EP2025541B1 - Elément d'un dispositif de chauffage produisant de la chaleur électrique - Google Patents

Elément d'un dispositif de chauffage produisant de la chaleur électrique Download PDF

Info

Publication number
EP2025541B1
EP2025541B1 EP08015712A EP08015712A EP2025541B1 EP 2025541 B1 EP2025541 B1 EP 2025541B1 EP 08015712 A EP08015712 A EP 08015712A EP 08015712 A EP08015712 A EP 08015712A EP 2025541 B1 EP2025541 B1 EP 2025541B1
Authority
EP
European Patent Office
Prior art keywords
heat
elements
housing
conductor paths
generating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08015712A
Other languages
German (de)
English (en)
Other versions
EP2025541A1 (fr
Inventor
Franz Bohlender
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eberspaecher Catem GmbH and Co KG
Original Assignee
Eberspaecher Catem GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38819961&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2025541(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Eberspaecher Catem GmbH and Co KG filed Critical Eberspaecher Catem GmbH and Co KG
Publication of EP2025541A1 publication Critical patent/EP2025541A1/fr
Application granted granted Critical
Publication of EP2025541B1 publication Critical patent/EP2025541B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • F24H3/0435Structures comprising heat spreading elements in the form of fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • F24H3/0441Interfaces between the electrodes of a resistive heating element and the power supply means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • F24H3/0441Interfaces between the electrodes of a resistive heating element and the power supply means
    • F24H3/0447Forms of the electrode terminals, e.g. tongues or clips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • F24H3/0452Frame constructions
    • F24H3/0464Two-piece frames, e.g. two-shell frames, also including frames as a central body with two covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • F24H3/0452Frame constructions
    • F24H3/0476Means for putting the electric heaters in the frame under strain, e.g. with springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1863Arrangement or mounting of electric heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1863Arrangement or mounting of electric heating means
    • F24H9/1872PTC
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic

Definitions

  • the present invention relates to a heat generating element of an electric heating device with the preamble features of claim 1.
  • Such a heater for air conditioning the interior of a motor vehicle is for example from the EP 1 564 503 known.
  • the heat-generating elements of the heating block usually comprise a plurality of one above the other in a plane provided PTC heating elements, which are arranged between conductor tracks, which are usually formed by metal strips. These tracks are energized with different polarity.
  • the PTC elements can be glued to these tracks. It is also possible to apply the printed conductors under prestress against the PTC heating elements. In any case, it must be ensured that there is good contact between the conductor tracks and the PTC heating elements for decoupling the heat generated by the PTC heating elements and for coupling in current.
  • One or more heat-generating elements may be provided as part of the heating block.
  • the heat generated by the heat-generating elements is discharged through heat-emitting elements to the medium to be heated, ie the air.
  • the frame openings are usually parallel to each other on opposite sides of a substantially flat, frame-shaped housing.
  • the heat-emitting elements are usually formed of meandering bent metal strips that form corrugated fins. These corrugated ribs rest on one or both sides of heat-emitting elements.
  • the heating block comprises a plurality of layers of heat-emitting and heat-generating elements, wherein care must also be taken with regard to the heat extraction that the heat-emitting elements abut well on the heat-generating elements.
  • the heat-emitting elements can be firmly connected to the heat-generating elements and / or applied by at least one received in the housing spring element under bias.
  • the heat-emitting element can also be formed by an extruded aluminum profile which forms webs which extend substantially perpendicular to the layers of the layer structure comprising the heat-emitting and the heat-generating elements.
  • the conductor track ie, the generally planar contact surface for the PTC heating element can be formed by the outer surface of such an extruded aluminum profile.
  • the contact surface for the PTC heating elements are designed to be electrically conductive and electrically connected to the housing usually held in isolation from each other held contacts. In the former case, the contacts are usually formed by the exposed ends of the metal strips.
  • the layered heating block of parallel heat-emitting and heat-generating elements, optionally with the addition of one or more parallel thereto extending spring elements is preferably held in a housing having a U-shaped cross-section.
  • the frame When loading the layer structure with a spring, the frame should be dimensioned so that the spring force can hold permanently even at the elevated temperatures.
  • the insulating frame is nowadays produced not least for economic reasons as an injection molded part.
  • Usual housing today consist of a lower housing part and a housing upper part. The lower housing part forms a receptacle for the individual elements of the heating block and, if necessary, the spring element. In this lower housing part, the individual elements of the heating block are arranged.
  • the heating block is enclosed by joining the upper housing part and the lower housing part in the housing.
  • edges surrounding the frame openings may partially cover the heating block, so that the heating block is enclosed between the frame openings and held in the housing.
  • the two housing parts are then connected to each other, for example via a latching connection.
  • the present invention relates to a heat-generating element for an electric heater and is based on an electric heater, as shown by the EP 1 061 776 A1 given is.
  • the heat-generating element comprises a positioning frame with receiving openings for receiving at least one PTC heating element.
  • On both sides of the PTC elements are printed conductors, which are latched to the position frame via elastic locking lugs, which overlap the edges of the conductor tracks and fix them relative to the position frame.
  • the present invention is based on the problem of specifying an improved heat-generating element.
  • the present invention provides a heat generating element having the features of claim 1.
  • the heat generating element according to the invention is characterized in that the holding webs are molded integrally on the position frame by means of injection molding and, after laying the strip conductors on the position frame by forming the interconnects are plastically deformed across.
  • the holding webs fix the loosely placed and preferably realized in the form of metal strips strip conductors relative to the position frame, whereby a pre-assembled assembly is created, the parts are captively connected to each other. Accordingly, the heat generating element can be easily handled and easily inserted into the housing. Furthermore, the holding webs are applied to the conductor tracks, so that the elements of the heat-emitting element are closely connected to each other and also the PTC heating elements through Concerns are fixed to the inner sides of the conductor tracks in the receptacles, so that, for example, a plurality of PTC heating elements can be arranged and fixed in a receptacle at predetermined locations.
  • the Fig. 1 shows a perspective side view of an embodiment of the electric heater with a housing 2, consisting of a lower housing part 4 and an upper housing part 6. Both housing parts 4, 6 are positively connected to each other and take in a heating block 8, which arranged from a plurality of parallel layers to each other heat-generating elements 10 and heat-emitting elements 12 consists.
  • the heat-emitting elements 12 are formed as corrugated rib elements of meandering bent sheet metal strip.
  • contact tongues 15 are arranged one above the other in the transverse direction.
  • the contact tongues pass through recesses 16 which are recessed on the housing 2 and which in each case receive a contact tongue and are predominantly formed by the housing lower part 4, but are rounded off at one end by the housing upper part 6.
  • the housing 2 has two opposite frame openings, of which in Fig. 1 only the frame opening 16 formed by the upper housing part 6 can be seen.
  • the formed by the lower housing part 4 frame opening is in Fig. 4 and identified by reference numeral 18.
  • the frame openings 16, 18 are each interspersed with struts 20 which extend at right angles to the layers of the heating block 8 and connect the opposing longitudinal beams of the lower housing part 4 and upper housing part 8 with each other.
  • the Fig. 2 shows details of the heating block 8 and its inclusion in particular in the lower housing part 4 and shows the lower housing part 4 in a plan view with the housing upper part removed.
  • the heat-emitting elements 12 are only incompletely shown at the respective front ends of the housing lower part 4. Accordingly, the illustration in Fig. 2 also a view of the frame opening 18 formed by the lower housing part 4 free.
  • the exemplary embodiment shown has four heat-generating elements 10, which are each accommodated in the housing lower part 4 in an insulating manner and with a certain mobility transverse to the layers of the layer structure (heating block 8).
  • the lower housing part 4 has for this purpose fitting element receptacles 22 which open a receptacle 24, which is formed essentially by the housing lower part 4 and accommodates the heating block 8.
  • fitting element receptacles 22a, 22b are provided in the exemplary embodiment shown (cf. Fig. 3 ).
  • the heat-generating elements 10 have at their front ends fitting elements 26a, 26b which respectively fit only in the corresponding corresponding fitting element receptacle 22a or 22b.
  • the corresponding fitting element receptacles 22 are matched to the fitting elements 26 provided corresponding thereto, that the heat-generating elements 10 are movable by a few tenths of a millimeter transversely to the longitudinal extent of the layers of the heating block 8 in the housing 2.
  • the outer fitting elements 26a are designed as a hammer head and engage in correspondingly formed fitting element receptacles 22a.
