EP2094401A2 - Procede d'application d 'un revetement anticorrosion sur les pieces d'une canalisation, incluant l'utilisation de solution aqueuse de silane et de peinture poudre epoxy - Google Patents

Procede d'application d 'un revetement anticorrosion sur les pieces d'une canalisation, incluant l'utilisation de solution aqueuse de silane et de peinture poudre epoxy

Info

Publication number
EP2094401A2
EP2094401A2 EP07858414A EP07858414A EP2094401A2 EP 2094401 A2 EP2094401 A2 EP 2094401A2 EP 07858414 A EP07858414 A EP 07858414A EP 07858414 A EP07858414 A EP 07858414A EP 2094401 A2 EP2094401 A2 EP 2094401A2
Authority
EP
European Patent Office
Prior art keywords
silane
substrate
coating
applying
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07858414A
Other languages
German (de)
English (en)
Inventor
Gérard GAILLARD
Jean-Luc Bouliez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BS Coatings SAS
Original Assignee
BS Coatings SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BS Coatings SAS filed Critical BS Coatings SAS
Publication of EP2094401A2 publication Critical patent/EP2094401A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/146Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies to metallic pipes or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/148Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies using epoxy-polyolefin systems in mono- or multilayers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/102Pretreatment of metallic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the invention relates generally to the field of corrosion protection of pipelines.
  • a pipeline is a line or conduit for the remote transport of fluids such as water, petroleum products, gas, or sanitation products.
  • the invention relates, according to a first aspect, to a method for applying a monolayer or multilayer anticorrosive coating on a metal substrate forming part of a tube or an accessory of a pipeline intended to be buried or immersed for the transport of fluid, such as water, petroleum products, gas, or sanitation products.
  • the corrosion protection of a pipeline in other words a buried or submerged pipe used in particular to transport water, oil, or gas, is based on the same principle for decades: an adherent organic coating, passive barrier with water and with oxygen, coupled with an electrochemical active protection consisting in bringing the material constituting the pipeline to a potential such that any oxidation of the iron used in the composition of these materials is inhibited. Since always, it is done either by the method of a sacrificial anode, or by imposed current. It's about cathodic protection.
  • Organic coatings intended for the corrosion protection of pipelines are subject to service constraints that combine temperature and humidity. Indeed, the pipes can be buried in more or less wet soil or placed on the seabed. On the other hand, the fluid can be heated in order to lower its viscosity in order to minimize the pressure drops that occur during transport within the pipe network, the length of which may represent several hundred to several thousand kilometers.
  • the operating temperature can vary from 20 to 150 degrees Celsius ( 0 C).
  • the temperature-humidity combination causes an acceleration of the penetration of water within the coating material. This phenomenon results in a loss of adhesion of the coating with respect to the metal support constituting the pipeline. The loss of adhesion is detrimental to the durability of the corrosion protection.
  • the pipe parts are conventionally subjected to a surface preparation which may consist of mechanically etching the substrate.
  • a surface preparation which may consist of mechanically etching the substrate.
  • chemical treatments of metal surfaces may also be employed after this surface preparation. These chemical treatments are conventionally based on chromates or phosphates.
  • the application of solutions based on chromates or phosphates has several disadvantages. It involves rinsing operations that complicate the application process and generate the formation of additional waste. It involves, after drying, an operation of thermal conversion of chromates or phosphates, which makes the process expensive. It involves the use of toxic products for the case of chromates.
  • the object of the present invention is to propose a method free of at least one of the limitations mentioned above.
  • the invention relates to a method for applying a monolayer or multilayer anticorrosive coating on a metal substrate forming part of a pipe intended to be buried or immersed for the transport of fluid, such as water, petroleum products, gas, or sanitizers, characterized in that it comprises: a) a preparation of the surface of the substrate, solely mechanical, including abrasive blasting, in particular to obtain a surface cleanliness of at least Sa 2.5 and a roughness Rz of at least 40 micrometers; b) an application of an adhesion promoter on the prepared surface consisting of an aqueous solution of at least one silane, without additional chemical treatment; c) applying a layer of epoxy resin powder paint to the coated surface of the adhesion promoter; and d) at least one heat treatment of at least the surface of the substrate; at least one heat treatment step d) being carried out between steps a) and b) or between steps b) and c).
  • the invention has the advantage of proposing the replacement of chromates
  • thermosetting resins such as epoxy resins (or epoxy resins, or epoxy or epoxy resins), used as internal or external coating metal tubes and accessories from pipelines for the transport of fluid, such as gas, water, petroleum products, or sanitation products.
  • metal accessory any piece, preferably steel or cast iron, which is integrated in the pipe network, other than tubes. It may be for example a valve, an elbow, or a flange.
  • the silane solution is an aqueous solution free of organic solvent, which is advantageous for the environment as well as for the health and safety of users.
  • the surface preparation includes: - drying the substrate in order to eliminate any trace of moisture;
  • Such a surface preparation is intended to obtain a surface cleanliness between Sa 2.5 and Sa 3 or at Sa level 2.5, and a roughness Rz of between 40 and 150 micrometers or between 70 and 90 micrometers.
  • the substrate is made of a metal including essentially iron, and is preferably made of steel.
  • the silane may be any silane used as an adhesion promoter of general formula R 'Si (OR) 3 where R' is a group containing at least one reactive organic radical and where OR is an alkoxy radical.
  • said at least one silane is chosen from aminosilanes or epoxysilanes.
  • the silane may be N- (beta-aminoethyl) -gamma-aminopropyltrimethoxysilane or gamma-glycidyloxypropyltrimethoxysilane.
  • the silane may be advantageously a prehydrolysed silane, such as prehydrolysed 3-aminopropylsilane.
  • the aqueous solution comprises between 0.5 and 20% by weight, preferably between 1 and 10% by weight, of silane.
  • the aqueous silane solution is preferably applied to the surface of the substrate in a grammage of between 10 and 100 grams per square meter, preferably between 30 and 70 grams per square meter.
  • a single step d) of heat treatment is performed between steps a) and b) or between steps b) and c).
  • the heating temperature is advantageously between 110 and 250 degrees Celsius, preferably between 150 and 240 degrees Celsius.
  • the maximum temperature of 250 ° C. is particularly suitable in the case where the silane application is carried out before heating, in that it does not cause the degradation of the silane.
  • the surface preparation is devoid of any chemical treatment.
  • the method according to the invention further comprises: e) applying an intermediate layer of a polyolefin adhesive to the epoxy resin coated surface; and f) applying a polyolefin topcoat selected from polyethylenes or polypropylenes to the coated surface of the intermediate layer.
  • the metal substrate may be a tube of the pipe, or may be an accessory of the pipeline. Tubes and accessories are parts of a pipe.
  • the method according to the invention makes it possible to treat the internal and external surfaces of these pipe pieces.
  • a monolayer coating is generally applied, ie a coating devoid of an intermediate layer and a topcoat.
  • the inner and outer surfaces are treated successively, and for an accessory, all the surfaces are treated simultaneously.
  • the invention also relates to a metal piece of pipe, such as a pipe or a pipeline accessory, intended to be buried or immersed for the transport of fluid, such as water, petroleum products, or gas, having at least one surface treated according to the method of the invention.
  • a metal piece of pipe such as a pipe or a pipeline accessory, intended to be buried or immersed for the transport of fluid, such as water, petroleum products, or gas, having at least one surface treated according to the method of the invention.
  • the surface of the metal substrate is treated to receive a coating which is: either monolayer, that is to say from the application of a powder paint containing epoxy resin undergoing crosslinking through a hardener; or multilayer, that is to say consisting of a primer which is derived from the application of a powder paint containing epoxy resin undergoing crosslinking by means of a hardener, and at least one layer additional, for example based on epoxy or polyolefin.
  • a multilayer coating may be in particular a tri-layer coating, consisting of the primer, an intermediate layer which is a polyolefin-based adhesive, and a polyolefin topcoat such as polyethylene or polypropylene.
  • the silane is applied, prior to the application of the single-layer or multilayer coating, on the surface of the metal tubes or accessories.
  • the type of silane that is the subject of the process of the invention is in solution in water. No organic solvent is added. This preparation eliminates problems related to organic solvents, environmental, safety and hygiene.
