EP2077065A1 - Verwendung einer klebezusammensetzung zur chipanbringung von hochleistungshalbleitern - Google Patents

Verwendung einer klebezusammensetzung zur chipanbringung von hochleistungshalbleitern

Info

Publication number
EP2077065A1
EP2077065A1 EP07803139A EP07803139A EP2077065A1 EP 2077065 A1 EP2077065 A1 EP 2077065A1 EP 07803139 A EP07803139 A EP 07803139A EP 07803139 A EP07803139 A EP 07803139A EP 2077065 A1 EP2077065 A1 EP 2077065A1
Authority
EP
European Patent Office
Prior art keywords
die
metal powder
composition
copper
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07803139A
Other languages
English (en)
French (fr)
Inventor
Muriel Thomas
Klaus Schaack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Deutschland GmbH and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Priority to EP07803139A priority Critical patent/EP2077065A1/de
Publication of EP2077065A1 publication Critical patent/EP2077065A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0133Ternary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent

Definitions

  • the present invention provides a lead-free adhesive composition for use in die- attachment of high power semiconductors.
  • Lead-based solder alloys containing more than 85 % by weight of lead are up to now needed for so-called high-temperature applications with average operating temperatures of more than 150 0 C and peak processing temperatures up to 260 0 C.
  • high-temperature applications with average operating temperatures of more than 150 0 C and peak processing temperatures up to 260 0 C.
  • die-attach applications for power semiconductors are die-attach applications for power semiconductors.
  • the lead-based solder alloys provide sufficient resistance to thermal fatigue when subjecting the semiconductor devices to thermal cycling.
  • these solders provide suffi- cient thermal conductivity for dissipating the heat generated by the power semiconductors.
  • the JEDEC Standard does not recommend test conditions that exceed +125 0 C for Pb/Sn solder compositions. Nevertheless, the harsh operating conditions of power semi- conductor devices require that they withstand test conditions specified by test condition "H" of the JEDEC Standard and require temperature cycling between -55 and +150 0 C.
  • the die-attach composition for use according to the invention comprises a one component adhesive and a metal powder as filler, wherein the one component adhesive is an epoxy resin and wherein the metal of the metal powder has a thermal conductivity of more than 250 W/(m • K) and comprises copper, and the powder particles have a spheroidal shape.
  • one component adhesive designates a one pot adhesive composition comprising the adhesive and a latent curing agent which may be activated by supplying energy such as heat or ultraviolet radiation.
  • the adhesive may be an epoxy resin, preferably a bisphenol epoxy resin.
  • the one component adhesive has a long shelf live and starts to cure only after supplying external energy.
  • the cured die-attach composition has to allow similar heat dissipation as the conventional high lead solders used for attaching high power semiconductor devices.
  • high lead solder alloys are e.g. Pb88SnlOAg2 with a thermal conductivity of 55 W/(m • K) and Pb92.5Sn5Ag2.5 with a thermal conductivity of 44 W/(m • K). It has been found that the cured die-attach composition complies with the need with respect to power dissipation from the power semiconductor as well as resistance to temperature cycling.
  • Thermal conductivity of the cured die-attach composition is a function of thermal con- ductivity of the filler material, thermal conductivity of the epoxy resin, the volume fraction of the filler material and of the thermal contact resistance between the filler and the epoxy resin.
  • the resulting thermal conductivity is of course mainly influenced by the filler which comprises copper.
  • Thermal conductivity of pure copper is 400 W/(m • K), while the thermal conductivity of epoxy resin is as low as 0.3 W/(m • K).
  • thermal conductivity of the filler-epoxy composite thermal conductivity of the filler powder should be larger than 250, preferably larger than 300 and most preferred larger than 350 W/(m • K).
  • the thermal conductivity of the filler-epoxy composite is further dependent on the volume fraction of filler.
  • filling degree will be used instead of volume fraction of filler.
  • the filling degree is defined as the weight percentage of filler relative to the total weight of the composite.
  • the powder particles of the metal powder should have a spheroidal or spherical shape. Flake like powders give inferior results and moreover adhesives filled with flakes will block the syringe when using the die-attach composition in dispensing applications. In case of spheroidal filler particles the maximum volume fraction is obtained for a hexagonal close packing with a volume fraction of 74 %.
  • This value translates into a maximum filling degree of 95 wt.-% for a copper powder as filler by using the density of copper (8.9 g/cm 3 ) and of epoxy resin (approximately 1.2 g/cm 3 ).
