EP2097972A1 - Elektronisches antriebssystem für ein aggregat eines fahrzeugs - Google Patents

Elektronisches antriebssystem für ein aggregat eines fahrzeugs

Info

Publication number
EP2097972A1
EP2097972A1 EP07847338A EP07847338A EP2097972A1 EP 2097972 A1 EP2097972 A1 EP 2097972A1 EP 07847338 A EP07847338 A EP 07847338A EP 07847338 A EP07847338 A EP 07847338A EP 2097972 A1 EP2097972 A1 EP 2097972A1
Authority
EP
European Patent Office
Prior art keywords
drive system
machine
bridge
vehicle
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07847338A
Other languages
English (en)
French (fr)
Inventor
Elmar Dilger
Isidro Corral Patino
Roland Karrelmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2097972A1 publication Critical patent/EP2097972A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • H02P5/747Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors mechanically coupled by gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/54Windings for different functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/56Structural details of electrical machines with switched windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/58Structural details of electrical machines with more than three phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to an electric drive system for an aggregate of a vehicle, in particular motor vehicle, with a vehicle electrical system, a controllable bridge arrangement and an electric machine.
  • the drive system according to the invention is used in particular for a fault-tolerant drive, for example as an electric power steering drive in motor vehicles. It is crucial that even with the occurrence of errors at least a limited operation is maintained, so that a very high level of security is given.
  • the electrical drive system according to the invention for an aggregate of a vehicle, in particular a motor vehicle has an on-board network system, a controllable bridge arrangement and an electrical machine, wherein the on-board network system has a plurality of redundant vehicle systems and the bridge arrangement a plurality of bridge circuits connected to the on-board network, each bridge circuit being connected to another on-board network, and wherein the electric machine is designed as a multi-phase multiple machine comprising a plurality of independent groups of polyphase windings, the groups being connected to the bridge circuits, each group being connected to a different bridge circuit. Due to the redundant vehicle electrical system, the redundant bridge circuits and the formation of the electrical machine as a multiple machine with multiple independent groups of polyphase windings extremely high reliability is realized.
  • the bridge arrangement has two bridge circuits.
  • the multiple machine is designed as a dual machine and has two groups of polyphase windings.
  • Each group is preferably formed in three phases. Alternatively, however, more or less than three phases may be provided.
  • the above-described redundancy in the on-board networks and in the bridge circuits can of course also be greater than two.
  • more or less than three phases can also be used, in particular an asynchronous machine with four phases.
  • the electrical machine is designed as an asynchronous machine.
  • the windings of each group of the electrical machine are preferably connected in star.
  • the star points of the groups are connected to centers of DC buses.
  • the respective DC bus is preferably between the associated electrical system and the associated bridge circuit.
  • Each star point is assigned a different center point.
  • controllable bridge arrangement is connected to a field-oriented control.
  • the controllable bridge circuit is controlled in particular by means of pulse width modulation.
  • the bridge arrangement has controllable electronic links, wherein each electronic link has at least two series-connected electrical switching elements, in particular transistors.
  • This is also a redundant power amplifier topology, that is,
  • Transistor shorts will have no effect on the system due to the series connection.
  • Figure 1 is a circuit diagram of an electric drive system and an associated, designed as a dual machine
  • FIGS. 3 to 9 diagrams
  • the vehicle 1 shows an electric drive system 1, which is used for driving an aggregate of a vehicle, in particular a motor vehicle.
  • the electric drive system 1 is used for driving an aggregate of a vehicle, in particular a motor vehicle.
  • the Drive system 1 has an electrical system 2 with two electrical systems B1 and B2.
  • the vehicle electrical systems B1 and B2 each have, among other things, a rechargeable battery.
  • the drive system 1 of Figure 1 further has a bridge arrangement 3, which has a bridge circuit 4 and a bridge circuit 5.
  • Each bridge circuit 4, 5 is formed in three phases, so that in each case three bridge branches 6 and three bridge branches 7 are provided.
  • In each of the bridge branches 6, 7 are two controllable electronic elements 8, wherein each electronic element 8 composed of two series-connected electronic switching elements 9.
  • the switching elements 9 are formed as transistors.
  • the two bridge circuits 4 and 5 are each connected via a DC bus 10, 10 'to the respectively associated electrical system B1 or B2.
  • a multiple machine 12 designed as a dual machine 11 is electrically connected to the bridge arrangement 3 with its windings U1, V1 and W1 or U2, V2 and W2.
  • the windings U1, V1 and W1 are connected between the electronic links 8 to the corresponding bridge branches 6 of the bridge circuit 4; Accordingly, the windings U2, V2 and W2 are connected to the respective bridge branches 7 of the bridge circuit 5.
  • the windings of the groups 13 and 14 are each connected in star, wherein the neutral point S1 is connected to a center 15 of the DC bus 10 and the neutral point S2 to a center 16 of the DC bus 10 '. Furthermore, the phase lines of the two groups 13 and 14 are connected via phase current detection elements to a field-oriented regulation 17 in connection with which the individual transistors of the respective bridge circuit 4, 5 are driven. In both DC buses 10 and 10 'each have two support capacitors 18 and 19 connected to the center 15 and 16, respectively.
  • the dual-structure multiple machine 12 has two groups 13, 14 of three phases.
  • this dual machine 11 is wound only in one layer. In each groove, only two strands of equal phase are routed to prevent interphase shorts in the length of the machine. Within each group 13, 14, the dual machine 11 has eight turns per phase. With this design, the machine achieves a high degree of safety, as required, for example, when used as a steer-by-wire actuator.
