EP2047028A2 - Filtre antiviral et son utilisation dans un purificateur d'air, climatiseur ou humidificateur - Google Patents

Filtre antiviral et son utilisation dans un purificateur d'air, climatiseur ou humidificateur

Info

Publication number
EP2047028A2
EP2047028A2 EP07823609A EP07823609A EP2047028A2 EP 2047028 A2 EP2047028 A2 EP 2047028A2 EP 07823609 A EP07823609 A EP 07823609A EP 07823609 A EP07823609 A EP 07823609A EP 2047028 A2 EP2047028 A2 EP 2047028A2
Authority
EP
European Patent Office
Prior art keywords
fiber bed
antiviral
polymer
filter
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07823609A
Other languages
German (de)
English (en)
Inventor
Quang Trong Nguyen
Laurent Lebrun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Rouen
Original Assignee
Universite de Rouen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite de Rouen filed Critical Universite de Rouen
Publication of EP2047028A2 publication Critical patent/EP2047028A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/267Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of unsaturated carboxylic esters having amino or quaternary ammonium groups
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/02Amines; Quaternary ammonium compounds
    • A01N33/04Nitrogen directly attached to aliphatic or cycloaliphatic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3562Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer

Definitions

  • Antiviral filter and its use in an air purifier, air conditioner or humidifier are provided.
  • the present invention relates to the field of health risk and public health, particularly related to the presence of aerial viruses.
  • the invention more particularly relates to an antiviral filter and optionally antibacterial which is capable of sequestering viruses and optionally bacteria present in the ambient air.
  • the invention also relates to all products comprising said filter such as air conditioners, air purifiers, humidifiers, or medical devices such as surgical masks.
  • Japanese Patent Application JP2004432430 describes a filter containing a compound extracted from the grammar Sasa veitchii, which would have antibacterial and antiviral virtues.
  • US Patent 5,888,527 discloses an antiviral mask impregnated with tea polyphenol containing catechems and theaflavmas which would inactivate viruses by inhibiting viral replication and altering the physical properties of viral membranes.
  • the international patent application WO03 / 051460 relates to a mask comprising a passive filter and an active disinfectant filter.
  • the passive filter would retain dust particles, bacteria and spores, while the active filter would kill bacteria, spores and viruses that are too small to be blocked by the passive filter.
  • the active filter comprises antibacterial, antibiotic or antiviral agents such as chlorohexidme or other antiseptic compounds containing chlorine or an antiseptic halogen.
  • Kawabata et al. has been particularly interested in 4-vinylpyridine polymers, and has demonstrated that these polymers have antibacterial activity (Kawabata et al., antibacterial activity of soluble pyndinium-type polymer, Applied and Environmental Microbiology, 1988, pp. 2532-2535). and also antiviral activity when polymerized as 1.7 micron diameter beads in a nonwoven (N. Kawabata et al., 1998, Reactive & functional polymers, No. 37, p 213-218).
  • the 4-vinylpyndine polymer is polymerized on a non-woven membrane having a pore size of 14 ⁇ m, in the presence of divmylbenzene, so as to obtain beads having a diameter of 1.7 microns.
  • the presence of divmylbenzene is essential because in its absence, the polymerization leads to the production of a film of homopolymers of 4-vinylpyridme which makes it difficult to obtain a microporous membrane. It is thus essential that the 4-vinylpyridine be polymerized in the form of beads to obtain a microporous membrane.
  • Kawabata et al. The efficacy of viral retention is due to the particular affinity of this particular pyridine polymer (N-benzyl-4-vinylpyridinium polychloride) with viruses. Without being able to explain the causes of this affinity, Kawabata hypothesizes that (1) the electrostatic interactions between the positive charges of the polymer and the negative charges of the viruses and (2) the hydrophobic interactions between this polymer and the viruses, could play important roles in this particular affinity. It should be noted that, in the absence of a control test, the test of this publication does not make it possible to identify whether the observed viral retention is actually due to the 4-vinylpyridine polymer or to the viral loss due to the experimental conditions.
  • R 1 and R 2 independently are selected from linear or branched (C 1 -C) hydrocarbon chains, X is in the range of 0 to 1,
  • R 4 is selected from a direct link and a linear or branched hydrocarbon chain (Ci-Ce),
  • R 5 is selected from hydrogen or linear or branched (C 1 -C 6 ) hydrocarbon chains
  • R 6 is selected from a direct bond or straight or branched (C 1 -C 6 ) hydrocarbon chains
  • Ar is a nitrogen-containing heteroaromatic group, and wherein said precursor polymer is modified such that: - at least a portion of said nitrogen atoms are substituted with a substituent selected from the group consisting of C1-6 alkyl groups; C2 0 linear or connected, and
  • At least a portion of the nitrogen atoms in said precursor polymer are quaternized.
  • polymer with quaternized nitrogen atoms refers to compounds of the following general formula:
  • non-covalent in the sense of WO2006 / 071191 refers to a non-covalent bond such as a hydrogen bond.
  • the Applicant has sought to develop a filter having antiviral activity, said filter having a small pore size, preferably less than 5 ⁇ m, very preferably less than 1 ⁇ m and even more
  • the filter according to the invention can be prepared according to a simple method which does not require a m situ polymerization, said filter having a non-occlusive surface, implying that the membrane or bed of fibers remains microporous (se).
  • the Applicant thus establishes that the affinity between a polymer and a virus is due to the density of the positive charges distributed in the polymeric network located over the entire surface of the fiber bed, said fillers being preferably carried by functions amines located in the main chain and / or in the side chains of the polymer.
  • the purpose of the present invention is to propose an alternative solution to existing antiviral filters. to meet the need for protection against aerial viruses, and relates to the use of a cationic polymer preferably having more than one amine function per unit, which can be deposited on a bed of fibers, preferably non-woven, by as a virus trap.
  • the present invention more particularly for ob] and a fiber bed, preferably negatively charged, coated with at least one cationic polymer having preferably more than one amino function per unit, whose nitrogen atoms are not substituted by alkyl groups and whose nitrogen atoms are not quatermsés, and having a protonation rate of at least 20%.
  • fiber bed any woven or non-woven layer composed of natural, artificial or synthetic polymer fibers, for example cellulosic or non-cellulosic fibers such as polyester, polyethylene, polypropylene or polyamide fibers.
  • the fiber bed is microporous, that is to say it has a small pore size, preferably less than 5 ⁇ m, very preferably less than 1 ⁇ m and more preferably more preferably less than or equal to 0.2 microns.
  • cationic polymer any protonable polymer, preferably of the type comprising amine functions on its main chain and / or on its side chain or chains, and having a protonation rate such that it is capable of to attach to a fiber bed on the one hand and fix viruses on the other hand.
  • the protonation rate of a cationic polymer is at least 20%.
  • the cationic polymer of the present invention is therefore different from that described in WO2006 / 071191 in that it does not comprise nitrogen atoms substituted by alkyl groups or quaternized nitrogen atoms in the sense of WO2006 / 071191.
  • the cationic polymer of the present invention comprises amine functions on its main chain and / or its side chain (s), and has a protonation D of at least 20%.
  • protonated amme or “proton nitrogen” refers to compounds of the following general formula:
  • “Protonation rate” means the percentage of nitrogen atoms that are protonated.
  • the thus coated fiber bed has a charge density of 6 IxICT a0 IxItT 8 mol load per cm z of the fiber bed or Ixio "5a IxI (T 3 meq per cm z
  • the fiber bed preferably said fiber bed, has a loading density of IxICT of 7 moles of filler per cm 2 of bed or 1x1 CT 4 meq per cm 2 of fiber bed.
  • the determination of the charge density per cm 2 of bed of fibers is carried out by the methods known to those skilled in the art such as those making it possible to determine the exchange capacity of a membrane or an ion exchange resin. described by F. Helffe ⁇ ch, Ion Exchange. McGraw-Hill Book Company Inc. Ed. (1962), Chapter 4; pages 72-94.
  • said polymer comprises cationic groups on its main chain, and / or on its side chain or chains.
  • said cationic polymer comprises a polymer carrying amine groups (primary, secondary, tertiary) on its main chain, at least part of the amino groups, advantageously at least 20%, preferably at least 30%, very preferably preferably at least 50%, amino groups being protonated.
  • these cationic polymers are polydimethylamine-co-epichlorohydrin or polydimethylamine-co-epichlorohydrin-co-ethylenediamine.
  • Percent protonation assay is performed by techniques well known to those skilled in the art such as that described by Eyler et al. (Eyler RW, Krug TS, Siephius S, Analytical Chemistry 1947; 19 (1) 24-7). Other techniques for determining the percentage of protonation are described by Muller et al. (Muller G, C Ripoll and E Selegny, European Polymer Journal, Volume 7 (10), 1971, pages 1373-1392).
  • said cationic polymer comprises a polymer carrying amine groups (primary, secondary, tertiary) on its chain or side chain (s), at least part of the amino groups, preferably at least 20% , preferably at least 30%, very preferably at least 50%, amino groups being protonated.