  • the mean particle size D50 of the copper powder has no decisive influence on thermal fatigue resistance of the filler-epoxy composite. Good results have been obtained with filler powders having a mean particle diameter D50 between 1 and 50 ⁇ m. More preferred are mean particle diameters between 1 and 30 ⁇ m and even more preferred are mean particle diameters between 1 and 5 ⁇ m.
  • the resulting thermal conductivity of the filler-epoxy composite depends on the thermal contact resistance between the filler surface and the resin. Any impurity layer on the surface of the filler particles will increase the contact resistance. Therefore it is preferred to use filler powders with low surface impurities.
  • metal powders comprising a high percentage of copper.
  • copper powders with a purity of copper of more than 99.5 wt.-% and especially more than 99.9 wt.-%.
  • the most detrimental impurity on the surface of the powder particles is copper (II) oxide.
  • the proportion of copper (II) oxide relative to metallic copper in a thin surface layer of approximately 5 nm thickness can be determined with XPS (X-Ray Photoelectron Spectroscopy).
  • XPS X-Ray Photoelectron Spectroscopy
  • the obtained XPS spectra are analyzed by curve fitting as is well known in the art. It has been found that good results with regard to thermal conductivity and thermal fatigue of the cured composite can be obtained if at most 50 % of the atoms in the surface layer analyzed by XPS are oxidized to CuO.
  • the oxidized copper atoms should not exceed 30 % , more preferred not more than 10 %.
  • the thermal conductivity of cured epoxy resin is very low.
  • the main task of the epoxy resin is to provide good adhesion to the metal filler and to the semiconductor device and the substrate.
  • Epoxy resins selected from the group consisting of bisphenol A epoxy resin and bisphenol F epoxy resin have proven to provide good adhesion to copper and nickel surfaces as well as to chips. Bisphenol A epoxy resin is most preferred.
  • the cured die-attach composition comprising the cured adhesive filled with the specified filler powder and having a bond-line thickness between 20 and 80 ⁇ m withstands the above mentioned test conditions for thermal fatigue and yields a similar heat dissi- pation as high-lead solders.
  • the metal powder is thoroughly mixed with the expoxy resin.
  • the composition is packed in one unit and can be kept at room temperature before use.
  • the composition is applied to the printed circuit board, the semiconductor is placed onto the board and the die-attach composition is then cured at a temperature between 80 and 250 0 C, preferably at a temperature between 130 and 180 0 C.
  • the coating material may be a fatty acid, preferably a saturated fatty acid, a polysiloxane or a phosphide compound.
  • the fatty acids can be selected from oleic acid, myristic acid, palmitic acid, margaric acid, stearic acid and arachidic acid.
  • the coating material is applied in an amount of from 0.1 to 1 wt.-% relative to the total weight of the coated copper powder. Most preferred are coating materials with slight hydrophilic properties, i.e. with little polar groups, so as to minimize attraction of water.
  • the die-attach composition should contain 40 to 90 wt.-% of metal powder relative to the total weight of the composition.
  • the composition should contain between 40 and 80 wt.-%, preferably between 60 and 80 wt.-%, of metal for avoiding blockage of the dispensing nozzle.
  • the adhesive composition may contain between 40 and 90 wt.-% of metal powder relative to the total weight of the composition.
  • Figure 1 Test rig for measuring heat dissipation
  • Figure 2 Heat dissipation in dependence of bond line thickness after curing for die- attach compositions filled with various filling degrees of copper powder.
  • Table 1 lists die-attach compositions comprising copper powder mixed with bisphenol A epoxy resin to form metal filled adhesive compositions at different filling degrees for temperature cycling tests and heat dissipation measurements.
  • the copper particles had spheroidal shape, a purity of more than 99.9 % and a thermal conductivity of more than 350 W/(m • K).
  • the die-attach compositions designated as CuI, Cu2, Cu3 comply with the requirements of the present invention whereas a com-tapal "High Thermal Conductivity Silver Filled Epoxy Paste" (Ag) was selected for comparison reasons.
  • a conventional high lead solder paste Pb (Pb88SnlOAg2) served as reference material.
  • Figure 2 shows the temperature differences measured across the bond line of test pieces for different bond line thicknesses (BLT).
  • the line designated with Pb shows the behavior of the reference sample attached with the commercial solder paste Pb. It can clearly be seen that the samples attached according to the invention with the die-attach compositions CuI, Cu2 and Cu3 exhibit a similar thermal conductivity as the reference sam- pies using soldering. Contrary, the comparison sample Ag shows a steep increase of the temperature difference with increasing bond line thickness and is thus not acceptable.
  • test pieces were subjected to 1000 temperature cycles with 15 minutes soak time according to JEDEC Standard test condition "H" (-55 to +150 0 C).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)