  • the fitting elements 26b associated with these elongated fitting element receptacles 22b are rod-shaped and less wide than the hammer-head-like fitting elements 26a. Due to this particular configuration, the central heat-generating elements 10 do not fit in the outer positions for heat-generating elements 10 of the heating block. In appropriate Way, the outer heat-generating elements can not be arranged in the middle of the heating block, ie insert into the housing 2.
  • the heat-generating elements 10 can not be used anywhere in the housing 2, the heat-emitting corrugated fin elements 12 are nonspecific and as lengths of a meandering curved first sheet metal strip as manufactured and cut from this continuous material to length. Each individual heat-emitting element 12 can be used at any position for a heat-emitting element within the heating block 8.
  • the fitting elements 26 are integrally formed on a positioning frame 28, which in the 4 and 5 can be seen and explained in more detail below with reference to these figures.
  • the positioning frame 28 is made of an insulating material and serves for the positioning of PTC heating elements 30.
  • a receptacle 32 in the positioning frame 28 is recessed for each individual PTC heating element 30, which surrounds this PTC heating element and thus defines it.
  • sheet metal strips 34, 36 which form electrical conductors for energizing the PTC heating elements 30 and via which the heat generated by the PTC heating elements to the heat-emitting elements 12 is passed by heat transfer. These lie directly on the metal bands 34, 36 at.
  • the front ends of the positioning frame 28 are extended over a fitting element web 38 on the position of the metal strips 34, 36 addition. At the outer end of the fitting element webs 38 are the respective fitting elements 26 of the positioning frame 28.
  • the vast extent of the position frame 28 in the width direction of the respective metal bands 34, 36 is taken.
  • the positioning frame on holding webs 40 which are provided immediately adjacent to the lateral edge of the metal strips 34, 36 and the corresponding metal strips 34, 36 project beyond the top and these overlap on the outside, preferably with the tracks 34, 36 in contact and abut this.
  • the holding webs 40 are formed in the embodiment shown in one piece by way of injection molding initially as a right angle to the main extension direction of the position frame 28 outgoing projections.
  • the distance of opposing projections is selected so that the sheet metal strip 34 or 36 just fits between these projections.
  • the one-piece component produced in this way by injection molding is then provided with the essential parts of the heat-generating element 10, ie the PTC heating elements 30 are inserted into the corresponding receptacle 32 and surrounded on both sides by the metal bands 34, 36. Thereafter, the projections are plastically deformed inwardly and so the interconnects 34, 36 formed across.
  • a hot forming in which the holding webs 40 forming material locally in the area of the metal strips 34, 36 warms up and thus softened.
  • the means used in each case can locally heat the position frame 28, for example by means of hot air or by heat conduction.
  • the heating effecting agent is preferably formed by a tool which simultaneously performs the transformation of the retaining webs 40.
  • the holding webs 40 are not formed continuously in the longitudinal direction of the heat-generating element 10, but are provided in sections 40.1 to 40.5. These sections 40.1 to 40.5 leave between them a passage 41 free, which is designed such that in each case a strut 20 in the width direction between the sections 40.1; 40.2; 40.3; 40.4 or 40.5 fits.
  • the section formed by the passage 41 projects inwards in relation to the outer surface of the retaining webs 40 so far that at least half the thickness of the struts 20 fits between the retaining webs 40 and is received there.
  • the struts 20 and the positioning frame 28 may also be referred to as the first strut, and the retaining webs 40, which may be referred to as the second strut 43.
  • the heat-generating element 10 is formed as a preassembled component and can thus be handled during assembly, without the risk that the conductor tracks 34, 36 or even the inserted in the position frame 28 PTC heating elements 30 are lost. It should be noted, however, that usually the holding webs only fix the metal strips 34, 36 in the position frame, but not with a contact force against the PTC heating elements 30 put, which is sufficient to energize the PTC heating elements 30 during operation safe. This is in any case effected in the embodiment discussed in the context of the present invention by a spring element, which will be explained in more detail below with reference to FIGS. 8 to 10.
  • Fig. 3 and 4 are a metal strip, namely in Fig. 4 shown sheet metal strip 34, bent out of the plane of the heat generating element 10. Accordingly, an offset 42 results between the plane in which the sheet metal strip 34 abuts against the PTC heating elements 30, and a free end 44, which by repeated, but opposite bending extends parallel to the first-mentioned main portion of the sheet metal strip 34. Again Fig. 3 can be seen, this free end 44 is mechanically and electrically connected by a crimp 46 to the associated contact tongue 14.
  • upper heat-emitting elements have an outgoing from the upper sheet metal strip 34 offset 42.3 and 42.4.
  • the lower heat generating element 10.1 has a downwardly outgoing offset 42.1.
  • the metal strips 34, 36 of the heat generating element 10 marked with reference numeral 10.2 are on both sides to form an offset 42.20 or 42.21 arc and each provided with a contact tongue 14. Due to these differences, it is possible to avoid exchanging the positions for the heat-generating elements 10.3 and 10.2 within the housing 2.
  • the embodiment allows that the two middle heat-generating elements 10.2 and 10.3 can be interchanged with one another due to the design of contact tongue receivers 48. A corresponding interchangeability is also given for the two outer heat-generating elements 10.1 and 10.4.
  • the lower housing part 4 can be molded in an injection mold that can be produced cost-effectively, since all areas significant for the housing 4 extend parallel or at right angles to the frame opening 18 of the housing lower part 4.
  • the lower housing part 4 initially substantially mutually perpendicular frame surfaces 52a-d, which surround the heating block 8 circumferentially and perpendicular to the plane containing the frame opening 18 includes.
  • the corresponding frame surface 52b opens outward via four fitting element web receivers 54 whose main walls likewise extend at right angles to the plane containing the frame opening 18.
  • a corresponding extension have those functional surfaces of the housing lower part 4, which form the contact tongue receptacle 48 and the here leading slots 15 and 50 substantially and those walls which limit the fitting element receptacle 22 and in Fig. 3 are shown.
  • the receptacles 15, 22, 50 and 54 described above are bounded on the side of the lower housing part 4 by a bottom which runs parallel to the plane containing the frame opening 18 of the housing lower part 4.
  • the particular design of the heat generating elements 10 allows for easier assembly, since the grid assembly formed by the first and second struts 20, 43 is not completely part of the housing, but the second struts are formed with the frame 28 and thus is located where the PTC heating elements 30 come to rest within the heating block 8.
  • the heat-emitting element 12 is prepared as a preassembled unit and further ensured by the fitting elements 26 and the associated receptacles 22 that the heat-generating elements 12 can be installed only at predetermined locations within the housing 2, the manufacture of the electric heater, in particular the assembly of the items also be done by less experienced staff.
  • the specific embodiment of the embodiment provides an unambiguous assignment of different components of the electric heater. If this clear assignment is not met, the components of the electric heater can not be mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Air-Conditioning For Vehicles (AREA)