  • these cationic polymers are polyvinylamine, modified polyacrylamide, polyvinylimidazole, diethylaminoethyl polysaccharides, chitosan, polymethacrylate, preferably poly (II). dirtiethylaminoethyl methacrylate, and do not include 4-vinylpy ⁇ dine.
  • said cationic polymer comprises a polymer carrying amme groups (primary, secondary, tertiary) on its main chain and on its side chain (s), at least part of the groups. amino, and preferably at least 20%, preferably at least 30%, very preferably at least 50%, amino groups being protonated.
  • these cationic polymers are polyethyleneimine.
  • said polymer is polyethylene imme.
  • the present invention also ob] and an antiviral filter and optionally antibacterial comprising at least one fiber bed coated with at least one cationic polymer as described above.
  • the filter of the invention is an antiviral and antibacterial filter, and comprises at least one fiber bed coated with a cationic polymer as described above, said fiber bed having an equal pore size or less than 0.2 ⁇ m.
  • the pore size equal to or less than 0.2 ⁇ m imparts antibacterial property to the fiber bed; the surface of this fiber bed is then covered with at least one cationic polymer, the fiber bed thus acquires an antiviral property in addition to the antibacterial property.
  • the antiviral properties of the fiber bed are understood to mean the capacity of said fiber bed to sequester the viruses.
  • infectious viruses is understood to mean influenza viruses (influenza virus A, B and C), coronaviruses (by example SARS-CoV).
  • viruses also concerned by the invention include smallpox virus, bacteriophage (E. coli), hepatitis viruses, poliovirus, rotavirus, tobacco mosaic virus, Ebola virus and other infectious viruses.
  • the filter of the invention is an antiviral and antibacte ⁇ en filter, and comprises at least one fiber bed coated with a cationic polymer as described above, and at least one fiber bed having a size of pores equal to or less than 0.2 ⁇ m.
  • the fiber bed according to the invention is effective for a period of at least 5 hours, preferably at least 12 hours and very preferably at least 18 hours.
  • the present invention also relates to an air purifier, an air conditioner or a humidifier comprising at least one antiviral filter and optionally antibacterial as described above.
  • the present invention also relates to a medical device comprising at least one antiviral filter and optionally antibacterial as described above, including a surgical mask, bandages, protective clothing such as a tracksuit ...
  • the present invention relates to a method of preparing a fiber bed with antiviral property, comprising contacting said fiber bed with a cationic polymer solution as described above, and then a drying step. When the cationic polymer is brought into contact with the fiber bed, the cationic functions, in particular quaternary amine, will interact with the fiber bed, which leads to the fixation of the polymer on the fiber bed.
  • the cationic polymer is solubilized in a solvent or a mixture of solvent.
  • the solvent is a polar solvent, preferably water.
  • the cationic polymer is solubilized in a lonizable salt, especially NaCl.
  • the concentration of the polymer in said cationic polymer solution is
  • 0.1 to 200 gl -1 preferably 1 to 100 gl -1 , more preferably 20 to 80 gl -1 and most preferably 40 to 50 g -1 -1 .
  • the pH of the polymer solution is preferably acidic, preferably from 3 to 6.5, and very preferably the pH of the polymer solution is 6.
  • the fiber bed is dipped in the polymer solution at room temperature or the polymer solution is sprayed at room temperature onto the fiber bed.
  • the fiber bed is soaked in the polymer solution for 1 minute to 3 hours, preferably for 5 minutes to 1 hour, very preferably for 10 to 30 minutes.
  • the fiber bed is washed with water before drying so as to remove the excess of polymer solution.
  • the fiber bed is allowed to dry at room temperature by evaporation or vented air.
  • the drying step can be accelerated by passage in a ventilated oven or under vacuum.
  • the thickness of the resulting polymer film on the surface of the fiber bed is 0.5 ITT ⁇ .mu.m to 5 .mu.m, preferably from 0.001 to 1 micron, most preferably from 0.001 to 0.01 .mu.m .
  • the present invention comprises a method of preparing an antiviral property fiber bed as described above further comprising a step of crosslinking the polymer after drying. This optional operation sometimes makes it possible to optimize the fixation of the polymer on the fibers.
  • the present invention also comprises a process for preparing a fiber bed with antiviral and antibacterial properties in which the process for preparing a fiber bed with antiviral property as described above is applied to a bed of fibers comprising a pores equal to or less than 0.2 ⁇ m.
  • PEI polyethylene imne
  • the fiber bed used in these experiments comes from the third layer of masks of surgeons
  • the protonation rate of the PEI is 75% ⁇ 5% (14 ml / 18 ml). 5
  • a specific surface of the fiber bed (232 cm 2) was dipped for 12 hours in 50 ml of a solution 4.4% of CDR in NaCl 0.2 mol.l ".
  • the cte fiber bed is then placed in a 0.1 mol.l -1 solution of HCl in order to protonate all of the fixed PEI.
  • the fiber bed is then washed with water to constant pH to remove excess HCl.
  • the fiber bed is finally placed in 8 ml of water.
  • the amount of positive charge present on the fiber bed is ⁇ osee by the soda 0.01 mol.l "1 .
  • the initial pH is 8.56.
  • the pH value of 8 corresponds to an optimum fixing pH determined beforehand.
  • the pH value of 6 makes it possible to increase the protonation, preferably the quaternization of the PEI (7 ⁇ pKa ⁇ 9) and thus to improve its fixation.
  • the layer is then drained, washed with water while stirring slowly during 10 h, then air dried. Finally, the layer is sterilized under UV before being mounted in the filtration cell.
  • T4 of the E. coli strain was chosen as the test virus.
  • T4 bacteriophage and E. coli strain are both non-pathogenic to humans and the environment.
  • Medium 1 is used to infect E. coli with phage and to perform the filtration experiment. It has a composition for one liter of deionized water (Milliro®): extract of peptone and meat: 13g, yeast extract: 5g; NaCl: 5g; KH 2 PO 4 : 8g; NaOH to obtain a pH of 7.6.
  • Mcro® deionized water
  • Medium 2 richer than the first, is used for the phage assay. It has for composition for a liter of deionized water
  • Peptone, meat and yeast extracts are substrates rich in proteins, carbohydrates and water-soluble vitamins that are used for bacterial growth.
  • Glucose is a carbohydrate that has the same role.
  • NaCl, CaCl 2 , MgCl 2 are salts necessary for the survival of living organisms.
  • KH 2 PO 4 is a buffer that maintains a constant pH.
  • the media 1 and 2 once prepared, are divided into Erlenmeyer 250 J cm. They are used in liquid form or in gelled form (for medium 2) by incorporating agar at 3% by weight (polysaccharide gelling agent). The latter is run in petri dishes and is used to perform the counts during the assay.
  • the media are sterilized by autoclave (120 ° C. for 20 minutes) and then stored in a cold room. Glucose is autoclaved separately to avoid caramelization with the medium.
  • the assembly is illustrated in Figure 1. It consists of an air compressor aerosol generator (Diffusion0 Technique füre - Saint-Etienne - France), connected to a nebulizer (Atomisor NL 11). A 0.22 ⁇ m pore size gas filter (Gelman) is placed between the generator and the nebulizer to prevent parasitic bacterial contamination.
  • the cell is a two-part glass filter holder having an air inlet and an outlet. The membrane is inserted sterilely between two rubber seals covering the lapping of the cell. The whole is held by clamps. 0 The output of the cell is connected to a liquid trap
  • E. coli is inoculated with platinum loop in 150 cm 3 of medium 1 at 37 ° C.
  • the evolution of the growth of the bacterium is followed by a UV / visible spectrophotometer.
  • 18 ⁇ l of a reference solution of phages (containing 10 12 phages / ml) are diluted in 182 ⁇ l of physiological saline.
  • 20 .mu.l of this solution are then inoculated into medium 1 containing E. coli.
  • the amount of phages injected must always be proportional to the cell population.
  • each tube is then added to each of the tubes.
  • the contents of each tube are spread on Petri dishes containing solid agar (3% agar) of medium 2.
  • the dishes are placed at 37 ° C. for 24 hours before counting the lysis plaques.
  • the stock solution is also titrated in the same way (with a dilution range up to 10 "u ) and serves as a reference for each experiment.
  • the loss factor is equal to the number of viruses per cm 3 of stock solution divided by the number of phages per cm 3 of the receptor solution after filtration.
  • the loss factor of the mask is 5.2. Given the loss factor specific to mounting alone, the commercial surgical mask is totally ineffective vis-à-vis viruses.
  • the efficiency of viral retention of the fiber bed without treatment was measured. 0.43 x 10 10 viruses per cm 3 diffused through this untreated fiber bed for a nebulized stock solution containing 1.22 x 10 10 viruses per cm 3 .
  • the loss factor due to the untreated fiber bed is therefore 2.9. This factor is inferior to that of the 3-layer surgical mask, which makes sense, since the two polypropylene layers intended for bacterial filtration also filter the viruses very slightly.
  • the measurement of viral retention by this layer shows that no virus is detected after filtration.
  • the retention of viruses by the treated layer 3 is therefore total.
  • This layer has become totally barrier to viruses by our treatment.
  • PEI is therefore a very effective polymer for making the filtration system barrier to viruses.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Plant Pathology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Microbiology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Filtering Materials (AREA)
  • Materials For Medical Uses (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

