EP2089591A1 - Hohlprofil, insbesondere für einen fachwerkturm; verfahren zur herstellung eines hohlprofils; fachwerkturm mit mindestens drei eckstielen - Google Patents

Hohlprofil, insbesondere für einen fachwerkturm; verfahren zur herstellung eines hohlprofils; fachwerkturm mit mindestens drei eckstielen

Info

Publication number
EP2089591A1
EP2089591A1 EP07846582A EP07846582A EP2089591A1 EP 2089591 A1 EP2089591 A1 EP 2089591A1 EP 07846582 A EP07846582 A EP 07846582A EP 07846582 A EP07846582 A EP 07846582A EP 2089591 A1 EP2089591 A1 EP 2089591A1
Authority
EP
European Patent Office
Prior art keywords
profile
profile part
legs
hollow
hollow profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07846582A
Other languages
English (en)
French (fr)
Inventor
Hermann Oehme
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2089591A1 publication Critical patent/EP2089591A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/06Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/06Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web
    • E04C3/07Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web at least partly of bent or otherwise deformed strip- or sheet-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • E04H12/10Truss-like structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0408Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
    • E04C2003/0413Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section being built up from several parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0426Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section
    • E04C2003/0439Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section the cross-section comprising open parts and hollow parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0447Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section circular- or oval-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0486Truss like structures composed of separate truss elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/912Mounting on supporting structures or systems on a stationary structure on a tower
    • F05B2240/9121Mounting on supporting structures or systems on a stationary structure on a tower on a lattice tower
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49616Structural member making
    • Y10T29/49623Static structure, e.g., a building component
    • Y10T29/49625Openwork, e.g., a truss, joist, frame, lattice-type or box beam
    • Y10T29/49627Frame component