Claims (5)

  1. Élément de production de chaleur (10) d'un dispositif de chauffage électrique avec un châssis de positionnement (28) en matériau isolant qui constitue des logements placés côte à côte (32) pour chacun des au moins un élément chauffant PTC (30) qui sont agencés entre des pistes conductrices (34, 36) avec lesquelles les éléments de chauffage PTC (30) sont en contact électrique, dans lequel
    le châssis de positionnement (28) comporte des nervures de retenue (40) entourant et délimitant les pistes conductrices (34, 36), qui chevauchent les pistes conductrices (34, 36) par l'extérieur et sont adjacentes aux pistes conductrices (34, 36),
    caractérisé
    en ce que les nervures de retenue (40) sont conformées en une seule pièce sur le châssis de positionnement (28) via moulage par injection, et sont déformées plastiquement de manière à réaliser un chevauchement par déformation des pistes conductrices (34, 36) après l'application des pistes conductrices (34, 36) sur le châssis de positionnement (28).
  2. Élément de production de chaleur selon la revendication 1, caractérisé en ce que les nervures de retenue (40) sont adjacentes aux pistes conductrices (34, 36) uniquement par leurs bords.
  3. Élément de production de chaleur selon la revendication 1 ou 2, caractérisé en ce que les nervures de retenue (40) sont réalisées sous forme de sections et constituent toutes entre elles un passage (41).
  4. Élément de production de chaleur selon la revendication 3, caractérisé en ce que le passage (41) atteint la piste conductrice constituée sous forme d'une bande de tôle (34, 36) continue appliquée sur le châssis de positionnement.
  5. Élément de production de chaleur selon la revendication 1, caractérisé en ce que les nervures de retenue (40) sont pliées par formage à chaud sur les pistes conductrices (34, 36).
EP08015712A 2007-07-18 2007-07-18 Elément d'un dispositif de chauffage produisant de la chaleur électrique Active EP2025541B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07014118.9A EP2017103B1 (fr) 2007-07-18 2007-07-18 Dispositif de chauffage électrique