  • FIG. 2 illustrates in detail again the design of the bridge branches 6 and 7 of the two bridge circuits 4 and 5, respectively.
  • each electronic element 8 is composed of two switching elements 9 connected in series.
  • Each switching element 9 is designed as a transistor which is connected to a freewheeling diode 20.
  • a steer-by-wire actuator designed as an electric motor dual machine 11 must be position-controlled, in particular by means of field-oriented control. If two phases fail, the machine can continue to operate.
  • the following derivation clarifies this, wherein the electric machine is exemplified as a dual three-phase asynchronous machine. Since the dual machine can be considered as two groups 13, 14 of three-phase machines, there are two possibilities for the failure of two phases:
  • Option 1 The two failed phases belong to different phase groups (groups 13, 14).
  • each phase group is considered in isolation.
  • the new angles to which the remaining current phasors are to be directed can be deduced from the separate consideration of each isolated group 13, 14, ie, from the interruption of one phase in a three-phase asynchronous machine, the angles of the remaining two phases per group become the dual Derived machine.
  • FIG. 4 shows on the left the current phasors for the dual machine. Group 13 is shifted 30 electrical degrees from group 14.
  • the MMF generated by these streams is:
  • FIG. 4 shows, on the right, the new angles which each phase group is to adapt, namely after the failure of one phase per group.
  • the respective angles can be derived as it was done for the general three-phase asynchronous machine. It is still missing to determine the modulus of the resulting phasors. This is derived below:
  • phase a1 and b2 fail, the generated MMF is valid for the following: To ensure a continuous Betheb, the MMF should be maintained equal:
  • Equation (21) shows that the modulus of the respective phasors after interruption of one phase per group is V3 of the original normal state module. This will lead to minimum current flooding through the statoric phases.
  • the two interrupted phases belong to the same phase group:
  • FIG. 5 shows the resulting current phasors of the dual asynchronous machine; left: normal condition; right: after interruption phases a1 and b1.
  • the current phasors in this case will have different modules to produce the same MMF as for the normal state. It should also be noted that the current will flow from the sum of the four remaining phases through the star point cable (variant 1). Now another variant is derived for which the current through the
  • FIG. 6 shows the resulting current phasors of the dual asynchronous machine for this variant. Left: Normal condition. Right: After interruption of phases a1 and b1 with optimized energy distribution in the machine.
  • the current is determined by the star point cable whose value is 1, 9924 of the modulus of a phase for the normal state.
  • Option 1 The two interrupted phases belong to different phase groups:
  • each phase group is considered in isolation, which leads exactly to the same results as in the dual machine
  • FIG. 7 shows the resulting current phasors before and after
  • Phase interruption for the proposed control strategy namely, Figure 7 shows the current phasors of the conventional six-phase asynchronous machine. Left: Normal condition; Right: After interruption of phases a1 and b1 with optimized energy distribution in the machine.
  • Figure 8 shows the results after the onset of the control strategy in the failure of two phases of the same group for the dual machine. After 0.2 seconds, the phases a1 and d are interrupted. The small
  • stator currents Lstat (A), the rotor speed W R (rad / s), the torque M d (Nm) and the current l s (A) through the neutral cable in the dual asynchronous machine after interruption of two phases of the same group and the zero current represented by the neutral point cable. Furthermore are still the rotor target speed ⁇ s (rad / s) and a load torque M L shown.
  • FIG. 10 shows the results of the method. All phases have the same module. The current through the neutral cable is 1, 9924 greater than that through one phase of the machine for the normal state.
  • FIG. 9 shows the stator currents lstat (A), the rotor speed W R (rad / s), the torque M d (Nm) and the current l s (A) through the star point cable in the dual ASM after interruption of two phases of the same group and the optimal energy distribution in the machine.
  • FIG. 10 once again shows the overall design of the system according to the invention with star point cables, wherein, with respect to FIG. 1, it is additionally indicated that the two star circuits of the dual three-phase asynchronous machine are arranged at an angle with respect to each other.
  • a rotary encoder 21 is still shown, which passes information about rotor position and rotor speed to the controller 17.
  • Figure 11 shows an alternative embodiment of the proposed system employing a H-bridge inverter.
  • FIG. 12 shows on the left side a dual six-phase asynchronous machine, the position of the magnetic axes being illustrated.
  • the angular offset is ⁇ / 6.
  • To the right is shown an illustration of a conventional six-phase asynchronous machine in which the magnetic axes are offset by ⁇ / 3.
  • FIG. 13 illustrates the position of the magnetic axes of a four-phase asynchronous machine. Variants are shown on the left and in the middle when the machine is wound asymmetrically on a layer. Right shows symmetrical magnetic axes when the machine is wound on two layers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Die Erfindung betrifft ein elektrisches Antriebssystem für ein Aggregat eines Fahrzeugs, insbesondere Kraftfahrzeugs, mit einem Bordnetzsystem, einer steuerbaren Brückenanordnung und einer elektrischen Maschine. Es ist vorgesehen, dass das Bordnetzsystem mehrere redundante Bordnetze und dass die Brückenanordnung mehrere Brückenschaltungen aufweist, die an die Bordnetze angeschlossen sind, wobei jede Brückenschaltung an ein anderes Bordnetz angeschlossen ist, und dass die elektrische Maschine als mehrphasige Mehrfachmaschine ausgebildet ist, die mehrere unabhängige Gruppen von mehrphasigen Wicklungen aufweist, wobei die Gruppen jeweils an die Brückenschaltungen angeschlossen sind und wobei jede Gruppe an eine andere Brückenschaltung angeschlossen ist. Ferner betrifft die Erfindung ein Verfahren zum Betreiben eines elektrischen Antriebssystems.