Lit de fibres, de préférence chargé négativement, recouvert avec un polymère cationique ayant une charge positive nette, filtre antiviral comprenant ledit lit de fibres et procèdé d'obtention dudit lit de fibres à propriété antivirale.

Description

Filtre antiviral et son utilisation dans un purificateur d'air, climatiseur ou humidificateur
La présente invention concerne le domaine du risque sanitaire et de la santé publique, notamment lie a la présence de virus aériens. L'invention concerne plus particulièrement un filtre antiviral et optionnellement antibacterien qui est capable de séquestrer les virus et optionnellement les bactéries présents dans l'air ambiant. L'invention concerne aussi tous les produits comprenant ledit filtre tels que des climatiseurs, purificateurs d'air, humidificateurs, ou dispositifs médicaux comme les masques chirurgicaux.
L' élimination des virus aériens est aujourd'hui un important sujet de santé publique. Par exemple, les récentes épidémies virales en Asie (grippes aviaires, SRAS) ont montre qu' il existe un réel besoin de protection face aux attaques virales. La vaccination est pour l'instant une solution peu efficace, du fait des mutations rapides des virus ainsi que de leur multiplication et propagation fulgurantes. Les filtres bactériens existants a l'heure actuelle, tels que les filtres HEPA que l'on peut trouver par exemple dans les masques chirurgicaux traditionnels, ne sont pas efficaces comme barrière αe protection contre les virus. En effet, ces filtres sont constitues de couches de polypropylene non tisse dont les pores présentent une taille de 0,2 μm. Cette taille de pores est peu efficace contre les virus puisque ces derniers sont d'une taille inférieure (de 80 a 110 nm) . La fabrication de filtres antiviraux représente ainsi une solution intéressante face a ce besoin de protection. Plusieurs approches de fabrication de filtres antiviraux ont ete décrites.
Par exemple, la demande de brevet japonais JP2004432430 décrit ainsi un filtre contenant un compose extrait de la grammée Sasa veitchii, qui aurait des vertus antibactérienne et antivirale.
Le brevet US 5, 888, 527 divulgue un masque antiviral imprégné de polyphénol de thé contenant des catéchmes et des théaflavmes qui permettrait d' inactiver les virus en inhibant la réplication virale et en altérant les propriétés physiques des membranes virales .
La demande de brevet international WO03/051460 concerne un masque comprenant un filtre passif et un filtre actif desinfectant. Le filtre passif permettrait de retenir les particules de poussière, les bactéries et les spores, tandis que le filtre actif tuerait les bactéries, les spores et les virus dont la taille est trop petite pour qu'ils soient bloqués par le filtre passif. Le filtre actif comprend des agents antibactériens, antibiotiques ou antiviraux comme la chlorohexidme ou d' autres composés antiseptiques contenant de la chlorine ou un halogène antiseptique.
Enfin, l'équipe de Kawabata et al. s'est particulièrement intéressée aux polymères de 4-vinylpyridine, et a démontré que ces polymères ont une activité antibactérienne (Kawabata et al., antibacteπal activity of soluble pyndinium-type polymer, Applied and Environmental Microbiology, 1988, pp. 2532-2535), et également une activité antivirale quand ils sont polymérisés sous forme de billes de diamètre 1.7 microns dans un non-tisse (N. Kawabata et al. 1998, Reactive & functional polymers, n°37 p 213-218) . Dans cette publication, le polymère 4-vinylpyndine est polymérise sur une membrane non tissée ayant une taille de pores de 14 μm, en présence de divmylbenzène, de manière à obtenir des billes de diamètre 1,7 microns. Selon les auteurs, la présence de divmylbenzène est essentielle, car en son absence, la polymérisation conduit a l'obtention d'un film d' homopolymères de 4-vinylpyridme qui rend difficile l'obtention d'une membrane microporeuse. Il est ainsi essentiel que le 4- vinylpyridine soit polymérisé sous forme de billes pour obtenir une membrane microporeuse.
Selon Kawabata et al., l'efficacité de la rétention virale serait due à l'affinité particulière de ce polymère particulier de type pyridine (polychlorure de N-benzyl-4- vinylpyridinium) avec les virus. Sans pouvoir expliquer les causes de cette affinité, Kawabata émet l'hypothèse que (1) les interactions électrostatiques entre les charges positives du polymère et les charges négatives des virus et (2) les interactions hydrophobes entre ce polymère et les virus, pourraient jouer des rôles importants dans cette affinité particulière. Il est à souligner que, en l'absence de test témoin, le test de cette publication ne permet pas d'identifier si la rétention virale observée est réellement due au polymère 4-vinylpyridine ou à la perte virale due aux conditions expérimentales.
Récemment, la demande de brevet WO2006/071191 a décrit un produit antimicrobien et/ou antiviral, recouvert d'un polymère modifié à partir d'un polymère précurseur, ledit polymère précurseur étant sélectionné dans le groupe des polymères ayant la formule générale I, II ou III ou des copolymères de ceux-ci :
Formula II Ar7
wp*v
Formula III
dans lesquelles
R1 et R2 indépendamment sont sélectionnés parmi des chaînes hydrocarbonées (Ci-Ce) linéaire ou branchées, X est dans la gamme de 0 à 1,
R4 est sélectionné parmi une liaison directe et une chaîne hydrocarbonée (Ci-Ce) linéaire ou branchée,
R5 est sélectionné parmi un hydrogène ou des chaînes hydrocarbonées (Ci-C6) linéaire ou branchées, R6 est sélectionné parmi une liaison directe ou des chaînes hydrocarbonées (Ci-Ce) linéaire ou branchées,
Ar est un groupe hétéro-aromatique contenant un azote, et dans lesquelles ledit polymère précurseur est modifié de telle façon que : - au moins une partie desdits atomes d'azotes sont substitués avec un substituant sélectionné dans le groupe consistant en des groupes alkyls C1-C20 linéaires ou branchés, et
- au moins une partie des atomes d' azote dans ledit polymère précurseur sont quaternisés.
Au sens de l'invention décrite dans WO2006/071191, l'expression « polymère avec des atomes d'azotes quaternisés » se réfère à des composés de formule générale suivante :
dans laquelle au moins un des résidus « A », « B », « C » et « D » fait partie de l'unité de répétition du polymère, et dans laquelle le ou les résidus « A »-« D » non b compris dans l'unité de répétition du polymère sont n'importe quels résidus formant avec l'azote un composé quaternaire cationique stable formé de façon covalente.
Le terme non-covalent au sens de WO2006/071191 réfère à une liaison non covalente telle qu'une liaison hydrogène.
IC
La Demanderesse a cherché à mettre au point un filtre présentant une activité antivirale, ledit filtre ayant une faible taille de pores, de préférence inférieure à 5 μm, très préférentiellement inférieure à 1 μm et encore plus
15 préférentiellement inférieure ou égale à 0,2 μm. Le filtre selon l'invention peut être préparé selon un procédé simple qui n'exige pas une polymérisation m situ, ledit filtre présentant une surface non occlusive, impliquant que la membrane ou lit de fibres reste microporeux (se) . 0 La Demanderesse établit ainsi que l'affinité entre un polymère et un virus est due à la densité des charges positives reparties dans le réseau polyméπque situé sur l'ensemble de la surface du lit de fibres, lesdites charges étant de préférence portées par des fonctions aminés situées 5 dans la chaîne principale et/ou dans les chaînes latérales du polymère .
