EP2006410B1 - Thermal sprayed protective layer for metallic substrates - Google Patents

Thermal sprayed protective layer for metallic substrates Download PDF

Info

Publication number
EP2006410B1
EP2006410B1 EP08007173.1A EP08007173A EP2006410B1 EP 2006410 B1 EP2006410 B1 EP 2006410B1 EP 08007173 A EP08007173 A EP 08007173A EP 2006410 B1 EP2006410 B1 EP 2006410B1
Authority
EP
European Patent Office
Prior art keywords
protective layer
spray powder
rock
substrate
silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08007173.1A
Other languages
German (de)
French (fr)
Other versions
EP2006410A2 (en
EP2006410A3 (en
Inventor
Vadim Dr. Verlotski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maerkisches Werk GmbH
Original Assignee
Maerkisches Werk GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maerkisches Werk GmbH filed Critical Maerkisches Werk GmbH
Publication of EP2006410A2 publication Critical patent/EP2006410A2/en
Publication of EP2006410A3 publication Critical patent/EP2006410A3/en
Application granted granted Critical
Publication of EP2006410B1 publication Critical patent/EP2006410B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • Y10T428/12618Plural oxides

Definitions

  • the invention relates to protective layers for metals or metallic alloys which can be used at high temperatures and in aggressive gaseous, liquid and solid media. More particularly, the present invention relates to a thermally sprayed, gas-tight protective layer for metallic substrates, in particular those based on Fe, Ni, Al, Mg and / or Ti, wherein the spray powder for this purpose comprises at least two components, of which the first is a silicate Mineral or rock and the second is a metal powder and / or another silicate mineral or rock.
  • Emailes are known as non-metallic protective layers for various metals and alloys (see [1]: A. Petzold, H. Pöschmann, enamel and enamel technique, Wiley-VCH; Edition 2, (1992 )). These protective layers have good adhesion to the substrate and reliably protect the metallic base materials up to approx. 400 ° C against many aggressive media.
  • silicate glasses with a relatively low SiO 2 content and a high content of alkali oxides are used as enamel for steels and cast iron (see [1]).
  • Typical enamels for white enamelling of sheet steel consist of a base and a top enamel and have the following compositions: basic email ceiling mail material Proportion of (%) material Proportion of (%) SiO 2 47-53 SiO 2 56 Al 2 O 3 4-6 Al 2 O 3 7 B 2 O 3 17-19 B 2 O 3 7 Na 2 O + K 2 O 15-18 Na 2 O + K 2 O 22.5 TiO 2 2-8 CaO 7 CaO + MgO rest F 0.5
  • Ceramic layers of refractory corrosion-resistant materials which are applied to metallic substrates by means of thermal spraying (flame spraying, high-velocity flame spraying (HVOF), plasma spraying) or PVD or CVD method.
  • thermal spraying flame spraying, high-velocity flame spraying (HVOF), plasma spraying
  • PVD or CVD method for example, yttrium-stabilized zirconia (YSZ) can be produced both by thermal spraying [ UK 2100621 A ; US 4,377,371 ; WO 91/05888 ; US 5,169,689 ] as well as PVD [ US 4,321,310 ; US 4,321,311 ; US 4,401,697 ; US 4,405,659 ; WO 92/0598 ] are applied to substrates made of steel and nickel-based alloys.
  • YSZ layers A difference in the coefficients of thermal expansion of the layer and the substrate is compensated in YSZ layers by a porous structure with a crack network. Thanks to this property, these layers are thermoshock resistant. However, they do not guarantee protection against oxidation and corrosion and can only be used as pure thermal barrier coatings at temperatures up to 1200 ° C.
  • a second important disadvantage of YSZ layers is weak adhesion to the substrate. Together with a low mechanical strength (due to cracks and pores) this means poor erosion resistance.
  • These glass-metal / ceramic layers are used as thermal barrier coatings for turbine blades.
  • An advantage over YSZ layers lies in an oxidation protection for the substrate through the gas-tight layer structure.
  • these layers are not suitable as a corrosion protection layer.