Definitions

  • the present invention relates to a hollow profile, in particular for a truss tower with the features of the preamble of claim 1, a method for producing a hollow profile and a truss tower with at least three corner posts.
  • Truss towers usually have three to four corner handles, which are connected by cross braces (diagonals) are, with the corner handles and the struts are made of an L-profile.
  • L-profiles are only produced up to a certain leg length as standard.
  • the largest commercially available L-profiles have a maximum leg length of 260 mm. Due to the given limb length and the open profile, the buckling length or bending and torsion
  • a truss tower to compensate for the low buckling length or bending and torsional stiffness of the standard L-profiles must contain a lot of struts in short distances between the corner stems to have a sufficiently high load capacity for the loads occurring a wind turbine can (sub framework).
  • the struts are connected to each other via screw connections.
  • a truss tower where L-sections are used requires a lot of bracing (8000- 10,000). Accordingly, high installation costs arise during tower assembly.
  • Another disadvantage is that the fittings must be properly maintained after assembly to timely release a loosening screw.
  • the tower of a wind energy plant is also subject to considerable dynamic load due to the nacelle arranged on the tower.
  • torsion loads predominantly occur in the upper area, so that the tower is designed in the upper area substantially with respect to torsion. Torsion only plays a minor role in the lower tower area, but the loads caused by bending moments increase dramatically.
  • the lower tower base is made very large when using L-profiles for the corner handles, as this compensates for the loads occurring can be.
  • the base area In a truss tower with L-profiles with a height of over 100 m, the base area z. B. 23x 23 m.
  • Hollow sections are known from EP 1 442 807 A1 and FR 921 439 A1, which consist of a first and a second profile part, wherein the first profile part is a standard L-profile.
  • the second profile part is formed as a web and arranged in such a way in the first profile part, that forms a Hohlprof ⁇ l, wherein the one longitudinal edge of the web is welded to a leg and the other longitudinal edge of the web is welded to the other leg.
  • hollow profiles for the corner handles of a lifting device consist of two parts with an angular cross-section of different Dimensions exist, with the outer ends of the legs of the smaller rest against the legs of the larger. The two parts of the hollow profile are thus not firmly connected.
  • Such a hollow profile is not suitable as a corner handle for a wind turbine, since it could in no way absorb the forces occurring during operation of a wind energy plant.
  • Object of the present invention is therefore to provide a hollow profile that can be used as a corner handle in a truss tower and is designed so that the truss tower, compared to the known from the prior art truss towers a significantly reduced number of struts and a significantly reduced lower tower base having.
  • the object is achieved with a hollow profile, which has the characterizing features of claim 1, a method for producing a hollow profile according to claim 12 and a truss tower according to claim 14.
  • the hollow profile according to claim 1 has a first profile part and a second profile part, wherein the cross section of the hollow profile is formed so that the first profile part has two legs and the second profile part is arranged between the legs of the first profile part such that to form a closed profile Hollow cross-section, which is connected to an end edge of the second profile part with a leg and the other end edge of the second profile part with the other leg of the first profile part in such a way that a portion of the respective leg of the first profile part protrudes beyond the connection point.
  • the first and second profile part are designed in such a way that the ratio of the two area moments of inertia about the area center of gravity of the cross section of the hollow profile is between 0.9 and 1.6.
  • the area moment of inertia together with the modulus of elasticity is a measure of the stiffness of a flat cross-section against bending or against torsion.
  • the area moment of inertia provides information about the tendency of bars to buckle.
  • the ratio of the two area moments of inertia about the centroid axis is at a pipe profile 1. It is known that pipe profiles over other hollow sections have the better static properties. A pipe profile has z. As a higher torsional stiffness and a more favorable stability behavior, in particular a lower tendency to bending torsional buckling. This is due, inter alia, to the fact that the cross section is designed such that occurring forces and moments can be absorbed equally well in all areas of the cross section.
  • tubular profiles do not have suitable possibilities for connecting several profiles in a simple manner or stiffening them through diagonals, since they have no straight surfaces for joining purposes.
  • the advantage of a tubular profile is advantageously taken over in such a way that with respect to the ratio of the area moments of inertia, the value should be around 1.
  • the hollow profile according to the invention has the advantage over the known tube profile that it also has straight surfaces for joining purposes.
  • a further advantage is that the hollow profile according to the invention consists of two profile parts, whereby the variability in terms of the design of the cross section compared to standard profiles is significantly improved.
  • the Applicant has recognized that the use of a hollow profile with a ratio of the moments of inertia of the invention enables the formation of a nestschwerkturmes allows that can absorb the occurring during operation of a wind turbine in the truss tower loads, the tower still slim (relatively small lower tower base) and a significantly reduced number of braces compared to the known from the prior art towers with standard L-profile ,
  • the legs of the first profile part are arranged at an angle between 60 ° and 120 °.
  • the size of the angle between the legs of the first profile part can be selected depending on the number of corner handles of the truss tower. So it is advantageous in a 3-siteligen mast when the angle is 60 °. In contrast, in the case of a 4-post mast, it is advantageous to form the first profile part at an angle of 90 °.
  • a further advantageous embodiment of the invention provides that the legs of the first profile part are connected to each other via a circular section.
  • the circular sections of the first profile parts form the outer edges of the truss tower.
  • the round shape of the edges due to the circular sections offers the advantage that the sharp edges and thus the noise level can be reduced.
  • the ratio of the thickness of the legs to the radius of the circular profile of the first profile part is section 1: 3.
  • the maintenance of the ratio according to the invention offers in particular in the production of the first profile part by bending the advantage that occurring during the bending process metallurgical stresses can be reduced.
  • the second profile part also has two legs, which are arranged at an angle between 60 ° and 120 ° to each other.
  • the legs of the second profile part are connected to each other via a circular section, wherein the ratio of the thickness of the legs to the radius of the circular section is 1: 3.
  • a further advantageous embodiment provides that the end edges of the legs of the second profile part are bent at an angle between 110 ° and 160 ° to the outside.
  • the present invention further relates to a method for producing a hollow profile according to one of the preceding claims.
  • the first profile part is made of a flat steel, which is bent in such a way that the first profile part has a circular section with two legs extending from the circular section.
  • the second profile part is made of a flat steel which is bent such that the second profile part has a circular portion and two legs extending from the circular portion. Subsequently, the outer ends of the legs of the second profile part are bent at an angle between 110 ° and 160 ° to the outside.
  • an outwardly facing chamfer provided at an angle between 70 ° and 90 ° respectively at the leg end edges of the second profile part.
  • the second profile part is arranged in the first profile part such that the tips of the chamfers touch the inner edges of the legs of the first profile part at the leg end edges of the second profile part, and the two profile parts welded together.
  • An inventive embodiment of the method provides that in addition the outer ends of the legs of the first profile part are bent outward. This offers the advantage of occurring during subsequent welding of the two profile parts occurring thermal deformations of the legs can be compensated.
  • the present invention further relates to a truss tower for a wind energy plant with at least three corner posts, which are formed as a hollow profile. Erf ⁇ ndungsloom the hollow profile according to one of claims 1- 12 is formed.
  • the corner stems are designed such that the ratio of the two area moments of inertia (Iy, Iz) about the centroids (y, z) of the cross section of the hollow section (10) over the length of the tower is different.
  • Figure 1 schematically an inventive hollow profile.
  • Figure 2 shows schematically three hollow profile according to the invention in which the first and second profile part is designed such that the ratio of the two area moments of inertia about the center of gravity points of the cross section of the hollow profile 1, 1.35 and 1.6.
  • FIG. 1 shows schematically a hollow profile 10 according to the invention, which consists of a first profile part 11 and a second profile part 12.
  • the first profile part 11 has a circular section 13. From the ends of the circular section legs 14, 15 extend.
  • the second profile part 12 also has a circular section 16, from which legs 17, 18 extend.
  • the upper ends of the legs 17, 18 are bent at an angle ⁇ .
  • a chamfer 19, 20 is provided in each case.
  • FIG. 2 schematically shows three hollow profiles according to the invention, each having a different ratio of the area moments of inertia Iy / Iz.
  • the area moments of inertia are related to the centroid axes y and z, wherein both axes are perpendicular to each other on the centroid S of the respective hollow profile.
  • the different ratios Iy / Iz of the three hollow profiles of Figure 2 arise due to the different profile thicknesses of the first and second profile part.
  • the profile thickness of the first profile part of the upper hollow profile is very thick in relation to the Proflldicke of the second Profllteils.
  • Such a hollow profile has an Iy / Iz of ⁇ 1, for example.
  • Such a ratio corresponds to that of a round tube.
  • the profile thickness of the first profile part is much thinner than in the second profile part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Foundations (AREA)