Ainsi, la présente invention a pour but de proposer une solution alternative aux filtres antiviraux déjà existants pour repondre au besoin de protection contre les virus aériens, et concerne l'utilisation d'un polymère cationique ayant de préférence plus d'une fonction aminé par motif, susceptible d'être dépose sur un lit de fibres, de préférence non tissé, en tant que piège a virus.
La présente invention a plus particulièrement pour ob]et un lit de fibres, de préférence charge négativement, recouvert d' au moins un polymère cationique ayant de préférence plus d'une fonction aminé par motif, dont les atomes d'azotes ne sont pas substitués par des groupes alkyls et dont les atomes d'azotes ne sont pas quatermsés, et ayant un taux de protonation d'au moins 20%.
On entend par lit de fibres toute couche tissée ou non tissée composée de fibres en polymères naturels, artificiels ou synthétiques, par exemple des fibres cellulosiques ou non cellulosiques telles que des fibres polyesters, polyéthylène, polypropylène ou polyamides. Suivant un mode de réalisation préféré de l'invention, le lit de fibre est microporeux, c'est-à-dire qu'il a une faible taille de pores, de préférence inférieure à 5 μm, très préférentiellement inférieure à 1 μm et encore plus préférentiellement inférieure ou égale à 0,2 μm.
On entend par polymère cationique, tout polymère protonable, de préférence du type comportant des fonctions aminés sur sa chaîne principale et/ou sur sa ou ses chaîne (s) latérale (s), et ayant un taux de protonation tel qu'il est capable de se fixer sur un lit de fibres d'une part et de fixer des virus d'autre part. De préférence, le taux de protonation d'un polymère cationique est d'au moins 20%.
Le polymère cationique de la présente invention se différencie donc de celui décrit dans WO2006/071191 par le fait qu'il ne comprend pas d'atomes d'azotes substitués par des groupes alkyls ni d'atomes d'azotes quaternises au sens de WO2006/071191. Le polymère cationique de la présente invention comprend des fonctions aminés sur sa chaîne principale et/ou sur sa ou ses chaîne (s) latérale (s), et a un taux de D protonation d'au moins 20%.
Au sens de la présente invention, le terme « amme protonee » ou « azote protone » se réfère a des composes de formule générale suivante :
0 dans laquelle au moins un des résidus « A », « B », « C » et « D » fait partie de lf unité de répétition du polymère, et dans laquelle le ou les résidus « A »-« D » non compris dans l' unité de répétition du polymère sont des atomes d'hydrogènes formant avec l'azote un compose quaternaire5 cationique stable forme de façon non covalente.
On entend par « taux de protonation » le pourcentage d'atomes d'azotes qui sont protones.
Dans un mode de réalisation de l'invention, ledit lit de fibres ainsi recouvert a une densité de charge de IxICT6 a0 IxItT8 mole de charge par cmz de lit de fibres ou IxIO"5 a IxI(T3 meq par cmz de lit de fibres, de préférence ledit lit de fibre a une densité de charge de IxICT7 mol de charge par cm2 de lit eu 1x1 CT4 meq par cm2 de lit de fibres.
Le dosage de la densité de charge par cm2 de lit dez fibres est réalise par les méthodes connues par l'homme du métier comme celles permettant de déterminer la capacité d'échange d'une membrane ou α' une résine echangeuse d'ions décrites par F. Helffeπch, Ion Exchange. McGraw-Hill Book Company Inc. Ed. (1962), Chapitre 4 ; pages 72-94.
Selon un mode de réalisation, ledit polymère comprend des groupes cationiques sur sa chaîne principale, et/ou sur sa ou ses chaînes latérales.
Dans un premier mode de réalisation, ledit polymère cationique comprend un polymère porteur de groupes aminé (primaires, secondaires, tertiaires) sur sa chaîne principale, une partie au moins des groupes aminés, avantageusement au moins 20%, préférentiellement au moins 30%, très preférentiellement au moins 50%, des groupes aminés étant protonés . De préférence, ces polymères cationiques sont le polydimethylamine-co-épichlorhydπne ou le polydiméthylamine- co-épichlorhydrine-co-éthylenediamine . Le dosage du pourcentage de protonation est réalisé par des techniques bien connues de l'homme du métier telle que celle décrite par Eyler et al. (Eyler RW, Krug TS, Siephius S, Analytical Chemistry 1947 ; 19(1) 24-7). D'autres techniques permettant de doser le pourcentage de protonation sont décrites par Muller et al. (G Muller, C Ripoll et E Selegny, European Polymer Journal, volume 7 (10), 1971, pages 1373-1392).
Dans un second mode de réalisation, ledit polymère cationique comprend un polymère porteur de groupes aminés (primaires, secondaires, tertiaires) sur sa ou ses chaîne (s) latérale (s), une partie au moins des groupes aminés, avantageusement au moins 20%, préférentiellement au moins 30%, très préférentiellement au moins 50%, des groupes aminés étant protonés. De préférence, ces polymères cationiques sont la polyvinylamine, le polyacrylamide modifie, le polyvmylimidazole, les diéthylammoéthyl polysacchaπdes, le chitosan, les polymethacrylate, de préférence le poly 2- dirtiethylaminoéthyl-méthacrylate, et ne comprennent pas le 4- vinylpyπdine .
Dans un troisième mode de réalisation très préfère, ledit polymère cationique comprend un polymère porteur de groupes amme (primaires, secondaires, tertiaires) sur sa chaîne principale et sur sa ou ses chaîne (s) latérale (s), une partie au moins des groupes aminés, et avantageusement au moins 20%, préferentiellement au moins 30%, très preferentiellement au moins 50%, des groupes aminés étant protonés . De préférence, ces polymères cationiques sont le polyéthylène-imine .
Selon un mode de réalisation préféré de l'invention, ledit polymère est le polyéthlène-imme .
La présente invention a également pour ob]et un filtre antiviral et optionnellement antibactérien comprenant au moins un lit de fibres recouvert d'au moins un polymère cationique tel que décrit précédemment.
Dans un mode de réalisation préféré, le filtre de l'invention est un filtre antiviral et antibactérien, et comprend au moins un lit de fibres recouvert d'un polymère cationique tel que décrit précédemment, ledit lit de fibre ayant une taille de pores égale ou inférieure à 0,2 μm. La taille de pores égale ou inférieure a 0,2 μm confère une propriété antibacterienne au lit de fibres ; la surface de ce lit de fibres est ensuite recouverte par au moins un polymère cationique, le lit de fibres acquiert ainsi une propriété antivirale en plus de la propriété antibacterienne. On entend par propriétés antivirales du lit de fibres, la capacité dudit lit de fibres à séquestrer les virus.
On entend par virus aérien notamment les virus de la grippe (Influenza virus A, B et C), les coronavirus (par exemple SARS-CoV) . D'autres virus concernes également par l'invention sont notamment le virus de la variole, les bacteriophages (E. coli) , les virus des hépatites, les poliovirus, rotavirus, le virus mosaïque du tabac, le virus ébola et autres virus infectieux.
Dans un autre mode de réalisation préféré, le filtre de l'invention est un filtre antiviral et antibacteπen, et comprend au moins un lit de fibres recouvert d'un polymère cationique tel que décrit précédemment, et au moins un lit de fibre ayant une taille de pores égale ou inférieure a 0,2 μm.
Avantageusement, le lit de fibres selon l'invention est efficace pendant une durée d'au moins 5 heures, de préférence d'au moins 12 heures et très préférentiellement d'au moins 18 heures .