  • the type of silane that is the subject of the process of the invention is either a pure silane, diluted in water before its application, or a silane that is already in aqueous solution, that is to say, previously hydrolyzed.
  • the pure silane may in particular be of general formula (I) below:
  • n represents an integer equal to 1, 2 or 3.
  • the index y represents an integer equal to 1 or 2.
  • y is equal to 1.
  • OR groups are each selected from methoxy groups CH 3 O-, ethoxy CH 3 CH 2 O-, or propoxy C 3 H 7 O-, or combinations thereof.
  • the group Z represents a primary amine or secondary amine function, or a function epoxy borne by a glycidyl ether group or a cycloaliphatic group.
  • Z is a secondary amine, and where y is 1, Z may be attached to a group X to give a silane of formula (II).
  • the groups X, R 1 and R 2 can each be chosen from an aliphatic, cycloaliphatic or aromatic carbon group. These carbonaceous groups may include one or more heteroatoms such as sulfur, nitrogen or oxygen. These carbon-containing groups may be grafted with one or more radicals chosen from alkyl, alkene or aryl radicals, or radicals containing at least one functional group chosen from amine, amide, urea, acyl, carboxylic, phenolic, ketonic, ether and ester functions. , or mercaptan.
  • the pure silane undergoes, in the presence of water, during its dilution, a hydrolysis which transforms the alkoxy function Si- (OR) of the silane in silanol function Si- (OH) and alcohol ROH.
  • the Si- (OH) function is responsible for the chemical grafting on the metal and thus ensures a solid bond with it.
  • Si- (OH) functions can, after condensation, lead to the siloxane bond formation Si-O-Si, which is not only detrimental for the stability of the silane in solution, but also for the reaction yield grafting between the silane and the metal support.
  • An adjustment of the pH of the solution can lead to a compromise between the rate of formation by hydrolysis of the Si- (OH) function, necessary for grafting on the metal, and storage stability.
  • silanes in aqueous solution, or prehydrolysed silanes which can also be used in the invention are of the R '- Si (OH) n type .
  • R ' is a group containing at least one reactive organic radical.
  • R ' is preferably chosen from carbon groups containing a secondary amine and / or a primary amine, which give the silanes a particularly advantageous stability in water.
  • silanes in aqueous solution have two main advantages.
  • the first advantage is that the pre-hydrolyzed form of these silanes allows the use of a solution free of alkoxy Si-OR function, which avoids the formation of alcohol ROH in water through the process of hydrolysis, which is a co-solvent, detrimental to the environment and the health of users.
  • the second advantage is that these silanes have been developed to give the aqueous solution a very high stability, up to several months.
  • 3-aminopropylsilane prehydrolyzed containing silanol functions without alkoxy group is marketed by Degussa as a 40% by weight aqueous solution of silane as "Dynasilan ®" reference
  • the particularity of this silane is that it has a very high stability in water despite the presence of Si- (OH) functions.
  • silane in the aqueous phase of the trade "Silquest ®" A-1106, containing primary amines of formula (H 2 N (CH 2) 3 SiO 5) n can also be advantageously used as part of the method of the present invention.
  • silane solution does not require chemical treatment of the metal support before the application of the silane solution, nor rinsing after the application thereof.
  • the silane solution which is the subject of the process of the present invention, may contain a dye diluted in water, so that it is easier to visualize the application of the silane solution on the metal support.
  • the process of the present invention is in accordance with the rules of the art relating to the application, on the walls of metal tubes, of thermosetting resins based coatings. These rules or recommendations are described in several standards, including NFA 49716, NFA 49706, NFA 49710, NFA 49711, and CAN / CSA-Z245.20-02.
  • the epoxy layer is in contact with the metal support. It is therefore the epoxy which, in the coating systems concerned by the invention, ensures adhesion to the metal support. It is therefore essential that the adhesion performance of the epoxy layer remain optimal when the coating undergoes temperature and humidity constraints.
  • EXAMPLE 1 Process for surface treatment of a metal tube and application of a monolayer coating based on epoxy powder paint.
  • the process is as follows: 1) The tubes are dried to remove any moisture. The drying is done by passing through an oven or flame. 2) After drying, the outer surface of the metal tubes is mechanically etched by blasting abrasives such as grit, sand, alumina and / or corundum. This stripping operation gives the surface a roughness profile whose Rz (according to the description of the ISO 4287-1 standard) is between 40 and 150 micrometers ( ⁇ m), preferably between 60 and 90 micrometers.
  • the surface cleanliness resulting from these operations must be between Sa 2.5 and Sa 3 as described in the ISO 8501-1 standard.
  • the silane solution has an amount of active ingredient, that is to say pure silane, of between 0.5 and 20%, preferably between 1 and 10%, by weight relative to the total weight of the solution.
  • the silane solution is applied by mixed spraying or without air using a machine type "airmix” or “airless”, or by brush, or roller, or by spreading or dipping.
  • the silane solution is applied to the metal support in a grammage of between 10 and 100 grams per square meter (g / m 2 ), preferably between 30 and 70 g / m 2 .
  • the surface of the tube is not rinsed and is directly subjected to a rise in temperature to a temperature of between 110 and 250 degrees Celsius ( 0.degree. ), preferably between 15O 0 C and 24O 0 C.
  • the temperature rise is conditioned by the kinetics of the crosslinking reaction of the epoxy resin and not by the need for thermal conversion of the silane, unlike the chromate solutions that require thermal conversion temperatures which are generally above 220 ° C.
  • the advantage of this process is that it allows the use of aqueous solutions without causing rapid oxidation and thus rust formation on the metal, since the heating operation of the tube is done immediately after application of the aqueous silane solution.
  • Heating the tube causes the immediate drying of the silane solution, by evaporation of water, and therefore prevents this water from leading to the oxidation process.
  • Heating the tube, before application of the epoxy powder is provided either by passing the tube through an inductor, or by passing the tube in a furnace heated with gas, fuel oil or electrically powered.
  • a variant of this process consists of applying the silane solution after heating the tube, in other words to reverse steps 4) and 5).
  • Application of the hot supported silane solution causes the water to evaporate immediately and thereby prevents oxidation and rusting on the surface of the metal.
  • the epoxy powder is applied by an electrostatic or triboelectric process.
  • the epoxy powder coating applied on the preheated support passes through three phases of transformation: melting, gelling and solidification. This process is ensured by the intake of calories at the surface of the tube which leads to the mechanism of the crosslinking.
  • the thermal inertia of the tubes is generally sufficient for the crosslinking of the epoxy to be completed. Post-baking may be used to complete this crosslinking.
  • an accelerated cooling step which consists in projecting water on the coated support, thus allowing the tubes to be handled more rapidly, may optionally be put in place.
  • a variant of this process is not to preheat the tube before the application of the powder.
  • the silane solution applied on the tube must be dry (all the water in the solution must be evaporated), and after-cooking, after the application of the epoxy powder, must be ensured for the crosslinking of the epoxy.
  • EXAMPLE 2 Surface treatment method of a metal tube and application of a tri-layer coating comprising a layer based on epoxy powder paint.
  • the surface treatment method for the application of a tri-layer coating comprising a layer based on epoxy powder paint is identical to the process described in Example 1, from step 1) to step 6) included.
  • the thickness of the epoxy, which serves as the primary is generally between 50 and 500 micrometers.
  • the adhesive is applied. Indeed, the lapse time of the epoxy layer by the adhesive, determined by taking into account both the temperature of the support and the reactivity of the epoxy powder, is generally between 5 and 60 seconds.
  • the application of the adhesive is done either by extrusion or by dusting.
  • the extrusion temperature is between 200 ° C. and 250 ° C.
  • the thicknesses of adhesive deposited are generally between 200 and 500 microns.
  • the application of the adhesive is immediately followed by that of the topcoat made of polyethylene MD (medium density), BD (low density), or HD (high density), or polypropylene.
  • the application of the topcoat is also done by extrusion.
  • the deposited topcoat thicknesses are generally between 1.5 and 4 millimeters (mm).
  • the tubes are cooled by spraying water on their surface coated with the topcoat.
  • EXAMPLE 3 Method for surface treatment of metal accessories and application of a monolayer coating based on epoxy powder paint.
  • the process includes steps 1) to 7) of Example 1.
  • An epoxy powder paint is applied using an electrostatic gun whose polarity is set at a voltage of +70 kV (kilovolts). Steel plates 200 mm long, 100 mm wide and 10 mm thick are used as metal substrates.
  • the epoxy powder paint has the following composition:
  • the percentages indicated are percentages by weight relative to the total weight of the composition.
  • the freezing time of this epoxy powder paint at 180 ° C. determined according to the ISO 8130-6 standard, is 70 ⁇ 5 seconds.
  • the steel plates Prior to the application of the powder, the steel plates are sandblasted by abrasive blasting
