一种双频宽带高效率功率放大器及其设计方法
CN112332787A (zh) 一种基于端接耦合线结构的宽带高效率功率放大器及其设计方法
CN113395043B (zh) 一种基于精确谐波控制的高效率双频功率放大器及其设计方法
JP2013055405A (ja) F級増幅回路及びこれを用いた送信装置
CN111262535A (zh) 宽带混合结构j类功率放大器及设计方法
CN212649417U (zh) 一种微波单片集成超宽带功率放大器
CN211377989U (zh) 宽带混合结构j类功率放大器
CN112838833A (zh) 基于发夹式微带带通滤波器的f类功率放大器及设计方法
CN114123995A (zh) 一种新型的并发双波段射频功率放大器
Arabi et al. An optimization-based design technique for multi-band power amplifiers
CN108768316B (zh) 一种基于四堆叠技术的高频高功率高效率复合晶体管管芯
CN113258889A (zh) 一种宽带功率放大器
CN111371421A (zh) 基于谐波控制电路的双带功率放大器及其设计方法
CN112636707A (zh) 一种宽带异相功率放大器及其设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20240311

Address after: 310018 Xiasha Higher Education Zone, Hangzhou, Zhejiang

Applicant after: HANGZHOU DIANZI University

Country or region after: China

Applicant after: Hangzhou University of Electronic Science and Technology Fuyang Institute of Electronic Information Co.,Ltd.

Address before: Room 937, 9th Floor, No. 6, Yinhu Innovation Center, No. 9 Fuxian Road, Yinhu Street, Fuyang District, Hangzhou City, Zhejiang Province, 310000

Applicant before: Hangzhou University of Electronic Science and Technology Fuyang Institute of Electronic Information Co.,Ltd.

Country or region before: China

GR01 Patent grant
GR01 Patent grant