Abstract

060311 TM 10 Abstract The Directive 2002/95/EC of the European Parliament and of the Council promulgated that from 1st July 2006 new electrical and electronic equipment must no longer contain lead. Accordingly, lead-free solder alloys for various electrical and electronic applica- 5 tions have been developed. But at present, lead in high melting temperature type sol- ders, e.g. used for die-attach applications, are exempted from the directive due to lack of lead-free alternatives for these alloys. The present invention provides a lead-free die- attach composition for attaching high power semiconductor devices to printed circuit boards. The die-attach composition comprises a metal filled epoxy resin, wherein the 10 metal is selected from a powder comprising copper and having spheroidal particles with less than half of the copper atoms in a surface layer being oxidized as measured by XPS.
EP07803139A 2006-09-30 2007-08-31 Verwendung einer klebezusammensetzung zur chipanbringung von hochleistungshalbleitern Withdrawn EP2077065A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07803139A EP2077065A1 (de) 2006-09-30 2007-08-31 Verwendung einer klebezusammensetzung zur chipanbringung von hochleistungshalbleitern

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06020667A EP1954114A1 (de) 2006-09-30 2006-09-30 Verwendung einer adhesiven Zusammensetzung zur Befestigung von Hochleistungshalbleitern
PCT/EP2007/059152 WO2008037559A1 (de) 2006-09-30 2007-08-31 Use of an adhesive composition for die-attaching high power semiconductors
EP07803139A EP2077065A1 (de) 2006-09-30 2007-08-31 Verwendung einer klebezusammensetzung zur chipanbringung von hochleistungshalbleitern

Publications (1)

Publication Number Publication Date
EP2077065A1 true EP2077065A1 (de) 2009-07-08

Family

ID=38721442

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06020667A Withdrawn EP1954114A1 (de) 2006-09-30 2006-09-30 Verwendung einer adhesiven Zusammensetzung zur Befestigung von Hochleistungshalbleitern
EP07803139A Withdrawn EP2077065A1 (de) 2006-09-30 2007-08-31 Verwendung einer klebezusammensetzung zur chipanbringung von hochleistungshalbleitern

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06020667A Withdrawn EP1954114A1 (de) 2006-09-30 2006-09-30 Verwendung einer adhesiven Zusammensetzung zur Befestigung von Hochleistungshalbleitern

Country Status (4)