Abstract

Hohlprofil, insbesondere für einen Fachwerkturm, mit einem ersten Profilteil und einem zweiten Profilteil, wobei der Querschnitt des Hohlprofils so ausgebildet ist, dass das erste Profilteil zwei Schenkel aufweist und das zweite Profilteil dergestalt zwischen den Schenkeln des ersten Profilteils angeordnet ist, dass zur Bildung eines geschlossenen Hohlquerschnittes, die eine Endkante des zweiten Profilteils mit einem Schenkel und die andere Endkante des zweiten Profilteils mit dem anderen Schenkel des ersten Profilteils verbunden ist und zwar so, dass ein Teilabschnitt des jeweiligen Schenkels des ersten Profilteils über die Verbindungsstelle hinausragt, wobei das erste und zweite Profilteil dergestalt ausgebildet ist, dass das Verhältnis der beiden Flächenträgheitsmomente um die Flächenschwerpunktsachen des Querschnitts des Hohlprofils zwischen 0,9 und 1,6 liegt.

Description

Hoh^ofil, insbesondere für einen Fachwerkturm
Verfahren zur Herstellung eines Hohlprofils
Fachwerkturm mit mindestens drei Eckstielen
Die vorliegende Erfindung betrifft ein Hohlprofil, insbesondere für einen Fachwerkturm mit den Merkmalen des Oberbegriffs des Anspruchs 1, ein Verfahren zur Herstellung eines Hohlprofils sowie einen Fachwerkturm mit mindestens drei Eckstielen.
Die Entwicklung von Windenergieanlagen geht dahin, dass deren Abmessungen immer größer werden. Dies hat zur Folge, dass auch der die Gondel und den Rotor tragende Turm sehr groß dimensioniert werden muss. Bislang wurden die Türme von Windenergieanlagen aus Stahlrohren oder auch Spannbeton hergestellt. Diese weisen aber Nachteile auf. Zum einen sind die Abmessungen der Türme so groß geworden, dass sie nur unter großen Komplikationen transportierbar sind. Zum anderen sind solche Turmtypen aufgrund des hohen Materialeinsatzes sehr teuer.
Aufgrund dessen werden nunmehr auch Windenergieanlagen hergestellt, die einen Fachwerkturm aufweisen. Fachwerktürme weisen in der Regel drei bis vier Eckstiele auf, die durch Querverstrebungen (Diagonalen) miteinander verbunden sind, wobei die Eckstiele und die Verstrebungen aus einem L-Profil hergestellt sind.
Von Nachteil ist, dass L-Profile nur bis zu einer bestimmten Schenkellänge serienmäßig hergestellt werden. Die größten handelsüblichen L-Profile weisen maximal eine Schenkellänge von 260 mm auf. Aufgrund der vorgegebenen Schen- kellänge und des offenen Profils ist auch die Knicklänge bzw. Biege- und Torsi-
\ v onssteifigkeit von L-Profilen begrenzt.
Damit ergibt sich das Problem, dass ein Fachwerkturm zur Kompensation der geringen Knicklänge bzw. Biege- und Torsionssteifigkeit der Standard L-Profile sehr viele Verstrebungen in kurzen Abständen zwischen den Eckstielen enthalten muss, um eine genügend hohe Tragfähigkeit für die auftretenden Lasten einer Windenergieanlage aufweisen zu können (Unterfachwerk). Die Verstrebungen werden über Schraubverbindungen miteinander verbunden. Ein Fachwerkturm bei dem L-Profil verwendet werden, sind sehr viele Verstrebungen notwendig (8000- 10.000). Entsprechend entstehen bei der Turmmontage hohe Montagekosten. Ein weiterer Nachteil ist, dass die Verschraubungen nach der Montage entsprechend gewartet werden müssen, um ein Lösen von Schraubverbindungen rechtzeitig zu erkennen.
Im Gegensatz zu Leitungsmasten wird der Turm einer Windenergieanlage aufgrund der auf dem Turm angeordneten Maschinengondel auch erheblich dynamisch belastet. Bei dem Fachwerkturm einer Windenergieanlage treten im oberen Bereich überwiegend Torsionslasten auf, so dass der Turmes im oberen Bereich im wesentlichen hinsichtlich Torsion ausgelegt wird. Im unteren Turmbereich spielt Torsion nur noch eine geringe Rolle, dafür nehmen aber die Belastungen durch Biegemomente extrem zu. Um Biegelasten Rechnung zu tragen, wird die untere Turmgrundfläche bei der Verwendung von L-Profilen für die Eckstiele sehr groß ausgebildet, da auf diese Weise die auftretenden Lasten kompensiert werden können. Bei einem Fachwerkturm mit L-Profilen mit einer Höhe von über 100 m beträgt die Grundfläche z. B. 23x 23 m.