  • Rugos 2000 ® grade 20-30 up to a roughness Rz of between 70 and 90 micrometers.
  • These abrasives are based on aluminum silicate. Their average chemical composition includes 51% SiO 2 (total silica combined in the form of silicates) and 27% Al 2 O 3 .
  • the free silica content is less than 0.1%, the chlorine and fluorine content is less than 100 ppm.
  • the apparent density of the abrasive is 1.3 and the hardness is between 6 and 7 Mohs.
  • the particle size is between 0.40 and 1.60 mm. This product does not contain any heavy metals. These plates are then dusted by blowing with compressed air. The surface cleanliness obtained at the end of these operations corresponds to the level Sa 2.5.
  • the plates are then preheated to 220 ° C. in a ventilated oven. As soon as the temperature of the steel reaches 220 ° C., the plates are taken out of the oven and connected to the earth.
  • the powder is immediately applied to the metal support using the electrostatic gun described above. After application of the powder, the plates are put in an oven at 200 ° C for a post-cooking of 10 minutes.
  • the plates are then cooled to room temperature. We can also talk about specimens at this stage.
  • a control sample is used for the evaluation of the adhesion before immersion in hot water.
  • the evaluation of the adhesion is done according to two methods.
  • the first method corresponds to a tensile measurement made according to the ISO 4624 standard. This method consists of using a 20 mm diameter steel or aluminum stud stuck to the coating using an "Araldite ® " type glue. . Before application of the glue, the coating is frosted with sandpaper to improve the adhesion of the glue, that is to say improve its adhesive power.
  • the stud is pulled using a traction device.
  • the pulling force necessary to tear off the stud is determined as well as the fracture facies.
  • the tensile force is indicated in Newton per unit area, more particularly in Newton per square millimeter (N / mm 2 ).
  • the fracture facies may correspond to: an adhesive rupture, that is to say a separation of the coating from its metallic substrate;
  • a cohesive failure that is to say a rupture of the coating in the mass without separation of the coating of its metal substrate; this scenario is preferable to the previous scenario;
  • a semi-adhesive / semi-cohesive rupture that is a combination of the first two scenarios
  • Breakage of the glue that is to say a separation of the glue from the surface of the coating; in this case, the force which corresponds to the adhesion of the coating vis-à-vis its metal substrate is indeterminate, but is considered equal to or greater than the breaking force of the glue; this case is favorable.
  • the second method of assessing adhesion is the evaluation of adhesion through a peel test as described in EN 10290 and EN 10289.
  • the tip of the knife is inserted horizontally (the flat of the blade) under the coating at the point of intersection of the incisions so that the tip of the blade is in contact with the surface of the metal.
  • the plate of the blade By levering against a fulcrum such as a steel rod, the plate of the blade is moved away from the metal surface in one movement and vertically, that is to say in a 90 degree direction. degrees of the surface. The purpose of this operation is to try to tear off the coating.
  • the loss of adhesion of the coating is evaluated by the length in millimeters which corresponds to the part torn off (or peeled) since the point of intersection.
  • test specimens are immersed in city water.
  • the water bath is maintained at a temperature of 80 ⁇ 20 ° C.
  • the specimens are removed from the hot water bath and cooled to room temperature after different immersion times.
  • the cooled test pieces are subjected to the evaluation of adhesion according to the two methods described above.
  • Solution 2 5% N- (beta-aminoethyl) -gamma-aminopropyltrimetoxysilane ("Dynasilan ® " A-1120) and 95% city water.
  • Solution 3 2.5% N- (beta-aminoethyl) -gamma-aminopropyltrimetoxysilane ("Dynasilan ® " A-1120) and 97.5% city water.
  • - Solution 4 12.5% aqueous solution at 40% by weight of 3-aminopropylsilane ( "Dynasilan ®" 1151) (5% pure silane) and 87.5% of city water.
  • the metal substrates undergo sandblasting and dedusting as in Example 4A.
  • the metal substrates are preheated to 40 ° C. in an oven and then immersed in one of the silane solutions.
  • the immersion time which corresponds to a quenched silane application operation, lasts 4 + 1 seconds.
  • the basis weight of the silane solution deposited on the metal substrate is determined by weighing.
  • the basis weight is 50 ⁇ 10 g / m 2 .
  • the metal substrates are put in an oven to preheat at 220 ° C.
  • the temperature of the substrates is 220 ° C.
  • they are taken out of the oven and coated with the epoxy powder paint of Example 4A.
  • the application of the powder paint is exactly according to the method described in Example 4A.
  • the plates are post-baked in an oven at 200 ° C., according to the method of Example 4A. The plates are then cooled to room temperature. For tests, only specimens for which the epoxy thickness is between 350 and 450 micrometers are retained.
  • Example 4C relates to the application of a tri-layer coating.
  • the coating consists of a primer epoxy powder, an adhesive and a topcoat.
  • the epoxy powder has the following composition:
  • the percentages are percentages by weight relative to the total weight of the composition.
  • the gel time at 180 ° C. of this composition is 40 ⁇ 5 seconds.
  • the adhesive is a polyolefin whose softening point, determined by differential scanning calorimetry or DSC, is 135 ° C., grafted by radicals based on maleic anhydride.
  • the adhesive is a grafted adhesive "Orevac ® " 18510 marketed by Arkema.
  • the finishing layer consists of HDPE (high density polyethylene).
  • the silane solution comprises 94.5% of city water, 5% silane "Dynasilan ®" 1151, and 0.5% dye.
  • the coating is applied to the outer wall of a steel tube 7 mm thick and 116 mm outside diameter.
  • the silane solution is brushed onto the surface of the tube.
  • the basis weight is 50 + 10 g / m 2 .
  • the tube passes into an inductor which raises the temperature of the steel at 220 ° C.
  • the powder primer is applied using an electrostatic gun, set at 75 kV.
  • the deposited thickness is 120 ⁇ 30 ⁇ m.
  • the adhesive which is extruded at a temperature of 230 ° C., is applied to the primer with a recovery time of 20 seconds.
  • the adhesive film thickness deposited is 250 ⁇ 20 ⁇ m.
  • the topcoat which is also extruded at a temperature of 230 ° C, covers the adhesive at a time of 10 seconds.
  • the thickness of this layer is between 2.5 and 3 mm.
  • Pressure rollers compress the entire coating to optimize contact between the different layers.
  • the tube then passes into the cooling tunnel 2 seconds after the topcoat is applied.
  • the cooling process involves spraying cold water onto the surface of the topcoat.
  • the tube is cut into pieces of 10 cm long to provide test pieces for undergoing immersion tests.
  • the tri-layer coating is incised throughout its thickness, that is to say up to the surface of the metal.
  • two incisions 2.5 cm apart are thus made around the circumference.
  • a second tube is coated from the same coating system and by the same method. The difference is that the silane solution is not used.
  • test pieces After applying the coating, the test pieces are prepared in the same manner as before.
  • This second series of test pieces constitutes the series of control samples, free from silane.
  • Both sets of test pieces are immersed in water at 80 ° C., which is particularly severe. Indeed, the incisions made on the coating facilitate the insertion of water at the epoxy-metal substrate interface. This process quickly leads to a loss of adhesion of the epoxy to the steel. After 900 hours of immersion, the test pieces were taken out of the bath for a qualitative evaluation of the adhesion.
  • An incision is made, along the axis of the specimen, on the coating strip 2.5 cm wide, between the two incisions made prior to the immersion step.
  • the tip of the knife is inserted horizontally (the flat of the blade) under the coating from the incision made along the axis of the specimen, so that the tip of the blade is in contact with the surface of the blade. metal.
  • the plate of the blade By levering against a fulcrum such as a steel rod, the plate of the blade is moved away from the metal surface in a single movement and vertically, that is, in a 90 degree direction. the surface. The purpose of this operation is to try to tear off the coating.
  • Peeling by peeling of the coating is very easy with regard to the series of test pieces.
  • the 2.5 cm wide band is peeled around the circumference of the test pieces.
  • test pieces obtained according to the same procedure as in Example 4C, are used to test the influence of the application of the silane solution, according to the process of the present invention, on the peel strength performance. cathode.
  • the principle of the test is to create a defect in the coating to expose the metal.
  • the defect is in contact with a saline solution, which serves as an electrolyte.
  • the metal is set to a potential, corresponding to the cathodic protection, such that any oxidation of the iron entering the composition of the substrate is inhibited.
  • This voltage generates an electrolytic reaction which leads to the formation of OH " ions and to the release hydrogen.
  • the effect of this electrolytic reaction may be more or less harmful with respect to the adhesion of the coating to the periphery of the initial defect. It is therefore necessary to ensure the good compatibility of the cathodic protection with respect to the adhesion of the coating.
  • This process is quantified through the length of the detachment of the coating around the defect, at the end of a given time of application of the cathodic protection. This peel length is often called the peel radius.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