Description

Beschreibung
Titel Elektronisches Antriebssystem für ein Aggregat eines Fahrzeugs
Die Erfindung betrifft ein elektrisches Antriebssystem für ein Aggregat eines Fahrzeugs, insbesondere Kraftfahrzeugs, mit einem Bordnetzsystem, einer steuerbaren Brückenanordnung und einer elektrischen Maschine. Das erfindungsgemäße Antriebssystem wird insbesondere für einen fehlertoleranten Antrieb eingesetzt, beispielsweise als elektrischer Lenkhilfeantrieb bei Kraftfahrzeugen. Entscheidend ist, dass auch bei dem Auftreten von Fehlern zumindest ein eingeschränkter Betrieb aufrechterhalten bleibt, sodass eine sehr hohe Sicherheit gegeben ist.
Stand der Technik
Aus dem Stand der Technik sind Antriebe bekannt, die eine Spannungsversorgung aufweist, die über eine steuerbare Brückenschaltung mit drei Brückenzweigen an einen Elektromotor angeschlossen ist. Die Wicklungen des Elektromotors sind in Stern geschaltet, wobei der Sternpunkt an einen Mittelpunkt der Spannungsversorgung angeschlossen ist. In den Brückenzweigen sind insgesamt sechs steuerbare Transistoren angeordnet, die mittels feldorientierter Regelung im Pulsweitenmodulations-Verfahren betrieben werden. Mittels geeigneter Regelstrategie ist auch beim Ausfall einer Phase dennoch ein eingeschränkter Motorbetrieb möglich. Für besonders sicherheitsrelevante Antriebe ist die bekannte Anordnung jedoch nicht hinreichend geeignet.
Offenbarung der Erfindung
Das erfindungsgemäße elektrische Antriebssystem für ein Aggregat eines Fahrzeugs, insbesondere Kraftfahrzeugs, weist ein Bordnetzsystem, eine steuerbare Brückenanordnung und eine elektrische Maschine auf, wobei das Bordnetzsystem mehrere redundante Bordnetze und die Brückenanordnung mehrere Brückenschaltungen aufweist, die an die Bordnetze angeschlossen sind, wobei jede Brückenschaltung an ein anderes Bordnetz angeschlossen ist, und wobei die elektrische Maschine als mehrphasige Mehrfachmaschine ausgebildet ist, die mehrere unabhängige Gruppen von mehrphasigen Wicklungen aufweist, wobei die Gruppen an die Brückenschaltungen angeschlossen sind, wobei jede Gruppe an eine andere Brückenschaltung angeschlossen ist. Durch die redundanten Bordnetze, die redundanten Brückenschaltungen und durch die Ausbildung der elektrischen Maschine als Mehrfachmaschine mit mehreren unabhängigen Gruppen von mehrphasigen Wicklungen ist eine extrem hohe Betriebssicherheit realisiert. Selbst beim Ausfall von zwei Phasen bleibt ein eingeschränkter Betrieb der elektrischen Maschine aufrechterhalten. Auch wenn beispielsweise ein Bordnetz ausfällt, kann die Maschine mittels eines anderen oder der anderen Bordnetze weiter betrieben werden. Der Betrieb der Mehrfachmaschine ist wesentlich effizienter als der Einsatz von mehreren elektrischen Maschinen, die auf eine gemeinsame Welle arbeiten. Damit liegt eine neue Topologie eines fehlertoleranten Antriebssystem vor. Gleichzeitig ist eine kompakte Bauform gegeben. Die Erfindung eignet sich insbesondere beim Einsatz fehlertoleranter Aktuatoren, insbesondere im Bereich break-by-wire- und Steer-by-Wire-Systemen .
Nach einer Weiterbildung der Erfindung ist vorgesehen, dass die Brückenanordnung zwei Brückenschaltungen aufweist. Insbesondere kann vorgesehen sein, dass die Mehrfachmaschine als Dualmaschine ausgebildet ist und zwei Gruppen von mehrphasigen Wicklungen aufweist.
Jede Gruppe ist bevorzugt dreiphasig ausgebildet. Alternativ können jedoch auch mehr oder weniger als drei Phasen vorgesehen sein. Die vorstehend beschriebene Redundanz bei den Bordnetzen und bei den Brückenschaltungen kann selbstverständlich auch größer als zwei sein. Bei dem erfindungsgemäßen Verfahren können ebenfalls mehr oder weniger als drei Phasen verwendet werden, insbesondere eine Asynchronmaschine mit vier Phasen.
Besonders bevorzug ist, wenn die elektrische Maschine als Asynchronmaschine ausgebildet ist. Die Wicklungen jeder Gruppe der elektrischen Maschine sind bevorzugt in Stern geschaltet. Insbesondere sind die Sternpunkte der Gruppen an Mittelpunkten von Gleichstrombussen angeschlossen. Der jeweilige Gleichstrombus liegt bevorzugt zwischen dem zugehörigen Bordnetz und der zugehörigen Brückenschaltung. Jedem Sternpunkt ist ein anderer Mittelpunkt zugeordnet.
Zur Regelung des erfindungsgemäßen elektrischen Antriebssystems ist die steuerbare Brückenanordnung an eine feldorientierte Regelung angeschlossen. Die steuerbare Brückenschaltung wird insbesondere mittels Pulsweitenmodulation gesteuert.