La présente invention a aussi pour objet un purificateur d'air, un climatiseur ou un humidificateur comprenant au moins un filtre antiviral et optionnellement antibactérien tel que décrit précédemment. La présente invention a aussi pour objet un dispositif médical comprenant au moins un filtre antiviral et optionnellement antibactérien tel que décrit précédemment, notamment un masque chirurgical, des pansements, des vêtements de protection tels qu'un survêtement... La présente invention a pour objet un procédé de préparation d'un lit de fibres à propriété antivirale, comprenant la mise en contact dudit lit de fibres avec une solution de polymère cationique tel que décrit précédemment, puis une étape de séchage. Lors de la mise en contact du polymère cationique avec le lit de fibres, les fonctions cationiques, en particulier aminé quaternaire, vont interagir avec le lit de fibres, ce qui conduit à la fixation du polymère sur le lit de fibres.
Selon un mode de réalisation, le polymère cationique est solubilise dans un solvant ou un mélange de solvant. Dans un mode de réalisation préféré, le solvant est un solvant polaire, de préférence l'eau. Très préférentiellement, le polymère cationique est solubilisé dans un sel lonisable, notamment du NaCl.
Selon un mode de réalisation, la concentration du polymère dans ladite solution de polymère cationique est de
0,1 à 200 g.l"1, de préférence de 1 à 100 g.l"1, plus préférentiellement de 20 à 80 g.l"1 et très préférentiellement de 40 a 50 g.1""1.
Selon un mode de réalisation, le pH de la solution de polymère est de préférence acide, préférentiellement de 3 à 6,5, et très préférentiellement le pH de la solution de polymère est 6.
Selon un mode de réalisation, le lit de fibres est trempé dans la solution de polymère à température ambiante ou la solution de polymère est pulvérisée à température ambiante sur le lit de fibres.
Selon un mode de réalisation, le lit de fibres est trempé dans la solution de polymère pendant 1 minute à 3 heures, préférentiellement pendant 5 minutes à 1 heure, très préférentiellement pendant 10 à 30 minutes.
Selon un mode de réalisation, le lit de fibres est lave a l'eau avant séchage de manière a éliminer l'excès de solution de polymère.
Selon un mode de réalisation, le lit de fibres est mis a sécher a température ambiante par evaporation ou a l'air ventile. L'étape de séchage peut être accélérée par un passage dans une etuve ventilée ou sous vide. Selon un mode de réalisation, l'épaisseur du film de polymère obtenu a la surface du lit de fibres est de 0,5 ItT^ μm a 5 μm, de préférence de 0,001 a 1 μm, très preferentiellement de 0,001 a 0,01 μm. La présente invention comprend un procède de préparation d'un lit de fibres a propriété antivirale tel que décrit précédemment comprenant en outre une étape de reticulation du polymère après séchage. Cette opération, facultative, permet parfois d'optimiser la fixation du polymère sur les fibres.
La présente invention comprend également un procède de préparation d'un lit de fibres a propriétés antivirale et antibacterienne dans lequel le procède de préparation d'un lit de fibres a propriété antivirale tel que décrit précédemment est applique sur un lit de fibres comprenant une taille de pores égale ou inférieure a 0,2 μm.
La présente invention sera mieux comprise a l'aide du complément de description qui va suivre, qui se réfère a des exemples d'obtention du lit de fibres a propriété antivirale. Dans les exemples qui suivent, donnes a titre illustratif, il sera fait référence a la figure 1 en annexe, dans laquelle est illustre le montage permettant les expériences de filtration.
1- Matériels et méthodes
Réactifs et supports
Un polyethylene-imne (PEI) branche de haut poids moléculaire provenant de la société Aldrich Chemicals
(référence 40,872-7, lot 05906DU-202) a ete choisi pour ces expériences d'obtention d'un lit de fibres a propriété antivirale .
Le lit de fibres utilisé dans ces expériences provient de la troisième couche de masques de chirurgiens
5 rectangulaires FFPl. Une analyse Infra-Rouge en mode ATR a révèle que les deux premières couches d'un masque (face a l'extérieur) sont constituées de polypropylène non tissé et servent de filtres bactériens, tandis que la troisième couche également non tissée (face visage) est constituée d'un mélange0 de polyester-cellulose ou de cellulose estérifiée. Ces couches sont chargées négativement.
Dosage des groupes aminés protonés
Cette mesure est effectuée par dosage pHmétrique. 5 25 ml d'une solution de PEI à 0,44 % (4,4 g.l"1 ou 0,102 mol.l"1) dans du NaCl 0,2 mol. I-1 sont doses par une solution de HCl 0, 1 mol l"1
Le pH de la solution initiale (PEI non protoné) est de 11. 0 14 ml de HCl 0,1 mol.l^1 ont été a3outés pour un volume total de 18 ml pour atteindre un pH = 6.
A pH = 6, le taux de protonation du PEI est de 75 % ± 5 % (14 ml/18 ml) . 5
Dosage de la densité de charge par cm2 de lit de fibres .
Une surface précise du lit de fibres (232 cm2) est trempée pendant 12h dans 50 ml d'une solution a 4,4% de PEIC dans du NaCl 0,2 mol.l" . Le lit cte fibre est ensuite place dans une solution de HCl 0,1 mol.l"1 afin de protoner la totalité du PEI fixe. Le lit de fibre est ensuite lave a l'eau jusqu'à pH constant pour soutirer l'excès de HCl.
Le lit de fibre est enfin place dans 8 ml d'eau. La quantité de charge positive présente sur le lit de fibre est αosee par la soude 0,01 mol.l"1.
Le pH initial est de 8,56. On trouve un volume équivalent de 2,5 cmJ de soude 0,01 mol.l"1.
Ceci correspond a une concentration de 3,125 x 1Û"3 mol/1 d'acide, ou 2,5 x 10"5 mole d'acide dans les 8 ml d'eau. En considérant qu'une mole d'acide avait réagi avec une mole αe motif de répétition de PEI (MPEi = 43 g. mol"1) , 1,075 x 10" g de PEI sont donc fixes sur les 232 cm2 de lit de fibre, ce qui est équivalent a 4,63 x 10"6 g de PEI par cm2 de lit de fibre . La valeur de densité de charge du lit de fibres est donc de 1,1 x 10"7 mole de charge par cm2 de lit de fibres ou mieux 1,1 x 10~4 meq par cm2 de lit de fibres.
Modification de la couche 3 La fonctionnalisation s'est portée sur la couche 3 du masque, ci-apres dénommée lit de fibres.
La couche non tissée est trempée pendant une journée dans une solution de PEI a 4,4% en masse dans du NaCl a 0,2 M a pH=8 ou a pH=6. Le sel permet d'augmenter la quantité de polymère fixée. La valeur pH de 8 correspond a un pH optimum de fixation préalablement détermine. La valeur pH de 6 permet d' augmenter la protonation, de préférence la quaternisation du PEI (7<pKa<9) et donc d'améliorer sa fixation. La couche est ensuite egouttee, lavée a l'eau sous agitation lente pendant 10 h, puis sechee a l'air. Enfin, la couche est stérilisée sous UV avant son montage dans la cellule de filtration.
Virus et souche bactérienne Le bacteriophage T4 parasite de la souche E. coli a ete choisi comme virus test. Le bacteriophage T4 et la souche E. coli sont tous deux non pathogènes pour l'homme et pour l' environnement .
Milieux de culture
Le milieu 1 sert pour infecter E. coli par le phage et pour réaliser l'expérience de filtration. Il a pour composition pour un litre d'eau deionisee (Milliro®) : extrait de peptone et de viande : 13g, extrait de levure : 5g ; NaCl: 5g ; KH2PO4: 8g ; NaOH pour obtenir un pH de 7,6.
Le milieu 2, plus riche que le premier, sert au dosage du phage. Il a pour composition pour un litre d'eau deionisee
(Milliro®) : extrait de peptone et de viande : 10g ; glucose :
10 g ; NaCl : 3g, KH2PO4 : 0,044 g ; CaCl2 : 0,011 g ; MgCl2 : 0,203g ; NaOH pour obtenir un pH de 7,6.
Les extraits de peptone, de viande et de levure sont des substrats riches en protéines, en glucides et en vitamines hydrosolubles qui servent a la croissance bactérienne. Le glucose est un glucide qui a le même rôle. NaCl, CaCl2, MgCl2 sont des sels nécessaires a la survie des organismes vivants. KH2PO4 est un tampon qui permet de maintenir un pH constant.