L'invention concerne un procédé d'application d'un revêtement anticorrosion, monocouche ou multicouche, sur un substrat métallique entrant dans la constitution d' un tube ou d'un accessoire d'une canalisation destinée à être enterrée ou immergée pour le transport de fluide, tel que l'eau, les produits pétroliers, le gaz, ou les produits d'assainissement. Selon l'invention, le procédé comprend : a) une préparation de la surface du substrat, uniquement mécanique; b) une application d'un promoteur d'adhérence sur la surface préparée constitué par une solution aqueuse d' au moins un silane, sans traitement chimique complémentaire; c) une application d'une couche de peinture poudre à base de résine époxy sur la surface revêtue du promoteur d' adhérence; et d) au moins un traitement thermique d' au moins la surface du substrat; au moins une étape d) de traitement thermique étant effectuée entre les étapes a) et b) ou entre les étapes b) et c).

Description

PROCEDE D'APPLICATION D'UN REVETEMENT ANTICORROSION SUR
LES PIECES D'UNE CANALISATION, INCLUANT L'UTILISATION DE
SOLUTION AQUEUSE DE SILANE ET DE PEINTURE POUDRE EPOXY
L'invention concerne, de manière générale, le domaine de la protection anticorrosion des pipelines.
On entend par pipeline une canalisation ou conduite pour le transport à distance de fluides tels que l'eau, les produits pétroliers, le gaz, ou les produits d' assainissement.
Plus précisément, l'invention concerne, selon un premier de ses aspects, un procédé d'application d'un revêtement anticorrosion, monocouche ou multicouche, sur un substrat métallique entrant dans la constitution d'un tube ou d'un accessoire d'une canalisation destinée à être enterrée ou immergée pour le transport de fluide, tel que l'eau, les produits pétroliers, le gaz, ou les produits d'assainissement. La protection anticorrosion d'un pipeline, autrement dit d'une conduite enterrée ou immergée servant notamment au transport de l'eau, de pétrole, ou de gaz, est basée sur le même principe depuis des décennies : un revêtement organique adhérent, barrière passive à l'eau et à l'oxygène, couplé à une protection active électrochimique consistant à porter le matériau constituant le pipeline à un potentiel tel que toute oxydation du fer entrant dans la composition de ces matériaux est inhibée. Depuis toujours, elle se fait soit par la méthode d'une anode sacrificielle, soit par courant imposé. Il s'agit de la protection cathodique.
Parmi les différents systèmes de revêtements organiques utilisés dans le domaine de la protection anticorrosion des canalisations ou conduites, il existe les systèmes à base de peintures en poudre époxy à haute réactivité utilisées en tant que revêtement monocouche ou en tant que primaire d'un système complexe dit multicouche, par exemple tri-couche, car composé de ce primaire, d'un adhésif à base de polyoléfine modifié et d'une couche finale à base de polyoléfine.
Les revêtements organiques destinés à la protection anticorrosion des canalisations sont soumis à des contraintes de service qui allient température et humidité. En effet, les canalisations peuvent être enterrées dans un sol plus ou moins humide ou posées sur les fonds marins. D'autre part, le fluide peut être chauffé afin de baisser sa viscosité pour minimiser les pertes de charge qui se produisent lors du transport au sein du réseau de canalisation, dont la longueur peut représenter plusieurs centaines à plusieurs milliers de kilomètres .
La température de service peut varier de 20 à 150 degrés Celsius (0C). L'association température-humidité entraine une accélération de la pénétration de l'eau au sein du matériau de revêtement. Ce phénomène se traduit par une perte d'adhérence du revêtement vis à vis du support métallique constituant le pipeline. La perte d'adhérence est préjudiciable pour la pérennité de la protection anticorrosion.
Les pièces de canalisation sont soumises classiquement à une préparation de surface qui peut consister à décaper mécaniquement le substrat. Afin d'améliorer l'adhérence en milieu humide des revêtements organiques, des traitements chimiques des surfaces métalliques peuvent être aussi employés après cette préparation de surface. Ces traitements chimiques sont classiquement à base de chromâtes ou de phosphates. L'application de solutions à base de chromâtes ou de phosphates présente plusieurs inconvénients. Elle implique des opérations de rinçage qui compliquent le procédé d'application et génèrent la formation de déchets supplémentaires. Elle implique, après séchage, une opération de conversion thermique des chromâtes ou phosphates, qui rend coûteux le procédé. Elle implique l'utilisation de produits toxiques pour le cas des chromâtes .
Dans ce contexte, la présente invention a pour but de proposer un procédé exempt de l'une au moins des limitations précédemment évoquées.
A cette fin, l'invention concerne un procédé d'application d'un revêtement anticorrosion, monocouche ou multicouche, sur un substrat métallique entrant dans la constitution d'une canalisation destinée à être enterrée ou immergée pour le transport de fluide, tel que l'eau, les produits pétroliers, le gaz, ou les produits d'assainissement, caractérisé en ce qu'il comprend : a) une préparation de la surface du substrat, uniquement mécanique, incluant un décapage par projection d'abrasifs, notamment pour obtenir une propreté de surface d'au moins Sa 2,5 et une rugosité Rz d'au moins 40 micromètres ; b) une application d'un promoteur d'adhérence sur la surface préparée constitué par une solution aqueuse d'au moins un silane, sans traitement chimique complémentaire ; c) une application d'une couche de peinture poudre à base de résine époxy sur la surface revêtue du promoteur d'adhérence ; et d) au moins un traitement thermique d'au moins la surface du substrat ; au moins une étape d) de traitement thermique étant effectuée entre les étapes a) et b) ou entre les étapes b) et c) . L'invention présente l'avantage de proposer le remplacement des chromâtes, toxiques, par les silanes.
Le procédé selon l'invention permet d'améliorer l'adhérence en milieu humide des peintures poudres à base de résines thermodurcissables telles que les résines époxydiques (ou résines époxydes, ou résines époxy, ou époxy) , utilisées en tant que revêtement interne ou externe de tubes et accessoires métalliques de canalisations destinées au transport de fluide, tel que le gaz, l'eau, les produits pétroliers, ou les produits d' assainissement .
On appelle accessoire métallique (équivalent du terme anglais "fitting") toute pièce, de préférence en acier ou en fonte, qui est intégrée dans le réseau de canalisation, autre que les tubes. Il peut s'agir par exemple d'une vanne, d'un coude, ou d'une bride.
En outre, la solution de silane est une solution aqueuse dépourvue de solvant organique, ce qui est avantageux pour l'environnement ainsi que pour la santé et la sécurité des utilisateurs.
Malgré le dépôt d'une solution aqueuse et donc d'une quantité importante d'eau à la surface du substrat métallique, la mise en œuvre du procédé selon l'invention permet d'éviter la formation de pellicules de rouille qui serait due à une oxydation rapide superficielle ("flash rusting" ) .
En particulier, la préparation de surface inclut : - un séchage du substrat afin d'y éliminer toute trace d'humidité ;
- le décapage mécanique par projection d'abrasifs à l'aide d'au moins un matériau abrasif tel que grenaille, sable, alumine ou corindon ; et - une élimination des poussières générées par le décapage, par exemple par soufflage et/ou par aspiration.
Une telle préparation de surface vise à obtenir une propreté de surface comprise entre Sa 2,5 et Sa 3 ou au niveau Sa 2,5, et une rugosité Rz comprise entre 40 et 150 micromètres ou entre 70 et 90 micromètres.
La mise en œuvre dans l'invention d'une préparation de surface uniquement mécanique dépourvue de traitement chimique permet également la mise en œuvre d'un procédé avantageux en termes d'hygiène et de sécurité. Dans un mode de réalisation préféré de l'invention, le substrat est constitué d'un métal incluant essentiellement du fer, et est de préférence constitué d' acier.
Selon l'invention, le silane peut être tout silane utilisé comme promoteur d' adhérence de formule générale R' Si (OR) 3 où R' est un groupe contenant au moins un radical organique réactif et où OR est un radical alkoxy.
De préférence, ledit au moins un silane est choisi parmi les aminosilanes ou les époxysilanes . Par exemple, le silane peut être le N- (béta-aminoéthyl) -gamma- aminopropyltriméthoxysilane ou le gamma- glycidyloxypropyltriméthoxysilane.
Le silane peut être avantageusement un silane préhydrolysé, tel que le 3-aminopropylsilane préhydrolysé . De manière avantageuse, la solution aqueuse comprend entre 0,5 et 20% en poids, de préférence entre 1 et 10% en poids, de silane.
La solution aqueuse de silane est préférentiellement appliquée sur la surface du substrat selon un grammage compris entre 10 et 100 grammes par mètre carré, de préférence entre 30 et 70 grammes par mètre carré.
Selon une version particulière de l'invention, une unique étape d) de traitement thermique est effectuée entre les étapes a) et b) ou entre les étapes b) et c) . La température de chauffage est avantageusement comprise entre 110 et 250 degrés Celsius, de préférence entre 150 et 240 degrés Celsius. La température maximale de 250 °C est adaptée en particulier au cas où l'application de silane est effectuée avant le chauffage, en ce qu'elle n'entraîne pas la dégradation du silane.
Selon un mode de réalisation de l'invention particulièrement avantageux, la préparation de surface est dépourvue de tout traitement chimique.