  • alkaline glasses had to be selected in order to achieve the highest possible coefficient of thermal expansion for adaptation to the substrate. When used as a thermal barrier coatings, this is not critical.
  • DE 4038254 A1 describes a glassy protective layer of easily fusible glass.
  • the powder consists of one or two glasses with alkali content> 14%, measured on the sum of Li20 + Na20 + K20.
  • the melting temperatures of the glasses used are below 800 ° C, so that in this case a corrosion protection for high temperatures up to about 1000 ° C can not be achieved.
  • thermally sprayed protective layers of the type mentioned wherein the application of the protective layer on the metallic substrate by flame spraying, high-velocity flame spraying (HVOF) or plasma spraying, especially as corrosion protection against extremely aggressive media normal and especially at high temperatures were developed and which are characterized in that the proportion of silicate mineral or rock in the spray powder has an alkali content of less than 6 weight percent and that the grain size of the at least one silicate component of the spray powder is selected such that in the Application of the protective layer through the partial Entglasen an adjustment of the coefficient of thermal expansion of the protective layer to the substrate is carried out and that the thermal conductivity of the protective layer between 0.8 and 5 W / mK.
  • HVOF high-velocity flame spraying
  • Alkaline content is to be understood as meaning the proportion by weight of oxides of alkali metals or of alkali metals as such.
  • These coatings provide protection for metallic base materials against all aqueous salt solutions and acids (excluding HF) in a low temperature range and against many corrosive ashes, molten salts, and corrosive gases in a high temperature range. Since the layers have a low thermal conductivity and can be applied with a large layer thickness, their use is also possible as thermal insulation.
  • Protective layers not ordinary silicate glasses, but selects mixtures of particularly corrosion-resistant, low-alkali, natural or artificially produced minerals and rocks, which glaze during spraying and immediately in the resulting layer partially devitrify, ie crystallize.
  • the manufacturing method according to the invention according to claim 8 involves applying the protective layer to the metallic substrate by means of flame spraying, high-velocity flame spraying (HVOF) or plasma spraying and is characterized in that the proportion of silicate mineral or rock in spray powder has an alkali content of less than 6 weight percent, and in the case of the application of the protective layer by controlled partial devitrification of the at least one silicate component of the spray powder, an adaptation of the thermal expansion coefficient of the protective layer to the substrate and with a suitable choice of grain size of the at least one siliceous component of the spray powder, a thermal conductivity of the protective layer between 0.8 and 5 W. / mk is achieved.
  • HVOF high-velocity flame spraying
  • the thermal expansion coefficient of the layer is thus adjusted by growing in the layer, new crystalline phases, that it is adapted to the substrate.
  • targeted crystallization of the silicate components can be - even without a high alkali content in the at least one silicate component to have to accept - to produce a wide range of thermal expansion coefficients.
  • For a controlled crystallization is thus no longer only a suitable choice of mineral materials crucial; rather, in particular, their particle size distribution is of crucial importance. Because a variation of the grain size, the temperatures of the particles in the flame or in the plasma and thus the crystallization behavior in the resulting layer are strongly influenced, which ultimately allows an adjustment of the coefficient of thermal expansion.
  • the protective layers of the present invention have all the advantages of the already known glass-metal / ceramic layers, because during the layer construction the mineral or rock component is present as glass.