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP07014118.9A Division-Into EP2017103B1 (fr) 2007-07-18 2007-07-18 Dispositif de chauffage électrique
EP07014118.9A Division EP2017103B1 (fr) 2007-07-18 2007-07-18 Dispositif de chauffage électrique
EP07014118.9 Division 2007-07-18

Publications (2)

Publication Number Publication Date
EP2025541A1 EP2025541A1 (fr) 2009-02-18
EP2025541B1 true EP2025541B1 (fr) 2013-01-02

Family

ID=38819961

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08015712A Active EP2025541B1 (fr) 2007-07-18 2007-07-18 Elément d'un dispositif de chauffage produisant de la chaleur électrique
EP07014118.9A Active EP2017103B1 (fr) 2007-07-18 2007-07-18 Dispositif de chauffage électrique

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07014118.9A Active EP2017103B1 (fr) 2007-07-18 2007-07-18 Dispositif de chauffage électrique

Country Status (5)

Country Link
US (1) US8362406B2 (fr)
EP (2) EP2025541B1 (fr)
JP (1) JP4939490B2 (fr)
KR (1) KR100960748B1 (fr)
CN (1) CN101348067B (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944395B1 (fr) * 2009-04-10 2016-01-01 Valeo Systemes Thermiques Armature pour un module chauffant electrique
EP2266823B1 (fr) * 2009-06-19 2011-08-17 Eberspächer catem GmbH & Co. KG Dispositif de chauffage électrique
JP5535740B2 (ja) * 2010-04-14 2014-07-02 三菱重工業株式会社 熱媒体加熱装置およびそれを用いた車両用空調装置
EP2428746B8 (fr) * 2010-09-13 2021-12-29 MAHLE Behr GmbH & Co. KG Echangeur de chaleur
KR101146313B1 (ko) * 2010-12-06 2012-05-21 이건테크놀로지 주식회사 히터모듈과 이를 이용한 ptc 히터
DE102012000977A1 (de) * 2011-04-06 2012-10-11 W.E.T. Automotive Systems Ag Heizeinrichtung für komplex geformte Oberflächen
US8927910B2 (en) * 2011-04-29 2015-01-06 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno High power-density plane-surface heating element
EP2608633B1 (fr) * 2011-12-22 2020-08-26 Eberspächer catem GmbH & Co. KG Elément générateur de chaleur
EP2607121B2 (fr) * 2011-12-22 2020-07-08 Eberspächer catem GmbH & Co. KG Dispositif de chauffage électrique, en particulier pour un véhicule automobile
EP2608632B1 (fr) * 2011-12-22 2017-02-08 Eberspächer catem GmbH & Co. KG Dispositif de chauffage électrique et cadre associé
EP2637475B9 (fr) * 2012-03-08 2017-01-25 Eberspächer catem GmbH & Co. KG Elément chauffant
US9839072B2 (en) 2012-03-08 2017-12-05 Eberspacher Catem Gmbh & Co. Kg Heat generating element with connection structure
EP2637474B1 (fr) * 2012-03-08 2016-08-17 Eberspächer catem GmbH & Co. KG Elément chauffant
CN103517469B (zh) * 2012-06-27 2015-03-04 比亚迪股份有限公司 一种ptc电热元件、电加热装置以及电动车
DE102012013770A1 (de) * 2012-07-11 2014-01-16 Eberspächer Catem Gmbh & Co. Kg Wärme erzeugendes Element
DE102012109801B4 (de) * 2012-10-15 2015-02-05 Borgwarner Ludwigsburg Gmbh Elektrische Heizvorrichtung
JP6403363B2 (ja) * 2013-01-15 2018-10-10 東芝ライフスタイル株式会社 ヒータユニットおよび衣類乾燥機
EP3296660A1 (fr) 2016-09-15 2018-03-21 Mahle International GmbH Chauffage électrique
DE102018200433A1 (de) 2018-01-11 2019-07-11 Eberspächer Catem Gmbh & Co. Kg Elektrische Heizvorrichtung
DE102018206085B4 (de) * 2018-04-20 2021-09-23 Eberspächer Catem Gmbh & Co. Kg Elektrische Heizvorrichtung
DE102018220858A1 (de) 2018-12-03 2020-06-04 Eberspächer Catem Gmbh & Co. Kg Elektrische Heizvorrichtung
DE102019202543A1 (de) * 2019-02-26 2020-08-27 Eberspächer Catem Gmbh & Co. Kg PTC-Heizelement und elektrische Heizvorrichtung mit einem solchen PTC-Heizelement
DE102019205848A1 (de) * 2019-04-24 2020-10-29 Eberspächer Catem Gmbh & Co. Kg PTC-Heizelement und elektrische Heizvorrichtung mit einem solchen PTC-Heizelement und Verfahren zur Herstellung eines PTC-Heizelementes
FR3101510A1 (fr) * 2019-10-01 2021-04-02 Valeo Systemes Thermiques Bloc de chauffe d’un dispositif chauffant.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1318694A1 (fr) 2001-12-06 2003-06-11 Catem GmbH & Co.KG Dispositif de chauffage électrique