Ferner ist es vorteilhaft, wenn die Brückenanordnung steuerbare Elektronikglieder aufweist, wobei jedes Elektronikglied mindestens zwei in Reihe geschaltete elektrische Schaltelemente, insbesondere Transistoren, aufweist. Hierdurch liegt auch eine redundante Endstufen-Topologie vor, das heißt,
Transistorkurzschlüsse werden durch die Reihenschaltung keine Auswirkungen auf das System haben.
Kurze Beschreibung der Zeichnungen
Die Zeichnungen veranschaulichen die Erfindung anhand eines Ausführungsbeispiels, und zwar zeigt:
Figur 1 ein Schaltbild eines elektrischen Antriebssystems sowie eine dazugehörige, als Dualmaschine ausgebildete
Mehrfachmaschine,
Figur 2 eine Brückenanordnung mit in den Brückenzweigen redundant angeordneten elektronischen Schaltelementen,
Figuren 3 bis 9 Diagramme,
Figuren 10 und 11 Schaltbilder und
Figuren 12 und 13 Diagramme. Ausführungsform(en) der Erfindung
Die Figur 1 zeigt ein elektrisches Antriebssystem 1 , das zum Antreiben eines Aggregats eines Fahrzeugs, insbesondere Kraftfahrzeugs, dient. Das
Antriebssystem 1 weist ein Bordnetzsystem 2 mit zwei Bordnetzen B1 und B2 auf. Die Bordnetze B1 und B2 weisen unter anderem jeweils eine wiederaufladbare Batterie auf.
Das Antriebssystem 1 der Figur 1 besitzt ferner eine Brückenanordnung 3, die eine Brückenschaltung 4 und eine Brückenschaltung 5 besitzt. Jede Brückenschaltung 4, 5 ist dreiphasig ausgebildet, sodass jeweils drei Brückenzweige 6 und drei Brückenzweige 7 vorgesehen sind. In jedem der Brückenzweige 6, 7 liegen zwei steuerbare Elektronikglieder 8, wobei sich jedes Elektronikglied 8 aus zwei in Reihe geschalteten elektronischen Schaltelementen 9 zusammensetzt. Die Schaltelemente 9 sind als Transistoren ausgebildet.
Die beiden Brückenschaltungen 4 und 5 sind jeweils über einen Gleichstrombus 10, 10' an das jeweils zugehörige Bordnetz B1 beziehungsweise B2 angeschlossen. Eine als Dualmaschine 11 ausgebildete Mehrfachmaschine 12 ist mit ihren Wicklungen U1 , V1 und W1 beziehungsweise U2, V2 und W2 mit der Brückenanordnung 3 elektrisch verbunden. Die Wicklungen U1 , V1 und W1 sind zwischen den Elektronikgliedern 8 an die entsprechenden Brückenzweige 6 der Brückenschaltung 4 angeschlossen; dementsprechend sind die Wicklungen U2, V2 und W2 an die betreffenden Brückenzweige 7 der Brückenschaltung 5 angeschlossen. Es sind mehrphasige Wicklungen vorhanden, wobei die Wicklungen U1 , V1 und W1 eine Gruppe 13 und die Wicklungen U2, V2 und W2 eine Gruppe 14 bilden. Die Wicklungen der Gruppen 13 und 14 sind jeweils in Stern geschaltet, wobei der Sternpunkt S1 an einen Mittelpunkt 15 des Gleichstrombusses 10 und der Sternpunkt S2 an einen Mittelpunkt 16 des Gleichstrombusses 10' angeschlossen ist. Ferner stehen die Phasenleitungen der beiden Gruppen 13 und 14 über Phasenstromerfassungsglieder mit einer feldorientierten Regelung 17 in Verbindung, mit der die einzelnen Transistoren der jeweiligen Brückenschaltung 4, 5 angesteuert werden. In den beiden Gleichstrombussen 10 und 10' liegen jeweils zwei mit dem Mittelpunkt 15 beziehungsweise 16 verbundene Stützkondensatoren 18 beziehungsweise 19.
Aus dem Vorstehenden geht hervor, dass die dual aufgebaute Mehrfachmaschine 12 zwei Gruppen 13, 14 von drei Phasen aufweist.
Vorzugsweise ist diese Dualmaschine 11 nur in einer Schicht gewickelt. In jeder Nut werden nur zwei Stränge gleicher Phase geführt, um Interphasenkurzschlüsse in der Länge der Maschine zu verhindern. Innerhalb jeder Gruppe 13, 14 hat die Dualmaschine 11 acht Windungen pro Phase. Mit dieser Auslegung erreicht die Maschine eine hohe Sicherheit, wie sie beispielsweise beim Einsatz als Steer-by-Wire-Aktuator erforderlich ist.
Die Figur 2 verdeutlicht im Detail nochmals die Ausbildung der Brückenzweige 6 beziehungsweise 7 der beiden Brückenschaltungen 4 beziehungsweise 5. Es ist erkennbar, dass sich jedes Elektronikglied 8 aus zwei in Reihe geschalteten Schaltelementen 9 zusammensetzt. Jedes Schaltelement 9 ist als Transistor ausgebildet, der mit einer Freilaufdiode 20 beschaltet ist. Durch die Reihenschaltung wird eine Redundanz geschaffen, sodass auch beim Kurzschluss eines Transistors die jeweilige Brückenschaltung 4 beziehungsweise 5 voll funktionsfähig bleibt.
Nachstehend wird auf die Regelung, also auf das Betreiben des elektrischen Antriebssystems 1 , näher eingegangen und der Fall untersucht, dass gleichzeitig zwei Phasen ausfallen. Die Besonderheit ist dabei, dass aufgrund der redundanten Ausbildung der Gesamtanordnung und entsprechender Regelungsstrategie die Mehrfachmaschine 12 weiterhin beschränkt funktionsfähig bleibt, sodass eine hohe Sicherheit gewährleistet ist.