Country Link
EP (2) EP1954114A1 (de)
CN (1) CN101658083B (de)
TW (1) TW200835430A (de)
WO (1) WO2008037559A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2278593A4 (de) * 2008-04-30 2013-08-28 Hitachi Chemical Co Ltd Verbindungsmaterial und halbleiteranordnung
DE102010044329A1 (de) * 2010-09-03 2012-03-08 Heraeus Materials Technology Gmbh & Co. Kg Kontaktierungsmittel und Verfahren zur Kontaktierung elektrischer Bauteile
JP6072117B2 (ja) * 2015-03-30 2017-02-01 Jx金属株式会社 銅微粒子ペースト及びその製造方法
CN110054999B (zh) * 2019-02-11 2021-08-13 斯迪克新型材料(江苏)有限公司 防残胶导热双面胶带的制备方法
CN110054998B (zh) * 2019-02-11 2021-08-13 斯迪克新型材料(江苏)有限公司 石墨烯定向导热双面胶带

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2606784B1 (fr) * 1986-11-14 1989-03-03 Rhone Poulenc Multi Tech Composition potentiellement adhesive electriquement conductrice
JPH084100B2 (ja) * 1987-02-27 1996-01-17 タツタ電線株式会社 ボンディング線
JPH11106731A (ja) * 1997-09-30 1999-04-20 Hitachi Chem Co Ltd 回路接続用組成物及びこれを用いたフィルム
US5861678A (en) * 1997-12-23 1999-01-19 Micron Technology, Inc. Method and system for attaching semiconductor dice to substrates
JP3412518B2 (ja) * 1998-06-16 2003-06-03 住友金属鉱山株式会社 熱伝導性樹脂ペースト
US6686044B2 (en) * 2000-12-04 2004-02-03 Shiraishi Kogyo Kaisha, Ltd. Surface-coated calcium carbonate particles, method for manufacturing same, and adhesive
US20050056365A1 (en) * 2003-09-15 2005-03-17 Albert Chan Thermal interface adhesive
US7485202B2 (en) * 2003-10-28 2009-02-03 Dow Corning Corporation Method for making a flat-top pad

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2008037559A1 *

Also Published As

Publication number Publication date
EP1954114A1 (de) 2008-08-06
WO2008037559A1 (de) 2008-04-03
CN101658083B (zh) 2013-01-02
CN101658083A (zh) 2010-02-24
TW200835430A (en) 2008-08-16

Similar Documents

Publication Publication Date Title
EP1837383B1 (de) Zusammensetzung zur Befestigung von Hochleistungshalbleiter
EP1376689B1 (de) Strahlender strukturkörper eines elektronischen bauteils und für den strahlenden strukturkörper verwendete strahlende folie
KR102487472B1 (ko) 고성능, 열 전도성 표면 실장 (다이 부착) 접착제
US7906373B1 (en) Thermally enhanced electrically insulative adhesive paste
US20050161632A1 (en) Phase change thermal interface composition having induced bonding property
US20050056365A1 (en) Thermal interface adhesive
WO2006065346A1 (en) Methods of using sonication to couple a heat sink to a heat-generating component
EP2077065A1 (de) Verwendung einer klebezusammensetzung zur chipanbringung von hochleistungshalbleitern
EP2493998A2 (de) Wärmeschnittstellenmaterial mit epoxidisiertem nussschalenöl
Kohli et al. Advanced thermal interface materials for enhanced flip chip BGA
JP7077526B2 (ja) 複合部材
US20070256783A1 (en) Thermally enhanced adhesive paste
US20120279697A1 (en) Thermal interface material with phenyl ester
Gowda et al. Design of a high reliability and low thermal resistance interface material for microelectronics
KR100947783B1 (ko) 반도체 접착 페이스트 조성물
US7926696B2 (en) Composition
JP7215273B2 (ja) 接合構造体
JP2010021165A (ja) フェーズチェンジ型放熱部材
Higaki et al. High Thermal Die-Attach Paste Development for Analog Devices
JP2008108859A (ja) フェーズチェンジ型放熱部材

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090504

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: W.C. HERAEUS GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERAEUS MATERIALS TECHNOLOGY GMBH & CO. KG

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERAEUS DEUTSCHLAND GMBH & CO. KG

17Q First examination report despatched

Effective date: 20160930

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180911