Selon un mode de réalisation préférentiel, le procédé selon l'invention comprend en outre : e) une application d'une couche intermédiaire d'un adhésif à base de polyoléfine sur la surface revêtue de résine époxydique ; et f) une application d'une couche de finition de polyoléfine, choisi parmi les polyéthylènes ou les polypropylènes, sur la surface revêtue de la couche intermédiaire .
Selon l'invention, le substrat métallique peut être un tube de la canalisation, ou peut être un accessoire de la canalisation. Les tubes et les accessoires constituent les pièces d'une canalisation.
Le procédé selon l'invention permet de traiter les surfaces interne et externe de ces pièces de canalisation. Pour les surfaces internes, on applique en général un revêtement monocouche, soit un revêtement dépourvu d'une couche intermédiaire et d'une couche de finition. De préférence, pour un tube, les surfaces interne et externe sont traitées successivement, et pour un accessoire, l'ensemble des surfaces est traité simultanément.
L'invention concerne également une pièce métallique de canalisation, tel qu'un tube de canalisation ou un accessoire de canalisation, destinée à être enterrée ou immergée pour le transport de fluide, tel que l'eau, les produits pétroliers, ou le gaz, présentant au moins une surface traitée selon le procédé de l'invention.
D' autres caractéristiques et avantages de l'invention ressortiront clairement de la description détaillée qui en est faite ci-après, à titre indicatif et nullement limitatif.
La surface du substrat métallique est traitée pour recevoir un revêtement qui est : soit monocouche, c'est-à-dire issu de l'application d'une peinture poudre contenant de la résine époxydique subissant une réticulation par le biais d'un durcisseur ; soit multicouche, c'est-à-dire constitué d'un primaire qui est issu de l'application d'une peinture poudre contenant de la résine époxydique subissant une réticulation par le biais d'un durcisseur, et d'au moins une couche supplémentaire, par exemple à base d' époxy ou de polyoléfine.
Un revêtement multicouche peut être en particulier un revêtement tri-couche, constitué du primaire, d'une couche intermédiaire qui est un adhésif à base de polyoléfine, et d'une couche de finition de polyoléfine tel qu'un polyéthylène ou un polypropylène.
Le silane est appliqué, préalablement à l'application du revêtement monocouche ou multicouche, sur la surface des tubes ou accessoires métalliques. Le type de silane faisant l'objet du procédé de l'invention est en solution dans l'eau. Aucun solvant organique n'est ajouté. Cette préparation permet de s'affranchir des problèmes liés aux solvants organiques, relatifs à l'environnement, la sécurité, et l'hygiène. Le type de silane faisant l'objet du procédé de l'invention est soit un silane pur, dilué dans l'eau avant son application, soit un silane qui se présente déjà en solution aqueuse, c'est-à-dire préalablement hydrolyse . Le silane pur peut être en particulier de formule générale (I) suivante :
Z- [R^Si (OR)n (R2) 3-n] y , ou de formule (II) suivante :
X-Z-R^Si (OR)n(R2) 3-n • L'indice n représente un entier égal à 1, 2 ou 3.
L'indice y représente un entier égal à 1 ou 2. Dans la formule (II), y est égal à 1.
Les n groupements OR sont chacun choisis parmi les groupements méthoxy CH3O-, éthoxy CH3CH2O-, ou propoxy C3H7O-, ou leurs associations.
Le groupement Z représente une fonction aminé primaire ou aminé secondaire, ou encore une fonction époxy portée par un groupement glycidyléther ou par un groupement cycloaliphatique.
Dans le cas où Z est une aminé secondaire, et où y est égal à 1, Z peut être lié à un groupement X pour donner un silane de formule (II) .
Les groupements X, R1 et R2 peuvent être chacun choisis parmi un groupement carboné aliphatique, cycloaliphatique ou aromatique. Ces groupements carbonés peuvent inclure un ou plusieurs hétéroatomes tels que le soufre, l'azote ou l'oxygène. Sur ces groupements carbonés peuvent être greffés un ou plusieurs radicaux choisis parmi les radicaux alkyle, alcène ou aryle, ou des radicaux contenant au moins une fonction choisie parmi les fonctions aminé, amide, urée, acyle, carboxylique, phénolique, cétonique, éther, ester, ou mercaptan.
Selon l'invention, le silane pur subit en présence d'eau, lors de sa dilution, une hydrolyse qui transforme la fonction alkoxy Si-(OR) du silane en fonction silanol Si-(OH) et en alcool ROH.
La fonction Si-(OH) est responsable du greffage chimique sur le métal et assure donc une liaison solide avec celui-ci.
Néanmoins, la présence de fonctions Si-(OH) peut, après condensation, conduire à la formation de liaison siloxane Si-O-Si, qui est non seulement préjudiciable pour la stabilité du silane en solution, mais également pour le rendement de la réaction de greffage entre le silane et le support métallique. Un ajustement du pH de la solution peut conduire à un compromis entre la vitesse de formation par hydrolyse de la fonction Si-(OH), nécessaire au greffage sur le métal, et la stabilité au stockage.
Par exemple, pour le gamma- glycidyloxypropyltriméthoxysilane, un ajustement de pH entre 4 et 5 de la solution aqueuse à 5% en poids de silane permet d'atteindre ce compromis. Les silanes en solution aqueuse, ou silanes préhydrolysés, pouvant être également utilisés dans l'invention sont du type R' -Si- (OH)n. R' est un groupe contenant au moins un radical organique réactif. R' est préférentiellement choisi parmi les groupements carbonés contenant une aminé secondaire et/ou une aminé primaire, qui confèrent aux silanes une stabilité particulièrement avantageuse dans l'eau.
Ces silanes en solution aqueuse présentent principalement deux avantages.
Le premier avantage est lié au fait que la forme pré-hydrolysée de ces silanes permet d'utiliser une solution exempte de fonction alkoxy Si-OR, ce qui évite la formation d'alcool ROH dans l'eau par le biais du processus d'hydrolyse, qui constitue un co-solvant, préjudiciable pour l'environnement et la santé des utilisateurs .
Le deuxième avantage est lié au fait que ces silanes ont été mis au point pour conférer à la solution aqueuse une très grande stabilité, jusqu'à plusieurs mois.
Ils sont vendus déjà sous forme de solution aqueuse et peuvent subir une dilution supplémentaire dans l'eau.
Par exemple, le 3-aminopropylsilane préhydrolysé contenant des fonctions silanols sans fonction alkoxy est commercialisé par Degussa en solution aqueuse à 40% en poids de silane sous le nom « Dynasilan® », référence
1151. Celui-ci peut subir une dilution dans l'eau. La particularité de ce silane est qu'il présente une très grande stabilité dans l'eau malgré la présence des fonctions Si-(OH) .
Un autre exemple de silane en phase aqueuse du commerce, le « Silquest® » A-1106, contenant des aminés primaires, de formule (H2N (CH2) 3SiOi,5) n peut également être avantageusement utilisé dans le cadre du procédé de la présente invention.
L'utilisation d'une solution de silane, selon le procédé de la présente invention, ne nécessite ni traitement chimique du support métallique avant l'application de la solution de silane, ni rinçage après l'application de celle-ci.
La solution de silane, faisant l'objet du procédé de la présente invention, peut contenir un colorant dilué dans l'eau, afin qu'il soit plus aisé de visualiser l'application de la solution de silane sur le support métallique .
Le procédé de la présente invention est conforme aux règles de l'art relatives à l'application, sur les parois des tubes métalliques, de revêtements à base de résines thermodurcissables . Ces règles ou recommandations sont décrites dans plusieurs normes, notamment NFA 49716, NFA 49706, NFA 49710, NFA 49711, et CAN/CSA-Z245.20-02. Quel que soit le type de revêtement, monocouche ou multicouche, la couche d' époxy est en contact avec le support métallique. C'est donc bien l' époxy qui, dans les systèmes de revêtements concernés par l'invention, assure l'adhésion sur le support métallique. Il est donc primordial que les performances d'adhésion de la couche d' époxy restent optimales lorsque le revêtement subit des contraintes de température et d'humidité.
EXEMPLES
EXEMPLE 1 : Procédé de traitement de surface d'un tube métallique et d'application d'un revêtement monocouche à base de peinture poudre époxy.
Le procédé se déroule de la manière suivante : 1) Les tubes sont séchés afin d'éliminer toute trace d'humidité. Le séchage se fait par passage dans un four ou à la flamme. 2) Après séchage, la surface externe des tubes métalliques est décapée mécaniquement par projection d'abrasifs tels que grenaille, sable, alumine et/ou corindon. Cette opération de décapage confère à la surface un profil de rugosité dont le Rz (selon la description de la norme ISO 4287-1) se situe entre 40 et 150 micromètres (μm) , préférentiellement entre 60 et 90 micromètres.
3) Les poussières générées par cette opération de décapage sont éliminées de la surface du tube, par soufflage et/ou aspiration.
La propreté de surface à l'issue de ces opérations doit être comprise entre Sa 2,5 et Sa 3 selon la description de la norme ISO 8501-1.
4) La solution de silane peut être ensuite appliquée sur la surface du tube ainsi préparée.
La solution de silane présente une quantité de principe actif, c'est-à-dire de silane pur, comprise entre 0,5 et 20%, préférentiellement comprise entre 1 et 10%, en poids par rapport au poids total de la solution.
La solution de silane est appliquée par pulvérisation mixte ou sans air à l'aide d'une machine type "airmix" ou "airless", ou à la brosse, ou au rouleau, ou encore par épandage ou par trempé.
La solution de silane est appliquée sur le support métallique selon un grammage compris entre 10 et 100 grammes par mètre carré (g/m2) , préférentiellement entre 30 et 70 g/m2.