Für die Anwendung der Erfindung zum Beispiel bei einem Steer-by-Wire Aktuator, muss die als Elektromotor ausgebildete Dualmaschine 11 positionsgeregelt werden, insbesondere mittels feldorientierter Regelung. Beim Ausfall von zwei Phasen kann die Maschine weiter betrieben werden. Die folgende Ableitung verdeutlicht dies, wobei die elektrische Maschine beispielhaft als duale dreiphasige Asynchronmaschine ausgebildet ist. Da die duale Maschine als zwei Gruppen 13, 14 von dreiphasigen Maschinen betrachten werden kann, ergeben sich zwei Möglichkeiten bezüglich des Ausfalles von zwei Phasen:
Möglichkeit 1 : Die zwei ausgefallenen Phasen gehören zu verschiedenen Phasengruppen (Gruppen 13, 14).
In diesem Fall wird jede Phasengruppe isoliert betrachtet. Die neuen Winkel, auf die sich die verbleibenden Stromphasoren richten sollen, kann man aus der separaten Betrachtung jeder isolierten Gruppe 13, 14 ableiten, d.h., aus der Unterbrechung einer Phase in einer dreiphasigen Asynchronmaschine werden die Winkel der verbleibenden zwei Phasen pro Gruppe für die duale Maschine abgeleitet.
Die Figur 3 zeigt links die Stromphasoren einer fehlerfreien, bekannten dreiphasigen Asynchronmaschine und rechts die neuen Sollwinkel der Stromphasoren b und c beim Ausfall der Phase a der dualen Maschine entsprechend der Erfindung. Bei Einsetzung dieser Stromphasoren wird die Stärke des Magnetfeldes (MMF) vor und nach der Phasenunterbrechung gleich beibehalten. Beide Phasoren sollen ein Modul V3 des Wertes vor dem Phasenbruch haben.
Die Figur 4 zeigt links die Stromphasoren für die duale Maschine. Gruppe 13 ist um 30 elektrische Grad gegenüber der Gruppe 14 verschoben.
Rechts sind in Figur 4 die Phasoren nach Unterbrechung der Phasen a1 und b2 gezeigt.
Vor der Phasenunterbrechung gilt für die Ströme in allen Phasen Folgendes:
θ = wt
Die von diesen Strömen erzeugte MMF ist:
Nach Einführung von Gleichung (7) und Gleichung (15) in Gleichung (13) gilt:
MMF = 3NIeß (\6)
Die Figur 4 zeigt rechts die neuen Winkel die jede Phasengruppe adaptierten soll, und zwar nach dem Ausfall einer Phase pro Gruppe. Die jeweiligen Winkel können so abgeleitet werden, wie es für die allgemeine dreiphasige Asynchronmaschine ausgeführt wurde. Es fehlt nun noch, das Modul der resultierenden Phasoren zu bestimmen. Dies wird im Folgenden abgeleitet:
Beim Ausfall von Phase a1 und b2 gilt für die erzeugte MMF: Um einen kontinuierlichen Betheb zu gewährleisten, soll die MMF gleich beibehalten werden:
MMF = MMF' (18;
Dann gilt:
Die mathematische Darstellung der in der Figur 4 rechts aufgezeichneten Phasoren sind in Gleichungen (20) bis (25) zu sehen:
Es werden die Ströme in Gleichung (19) durch die in den Gleichungen (20) - (25) ersetzt:
Isolieren des Teils mit e von Gleichung (20)
Das Ergebnis der Gleichung (21 ) zeigt, dass das Modul der jeweiligen Phasoren nach Unterbrechung einer Phase pro Gruppe V3 des ursprünglichen Moduls für den normalen Zustand ist. Dies wird zur minimalen Stromdurchflutung durch die statorischen Phasen führen.
Als Möglichkeit 2 gehören die zwei unterbrochenen Phasen zu derselben Phasengruppe:
In diesem Fall werden Winkel und Modul der restlichen Phasoren abgeleitet, die zur gleichen MMF-Verteilung nach dem Phasenbruch führen wird.
Als Beispiel wird die Unterbrechung der Phasen a1 und b1 angenommen. Beim Gleichsetzen der MMF vor Gleichung (16) und nach der Phasenunterbrechung gilt:
Nach einem Trennen von Real- und Imaginär-Teil gilt:
Im Gleichungssystem (23) und (24), gibt es vier Freiheitsgrade. Die kann man auf zwei reduzieren durch die folgenden Annahmen:
Das resultierende Gleichungssystem lautet:
Dann gilt:
Die Figur 5 zeigt die resultierenden Stromphasoren der dualen Asynchronmaschine; links: normaler Zustand; rechts: nach Unterbrechung Phasen a1 und b1.
Anders als für die Möglichkeit 1 , werden die Stromphasoren in diesem Fall unterschiedliche Module haben, um die selbe MMF wie für den normalen Zustand zu erzeugen. Auch ist zu beachten, dass der Strom aus der Summe der vier restlichen Phasen durch das Sternpunktkabel fließen wird (Variante 1 ). Nun wird eine andere Variante abgeleitet, für die der Strom durch das
Sternpunktkabel fließen wird und zu einer optimalen Energieverteilung in der Maschine führt.
Erzwingen gleicher Module für alle Ströme der gesunden Phasen: Die Ströme in der Maschine werden wie folgt definiert:
Einführen der Stromformen von Gleichung (33) bis Gleichung (36) in Gleichung (14), dann Vergleichen nach Gleichung (18) und Isolieren des Teils mit e von dem mit e"jθ.
Trennen des realen Teils vom imaginären Teil in den Gleichungen (37) und (38):
Das Gleichungssystem von (39) bis (40) hat vier Gleichungen und fünf Unbekannte. Wird der Winkel der einzigen gesunden Phase der Gruppe 13 konstant gehalten, wird die folgende Lösung für das System gefunden:
Die Figur 6 zeigt die resultierenden Stromphasoren der dualen Asynchronmaschine für diese Variante. Links: Normaler Zustand. Rechts: Nach Unterbrechung der Phasen a1 und b1 mit optimierter Energieverteilung in der Maschine.
Erfolgt ein Addieren die Stromphasoren (Figur 6 rechts), so wird der Strom durch das Sternpunktkabel bestimmt, dessen Wert 1 ,9924 des Moduls einer Phase für den normalen Zustand ist.
Nunmehr erfolgt eine Regelung beim Ausfall zweier Phasen einer konventionellen sechsphasigen Asynchronmaschine:
Möglichkeit 1 : Die zwei unterbrochenen Phasen gehören zu verschiedenen Phasengruppen:
In diesem Fall wird jede Phasengruppe isoliert betrachtet, was genau zu denselben Ergebnissen führt wie bei der dualen Maschine
Möglichkeit 2: Die zwei unterbrochenen Phasen gehören zu derselben Phasengruppe:
Es wird fortgefahren wie für die duale Maschine, wobei die Phasen a1 und b1 unterbrochen sind. Dann lautet das Gleichungssystem:
Die Lösung für das System ist:
Die Figur 7 zeigt die resultierenden Strom phasoren vor und nach der
Phasenunterbrechung für die vorgeschlagene Steuerungsstrategie, und zwar zeigt die Figur 7 die Stromphasoren der konventionellen sechsphasigen Asynchronmaschine. Links: Normaler Zustand; Rechts: Nach Unterbrechung von Phasen a1 und b1 mit optimierter Energieverteilung in der Maschine.
Es ergeben sich folgende Ergebnisse:
Die Figur 8 zeigt die Ergebnisse nach dem Einsetzen der Steuerungsstrategie beim Ausfall von zwei Phasen derselben Gruppe für die duale Maschine. Nach 0,2 Sekunden werden die Phasen a1 und d unterbrochen. Der kleine
Unterschied der Strommodule nach Einsetzung der Regelungsstrategie beim Null-Strom im Sternpunkt ist in der Figur 8 zu sehen.
In Figur 8 sind die Statorströme lstat (A), die Rotorgeschwindigkeit WR (rad/s), das Drehmoment Md (Nm) und der Strom ls (A) durch das Sternpunktkabel in der dualen Asynchronmaschine nach Unterbrechung von zwei Phasen derselben Gruppe und der Null-Strom durch das Sternpunktkabel dargestellt. Außerdem sind noch die Rotor-Sollgeschwindigkeit ωs (rad/s) und ein Lastmoment ML dargestellt.
Die optimale Regelungsstrategie für eine Unterbrechung von zwei Phasen derselben Gruppe wird nach Einsetzung des Sternpunktkabels möglich. Es resultiert eine optimale Energieverteilung in der Maschine. Die Figur 10 zeigt die Ergebnisse der Methode. Alle Phasen haben dasselbe Modul. Der Strom durch das Sternpunktkabel ist 1 ,9924 größer als der durch eine Phase der Maschine für den normalen Zustand.
Die Figur 9 zeigt die Statorströme lstat (A), die Rotorgeschwindigkeit WR (rad/s), das Drehmoment Md (Nm) und den Strom ls (A) durch das Sternpunktkabel in der dualen ASM nach Unterbrechung von zwei Phasen derselben Gruppe und die optimale Energieverteilung in der Maschine.
Die Figur 10 zeigt nochmals die Gesamtauslegung des erfindungsgemäßen Systems mit Sternpunktkabeln, wobei gegenüber der Figur 1 zusätzlich angedeutet ist, dass die beiden Sternschaltungen der dualen dreiphasigen Asynchronmaschine elektrisch winkelversetzt zueinander angeordnet sind. Zusätzlich ist noch ein Drehgeber 21 dargestellt, der Informationen über Rotorposition und Rotorgeschwindigkeit an die Regelung 17 leitet.
Die Figur 11 zeigt eine alternative Ausführungsform des vorgeschlagenen Systems, wobei ein H-Brücken-Inverter eingesetzt ist.
In der Figur 12 ist auf der linken Seite eine duale sechsphasige Asynchronmaschine dargestellt, wobei die Lage der magnetischen Achsen verdeutlicht wird. Der Winkelversatz beträgt ττ/6. Rechts daneben ist eine Darstellung einer konventionellen sechsphasigen Asynchronmaschine gezeigt, bei denen die magnetischen Achsen um ττ/3 versetzt sind.
Die Figur 13 verdeutlicht die Lage der magnetischen Achsen einer vierphasigen Asynchronmaschine. Links und in der Mitte sind Varianten dargestellt, wenn die Maschine auf einer Schicht unsymmetrisch gewickelt wird. Rechts zeigt symmetrische magnetische Achsen, wenn die Maschine auf zwei Schichten gewickelt ist.