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1100560A (fr) * 1976-03-18 1981-05-05 Walter R. Crandell Bande chauffante electrique a centre de ceramique et methode de fabrication
DE2845965C2 (de) * 1978-10-21 1983-01-20 Fritz Eichenauer GmbH & Co KG, 6744 Kandel Elektrisches Widerstandsheizelement
JPS6259990A (ja) * 1985-09-10 1987-03-16 日本電気株式会社 電子フアイリング装置における原稿高速連続入力時のマルチペ−ジスクロ−ル表示制御方式
DE3902206A1 (de) * 1989-01-26 1990-08-02 Eichenauer Gmbh & Co Kg F Vorrichtung zum erhitzen von gasen
DE3902205A1 (de) * 1989-01-26 1990-08-02 Eichenauer Gmbh & Co Kg F Halteteil fuer ptc-elemente
US5377298A (en) * 1993-04-21 1994-12-27 Yang; Chiung-Hsiang Cassette PTC semiconductor heating apparatus
JPH07201454A (ja) 1993-12-28 1995-08-04 Matsushita Electric Ind Co Ltd 正特性サーミスタ発熱体
DE4434613A1 (de) * 1994-09-28 1996-04-04 Behr Gmbh & Co Elektrische Heizeinrichtung, insbesondere für ein Kraftfahrzeug
DE19900603A1 (de) * 1999-01-11 2000-07-13 Bosch Gmbh Robert Elektronisches Halbleitermodul
EP1061776B1 (fr) * 1999-06-15 2005-01-05 David & Baader DBK Spezialfabrik elektrischer Apparate und Heizwiderstände GmbH Dispositif de chauffage destiné au réchauffement de l'air
KR100737347B1 (ko) 2001-08-30 2007-07-09 대일공업주식회사 피티씨 소자를 이용한 발열장치
FR2838599B1 (fr) * 2002-04-11 2004-08-06 Valeo Climatisation Dispositif de chauffage electrique, notamment pour appareil de chauffage et ou climatisation de vehicule
DE50207329D1 (de) * 2002-12-19 2006-08-03 Catem Gmbh & Co Kg Elektrische Heizvorrichtung mit Gehäuse
ES2300511T3 (es) * 2003-03-13 2008-06-16 BEHR GMBH & CO. KG Dispositivo de calefaccion electrico, en particular para un automovil.
EP1467599B1 (fr) * 2003-04-12 2008-11-26 Eichenauer Heizelemente GmbH & Co.KG Dispositif pour l'admission des éléments de chauffe en céramique et procédé pour la production de tels
DE10316908A1 (de) * 2003-04-12 2004-10-21 Eichenauer Heizelemente Gmbh & Co. Kg Heizvorrichtung
GB0325574D0 (en) * 2003-11-03 2003-12-03 Delphi Tech Inc Electrical heater
KR100445723B1 (ko) * 2003-11-18 2004-08-26 우리산업 주식회사 Ptc 소자 모듈 및 이를 포함하는 차량용 프리히터
ATE382139T1 (de) 2004-02-10 2008-01-15 Catem Gmbh & Co Kg Elektrische heizvorrichtung für niedrige bauhöhen
KR100609452B1 (ko) * 2005-05-20 2006-08-03 모딘코리아 유한회사 피티씨 로드 조립체 및 이를 포함하는 차량용 프리히터
ES2303712T3 (es) * 2005-09-23 2008-08-16 CATEM GMBH & CO. KG Elemento generador de calor para un dispositivo de calefaccion.
ES2360884T3 (es) * 2005-09-23 2011-06-10 EBERSPÄCHER CATEM GMBH & CO. KG Elemento generador de calor de un dispositivo de calefacción.
EP1790916B1 (fr) * 2005-11-23 2014-05-21 Eberspächer catem GmbH & Co. KG Dispositif de chauffage électrique avec un élément de tolérance et de chauffage à effet CTP
EP2053902A1 (fr) * 2007-10-26 2009-04-29 Calsonic Kansei Corporation Appareil de chauffage électrique, procédé de fabrication d'une unité de génération de chaleur et gabarit de pression pour une utilisation lors de sa fabrication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1318694A1 (fr) 2001-12-06 2003-06-11 Catem GmbH & Co.KG Dispositif de chauffage électrique