Insbesondere bei der Herstellung von Fachwerktürmen für eine Windenergieanlage wäre daher die Verwendung von Hohlprofilen sinnvoll, da diese gegenüber Standard-L-Profilen statische Vorteile aufweisen. Übliche Hohlprofile wie z. B. stranggepresste Rundrohr- und Quadratprofile weisen aber den Nachteil auf, dass sie aus konstruktiven Gründen nur mit hohem Aufwand zusammengefügt werden können.
Aus der EP 1 442 807 Al sowie der FR 921 439 Al sind Hohlprofile bekannt, die aus einem ersten und einem zweiten Profilteil bestehen, wobei das erste Profilteil ein Standard-L-Profil ist. Das zweite Profilteil ist als Steg ausgebildet und dergestalt im ersten Profilteil angeordnet, dass sich ein Hohlprofϊl ausbildet, wobei der eine Längsrand des Steges mit einem Schenkel verschweißt ist und der andere Längsrand des Steges mit dem anderen Schenkel verschweißt ist.
Selbstverständlich sind die statischen Voraussetzungen bei der Verwendung eines solchen bekannten Hohlprofils als Eckstiel für einen Fachwerkturm deutlich besser als es bei der Verwendung eines Standard-L-Profils der Fall ist. Trotzdem reichen die zur Verfügung stehenden Abmessungen der für die Herstellung des bekannten Hohlprofils benötigten Standard-L-Profile häufig nicht aus, um einen Fachwerkturm für eine Windenergieanlage herstellen zu können, ohne dass die Anzahl der Verstrebungen extrem hoch und der Mast damit entsprechend teuer ist. Oder aber es müssen für die Erzeugung des Hohlprofils Spezialmaschinen verwendet werden, deren Herstellungskosten enorm hoch sind, so dass auf diese Weise die Kosten für das Hohlprofil sehr hoch werden.
Aus der EP 1015374 sind Hohlprofile für die Eckstiele einer Hebevorrichtung bekannt, die aus zwei Teilen mit einem winkligen Querschnitt unterschiedlicher Abmessungen bestehen, wobei die äußeren Enden der Schenkel des Kleineren an den Schenkeln des Größeren anliegen. Die beiden Teile des Hohlprofils sind somit nicht fest miteinander verbunden. Ein solches Hohlprofil ist als Eckstiel für eine Windenergieanlage nicht geeignet, da es in keiner Weise die beim Betrieb einer Windenergieanlage auftretenden Kräfte aufnehmen könnte.
Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung eines Hohlprofils, das als Eckstiel in einem Fachwerkturm eingesetzt werden kann und so ausgebildet ist, dass der Fachwerkturm, gegenüber dem aus den Stand der Technik bekannten Fachwerktürmen eine deutlich reduzierte Anzahl an Verstrebungen sowie eine deutlich reduzierte untere Turmgrundfläche aufweist.
Gelöst wird die Aufgabe mit einem Hohlprofϊl, das die kennzeichnenden Merkmale des Anspruchs 1 aufweist, einem Verfahren zur Herstellung eines Hohlprofils gemäß Anspruch 12 und einem Fachwerkturm gemäß Anspruch 14.
Das Hohlprofil gemäß Anspruch 1 weist ein erstes Profilteil und ein zweites Profilteil auf, wobei der Querschnitt des Hohlprofils so ausgebildet ist, dass das erste Profilteil zwei Schenkel aufweist und das zweite Profilteil dergestalt zwischen den Schenkeln des ersten Profilteils angeordnet ist, dass zur Bildung eines geschlossenen Hohlquerschnittes, die eine Endkante des zweiten Profilteils mit einem Schenkel und die andere Endkante des zweiten Profilteils mit dem anderen Schenkel des ersten Profilteils verbunden ist und zwar so, dass ein Teilabschnitt des jeweiligen Schenkels des ersten Profilteils über die Verbindungsstelle hinausragt.
Erfindungsgemäß sind das erste und zweite Profilteil dergestalt ausgebildet, dass das Verhältnis der beiden Flächenträgheitsmomente um die Flächenschwer- punktsachen des Querschnitts des Hohlprofils zwischen 0,9 und 1,6 liegt. Das Flächenträgheitsmoment ist zusammen mit dem Elastizitätsmodul ein Maß für die Steifigkeit eines ebenen Querschnitts gegen Biegung bzw. gegen Torsion. Zudem liefert das Flächenträgheitsmoment Aufschluss über die Neigung von Stäben zu knicken.
Das Verhältnis der beiden Flächenträgheitsmomente um die Flächenschwerpunktsachsen beträgt bei einem Rohrprofil 1. Es ist bekannt, dass Rohrprofile gegenüber anderen Hohlprofilen die besseren statischen Eigenschaften haben. Ein Rohrprofil weist z. B. eine höhere Torsionssteifigkeit sowie ein günstigeres Stabilitätsverhalten, insbesondere eine geringere Neigung zum Biegedrillknicken auf. Dies liegt unter anderem darin begründet, dass der Querschnitt so ausgebildet ist, dass auftretende Kräfte und Momente in allen Bereichen des Querschnitts gleich gut aufgenommen werden können.