Claims

Ansprüche
1. Elektrisches Antriebssystem für ein Aggregat eines Fahrzeugs, insbesondere Kraftfahrzeugs, mit einem Bordnetzsystem, einem steuerbaren Brückenanordnung und einer elektrische Maschine, dadurch gekennzeichnet, dass das Bordnetzsystem mehrere redundante Bordnetze und dass die Brückenanordnung mehrere Brückenschaltungen aufweist, die an die Bordnetze angeschlossen sind, wobei jede Brückenschaltung an ein anderes Bordnetz angeschlossen ist, und dass die elektrische Maschine als mehrphasige Mehrfachmaschine ausgebildet ist, die mehrere unabhängige Gruppen von mehrphasigen Wicklungen aufweist, wobei die Gruppen jeweils an die Brückenschaltungen angeschlossen sind und wobei jede Gruppe an eine andere Brückenschaltung angeschlossen ist.
2. Antriebssystem nach Anspruch 1 , dadurch gekennzeichnet, dass die Brückenanordnung zwei Brückenschaltungen aufweist.
3. Antriebssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mehrfachmaschine als Dualmaschine ausgebildet ist und zwei Gruppen von mehrphasigen Wicklungen aufweist.
4. Antriebssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jede Gruppe dreiphasig ausgebildet ist.
5. Antriebssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektrische Maschine eine Asynchronmaschine ist.
6. Antriebssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wicklungen jeder Gruppe der elektrischen Maschine in Stern geschaltet sind.
7. Antriebssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sternpunkte der Gruppen an Mittelpunkten von Gleichstrombussen angeschlossen sind.
8. Antriebssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der jeweilige Gleichstrombus zwischen dem zugehörigen Bordnetz und der zugehörigen Brückenschaltung liegt.
9. Antriebssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die steuerbare Brückenanordnung an eine feldorientierte Regelung angeschlossen ist.
10. Antriebssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die steuerbare Brückenanordnung mittels
Pulsweitenmodulation gesteuert ist.
11. Antriebssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Brückenanordnung steuerbare Elektronikglieder aufweist, wobei jedes Elektronikglied mindestens zwei in Reihe geschaltete elektrische Schaltelemente, insbesondere Transistoren, aufweist.
12. Verfahren zum Betreiben, Steuern und/oder Regeln eines elektrischen Antriebssystems, insbesondere nach einem oder mehreren der vorhergehenden Ansprüche.
EP07847338A 2006-12-01 2007-11-26 Elektronisches antriebssystem für ein aggregat eines fahrzeugs Withdrawn EP2097972A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006056855A DE102006056855A1 (de) 2006-12-01 2006-12-01 Elektronisches Antriebssystem für ein Aggregat eines Fahrzeugs
PCT/EP2007/062803 WO2008065067A1 (de) 2006-12-01 2007-11-26 Elektronisches antriebssystem für ein aggregat eines fahrzeugs

Publications (1)

Publication Number Publication Date
EP2097972A1 true EP2097972A1 (de) 2009-09-09

Family

ID=39032153

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07847338A Withdrawn EP2097972A1 (de) 2006-12-01 2007-11-26 Elektronisches antriebssystem für ein aggregat eines fahrzeugs

Country Status (3)