Also Published As

Publication number Publication date
KR100960748B1 (ko) 2010-06-01
EP2017103B1 (fr) 2016-05-04
JP2009043716A (ja) 2009-02-26
US20090026194A1 (en) 2009-01-29
KR20090009138A (ko) 2009-01-22
JP4939490B2 (ja) 2012-05-23
CN101348067A (zh) 2009-01-21
EP2017103A1 (fr) 2009-01-21
CN101348067B (zh) 2011-03-23
US8362406B2 (en) 2013-01-29
EP2025541A1 (fr) 2009-02-18

Similar Documents

Publication Publication Date Title
EP2025541B1 (fr) Elément d'un dispositif de chauffage produisant de la chaleur électrique
EP2017549B1 (fr) Dispositif de chauffage électrique
EP2017546B1 (fr) Procédé de fabrication d'un dispositif de chauffage électrique tout comme dispositif de chauffage électrique
EP3493650B1 (fr) Dispositif de chauffage électrique
EP2298582B1 (fr) Dispositif de chauffage électrique et son procédé de fabrication
EP1768457B1 (fr) Element chauffant d'un dispositif de chauffage
EP1564503B1 (fr) Dispositif de chauffage électrique de faible hauteur
EP1768458B1 (fr) Elément chauffant d'un dispositif de chauffage
DE102006021730B4 (de) Stabanordnung mit PTC-Heizelementen und diese enthaltender Vorwärmer
EP2873296B1 (fr) Élément chauffant
EP3079442B1 (fr) Dispositif de chauffage électrique et cadre associé
EP2884817A1 (fr) Dispositif de chauffage électrique et son procédé de fabrication
EP2407327B1 (fr) Dispositif de chauffage électrique, notamment chauffage auxiliaire de véhicule automobile et climatisation de véhicule automobile
DE102006055872B3 (de) Elektrische Heizung, insbesondere zur Verwendung als Zusatzheizung in Automobilen
EP2266823A1 (fr) Dispositif de chauffage électrique
EP2017547B1 (fr) Dispositif de chauffage électrique
EP3557155B1 (fr) Dispositif de chauffage électrique
EP2275753B9 (fr) Procédé de fabrication d'un dispositif de chauffage électrique et dispositif de chauffage électrique
EP3511645B1 (fr) Dispositif de chauffage électrique
EP2268103B1 (fr) Dispositif de chauffage électrique
EP4084577A2 (fr) Dispositif de chauffage électrique et son procédé de fabrication
DE102022134382A1 (de) Elektrische Heizvorrichtung
DE60125633T2 (de) Steckverbinderelement und damit versehener Steckverbinder
DE102018202033A1 (de) Elektrische Heizvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081218

AC Divisional application: reference to earlier application

Ref document number: 2017103

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EBERSPAECHER CATEM GMBH & CO. KG

17Q First examination report despatched

Effective date: 20090622

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2017103

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007011164

Country of ref document: DE

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130413

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BEHR GMBH & CO. KG

Effective date: 20130927

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502007011164

Country of ref document: DE

Effective date: 20130927

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130718

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: MAHLE BEHR GMBH & CO. KG

Effective date: 20130927

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502007011164

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20210224

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 17

Ref country code: DE

Payment date: 20230720

Year of fee payment: 17