Der Nachteil bei der Verwendung von Rohrprofilen ist, dass sie keine geeigneten Möglichkeiten aufweisen, um mehrere Profile in einfacher Weise miteinander zu verbinden bzw. sie durch Diagonalen auszusteifen, da sie keine geraden Flächen zu Verbindungszwecken aufweisen.
Bei der vorliegenden Erfindung wird in vorteilhafter Weise der Vorzug eines Rohrprofils dergestalt übernommen, dass im Hinblick auf das Verhältnis der Flächenträgheitsmomente der Wert um 1 liegen soll. Das erfindungsgemäße Hohlprofil weist aber gegenüber dem bekannten Rohrprofil den Vorteil auf, dass es zudem gerade Flächen zu Verbindungszwecken aufweist. Weiterhin ist von Vorteil, dass das erfindungsgemäße Hohlprofil aus zwei Profilteilen besteht, wodurch die Variabilität im Hinblick auf die Gestaltung des Querschnitts im Vergleich zu Standardprofilen erheblich verbessert wird.
Der Anmelder hat erkannt, dass die Verwendung eines Hohlprofils mit einem erfindungsgemäßen Verhältnis der Flächenträgheitsmomente die Ausbildung ei- nes Fachwerkturmes ermöglicht, der die beim Betrieb einer Windenergieanlage im Fachwerkturm auftretende Belastungen aufnehmen kann, wobei der Turm dennoch schlank (relativ kleine untere Turmgrundfläche) und eine deutlich reduzierte Anzahl an Verstrebungen gegenüber den aus dem Stand der Technik bekannten Türmen mit Standard-L-Profil.
Gemäß vorteilhafter Ausgestaltungen der Erfindung sind die Schenkel des ersten Profilteils in einem Winkel zwischen 60° und 120° angeordnet. Die Größe des Winkels zwischen den Schenkeln des ersten Profilteils kann in Abhängigkeit von der Zahl der Eckstiele des Fachwerkturms gewählt werden. So ist es bei einem 3- stieligen Mast vorteilhaft, wenn der Winkel 60° beträgt. Bei einem 4-stieligen Mast ist es demgegenüber aber vorteilhaft, das erste Profilteil mit einem Winkel von 90° auszubilden.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass die Schenkel des ersten Profilteils über einen Kreisabschnitt miteinander verbunden sind.
Das Vorsehen eines Kreisabschnitt im ersten Profϊlteil bietet den Vorteil, dass auf diese Weise die Querschnittsform des Rundrohres zum Teil nachgebildet werden kann, wodurch entsprechend auch die positiven statischen Eigenschaften des Rohrquerschnitts in das erfindungsgemäße Hohlprofil übernommen werden.
Bei der Anwendung des erfindungsgemäßen Hohlprofils als Eckstiel eines Fachwerkturmes bilden die Kreisabschnitte der ersten Profilteile die äußere Kanten des Fachwerkturmes. Die aufgrund der Kreisabschnitte runde Ausbildung der Kanten bietet den Vorteil, dass gegenüber scharfen Kanten der Windwiderstand und damit auch die Geräuschentwicklung reduziert werden kann.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung beträgt beim ersten Profilteil das Verhältnis der Dicke der Schenkel zu dem Radius des Kreis- abschnitts 1: 3. Das Einhalten des erfindungsgemäßen Verhältnis bietet insbesondere bei der Herstellung des ersten Profilteil durch Biegen den Vorteil, dass beim Biegevorgang auftretende metallurgische Spannungen reduziert werden können.
Gemäß weiterer vorteilhafter Ausgestaltungen der Erfindung weist das zweite Profilteil ebenfalls zwei Schenkel auf, die in einem Winkel zwischen 60° und 120° zueinander angeordnet sind. Zudem sind die Schenkel des zweiten Profilteils über einen Kreisabschnitt miteinander verbunden sind, wobei das Verhältnis der Dicke der Schenkel zu dem Radius des Kreisabschnitts 1 : 3 beträgt.
Eine weitere vorteilhafte Ausgestaltung sieht vor, dass die Endkanten der Schenkel des zweiten Profilteils in einem Winkel zwischen 110° und 160° nach außen gebogen sind.
Die vorliegende Erfindung betrifft weiterhin ein Verfahren zur Herstellung eines Hohlprofils gemäß einem der vorhergehenden Ansprüche. Erfindungsgemäß wird das erste Profilteil aus einem Flachstahl hergestellt, der dergestalt gebogen wird, dass das erste Profilteil einen Kreisabschnitt mit zwei sich von dem Kreisabschnitt erstreckenden Schenkeln aufweist.