  • This glass contributes to a good wetting of the substrate and the metal particles and thus a good Adhesion to the substrate, can be plastically deformed and forms a perfect non-porous mixture with the possibly existing metal component.
  • the partial crystallization takes place in the still plastic layer in such a way that no mechanical stresses develop in the protective layer.
  • the decisive advantage of the protective layer according to the invention and of the method according to the invention over glass-metal / ceramic layers and enamels is that in the context of the present invention also low-alkali and thus corrosion-resistant silicates are used, which in the prior art because of a low thermal expansion coefficient and high Melting temperatures were considered unusable for the coating of metals.
  • a metal component in the spray powder for the protective layer are in principle all possible metals or metal alloys in question. However, it is preferably a metal powder of a nickel or copper-based alloy.
  • the spray powder advantageously consists of a total of three components, namely a first and a second silicate mineral or rock and a metal powder.
  • the glazing and the partial devitrification of the spray powder can be controlled for a protective layer optimally adapted to the respective substrate.
  • the spray powder is preferably a proportion of at least 10 weight percent of a silicate component with high purity of silica present, which advantageously exceeds a proportion of 99% in the component.
  • Protective layers according to the invention can advantageously have a thermal conductivity of between 0.8 and 5 W / mK which is also suitable for heat-insulating purposes and can be applied in a layer thickness of from 100 to 2500 ⁇ m. Layer thicknesses of more than 2 mm prove to be particularly advantageous in a protective layer according to the invention, in particular if its heat-insulating property is required.
  • the present invention relates not only to a protective layer according to the invention but also to an at least two-component spray powder for the production thereof.
  • the invention is also directed to the use of the protective layer for protecting parts of the combustion chamber of an internal combustion engine or of a gas turbine serving as substrate against high temperatures, corrosion and erosion.
  • these are in particular valves, pistons and cylinder heads; in gas turbines, this relates in particular to the blades and plates.
  • the protective layer according to the invention is also ideal for other machine parts serving as substrates, for example for protecting parts of steam turbines, chemical plants, heat exchangers, etc. effectively against temperature, corrosion and erosion.
  • the substrate is made of a steel or a nickel-based alloy. Then an inventive mineral metal spray powder is sprayed by flame spraying, plasma spraying or HVOF. The spraying succeeds on a sandblasted, not preheated substrate without re-melting.
  • the spray powder with a grain size ⁇ 50 ⁇ m is produced by spray-drying with subsequent sintering (850 ° C, inert gas) from the following components: 65% Metal powder of gas-atomized 80Ni20Cr alloy (nickel chrome), grain size ⁇ 25 ⁇ m; 25% molten and finely ground artificial black basalt, wt%: SiO 2 -50, CaO-20, Al 2 O 3 -15, MgO-8, Fe 2 O 3 -7, grit ⁇ 10 ⁇ m ; Alkali content ⁇ 0.5 wt.% 10% Ground and sieved natural quartz or cristoballite (grain size 25-50 ⁇ m) with a purity of> 99% SiO 2 .
  • the mineral-metal layer which results from this spray powder, is free of pores and cracks and has a thermal expansion coefficient of approx. 12x10 -6 K -1 at 20 ° C.
  • the thermal conductivity of the layer at 700 ° C is about 3 W / mK.
  • the layer thickness can be varied in the range 100 - 2500 ⁇ m .
  • the maximum operating temperature in air is 1200 ° C.
  • the coating is suitable as corrosion protection and thermal insulation for various high-temperature and thermal shock-stressed parts made of steels and nickel-based alloys.