5) A l'issue de l'opération d'application de la solution de silane, la surface du tube n'est pas rincée et subit directement une élévation de température jusqu'à une température comprise entre 110 et 250 degrés Celsius (0C), préférentiellement entre 15O0C et 24O0C. L'élévation de température est conditionnée par la cinétique de la réaction de réticulation de la résine époxy et non pas par le besoin de conversion thermique du silane, contrairement aux solutions de chromate qui exigent des températures de conversion thermique qui se situent généralement au dessus de 220°C. L'avantage de ce procédé est qu'il permet l'utilisation de solutions aqueuses sans engendrer d' oxydation rapide et donc de formation de rouille sur le métal, étant donné que l'opération de chauffage du tube se fait immédiatement après l'application de la solution aqueuse de silane. Ce chauffage du tube entraîne le séchage immédiat de la solution de silane, par évaporation d'eau, et empêche donc que cette eau ne conduise au processus d'oxydation. Le chauffage du tube, avant application de la poudre époxy, est assuré soit par passage du tube à travers un inducteur, soit par passage du tube dans un four chauffé au gaz, au fuel ou alimenté électriquement.
Selon l'invention, une variante de ce procédé consiste à appliquer la solution de silane après le chauffage du tube, autrement dit à inverser les étapes 4) et 5). L'application de la solution de silane sur support chaud entraîne l' évaporation immédiate de l'eau et évite de ce fait l'oxydation et la formation de rouille à la surface du métal.
6) Dès que la surface du tube métallique est portée à une température suffisante, la poudre époxy est appliquée selon un procédé électrostatique ou triboélectrique . La peinture poudre époxy appliquée sur le support préchauffé passe par trois phases de transformation : fusion, gélification et solidification. Ce processus est assuré par l'apport de calories en surface du tube qui conduit au mécanisme de la réticulation. L'inertie thermique des tubes suffit généralement pour que la réticulation de l' époxy soit menée à son terme. Une post-cuisson peut éventuellement être employée pour parfaire cette réticulation.
La quantité de peinture poudre époxy déposée conduit après réticulation à un revêtement dont l'épaisseur se situe entre 250 micromètres et 700 micromètres selon les recommandations du fabricant. 7) A l'issue de la réticulation de l'époxy, une étape de refroidissement accéléré, qui consiste à projeter de l'eau sur le support revêtu, permettant ainsi de manipuler plus rapidement les tubes, peut éventuellement être mise en place.
Une variante de ce procédé consiste à ne pas préchauffer le tube avant l'application de la poudre. Dans ce cas, deux conditions doivent être remplies : la solution de silane appliquée sur le tube doit être sèche (toute l'eau de la solution doit être évaporée), et une post-cuisson, à l'issue de l'application de la poudre époxy, doit être assurée pour la réticulation de l'époxy.
EXEMPLE 2 : Procédé de traitement de surface d'un tube métallique et d'application d'un revêtement tri- couche comprenant une couche à base de peinture poudre époxy.
Le procédé de traitement de surface destinée à l'application d'un revêtement tri-couche comprenant une couche à base de peinture poudre époxy est identique au procédé décrit à l'exemple 1, de l'étape 1) à l'étape 6) inclus. Dans le cadre des revêtements tri-couche, l'épaisseur de l'époxy, qui sert de primaire, se situe généralement entre 50 et 500 micromètres.
Quelques secondes après l'application de la poudre époxy, soit après l'étape 6), l'adhésif est appliqué. En effet, le délai de recouvrement de la couche époxy par l'adhésif, déterminé en tenant compte à la fois de la température du support et de la réactivité de la poudre époxy, est généralement compris entre 5 et 60 secondes.
L'application de l'adhésif se fait soit par extrusion, soit par poudrage. La température d'extrusion se situe entre 200°C et 25O0C. Les épaisseurs d'adhésif déposées sont généralement comprises entre 200 et 500 micromètres . L'application de l'adhésif est immédiatement suivie par celle de la couche de finition constituée de polyéthylène MD (moyenne densité) , BD (basse densité) , ou HD (haute densité), ou de polypropylène. L'application de la couche de finition se fait également par extrusion. Les épaisseurs de couche de finition déposées se situent généralement entre 1,5 et 4 millimètres (mm).
A l'issue de l'application de la couche de finition, les tubes sont refroidis par projection d'eau sur leur surface revêtue de la couche de finition.
EXEMPLE 3 : Procédé de traitement de surface d'accessoires métalliques et d'application d'un revêtement monocouche à base de peinture poudre époxy.
Le procédé inclut les étapes 1) à 7) de l'exemple 1. Il peut y avoir une variante au niveau de la technique d'application de la poudre époxy (étape 6)) qui consiste alors à appliquer la poudre sur les accessoires selon une technique particulière de trempé en bain fluidisé.
EXEMPLES 4
Les exemples supplémentaires ci-dessous démontrent tout particulièrement l'intérêt du procédé selon l'invention dans le cadre des performances d'adhésion du revêtement à base de peinture poudre époxy lorsque celui- ci est soumis à un environnement chaud et humide.
Dans le cadre de l'évaluation des niveaux d'adhérence des revêtements organiques à base de résine époxy, exposés en milieu chaud et humide, plusieurs éprouvettes ont été préparées et testées à partir de plaques métalliques. On parle d' éprouvette pour une plaque traitée et revêtue. EXEMPLE 4A
Une peinture poudre époxy est appliquée à l'aide d'un pistolet électrostatique dont la polarité est réglée à une tension de +70 kV (kilovolts) . Des plaques d'acier de 200 mm de long, 100 mm de large et 10 mm d'épaisseur sont utilisées comme substrats métalliques.
La peinture poudre époxy a la composition suivante :
Les pourcentages indiqués sont des pourcentages en poids par rapport au poids total de la composition.
Le temps de gel de cette peinture poudre époxy à 1800C, déterminé selon la norme ISO 8130-6, est de 70+5 secondes .
Préalablement à l'application de la poudre, les plaques d'acier sont sablées par projection d'abrasifs
« Rugos 2000® » grade 20-30 jusqu'à obtention d'une rugosité Rz comprise entre 70 et 90 micromètres. Ces abrasifs sont à base de silicate d'aluminium. Leur composition chimique moyenne inclut 51% de SiO2 (silice totale combinée sous la forme de silicates) et 27% d'Al2O3. Le taux de silice libre est inférieur à 0,1%, le taux de chlore et de fluor est inférieur à 100 ppm. La densité apparente de l'abrasif est de 1,3 et la dureté est comprise entre 6 et 7 Mohs . La granulométrie est comprise entre 0,40 et 1,60 mm. Ce produit ne contient aucun métal lourd. Ces plaques sont ensuite dépoussiérées par soufflage à l'air comprimé. La propreté de surface obtenue à l'issue de ces opérations correspond au niveau Sa 2,5.
Les plaques sont ensuite préchauffées à 2200C dans une étuve ventilée. Dès que la température de l'acier atteint 2200C, les plaques sont sorties de l' étuve et reliées à la terre.
La poudre est immédiatement appliquée sur le support métallique à l'aide du pistolet électrostatique décrit plus haut. Après application de la poudre, les plaques sont mises en étuve à 200°C pour une post-cuisson de 10 minutes .
Les plaques sont ensuite refroidies à température ambiante. On peut aussi parler d' éprouvettes à ce stade.
Pour les tests, seules les éprouvettes dont les épaisseurs d' époxy sont comprises entre 350 et 450 micromètres sont retenues.
Une éprouvette témoin est utilisée pour l'évaluation de l'adhérence avant immersion en eau chaude.
L'évaluation de l'adhérence est faite selon deux méthodes.
La première méthode correspond à une mesure par traction effectuée selon la norme ISO 4624. Cette méthode consiste à utiliser un plot en acier ou en aluminium de 20 mm de diamètre collé sur le revêtement à l'aide d'une colle type « Araldite® ». Avant application de la colle, le revêtement est dépoli au papier de verre pour améliorer l'accrochage de la colle, autrement dit améliorer son pouvoir adhésif.
Après au moins 24 heures de séchage de la colle, le plot est tiré à l'aide d'un appareil de traction. La force de traction nécessaire à l'arrachement du plot est déterminée ainsi que le faciès de rupture. La force de traction est indiquée en Newton par unité de surface, plus particulièrement en Newton par millimètre carré (N/mm2) .
Le faciès de rupture peut correspondre à : - Une rupture adhésive, c'est-à-dire une séparation du revêtement de son substrat métallique ;
Une rupture cohésive, c'est-à-dire une rupture du revêtement dans la masse sans qu' il y ait séparation du revêtement de son substrat métallique ; ce scénario est préférable au scénario précédent ;
Une rupture semi-adhésive/semi-cohésive qui est une combinaison des deux premiers scénarii ;
Une rupture de la colle, c'est-à-dire une séparation de la colle de la surface du revêtement ; dans ce cas, la force qui correspond à l'adhérence du revêtement vis-à-vis de son substrat métallique est indéterminée, mais est considérée comme égale ou supérieure à la force de rupture de la colle ; ce cas de figure est favorable. La deuxième méthode d'évaluation de l'adhérence correspond à l'évaluation de l'adhérence à travers un test de pelage tel que décrit dans la norme EN 10290 et EN 10289.
A l'aide d'un couteau aiguisé placé contre une règle en acier, des incisions droites de 30 à 50 mm sont pratiquées dans le revêtement jusqu'au substrat métallique pour former un X avec un angle de 30 degrés environ au point d'intersection.
La pointe du couteau est insérée horizontalement (le plat de la lame) sous le revêtement au point d' intersection des incisions de manière à ce que la pointe de la lame soit en contact avec la surface du métal .