Ebenso wird das zweite Profilteil aus einem Flachstahl hergestellt, der dergestalt gebogen wird, dass das zweite Profilteil einen Kreisabschnitt und zwei sich von dem Kreisabschnitt erstreckende Schenkel aufweist. Anschließend werden die äußeren Enden der Schenkel des zweiten Profilteils in einem Winkel zwischen 110° und 160° nach außen gebogen werden. Zudem werden jeweils an den Schenkelendkanten des zweiten Profilteils eine nach außen weisenden Fase, mit einem Winkel zwischen 70° und 90° vorgesehen. Das Biegen der Schenkel nach außen sowie das Vorsehen der Fase bieten den Vorteil, dass die Herstellung der späteren Schweißverbindung zwischen den beiden Profilteilen erleichtert wird und eine Schweißnaht erzeugt werden kann, die den später auftretenden Kräften beim Betrieb der Windenergieanlage standhält.
Abschließend wird das zweite Profilteil in dem ersten Profilteil dergestalt angeordnet, dass die Spitzen der Fasen an den Schenkelendkanten des zweiten Profilteils die Innenkanten der Schenkel des ersten Profilteils berühren, und die beiden Profilteile miteinander verschweißt.
Eine erfindungsgemäße Ausgestaltung des Verfahrens sieht vor, das zusätzlich die äußeren Enden der Schenkel des ersten Profilteils nach außen gebogen werden. Dies bietet den Vorteil, beim späteren Verschweißen der beiden Profilteile auftretende thermische Verformungen der Schenkel ausgeglichen werden können.
Die vorliegende Erfindung betrifft weiterhin einen Fachwerkturm für eine Windenergieanlage mit mindestens drei Eckstielen, die als Hohlprofil ausgebildet sind. Erfϊndungsgemäß ist das Hohlprofil gemäß einem der Ansprüche 1- 12 ausgebildet.
Wie in der Einleitung erläutert, verändert sich die Art der Belastung durch Torsion und Biegemoment über die Turmlänge. Im oberen Turmbereich muss primär Torsion und im unteren Turmbereich Biegemomente berücksichtig werden. Um diesen Anforderungen gerecht zu werden sind, gemäß einer vorteilhaften Ausgestaltung des Fachwerkturms die Eckstiele dergestalt ausgebildet, dass das Verhältnis der beiden Flächenträgheitsmomente (Iy, Iz) um die Flächenschwer- punktsachen (y, z) des Querschnitts des Hohlprofils (10) über die Länge des Turmes unterschiedlich ist.
Im folgenden wird die Erfindung anhand der Figuren lund 2 näher erläutert. Es zeigt: Figur 1: schematisch ein erfindungsgemäßes Hohlprofil.
Figur 2: schematisch drei erfindungsgemäße Hohlprofil bei denen das erste und zweite Profilteil dergestalt ausgebildet ist, dass das Verhältnis der beiden Flächenträgheitsmomente um die Flächenschwer- punktsachen des Querschnitts des Hohlprofils 1, 1,35 und 1,6 beträgt.
Die Figur 1 zeigt schematisch ein erfindungsgemäßes Hohlprofil 10, das aus einem ersten Profilteil 11 und einem zweiten Profilteil 12 besteht. Das erste Profilteil 11 weist einen Kreisabschnitt 13 auf. Von den Enden des Kreisabschnitts erstrecken Schenkel 14, 15.
Das zweite Profilteil 12 weist ebenfalls einen Kreisabschnitt 16 auf, von dem sich Schenkel 17, 18 erstrecken. Die oberen Enden der Schenkel 17, 18 sind in einem Winkel α gebogen. An den Kanten der oberen Schenkelenden 17, 18 ist jeweils eine Fase 19, 20 vorgesehen.
Die Figur 2 zeigt schematisch drei erfindungsgemäße Hohlprofile, die jeweils ein unterschiedliches Verhältnis der Flächenträgheitsmomente Iy/ Iz aufweisen. Die Flächenträgheitsmomente sind bezogen auf die Flächenschwerpunktsachsen y und z, wobei beide Achsen senkrecht zueinander auf dem Flächenschwerpunkt S des jeweiligen Hohlprofils stehen.
Die unterschiedlichen Verhältnisse Iy/Iz der drei Hohlprofile der Figur 2 entstehen aufgrund der unterschiedlichen Profildicken des ersten und zweiten Profilteils. So ist die Profildicke des ersten Profilteils des oberen Hohlprofils sehr dick im Verhältnis zur Proflldicke des zweiten Profllteils. Ein solches Hohlprofll weist zum Beispiel ein Iy/Iz von ~1 auf. Ein solches Verhältnis entspricht dem eines Rundrohres.
Bei dem mittleren Hohlprofil sind die Profildicken der beiden Profilteile ungefähr gleich stark. Bei der vorgeschlagenen Form für das Hohlprofil ergibt sich damit ein Verhältnis Iy/Iz von =1,35.
Demgegenüber ist bei dem unteren Profilteil die Profilstärke des ersten Profilteils sehr viel dünner als bei dem zweiten Profilteil. Bei einer solchen Ausbildung des Hohlprofils beträgt das Verhältnis Iy/Iz =1,6.