  • the substrate consists of a steel, cast or a nickel-based alloy. Then, an inventive, two-component mineral spray powder is sprayed by flame spraying or plasma spraying. The spraying success on a sandblasted, preheated to about 500 ° C substrate with a re-melting at about 1100 ° C.
  • the spray powder with a grain size ⁇ 100 ⁇ m is produced by mixing together the following mineral components: 67% melted, ground and sieved (particle size 25 - 50 ⁇ m) artificial white basalt, wt%: SiO 2 -54, CaO 20 MgO 5, Al 2 O 3 -16, Na 2 O-5; Alkali content ⁇ 5 wt.% 33% Ground and sieved (grain size 25-100 ⁇ m) Kristoballit with a purity of> 99% SiO 2 .
  • wt .-% of the following oxides can be added to the spray powder for dyeing the layer: CoO, Cr 2 O 3 , TiO 2 , ZrO 2 , ZnO and Fe 2 O 3 .
  • a mineral layer, which results from this spray powder, is pore-poor ( ⁇ 3%), free of cracks and has a thermal expansion coefficient at 20 ° C of approx. 11x10 -6 K -1 .
  • the thermal conductivity of the layer is approx. 1 W / mK at 700 ° C.
  • the layer thickness can be varied in the range 100-600 ⁇ m .
  • the maximum operating temperature in air is approx. 1000 ° C. Since the coating contains no metallic component, it is less thermally shock resistant than metal-containing mineral-metal layers.
  • the preferred field of application of the layer is thus corrosion protection, in particular against acids for medium thermally shock-stressed parts.
  • the substrate is made of an aluminum or magnesium alloy. Then a mineral-metal spray powder is sprayed on by plasma spraying or HVOF. The spraying succeeds on a sandblasted, not preheated substrate without re-melting.
  • the spray powder with a grain size of ⁇ 50 ⁇ m is produced by spray-drying with subsequent sintering (620 ° C, inert gas) from the following components: 62% Metal powder made of gas-atomized 90Cu10Sn alloy (tin bronze), grain size ⁇ 25 ⁇ m; 18% finely ground (grain size ⁇ 10 ⁇ m) natural black basalt (basalt flour); Alkali content ⁇ 5 wt.% 20% Ground and sieved (grain size 25-50 ⁇ m) natural quartz or crystallite with a purity of> 99% SiO 2 .
  • the mineral-metal layer that results from this spray powder is free of pores and cracks and has a coefficient of thermal expansion of approx. 18x10 -6 K -1 at 20 ° C.
  • the thermal conductivity of the layer is at 400 ° C at about 5 W / mK.
  • the layer thickness can be varied in the range 100 - 2500 ⁇ m .
  • the maximum operating temperature of the protective layer in air is 700 ° C - apart from the substrate.
  • the coating is suitable as corrosion protection and thermal insulation for various high thermal shock loaded parts made of aluminum and magnesium alloys.
  • the substrate consists of a titanium alloy. This is followed by plasma spraying or HVOF a mineral-metal spray powder sprayed. The spraying succeeds on a sandblasted, not preheated substrate without re-melting.
  • the spray powder with a grain size ⁇ 50 ⁇ m is produced by spray drying with subsequent sintering (800 ° C, inert gas) from the following components: 57% Metal powder of gas-atomized 80Ni20Cr alloy (nickel chrome), grain size ⁇ 25 ⁇ m; 31% finely ground (grain size ⁇ 10 ⁇ m) natural black basalt (basalt flour) 12% Ground and sieved (grain size 25-50 ⁇ m) of natural spodumene with a purity of> 95% LiAlSi2O6.
  • a mineral-metal layer which results from this spray powder, is free of pores and cracks and has a thermal expansion coefficient of approx. 7.5x10 -6 K -1 at 20 ° C.
  • the alkali content of the mineral components is also here (including Li) at ⁇ 5 wt.%.
  • the thermal conductivity of the layer is approx. 2 W / mK at 700 ° C.
  • the layer thickness can be varied in the range 100 - 2500 ⁇ m .
  • the maximum operating temperature in air is 900 ° C.
  • the coating is suitable as high-temperature corrosion protection and thermal insulation for various highly thermally shock-stressed titanium alloy parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Laminated Bodies (AREA)