Par effet de levier contre un point d' appui tel qu'une baguette en acier, le plat de la lame est écartée de la surface métallique en un seul mouvement et verticalement, c'est-à-dire selon une direction à 90 degrés de la surface. Le but de cette opération est d'essayer d'arracher le revêtement.
La perte d'adhérence du revêtement est évaluée par la longueur en millimètre qui correspond à la partie arrachée (ou pelée) depuis le point d'intersection.
Les autres éprouvettes sont soumises à une immersion dans de l'eau de ville. Le bain d'eau est maintenu à une température de 80+20C.
Les éprouvettes sont retirées du bain d'eau chaude et refroidies à température ambiante après différents temps d'immersion.
Les éprouvettes refroidies sont soumises à l'évaluation de l'adhérence selon les deux méthodes décrites précédemment.
Les résultats sont présentés dans le tableau qui suit :
Les résultats montrent que le revêtement époxy immergé dans l'eau à 800C subit rapidement une chute de ses performances d'adhérence vis-à-vis du substrat métallique .
EXEMPLE 4B
Plusieurs solutions de silane sont préparées Solution 1 : 5% de N- (béta-aminoéthyl) -gamma- aminopropyltrimétoxysilane (« Dynasilan® » A-1120) et 95% d'éthanol.
Solution 2 : 5% de N- (béta-aminoéthyl) -gamma- aminopropyltrimétoxysilane (« Dynasilan® » A-1120) et 95% d'eau de ville.
Solution 3 : 2,5% de N- (béta-aminoéthyl) -gamma- aminopropyltrimétoxysilane (« Dynasilan® » A-1120) et 97,5% d'eau de ville. - Solution 4 : 12,5% de solution aqueuse à 40% en poids de 3-aminopropylsilane (« Dynasilan® » 1151) (soit 5% de silane pur) et 87,5% d'eau de ville.
Ces différentes solutions sont préparées 24 heures avant d'être appliquées. Les substrats métalliques utilisés pour les tests sont identiques à ceux décrits dans l'exemple 4A.
Les substrats métalliques subissent un sablage et un dépoussiérage comme dans l'exemple 4A.
A l'issue de ces étapes, les substrats métalliques sont préchauffés à 400C dans une étuve, puis immergés dans une des solutions de silane. Le temps d'immersion, qui correspond à une opération d' application de silane par trempé, dure 4+1 secondes.
Le grammage de solution de silane déposée sur le substrat métallique est déterminé par pesée. Le grammage est de 50±10 g/m2.
Juste après l'opération de trempé dans la solution de silane, les substrats métalliques sont mis en étuve pour subir un préchauffage à 220°C. Conformément à l'exemple 4A, dès que la température des substrats est de 220 °C, ceux-ci sont sortis de l' étuve et revêtus par la peinture poudre époxy de l'exemple 4A. L'application de la peinture poudre se fait exactement selon le procédé décrit dans l'exemple 4A. Après l'application de la poudre, les plaques sont post-cuites en étuve à 2000C, conformément au procédé de l'exemple 4A. Les plaques sont ensuite refroidies à température ambiante. Pour les tests, seules les éprouvettes pour lesquelles l'épaisseur d' époxy est comprise entre 350 et 450 micromètres sont retenues.
Les résultats sont présentés dans le tableau ci- dessous :
Les résultats montrent que chaque solution de silane, appliquée selon le procédé de l'invention, permet une adhérence du revêtement époxy, après immersion dans l'eau chaude, significativement améliorée par rapport au témoin de l'exemple 4A. D'autre part, l'utilisation de silane dilué dans l'eau conduit à des résultats similaires à ceux obtenus à partir de silane dilué dans un solvant organique, tel que l'éthanol. L'utilisation d'eau, en tant que diluant pour silane, ne nuit pas à l'efficacité de celui-ci.
EXEMPLE 4C
L'exemple 4C concerne l'application d'un revêtement tri-couche. Le revêtement est constitué d'un primaire poudre époxy, d'un adhésif et d'une couche de finition. La poudre époxy a la composition suivante :
Les pourcentages sont des pourcentages en poids par rapport au poids total de la composition.
Le temps de gel à 180°C de cette composition, déterminé selon la norme ISO 8130-6, est de 40+5 secondes.
L' adhésif est une polyoléfine dont le point de ramollissement, déterminé par analyse enthalpique différentielle ou DSC, est de 135°C, greffée par des radicaux à base d'anhydride maléique. Par exemple, l'adhésif est un adhésif greffé « Orevac® » 18510 commercialisé par Arkema.
La couche de finition est constituée de PEHD (polyéthylène haute densité) .
La solution 5 de silane est constituée de 94,5% d'eau de ville, 5% de silane « Dynasilan® » 1151, et 0,5% de colorant.
Le revêtement est appliqué sur la paroi externe d'un tube en acier de 7 mm d'épaisseur et de 116 mm de diamètre extérieur.
Après l'opération de sablage, effectuée à partir de l'abrasif Rugos 2000® grade 20-30, le dépoussiérage est assuré par projection d'air comprimé à la surface du tube. La projection d'abrasif amène la surface du tube à une température de 400C.
La solution 5 de silane est appliquée à la brosse sur la surface du tube. Le grammage visé est de 50+10 g/m2. Après l'application de la solution 5, le tube passe dans un inducteur qui élève la température de l'acier à 2200C.
Le primaire poudre est appliqué à l'aide d'un pistolet électrostatique, réglé à 75 kV. L'épaisseur déposée est de 120+30 μm.
L'adhésif, qui est extrudé à une température de 2300C, est appliqué sur le primaire selon un temps de recouvrement de 20 secondes. L'épaisseur de film d'adhésif déposé est de 250+20 μm. La couche de finition, qui est également extrudée à une température de 230°C, recouvre l'adhésif selon un délai de 10 secondes. L'épaisseur de cette couche est comprise entre 2,5 et 3 mm.
Des rouleaux presseurs compriment l'ensemble du revêtement afin d'optimiser le contact entre les différentes couches. Le tube passe ensuite dans le tunnel de refroidissement, 2 secondes après l'application de la couche de finition. Le proceasus de refroidissement consiste à projeter de l'eau froide sur la surface de la couche de finition.
A l'issue de ces différentes opérations, le tube est découpé en morceaux de 10 cm de long pour fournir des éprouvettes destinées à subir les tests de tenue en immersion. Au sein de chaque éprouvette, le revêtement tri- couche est incisé sur toute son épaisseur, c'est-à-dire jusqu'à la surface du métal. Pour chaque éprouvette, deux incisions distantes de 2,5 cm sont ainsi pratiquées sur toute la circonférence. Un deuxième tube est revêtu à partir du même système de revêtement et selon le même procédé. La différence réside dans le fait que la solution 5 de silane n'est pas utilisée .
Après application du revêtement, les éprouvettes sont préparées de la même manière que précédemment. Cette deuxième série d' éprouvettes constitue la série d' éprouvettes témoins, exemptes de silane.
Les deux séries d' éprouvettes subissent une immersion dans l'eau à 8O0C qui est particulièrement sévère. En effet, les incisions pratiquées sur le revêtement facilitent l'insertion de l'eau au niveau de l'interface époxy-substrat métallique. Ce processus conduit rapidement à une perte d'adhérence de l'époxy vis-à-vis de l'acier. Après 900 heures d'immersion, les éprouvettes sont sorties du bain pour une évaluation qualitative de 1' adhérence.
Une incision est pratiquée, selon l'axe de l' éprouvette, sur la bande de revêtement de 2,5 cm de large, comprise entre les deux incisions pratiquées préalablement à l'étape d'immersion. La pointe du couteau est insérée horizontalement (le plat de la lame) sous le revêtement à partir de l'incision faite selon l'axe de l' éprouvette, de manière à ce que la pointe de la lame soit en contact avec la surface du métal.
Par effet de levier contre un point d' appui tel qu'une baguette en acier, le plat de la lame est écarté de la surface métallique en un seul mouvement et verticalement, c'est-à-dire selon une direction à 90 degrés de la surface. Le but de cette opération est d'essayer d'arracher le revêtement.
Le pelage par arrachement du revêtement est très facile en ce qui concerne la série d' éprouvettes témoins. La bande de 2,5 cm de large se pèle selon toute la circonférence des éprouvettes. Par contre, lorsque le même test est réalisé à partir des éprouvettes traitées par la solution de silane, il est impossible de peler complètement le revêtement, dont la résistance à l'arrachement est significativement supérieure.
EXEMPLE 5
D'autres éprouvettes, obtenues selon le même mode opératoire que dans l'exemple 4C, sont utilisées pour tester l'influence de l'application de la solution de silane, selon le procédé de la présente invention, sur les performances de résistance au décollement cathodique.
Le principe de l'essai consiste à créer un défaut au sein du revêtement afin de mettre le métal à nu. Le défaut est en contact avec une solution saline, qui sert d' électrolyte .
Le métal est mis à un potentiel, correspondant à la protection cathodique, tel que toute oxydation du fer entrant dans la composition du substrat est inhibée.
Cette tension génère une réaction électrolytique qui conduit à la formation d' ions OH" et au dégagement d'hydrogène. L'effet de cette réaction électrolytique peut être plus ou moins néfaste vis à vis de l'adhérence du revêtement à la périphérie du défaut initial. Il faut donc s'assurer de la bonne compatibilité de la protection cathodique vis à vis de l'adhésion du revêtement. Ce processus se quantifie à travers la longueur du décollement du revêtement autour du défaut, à l'issue d'un temps donné d'application de la protection cathodique. Cette longueur de décollement est souvent appelée le rayon de décollement.
Les essais ont été réalisés selon la norme NFA 49710, à 23°C pendant 28 jours. La valeur moyenne, du rayon de décollement, relative à l'éprouvette sans silane est de 8 mm, alors que celle correspondant à l'éprouvette avec silane est de 4 mm. Ce résultat montre que l'application de la solution de silane selon le procédé de la présente invention conduit à l'amélioration de la résistance au décollement cathodique d'un revêtement à base de poudre époxy.