Claims

PATENTANSPRÜCHE:
1. Hohlprofil (10), insbesondere für einen Fachwerkturm, mit einem ersten Profilteil (11) und einem zweiten Profilteil (12), wobei der Querschnitt des Hohlprofils (10) so ausgebildet ist, dass das erste Profilteil (11) zwei Schenkel (14, 15) aufweist und das zweite Profilteil (12) dergestalt zwischen den Schenkeln (14, 15) des ersten Profilteils (11) angeordnet ist, dass zur Bildung eines geschlossenen Hohlquerschnittes, die eine Endkante des zweiten Profilteils (12) mit einem Schenkel und die andere Endkante des zweiten Profilteils (12) mit dem anderen Schenkel des ersten Profilteils verbunden ist und zwar so, dass ein Teilabschnitt des jeweiligen Schenkels (14, 15) des ersten Profilteils (11) über die Verbindungsstelle hinausragt, dadurch gekennzeichnet, dass das erste und zweite Profilteil dergestalt ausgebildet ist, dass das Verhältnis der beiden Flächenträgheitsmomente (Iy, Iz) um die Flächenschwerpunktsachen (y, z) des Querschnitts des Hohlprofils (10) zwischen 0,9 und 1,6 liegt.
2. Hohlprofil (10) gemäß dem vorstehenden Anspruch, dadurch gekennzeichnet, dass die Schenkel (14, 15) des ersten Profilteils (11) in einem Winkel zwischen 60° und 120° angeordnet sind.
3. Hohlprofil (10) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Schenkel (14, 15) des ersten Profilteils (11) über einen Kreisabschnitt (13) miteinander verbunden sind.
4. Hohlprofil (10) gemäß dem vorstehenden Anspruch, dadurch gekennzeichnet, dass beim ersten Profilteil (11) das Verhältnis der Dicke der Schenkel (14, 15) zu dem Radius des Kreisabschnitts (13) 1: 3 beträgt.
5. Hohlprofil (10) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das zweite Profilteil (12) so ausgebildet ist, dass im Bereich der Verbindungsstellen die Endkanten des zweiten Profilteils (12) in einem Winkel zwischen 70° - 110° zu den Schenkeln des ersten Profilteils angeordnet sind.
6. Hohlprofil (10) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das zweite Profilteil (12) zwei Schenkel (17, 18) aufweist, die in einem Winkel zwischen 60° und 120° zueinander angeordnet sind.
7. Hohlprofil (10) gemäß dem vorstehenden Anspruch, dadurch gekennzeichnet, dass die Schenkel (17, 18) des zweiten Profilteils (12) über einen Kreisabschnitt (16) miteinander verbunden sind.
8. Hohlprofil (10) gemäß dem vorstehenden Anspruch, dadurch gekennzeichnet, dass beim zweiten Profilteil (12) das Verhältnis der Dicke der Schenkel (17, 18) zu dem Radius des Kreisabschnitts (16) 1: 3 beträgt.
9. Hohlprofil (10) gemäß einem der Ansprüche 6- 8, dadurch gekennzeichnet, die Endkanten der Schenkel (17, 18) des zweiten Profilteils (12) in einem Winkel (α) zwischen 110° und 160° nach außen gebogen sind.
10. Hohlprofil (10) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Profilteile (11, 12) aus Flachstahl hergestellt sind.
11. Hohlprofil (10) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Profilteile (11, 12) miteinander verschweißt sind.
12. Verfahren zur Herstellung eines Hohlprofils (10) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
- das erste Profilteil (11) aus einem Flachstahl hergestellt wird, der dergestalt gebogen wird, dass das erste Profilteil (11) einen Kreisabschnitt (13) mit zwei sich von dem Kreisabschnitt (13) erstrek- kenden Schenkeln (14, 15) aufweist,
- das zweite Profilteil (12) aus einem Flachstahl hergestellt wird, der dergestalt gebogen wird, dass das zweite Profilteil (12) einen Kreisabschnitt (16) und zwei sich von dem Kreisabschnitt (16) erstreckende Schenkel (17, 18) aufweist,
- das die äußeren Enden der Schenkel (17, 18) des zweiten Profilteils (12) in einem Winkel zwischen 110° und 160° nach außen gebogen werden,
- das jeweils an den Schenkelendkanten des zweiten Profilteils (12) eine nach außen weisenden Fase (19, 20), mit einem Winkel zwischen 70° und 90° vorgesehen wird,
- das zweite Profilteil (12) in dem ersten Profilteil (11) dergestalt angeordnet wird, dass die Spitzen der Fasen (19, 20) an den Schenkelendkanten des zweiten Profilteils (12) die Innenkanten der Schenkel des ersten Profilteils (11) berührt,
- das die beiden Profilteile (11, 12) miteinander verschweißt werden.
13. Verfahren gemäß dem vorstehenden Anspruch, dadurch gekennzeichnet, dass die Enden der Schenkel (14, 15) des ersten Profilteil (11) vor dem Verschweißen nach außen gebogen werden.
14. Fachwerkturm mit mindestens drei Eckstielen für eine Windenergieanlage, die als Hohlprofil (10) ausgebildet sind, dadurch gekennzeichnet, dass das Hohlprofil (10) gemäß einem der vorhergehenden Ansprüche ausgebildet ist.
15. Fachwerkturm für eine Windenergieanlage gemäß dem vorstehenden Anspruch, dadurch gekennzeichnet, dass die Eckstiele dergestalt ausgebildet sind, dass das Verhältnis der beiden Flächenträgheitsmomente (Iy, Iz) um die Flächenschwerpunktsachen (y, z) des Querschnitts des Hohlprofils (10) über die Länge des Turmes unterschiedlich ist.
EP07846582A 2006-11-14 2007-11-14 Hohlprofil, insbesondere für einen fachwerkturm; verfahren zur herstellung eines hohlprofils; fachwerkturm mit mindestens drei eckstielen Withdrawn EP2089591A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006053480A DE102006053480A1 (de) 2006-11-14 2006-11-14 Hohlprofil, insbesondere für einen Fachwerkturm, Verfahren zur Herstellung eines Hohlprofils, Fachwerkturm mit mindestens drei Eckstielen
PCT/EP2007/009829 WO2008058714A1 (de) 2006-11-14 2007-11-14 Hohlprofil, insbesondere für einen fachwerkturm; verfahren zur herstellung eines hohlprofils; fachwerkturm mit mindestens drei eckstielen

Publications (1)

Publication Number Publication Date
EP2089591A1 true EP2089591A1 (de) 2009-08-19

Family

ID=39271358

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07846582A Withdrawn EP2089591A1 (de) 2006-11-14 2007-11-14 Hohlprofil, insbesondere für einen fachwerkturm; verfahren zur herstellung eines hohlprofils; fachwerkturm mit mindestens drei eckstielen