Description

Die Erfindung betrifft Schutzschichten für Metalle bzw. metallische Legierungen, die bei hohen Temperaturen und in aggressiven gasförmigen, flüssigen und festen Medien eingesetzt werden können. Genauer gesagt bezieht sich die vorliegende Erfindung auf eine thermisch gespritzte, gasdichte Schutzschicht für metallische Substrate, insbesondere solche auf Basis von Fe, Ni, Al, Mg und/oder Ti, wobei das Spritzpulver dafür wenigstens zwei Komponenten umfasst, von denen die erste ein silikatisches Mineral oder Gestein und die zweite ein Metallpulver und/oder ein weiteres silikatisches Mineral oder Gestein ist.The invention relates to protective layers for metals or metallic alloys which can be used at high temperatures and in aggressive gaseous, liquid and solid media. More particularly, the present invention relates to a thermally sprayed, gas-tight protective layer for metallic substrates, in particular those based on Fe, Ni, Al, Mg and / or Ti, wherein the spray powder for this purpose comprises at least two components, of which the first is a silicate Mineral or rock and the second is a metal powder and / or another silicate mineral or rock.

Als nicht-metallische Schutzschichten für verschiedene Metalle und Legierungen sind Emaile bekannt (vgl. [1]: A. Petzold, H. Pöschmann, Email und Emailliertechnik, Wiley-VCH; Auflage 2, (1992 )). Diese Schutzschichten besitzen eine gute Haftung zum Substrat und schützen die metallischen Grundwerkstoffe bis ca. 400°C zuverlässig gegen viele aggressive Medien. Industriell werden als Emaile für Stähle und Gusseisen Silikatgläser mit einem relativ niedrigen SiO2-Gehalt und einem hohen Gehalt von Alkalioxiden eingesetzt (vgl. [1]). Typische Emaile für weißes Emaillieren von Stahlblech bestehen aus einer Grund- und einer Deckemail und haben folgenden Zusammensetzungen: Grundemail Deckemail Stoff Anteil (%) Stoff Anteil (%) SiO2 47-53 SiO2 56 Al2O3 4-6 Al2O3 7 B2O3 17-19 B2O3 7 Na2O + K2O 15-18 Na2O + K2O 22,5 TiO2 2-8 CaO 7 CaO + MgO Rest F 0,5 Emailes are known as non-metallic protective layers for various metals and alloys (see [1]: A. Petzold, H. Pöschmann, enamel and enamel technique, Wiley-VCH; Edition 2, (1992 )). These protective layers have good adhesion to the substrate and reliably protect the metallic base materials up to approx. 400 ° C against many aggressive media. Industrially, silicate glasses with a relatively low SiO 2 content and a high content of alkali oxides are used as enamel for steels and cast iron (see [1]). Typical enamels for white enamelling of sheet steel consist of a base and a top enamel and have the following compositions: basic email ceiling mail material Proportion of (%) material Proportion of (%) SiO 2 47-53 SiO 2 56 Al 2 O 3 4-6 Al 2 O 3 7 B 2 O 3 17-19 B 2 O 3 7 Na 2 O + K 2 O 15-18 Na 2 O + K 2 O 22.5 TiO 2 2-8 CaO 7 CaO + MgO rest F 0.5

Spezielle Emaillen für Aluminium, Kupferlegierungen, Edelstähle, Titan und andere Metalle besitzen in der Regel noch weniger SiO2 und mehr Alkalien als Emaile für Stahl und Gusseisen.Special enamels for aluminum, copper alloys, stainless steels, titanium and other metals usually have even less SiO 2 and more alkalis than enamel for steel and cast iron.

Ein hoher Alkaligehalt beeinflusst die Korrosionsbeständigkeit der silikatischen Emaillen gegenüber Wasser und Säuren negativ, ist aber absolut notwendig für den Emaillierprozess: Zum einen um die Schmelztemperatur niedrig zu halten und zum anderen um einen hohen Wärmeausdehnungskoeffizient - angepasst an das jeweilige Substrat - zu erzielen. Bedingt durch Emaillierverfahren müssen Stahlemaille einen Schmelzpunkt (Liquidustemperatur TL) unter 850°C und Aluminiumemaille sogar unter 550°C besitzen (vgl. [1]). Niedrige Schmelztemperaturen und hohe notwendige Wärmeausdehnungskoeffizienten machen einen Emailleinsatz von bekannten säurebeständigen Gläsern wie z.B. Kieselglas, Borosilikatgläser, E-Glas, säurefesten Porzellanglasuren und anderen unmöglich.A high alkali content negatively affects the corrosion resistance of the silicate enamels against water and acids, but is absolutely necessary for the enamelling process: on the one hand to keep the melting temperature low and on the other hand to achieve a high thermal expansion coefficient - adapted to the respective substrate. Due to enamelling processes, enamels must have a melting point (liquidus temperature TL) below 850 ° C and aluminum enamel even below 550 ° C (see [1]). Low melting temperatures and high necessary coefficients of thermal expansion make an enamel insert of known acid resistant glasses, e.g. Silica glass, borosilicate glasses, E-glass, acid-resistant porcelain stains and others impossible.