Claims

REVENDICATIONS
1. Procédé d'application d'un revêtement anticorrosion, monocouche ou multicouche, sur un substrat métallique entrant dans la constitution d'un tube ou d'un accessoire d'une canalisation destinée à être enterrée ou immergée pour le transport de fluide, tel que l'eau, les produits pétroliers, le gaz, ou les produits d'assainissement, caractérisé en ce qu'il comprend : a) une préparation de la surface du substrat, uniquement mécanique, incluant un décapage par projection d' abrasifs ; b) une application d'un promoteur d'adhérence sur la surface préparée constitué par une solution aqueuse d' au moins un silane, sans traitement chimique complémentaire ; c) une application d'une couche de peinture poudre à base de résine époxy sur la surface revêtue du promoteur d' adhérence ; et d) au moins un traitement thermique d'au moins la surface du substrat ; au moins une étape d) de traitement thermique étant effectuée entre les étapes a) et b) ou entre les étapes b) et c) , à une température comprise entre 110 et 250 degrés Celsius.
2. Procédé selon la revendication 1, dans lequel la préparation de surface inclut :
- un séchage du substrat afin d'y éliminer toute trace d' humidité ; - le décapage mécanique par projection d'abrasifs à l'aide d'au moins un matériau abrasif tel que grenaille, sable, alumine et corindon ; et
- une élimination des poussières générées par le décapage, par exemple par soufflage et/ou par aspiration ; pour obtenir une propreté de surface comprise entre Sa 2,5 et Sa 3 ou au niveau Sa 2,5, et une rugosité Rz comprise entre 40 et 150 micromètres ou entre 70 et 90 micromètres .
3. Procédé selon l'une des revendications 1 ou 2, dans lequel le substrat est constitué d'un métal incluant essentiellement du fer, et est de préférence constitué d' acier.
4. Procédé selon l'une des revendications l à 3, dans lequel ledit au moins un silane est choisi parmi les aminosilanes ou les époxysilanes, et par exemple parmi le N- (béta-aminoéthyl) -gamma-aminopropyltriméthoxysilane ou le gamma-glycidyloxypropyltriméthoxysilane .
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le silane est un silane préhydrolysé, tel que le 3-aminopropylsilane préhydrolysé.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la solution aqueuse comprend entre 0,5 et 20% en poids, de préférence entre 1 et 10% en poids, de silane.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel la solution aqueuse de silane est
•appliquée sur la surface du substrat selon un grammage compris entre 10 et 100 grammes par mètre carré, de préférence entre 30 et 70 grammes par mètre carré.
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel une unique étape d) de traitement thermique est effectuée entre les étapes a) et b) ou entre les étapes b) et c) , à une température comprise entre 110 et 250 degrés Celsius.
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel la température de traitement thermique est comprise entre 150 et 240 degrés Celsius.
10. Procédé selon l'une quelconque des revendications 1 à 9, comprenant en outre : e) une application d'une couche intermédiaire d'un adhésif à base de polyoléfine sur la surface revêtue de résine époxydique ; et f) une application d'une couche de finition de polyoléfine, choisi parmi les polyéthylènes ou les polypropylènes , sur la surface revêtue de la couche intermédiaire .
11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel le substrat métallique est un tube de la canalisation.
12. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel le substrat métallique est un accessoire de la canalisation.
13. Pièce métallique de canalisation destinée à être enterrée ou immergée pour le transport de fluide, tel que l'eau, les produits pétroliers, le gaz, ou les produits d'assainissement, présentant au moins une surface sur laquelle a été appliqué un revêtement selon le procédé tel que défini dans l'une quelconque des revendications 1 à 12.
EP07858414A 2006-11-22 2007-10-09 Procede d'application d 'un revetement anticorrosion sur les pieces d'une canalisation, incluant l'utilisation de solution aqueuse de silane et de peinture poudre epoxy Withdrawn EP2094401A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0610232A FR2908787B1 (fr) 2006-11-22 2006-11-22 Procede d'application d'un revetement anticorrosion sur les pieces d'une canalisation, incluant l'utilisation de solution aqueuse de silane et de peinture poudre epoxy.
PCT/FR2007/001647 WO2008062108A2 (fr) 2006-11-22 2007-10-09 Procede d'application d 'un revetement anticorrosion sur les pieces d'une canalisation, incluant l'utilisation de solution aqueuse de silane et de peinture poudre epoxy

Publications (1)

Publication Number Publication Date
EP2094401A2 true EP2094401A2 (fr) 2009-09-02

Family

ID=38093408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07858414A Withdrawn EP2094401A2 (fr) 2006-11-22 2007-10-09 Procede d'application d 'un revetement anticorrosion sur les pieces d'une canalisation, incluant l'utilisation de solution aqueuse de silane et de peinture poudre epoxy

Country Status (7)

Country Link
US (1) US8221839B2 (fr)
EP (1) EP2094401A2 (fr)
CA (1) CA2670219C (fr)
FR (1) FR2908787B1 (fr)
NO (1) NO20092128L (fr)
RU (1) RU2442666C2 (fr)
WO (1) WO2008062108A2 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852685B2 (en) 2010-04-23 2014-10-07 Lam Research Corporation Coating method for gas delivery system
IT1403637B1 (it) * 2011-01-20 2013-10-31 Saipem Spa Metodo di giunzione di spezzoni di tubo per realizzare tubazioni per idrocarburi, in particolare tubazioni sottomarine
EP2532769A1 (fr) * 2011-06-10 2012-12-12 Amcor Flexibles Kreuzlingen Ltd. Procédé de production dune couche de conversion sur une surface dune bande d'aluminium ou d'alliage d'aluminium
CN104755053B (zh) * 2012-08-31 2019-04-23 金伯利-克拉克环球有限公司 用于递送健康有益试剂的制品的制造方法
CN102935423A (zh) * 2012-10-19 2013-02-20 洛阳高登回转支承有限公司 一种金属表面防腐处理的方法
CN104415900A (zh) * 2013-08-23 2015-03-18 上海图博可特石油管道涂层有限公司 石油输送管用ub滑套的防腐工艺
JP6399056B2 (ja) * 2015-08-24 2018-10-03 Jfeスチール株式会社 ポリエチレン被覆鋼管およびその製造方法
JP6399055B2 (ja) * 2015-08-24 2018-10-03 Jfeスチール株式会社 ポリエチレン被覆鋼管およびその製造方法
JP6607265B2 (ja) * 2017-02-22 2019-11-20 Jfeスチール株式会社 ポリエチレン被覆鋼管およびその製造方法
JP6610685B2 (ja) * 2017-02-22 2019-11-27 Jfeスチール株式会社 ポリエチレン被覆鋼管およびその製造方法
RU183884U1 (ru) * 2017-12-11 2018-10-08 Акционерное общество "Научно-исследовательский и конструкторский институт монтажной технологии - Атомстрой" (АО "НИКИМТ-Атомстрой") Труба из нержавеющей стали с наружным защитным покрытием
CN115780220A (zh) * 2022-12-27 2023-03-14 西安天元合成材料有限公司 一种含切削液的石油管道防腐涂装工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4322437C1 (de) * 1993-07-06 1995-03-30 Basf Lacke & Farben Pulverlack, Verfahren zur Außenbeschichtung von Metallrohren sowie Verwendung des Pulverlacks zur einschichtigen Außenbeschichtung von Metallrohren
US5633038A (en) * 1994-10-25 1997-05-27 Atlantic Richfield Company Method of treatment of pipelines and other steel surfaces for improved coating adhesion
US6065781A (en) * 1998-05-29 2000-05-23 Power Lone Star, Inc. Method and apparatus for protecting the weld area of polyolefin coated pipe
EP1328590B1 (fr) * 2000-10-11 2011-08-03 Chemetall GmbH Procede de pretraitement et / ou d'enduction de surfaces metalliques avant le formage a l'aide d'une couche de type peinture et utilisation des substrats ainsi recouverts
US6444325B1 (en) * 2000-12-22 2002-09-03 Bayer Corporation Two-component coating compositions containing silane adhesion promoters
DE10308237B4 (de) * 2003-02-25 2014-01-16 Chemetall Gmbh Verfahren zur Beschichtung von metallischen Oberflächen, zugehörige Zusammensetzung und ihre Verwendung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008062108A2 *

Also Published As

Publication number Publication date
CA2670219C (fr) 2012-11-27
RU2442666C2 (ru) 2012-02-20
FR2908787A1 (fr) 2008-05-23
CA2670219A1 (fr) 2008-05-29
WO2008062108A3 (fr) 2008-07-24
FR2908787B1 (fr) 2009-01-16
US20100055327A1 (en) 2010-03-04
US8221839B2 (en) 2012-07-17
WO2008062108A2 (fr) 2008-05-29
RU2009123463A (ru) 2010-12-27
NO20092128L (no) 2009-08-14

Similar Documents

Publication Publication Date Title
CA2670219C (fr) Procede d'application d 'un revetement anticorrosion sur les pieces d'une canalisation, incluant l'utilisation de solution aqueuse de silane et de peinture poudre epoxy
US11053397B2 (en) Anticorrosion layer and process for production thereof
US9327315B2 (en) Process for producing a repair coating on a coated metallic surface
WO2015177229A2 (fr) Nouveau procede d'obtention de surfaces superhydrophobes ou superhydrophiles
JP2015048534A (ja) 皮膜、コーティング方法、及び被覆物品
Yuan et al. Facile fabrication approach for a novel multifunctional superamphiphobic coating based on chemically grafted montmorillonite/Al 2 O 3-polydimethylsiloxane binary nanocomposite
WO2003078683A2 (fr) Composition et procede de revêtement de substrat métallique
WO2016116605A1 (fr) Composition anti-corrosion et procede pour preparer une couche anti-corrosion sur une surface d'un substrat utilisant ladite composition
US5633038A (en) Method of treatment of pipelines and other steel surfaces for improved coating adhesion
CN107262348A (zh) 一种热镀锌法兰的复合涂层方法
JP6954788B2 (ja) ガス導管用ポリエチレン被覆鋼管及びガス導管用ポリエチレン被覆鋼管の製造方法
JP6079717B2 (ja) ポリエチレン被覆鋼管及びその製造方法
EP2646515A1 (fr) Revêtement de surface avec des composés perfluorés en tant qu'agent antisalissure
EP3759185A1 (fr) Composition de couche de finition pour revetement anticorrosion de piece metallique, procede humide-sur-humide (wet-on-wet) d'application d'une couche de finition, revetement anticorrosion de pieces metalliques et piece metallique revetue
US7141306B1 (en) Sol-gel composition and process for coating aerospace alloys
WO2015074844A1 (fr) Revetement pour echangeur de chaleur
Bischoff et al. Fouling repellent coating for shell-and-tube heat exchangers
JP2017170399A (ja) 耐熱塗装方法
EP0897969B1 (fr) Procédé de traitement de surfaces de tôles métalliques pour améliorer leur aptitude au collage, à l'emboutissage et au dégraissage
Arianpour et al. Hydrophobic and anti-ice properties of homogeneous and heterogeneous nanoparticle coatings on Al 6061 substrates
JP2001271185A (ja) 金属表面処理液およびそれを塗布した表面処理金属材料
Farhadi et al. How the steric effect affects ice repellency, UV stability and corrosion resistance of dissimilar SAMs coatings on Al 2024
JP2019077898A (ja) 塗装密着性に優れた塗装用表面処理鋼材及び塗装鋼材
JP2023051299A (ja) 樹脂塗覆装鋼管およびその製造方法
Sukumar Water Based Silane Coupling Agents for Bonding Polyacrylate Rubber to Aluminum

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090515

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160503