Country Link
EP (1) EP2097972A1 (de)
DE (1) DE102006056855A1 (de)
WO (1) WO2008065067A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011085731A1 (de) * 2011-11-03 2013-05-08 Bayerische Motoren Werke Aktiengesellschaft Elektrisches System
GB201200803D0 (en) * 2012-01-18 2012-02-29 Rolls Royce Goodrich Engine Control Systems Ltd Fault tolerant electric drive system
DE102013205869B4 (de) 2013-04-03 2024-03-07 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit einer mehrphasigen Maschine
DE102013205969B4 (de) 2013-04-04 2024-07-11 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit einer elektrischen Maschine mit zwei Spannungslagen und Verfahren zum Betreiben dieser
DE102013213589A1 (de) * 2013-07-11 2015-01-15 Zf Friedrichshafen Ag Steuergerät zur Betätigung eines elektrischen Verbrauchers und Kraftfahrzeugbordnetz
DE102013112525A1 (de) * 2013-11-14 2015-05-21 Zf Lenksysteme Gmbh Fehlertoleranter, redundanter Antrieb für ein Fahrzeug mit mehreren Teilantrieben
DE102014203568A1 (de) * 2014-02-27 2015-08-27 Robert Bosch Gmbh Elektrisches Antriebssystem
DE102014111184A1 (de) * 2014-08-06 2016-02-11 Robert Bosch Automotive Steering Gmbh Elektrische Schaltungseinrichtung, insbesondere Wechselrichter, zur Erzeugung von Phasenspannungen für den Betrieb eines Elektromotors
DE102014113542A1 (de) * 2014-09-19 2016-03-24 Robert Bosch Automotive Steering Gmbh Elektrisches Antriebssystem
DE102015200226A1 (de) 2015-01-09 2016-07-14 Robert Bosch Gmbh Motorvorrichtung
DE102015216007A1 (de) * 2015-08-21 2017-02-23 Lenze Drives Gmbh Antriebssystem
GB2544097B (en) * 2015-11-06 2017-11-15 J And M Ferranti Tech Ltd Electrical drive system
DE102015222266A1 (de) 2015-11-11 2017-05-11 Robert Bosch Automotive Steering Gmbh Elektromechanischer Stellantrieb mit redundantem elektronischen Teilsystem
DE102016110919A1 (de) * 2016-06-15 2017-12-21 Robert Bosch Automotive Steering Gmbh Verfahren zum Betrieb eines Elektromotors in einem Fahrzeug
DE102016215762A1 (de) 2016-08-23 2018-03-01 Volkswagen Aktiengesellschaft Elektrische Antriebsanordnung
DE102018209471A1 (de) * 2018-06-13 2019-12-19 Mahle International Gmbh Elektromotorsystem
DE102018209475A1 (de) * 2018-06-13 2019-12-19 Mahle International Gmbh Elektromotorsystem

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4319324B2 (ja) * 2000-03-28 2009-08-26 株式会社デンソー 自動変速機のシフトレンジ切換装置
JP4496779B2 (ja) * 2004-01-09 2010-07-07 株式会社デンソー モータの制御装置
FR2866279B1 (fr) * 2004-02-18 2006-04-28 Vehicules Electr Soc D Systeme d'entrainement des roues motrices d'un vehicule automobile electrique, comprenant deux moteurs et deux batteries

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008065067A1 *

Also Published As

Publication number Publication date
DE102006056855A1 (de) 2008-06-05
WO2008065067A1 (de) 2008-06-05

Similar Documents

Publication Publication Date Title
WO2008065067A1 (de) Elektronisches antriebssystem für ein aggregat eines fahrzeugs
EP3224929B1 (de) Permanenterregte synchronmaschine und kraftfahrzeugsystem
DE60027806T2 (de) Vorrichtung zum Antrieb eines Fahrzeugs unter Verwendung von umrichtergesteuerten Motoren und Getrieben
EP2510613B1 (de) Wechselrichteranordnung zum betreiben eines elektromotors
DE102015121226A1 (de) Umrichter, Elektrisches Polyphasensystem und Verfahren
WO2015128103A1 (de) Elektrisches antriebssystem
WO2017211655A1 (de) Fahrzeugbordnetz mit wechselrichter, energiespeicher, elektrischer maschine und wechselstrom-übertragungsanschluss
DE102005015658A1 (de) Schalteinrichtung zur Verknüpfung verschiedener elektrischer Spannungsebenen in einem Kraftfahrzeug
WO2011042237A1 (de) Verfahren zum betreiben eines antriebsaggregats sowie antriebsaggregat
DE102015219674A1 (de) Fahrzeugbordnetz
WO2013107567A2 (de) Kraftfahrzeug, batterie und verfahren zum steuern einer batterie
WO2014180637A2 (de) Elektrische maschine, insbesondere für eine lenkhilfe eines kraftfahrzeugs
EP1940007A1 (de) Statorwicklungsanordnung für einen Synchronmotor mit reduziertem Bremsmoment im Fehlerfall
EP2673876B1 (de) Energiespeichereinrichtung für eine fremderregte elektrische maschine
DE102011075789A1 (de) Verfahren zum Betrieb einer Drehfeldmaschine
WO2014127871A2 (de) Interne energieversorgung von energiespeichermodulen für eine energiespeichereinrichtung und energiespeichereinrichtung mit solchem
DE10234594B4 (de) Generator/Motor-System und Verfahren zum Betreiben dieses Generator/Motor-Systems
WO2012107150A2 (de) System mit einer elektrisch erregten maschine
WO2015128101A1 (de) Elektrisches antriebssystem
WO2015000669A1 (de) Vermeidung von bremsmomenten bei permanenterregten synchronmaschinen
WO2015113780A1 (de) Energiespeichereinrichtung, system mit energiespeichereinrichtung und verfahren zum ansteuern einer energiespeichereinrichtung
WO2014180636A2 (de) Schaltungsanordnung mit redundanten halbbrücken zum betreiben einer elektrischen maschine
EP3386097B1 (de) Schaltung zum selektiven versorgen von motoren mit energie
WO2015128102A1 (de) Elektrisches antriebssystem
DE102006040738A1 (de) Verfahren zur Regelung einer elektrischen Maschine bei Ausfall mindestens einer Phase

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20101004

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120601