Les milieux 1 et 2, une fois prépares, sont repartis dans des Erlenmeyer de 250 cmJ . Ils sont utilises sous forme liquide ou sous forme gélifiée (pour le milieu 2) en y incorporant de l'agar a 3% en masse (polysaccharide gélifiant) . Ce dernier est coule dans des boites de Pétri et sert a réaliser les numérations lors du dosage. Les milieux sont stérilises par autoclave (12O0C pendant 20 minutes) puis conserves en chambre froide. Le glucose est autoclave 5 séparément pour éviter sa caramélisation avec le milieu.
Montage
Le montage est illustre figure 1. Il est constitue d'un compresseur d'air générateur d'aérosols (Diffusion0 Technique Française - Saint-Etienne - France) , relie a un nebuliseur (Atomisor NL 11) . Un filtre a gaz de taille de pores 0,22 μm (Gelman) est place entre le générateur et le nebuliseur afin d'éviter les contaminations bactériennes parasites . 5 La cellule est un support de filtre en deux parties, en verre, comportant une arrivée et une sortie d'air. La membrane est insérée stérilement entre deux joints en caoutchouc recouvrant les rodages de la cellule. L'ensemble est maintenu par des pinces . 0 La sortie de la cellule est reliée a un piège liquide
(50 cmJ de sérum physiologique) pour dissoudre par barbotage les virus qui ont traverse la membrane. Le flux d'air résiduel passe par un second piège liquide contenant de l'eau de javel afin de neutraliser les éventuelles traces de virus qui ne ses seraient pas dissous.
L'ensemble du montage est autoclave, démonte puis assemble stérilement sous hotte a flux laminaire préalablement stérilise sous UV. C Mode opératoire des expériences de filtration
Les expériences suivent le même mode opératoire : Préparation d' une solution virale :
Dans un premier temps, E. coli est inoculé a l'anse de platine dans 150 cm3 de milieu 1 à 370C. L'évolution de la croissance de la bactérie est suivie par un spectrophotomètre UV/visible. Quand la DO à 580 nm atteint 0,5 (c'est a dire une population cellulaire de 2,1 x 108 cellules / ml), 18 μl d'une solution référence de phages (contenant 1012 phages / ml) sont dilués dans 182 μl de sérum physiologique. 20 μl de cette solution sont alors inocules dans le milieu 1 contenant E. coll. La quantité de phages injectée doit toujours être proportionnelle a la population cellulaire. Après une nuit de mise en culture, 130 ml de milieu sont centrifugés a 3000 tours/mm pendant 10 minutes afin d'éliminer les bactéries. Le surnageant est filtré sur Millex type HA (Millipore) de taille de pores 0,45 μm. Le filtrat est récupéré pour servir de solution mère à nébuliser.
Expérience de filtration :
5 cm3 de la solution mère de phage sont nébulisées pendant environ 1 heure (débit d'air: 8 L/h) . Le montage préalablement décrit a permis de réaliser les expériences suivantes:
Sans membrane, afin de déterminer les pertes en virus dues au montage. - Avec les 3 couches du masque de chirurgien, afin de déterminer sa rétention virale. Avec un lit de fibres non fonctionnalisé. Avec un lit de fibres fonctionnalisé par du PEI a 4,4 % (g/g) à pH=8 dans NaCl 0,2M. - Avec un lit de fibres fonctionnalise par du PEI a 4,4 % (g/g) à pH=6 dans NaCl 0,2M. Avec un lit de fibres fonctionnalise par du PEI a 0,44 % (g/g) a pH=6 dans NaCl 0,2M.
Titrage des virus En fin d'expérience, 0,4 ml de la solution placée en sortie de cellule sont prélevés et dilues dans 3,6 cm de sérum physiologique. Cette solution est diluée de manière successive jusqu'à une dilution de 10*8. 0,25 ml de chaque dilution sont ensuite transfères dans des tubes stériles vides auxquels on ajoute 0,4 ml d'une suspension de E. coli en phase exponentielle de croissance préalablement cultive dans 150 ml de milieu 2 (D05ao référence = 0,8). Ces tubes sont ensuite places a 370C pendant 30 mm pour permettre aux phages de contaminer E. Coll. 3 ml de gélose molle (milieu 2 contenant de l'agar a 0,6%) a 400C sont ensuite ajoutes a chacun des tubes . Le contenu de chaque tube est étale sur des boîtes de Pétri contenant une gélose solide (agar 3%) de milieu 2. Les boîtes sont placées a 37°C pendant 24 h avant de dénombrer les plages de lyse. La solution mère est également titrée de la même manière (avec une gamme de dilution jusqu'à 10"u) et sert de référence pour chaque expérience.
Le facteur de perte est égal au nombre de virus par cm3 de solution mère divise par le nombre de phages par cm3 de solution réceptrice après filtration.
2- Résultats et discussions
Filtration dans la cellule sans membrane L' expérience de filtration sans membrane sert a évaluer ±a perte en phage due a la nebulisation, au passage du phage dans la cellule et a sa récupération par bullage dans la solution de sérum physiologique. 0,72 x IQ10 virus par cm3 ont ete retrouves pour une solution mère nebulisee contenant 1,18 x 101 virus par cm3. Le facteur de perte du montage est donc de 1,6.
Filtration à travers le masque commercial
L' efficacité de la rétention virale du masque chirurgical constitue des 3 couches a ete testée. 0,56 x lu10 virus par CITT ont ete retrouves pour une solution mère nebulisee contenant 2,88 x lu10 virus par cm3. Le facteur de perte du masque est donc de 5,2. Compte tenu du facteur de perte propre au seul montage, le masque chirurgical commercial est donc totalement inefficace vis-a-vis des virus.
Filtration à travers le lit de fibres non fonctionnalisé
L'efficacité de la rétention virale du lit de fibres sans traitement a ete mesurée. 0,43 x 1010 virus par cm3 ont diffuse a travers ce lit de fibres non traite pour une solution mère nebulisee contenant 1,22 x 1010 virus par cm3. Le facteur de perte dû au lit de fibres non traite (i.e. la couche 3 non traitée) est donc de 2,9. Ce facteur est inférieur a celui du masque chirurgical a 3 couches ce qui est logique, car les deux couches polypropylene destinées a la filtration bactérienne filtrent aussi très légèrement les virus .
Filtration à travers le lit de fibres fonctionnalisé par du PEI à 4,4 % (g/g) dans NaCl 0,2M à pH =8
La mesure de la rétention virale du lit de fibres traite avec du PEI montre que 1,44 x 10J virus par cmJ ont diffuse pour une solution mère nebulxsee contenant 0,5 x 1010 virus par cmJ . Le facteur de perte dû a la couche 3 non traitée est donc de 3,5 x IQ6. Le traitement PEI a 4,4 % (g/g) en milieu NaCl 0,2M a pH =8 est donc très efficace pour ralentir la diffusion des virus. Cependant, le traitement ne permet pas de rendre la couche totalement barrière vis-à-vis des virus.
Filtration à travers le lit de fibres fonctionnalisé par du PEI à 4,4 % (g/g) dans NaCl 0,2M à pH =6
Une solution mère nébulisée contenant 0,7 x 1010 virus par cm3 est filtrée à travers un lit de fibres fonctionnalisé par du PEI à 4,4 % (g/g) dans NaCl 0,2M à pH =6. La mesure de la rétention virale par cette couche montre qu'aucun virus n'est détecté après filtration. La rétention des virus par la couche 3 traitée est donc totale. Cette couche est devenue totalement barrière vis-a-vis des virus par notre traitement.
Le PEI est donc un polymère très efficace pour rendre le système de filtration barrière vis-à-vis des virus.
Nous avons vérifié, par dosage COT (carbone organique total) , que le PEI ne se décrochait pas du support lors de la respiration après 5 heures d'utilisation. La respiration a été simulée par diffusion d'air à 8 L /min.
Filtration à travers le lit de fibres fonctionnalisé par du PEI à 0,44 % (g/g) dans NaCl 0,2M à pH =6 Nous avons dilué 10 fois la concentration en PEI fixée sur le lit de fibres afin de vérifier son efficacité en solution plus diluée. La mesure de la rétention virale montre que 5,5 x lu5 virus par cmJ ont traverse le filtre pour une solution mère nebulisee contenant 5,5 x 107 viras par cm3. Le facteur de perte est donc de 100. Le traitement PEI a 0,44 % (g/g) est donc nettement moins efficace que le traitement a 4,4 % (g/g) .