Country Status (6)

Country Link
US (1) US20100126102A1 (de)
EP (1) EP2089591A1 (de)
CN (1) CN101558208A (de)
CA (1) CA2667567A1 (de)
DE (1) DE102006053480A1 (de)
WO (1) WO2008058714A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009330323B2 (en) * 2008-12-15 2016-03-24 Ge Wind Energy, Llc Structural shape for wind tower members
US20110133475A1 (en) * 2010-04-23 2011-06-09 Danian Zheng Support tower for use with a wind turbine and system for designing support tower
US20160096418A1 (en) * 2014-10-06 2016-04-07 GM Global Technology Operations LLC Stiffeners for cast light-metal door headers
CN110284745A (zh) * 2018-03-19 2019-09-27 中辉鑫华(武汉)电力科技有限公司 一种frp复合材料高耸塔架及其制作方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1419827A (en) * 1920-06-28 1922-06-13 Firm Luftschiffbau Zeppelin Gm Construction member
FR2350453A1 (fr) * 1976-05-05 1977-12-02 Dziewolski Richard Pylones support de lignes electriques haute tension de forme pyramidale a base triangulaire en construction tubulaire ou profiles
FR2549885B1 (fr) * 1983-07-29 1986-01-24 Thomson Csf Pylone autostable de section constante
US4745412A (en) * 1985-05-10 1988-05-17 Chu Associates, Inc. Lightweight tower assemblies for antennas and the like
DE19536949C2 (de) * 1995-10-04 1998-10-08 Loh Kg Rittal Werk Rahmenschenkel für ein Rahmengestell eines Schaltschrankes
NL1006187C2 (nl) * 1997-05-30 1999-01-07 Mammoet Decalift Int Bv Hijsinrichting voor grote lasten.
EP1442807A1 (de) * 2003-01-29 2004-08-04 Peiner Träger GmbH Verfahren zur Herstellung eines Konstruktionsprofils mit einem geschlossenen Hohlquerschnitt und Konstruktionsprofil als solches
DE102004044312A1 (de) * 2004-09-10 2006-03-30 Oehme, Hermann R. Hohlprofil, Verfahren zur Herstellung eines Hohlprofils, Verwendung eine Hohlprofils
JP2007042064A (ja) * 2005-06-29 2007-02-15 Mitsubishi Electric System & Service Co Ltd シーケンサ用配線装置及びそれを用いたシーケンサシステム
USD639587S1 (en) * 2011-01-27 2011-06-14 Sanmina-Sci Corporation Structural member for a rack
USD639586S1 (en) * 2011-01-27 2011-06-14 Sanmina-Sci Corporation Structural member for a rack

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008058714A1 *

Also Published As

Publication number Publication date
WO2008058714A1 (de) 2008-05-22
CA2667567A1 (en) 2008-05-22
CN101558208A (zh) 2009-10-14
DE102006053480A1 (de) 2008-05-15
US20100126102A1 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
EP0019691B1 (de) Aus einzelnen Abschnitten gefertigtes Rotorblatt
DE102006043197B3 (de) Strukturiertes Verbundblech
DE102012206109C5 (de) Rotorblatt einer Windenergieanlage
EP2283231A1 (de) Verfahren zur fertigung eines blattanschlusses eines rotorblatts, ein blattanschluss und ein befestigungselement für einen blattanschluss
DE102012106772A1 (de) Modularer Turm einer Windkraftanlage
WO2010121630A2 (de) Turm für eine windkraftanlage
EP2195530B1 (de) Mastkonstruktion für fachwerk-türme von windkraftanlagen
WO2011144428A1 (de) Rotorblatt einer windkraftanlage
DE102010046519A1 (de) Rotorblatt oder Rotorblattsegment für eine Windenergieanlage
EP1766163A1 (de) Rohrförmige struktur und verfahren zu ihrer errichtung
EP2089591A1 (de) Hohlprofil, insbesondere für einen fachwerkturm; verfahren zur herstellung eines hohlprofils; fachwerkturm mit mindestens drei eckstielen
DE102005012817A1 (de) Profilgestaltung
WO2016030342A1 (de) Knickmast
DE102016205447A1 (de) Tragstruktur für eine Windenergieanlage
EP3728757B1 (de) Verfahren zum herstellen eines profilverbunds mit speziellen verbindungselementen
DE9015416U1 (de) Gerüstknoten
DE102017106875B4 (de) Windkraftanlage und Verfahren zu dessen Montage
DE706014C (de) Metallprofilstab fuer Luftfahrzeuge
DE822899C (de) Stahlskelettbauweise
DE102012018189A1 (de) Innenwandig verstärktes Rohr und Verfahren zu dessen Herstellung
DE102010035253B4 (de) System zum lösbaren Verbinden von Gehrungsprofilen
AT525765B1 (de) Konstruktionselement
EP0007496A1 (de) Verfahren zur Herstellung eines wärmegedämmten Metallprofils
DE102004044312A1 (de) Hohlprofil, Verfahren zur Herstellung eines Hohlprofils, Verwendung eine Hohlprofils
WO2007042064A1 (de) Hohlprofil, sowie verfahren zur herstellung und verwendung des hohlprofils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100601