Claims

REVENDICATIONS
1. Lit de fibres, de préférence charge négativement, recouvert avec au moins un polymère cationique, dont les atomes d'azotes ne sont pas substitues par des groupes alkyls et dont les atomes d'azotes ne sont pas quaternisés, et ayant un taux de protonation d'au moins 20%.
2. Lit de fibres selon la revendication 1, recouvert sur l'une ou l'autre de ses faces, d'un film de polymère cationique d'une épaisseur de 0,5. ICT" μm à 5 μm, de préférence de 0,001 à 1 μm, très préférentiellement de 0,001 à 0,01μm.
3. Lit de fibres l'une des revendications 1 ou 2, dans lequel la densité de charge positive est de lxlθ~6 à lxlû^8 mole de charge par cm2 de lit de fibres ou IxIO""5 à lxlθ~3 meq par crn^ de lit de fibres, de préférence de 1x10" mol de charge par cm2 de lit ou IxIO^4 meq par cm2 de lit de fibres.
4. Lit de fibres selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit polymère comprend des groupes cationiques sur sa chaîne principale et/ou sur sa ou ses chaînes latérales.
5. Lit de fibres présentant des propriétés antivirales selon l'une quelconque des revendications 1 à 4, caractérise en ce que ledit polymère est le polyéthylène-imme .
6. Filtre antiviral comprenant au moins un lit de fibres tel que décrit dans l'une quelconque des revendications
1 a 5.
7. Filtre antiviral selon la revendication 6, comprenant en outre un lit de fibres comprenant une taille de pores égale ou inférieure a 0,2 μm.
8. Filtre antiviral selon la revendication 6, caractérise en ce que ledit lit de fibres a une taille de pores égale ou inférieure a 0,2 μm.
9. Purificateur d'air, climatiseur ou humidificateur comprenant au moins un filtre tel que décrit dans l'une des revendications 6 a 8.
10. Dispositif médical comprenant au moins un filtre tel que décrit dans l'une des revendications 6 a 8, ou au moins un lit de fibres tel que décrit dans l'une des revendications 1 a 5.
11. Dispositif selon la revendication 10, qui est un masque chirurgical, un pansement ou un vêtement de protection tel qu'un survêtement.
12. Procède de préparation d'un lit de fibres a propriété antivirale comprenant la mise en contact dudit lit de fibres avec une solution de polymère cationique tel que décrit dans l'une quelconque des revendications 1 a 5, puis une étape de séchage.
13. Procède de préparation d'un lit de fibres a propriété antivirale selon la revendication 12, caractérise en ce que la concentration du polymère dans la solution est comprise entre 0,1 et 200 g.l"1, de préférence entre 1 et 100 g.l^1, plus preferentiellement entre 20 et 80 g.l"1et très preferentiellernent entre 40 et 50 g.l"1.
14. Procède de préparation d'un lit de fibres a propriété antivirale selon l'une quelconque des revendications 12 a 13 caractérise en ce que le pri de la solution de polymère est de préférence acide, preferentiellement compris entre 3 et 6,5, et très preferentiellement le pH de la solution de polymère est 6.
EP07823609A 2006-07-19 2007-07-19 Filtre antiviral et son utilisation dans un purificateur d'air, climatiseur ou humidificateur Withdrawn EP2047028A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0606591A FR2904010A1 (fr) 2006-07-19 2006-07-19 Filtre antiviral et son utilisation dans un purificateur d'air , climatiseur ou humidificateur
PCT/FR2007/051691 WO2008009862A2 (fr) 2006-07-19 2007-07-19 Filtre antiviral et son utilisation dans un purificateur d'air, climatiseur ou humidificateur

Publications (1)

Publication Number Publication Date
EP2047028A2 true EP2047028A2 (fr) 2009-04-15

Family

ID=37969851

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07823609A Withdrawn EP2047028A2 (fr) 2006-07-19 2007-07-19 Filtre antiviral et son utilisation dans un purificateur d'air, climatiseur ou humidificateur

Country Status (7)

Country Link
US (1) US20090299250A1 (fr)
EP (1) EP2047028A2 (fr)
JP (1) JP2009543957A (fr)
CN (1) CN101501269A (fr)
CA (1) CA2658142A1 (fr)
FR (1) FR2904010A1 (fr)
WO (1) WO2008009862A2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101611675B1 (ko) * 2013-12-31 2016-04-11 도레이케미칼 주식회사 양전하 필터 카트리지 및 이의 제조방법
KR101611676B1 (ko) * 2013-12-31 2016-04-11 도레이케미칼 주식회사 양전하 필터 카트리지 및 이의 제조방법
CN108607139A (zh) * 2016-12-12 2018-10-02 美国再生科技有限责任公司 经由吸入将富含血小板血浆溶液递送到个人的***
CN108277647A (zh) * 2017-01-06 2018-07-13 成都瑞沐生物医药科技有限公司 颗粒物阻隔材料及其在防雾霾中的应用
CN107088473B (zh) * 2017-06-13 2020-04-10 青岛海纳能源环保科技开发有限公司 一种极性物质吸附分离与提纯材料的制备及使用方法
CN110319510A (zh) * 2019-05-22 2019-10-11 安徽三品技术服务有限公司 基于生态负离子生成芯片技术的空气净化设备
US11958006B2 (en) * 2019-08-09 2024-04-16 William Marsh Rice University Laser-induced graphene filters and methods of making and using same
TWM625350U (zh) * 2020-03-12 2022-04-11 劍亮 龔 空氣過濾系統及抗病毒面罩
WO2023158923A1 (fr) * 2022-02-18 2023-08-24 C-Polar Technologies, Inc. Matériaux électret à charge d'espace biocompatibles présentant ades effets antibactériens et antiviraux et leurs procédés de fabrication

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2106093T3 (es) * 1990-11-29 1997-11-01 Iatron Lab Uso de un agente antibacteriano que comprende un complejo polielectrolito y de un material antibacteriano.
AU1555095A (en) * 1993-12-28 1995-07-17 Little Rapids Corporation Disposable filters and manufacturing process
US5888527A (en) * 1995-05-11 1999-03-30 Matsushita Seiko Co., Ltd. Gargling cup, antiviral mask, antiviral filter, antifungal, antibacterial, and antiviral filter air cleaner and air-cleaner humidifier
JPH0928778A (ja) * 1995-07-14 1997-02-04 Mitsubishi Rayon Co Ltd 消臭剤並びに消臭繊維及びその製造方法
US20040166753A1 (en) * 2002-06-10 2004-08-26 Millward Dan B. Modification of fabric fibers
US20050137540A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc. Bacteria removing wipe
SE0403216D0 (sv) * 2004-12-30 2004-12-30 Appeatex Ab Antimicrobial product
WO2007142704A2 (fr) * 2006-06-02 2007-12-13 Hawaii Chitopure, Inc. Composés dérivés de chitosane et procédés de régulation de populations microbiennes
US20070292486A1 (en) * 2006-06-15 2007-12-20 The Penn State Research Foundation Novel polymer-nano/microparticle composites

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008009862A2 *

Also Published As

Publication number Publication date
CN101501269A (zh) 2009-08-05
US20090299250A1 (en) 2009-12-03
FR2904010A1 (fr) 2008-01-25
WO2008009862A2 (fr) 2008-01-24
CA2658142A1 (fr) 2008-01-24
JP2009543957A (ja) 2009-12-10
WO2008009862A3 (fr) 2008-03-20

Similar Documents

Publication Publication Date Title
WO2008009862A2 (fr) Filtre antiviral et son utilisation dans un purificateur d&#39;air, climatiseur ou humidificateur
Tiliket et al. A new material for airborne virus filtration
Seidi et al. Functionalized masks: powerful materials against COVID‐19 and future pandemics
Ye et al. Durable antibacterial finish on cotton fabric by using chitosan‐based polymeric core‐shell particles
US7942957B2 (en) Air filter having antimicrobial property
Shao et al. Multistage-split ultrafine fluffy nanofibrous membrane for high-efficiency antibacterial air filtration
US6126931A (en) Contact-killing antimicrobial devices
Chen et al. Amino acid-functionalized polyampholytes as natural broad-spectrum antimicrobial agents for high-efficient personal protection
MX2009000647A (es) Mascara facial antiviral y material filtrante.
CA2463710A1 (fr) Materiau de filtration d&#39;air anti-pathogenes et dispositifs de traitement d&#39;air offrant une protection contre les microorganismes infectieux en suspension dans l&#39;air
EP0939591A1 (fr) Substances antimicrobiennes non lixiviantes tuant par contact
Ying et al. Antibacterial modification of cellulosic materials
He et al. Green and antimicrobial 5-bromosalicylic acid/polyvinyl butyral nanofibrous membranes enable interception-sterilization-integrated bioprotection
CN106268362A (zh) 一种抗菌复合膜的制备方法及其由该方法制备的抗菌复合膜以及其在水处理领域中的应用
TWI807276B (zh) 空氣過濾系統、抗病毒面罩、將溶液乾燥而獲得之塗料及被鍍物
FR2984176A1 (fr) Dispositif de filtration d&#39;un flux d&#39;air a activite anti-bacterienne et/ou anti-virale et/ou anti-fongique et procede de preparation d&#39;un tel dispositif
CN116234864A (zh) 表面功能化材料和改性材料及其制备方法和用途
US20230097006A1 (en) Biocompatible space-charged electret materials with antibacterial and antiviral effects and methods of manufacture thereof
WO2022094924A1 (fr) Microcapsule antivirale antibactérienne, son procédé de préparation et son application
US20230157297A1 (en) Antiviral and antibacterial composition
CN114606767A (zh) 一种广谱抗菌聚丙烯无纺布的制备方法
CN114431229A (zh) 一种抗菌抗病毒微胶囊及其制备方法和应用
EP2493294B1 (fr) Procede d&#39;obtention de poudres insolubles dans l&#39;eau presentant une activite anti-microbienne, les poudres ainsi obtenues et leur application antibacterienne
Zhang et al. A universal coating strategy for inhibiting the growth of bacteria on materials surfaces
WO2024051552A1 (fr) Matériau fonctionnalisé en surface et son utilisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090113

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090429

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130201