Bekannt sind auch keramische Schichten aus hochschmelzbaren korrosionsbeständigen Werkstoffen, die auf metallischen Substraten mittels thermischem Spritzen (Flammspritzen, Hochgeschwindigkeit-Flammspritzen (HVOF), Plasmaspritzen) oder PVD- bzw. CVD-Verfahren appliziert werden. So kann z.B. Yttrium stabilisiertes Zirkonoxid (YSZ) sowohl durch thermisches Spritzen [ UK 2100621 A ; US 4,377,371 ; WO 91/05888 ; US 5,169,689 ] als auch durch PVD [ US 4,321,310 ; US 4,321,311 ; US 4,401,697 ; US 4,405,659 ; WO 92/0598 ] auf Substrate aus Stahl und Nickelbasislegierungen aufgebracht werden. Ein Unterschied in den Wärmeausdehnungskoeffizienten von Schicht und Substrat wird bei YSZ-Schichten durch eine poröse Struktur mit einem Rissnetz kompensiert. Dank dieser Eigenschaft sind diese Schichten thermoschockbeständig. Sie gewährleisten jedoch keinen Schutz gegenüber Oxidation und Korrosion und können nur als reine Wärmedämmschichten bei Temperaturen bis 1200°C angewendet werden. Ein zweiter wichtiger Nachteil von YSZ-Schichten liegt in einer schwachen Haftung zum Substrat. Zusammen mit einer niedrigen mechanischen Festigkeit (wegen Rissen und Poren) bedeutet das eine schlechte Erosionsbeständigkeit.Also known ceramic layers of refractory corrosion-resistant materials, which are applied to metallic substrates by means of thermal spraying (flame spraying, high-velocity flame spraying (HVOF), plasma spraying) or PVD or CVD method. For example, yttrium-stabilized zirconia (YSZ) can be produced both by thermal spraying [ UK 2100621 A ; US 4,377,371 ; WO 91/05888 ; US 5,169,689 ] as well as PVD [ US 4,321,310 ; US 4,321,311 ; US 4,401,697 ; US 4,405,659 ; WO 92/0598 ] are applied to substrates made of steel and nickel-based alloys. A difference in the coefficients of thermal expansion of the layer and the substrate is compensated in YSZ layers by a porous structure with a crack network. Thanks to this property, these layers are thermoshock resistant. However, they do not guarantee protection against oxidation and corrosion and can only be used as pure thermal barrier coatings at temperatures up to 1200 ° C. A second important disadvantage of YSZ layers is weak adhesion to the substrate. Together with a low mechanical strength (due to cracks and pores) this means poor erosion resistance.

Andere bekannte keramische Schichten wie z.B. TiN, TiC, CrC, CrN, DLC u.a., die durch PVD/CVD-Verfahren hergestellt werden, besitzen niedrige Wärmeausdehnungskoeffizienten und können deswegen nicht bei hohen Temperaturen betrieben werden; bei Temperaturerhöhung reißt nämlich die Schicht, weil sich ein metallisches Substrat viel stärker ausdehnt als die Schicht. Aus diesem Grund dienen diese sehr dünnen Schichten mit Schichtdicken von unter 5µm hauptsächlich bei Raumtemperatur als Verschleiß und Korrosionsschutz.Other known ceramic layers such as TiN, TiC, CrC, CrN, DLC, etc., which are produced by PVD / CVD method, have low thermal expansion coefficients and therefore can not be operated at high temperatures; in fact, when the temperature increases, the layer tears because a metallic substrate expands much more than the layer. For this reason, these very thin layers with layer thicknesses of less than 5 μm, mainly at room temperature, serve as wear and corrosion protection.

Weitere Schutzschichten, die als Wärmedämmung für Hochtemperaturanwendungen Anwendung finden, sind aus der DE 19852285 C1 und der EP 1141437 B1 bekannt. Im Unterschied zu YSZ sind diese Glas-Metall/Keramik-Schichten poren- und rissfrei, und als Folge hiervon gasdicht. Die Haftung zum metallischen Substrat ist auch wesentlich besser als im Falle von YSZ-Schichten, weil die metallische Oberfläche durch den Glasanteil der Schicht benetzt wird. Die genannten gattungsgemäßen Schichten sind ferner auch thermoschockbeständig, weil die Wärmeausdehnungskoeffizienten von Schicht, einer ggfs. vorhandenen metallischen Zwischenschicht und Substrat aneinander angenähert bzw. angepasst sind. Ein Metallanteil verbessert die mechanischen Eigenschaften der Schicht. Die Anpassung der Wärmeausdehnungskoeffizienten ist durch eine Variation der Glaszusammensetzung und/oder des Metall-Glas- oder Keramik-/Glas-Verhältnisses möglich.Other protective coatings, which are used as thermal insulation for high-temperature applications, are from the DE 19852285 C1 and the EP 1141437 B1 known. Unlike YSZ, these glass-metal / ceramic layers are free of pores and cracks, and as a result are gas-tight. The adhesion to the metallic substrate is also essential better than in the case of YSZ layers, because the metallic surface is wetted by the glass portion of the layer. The aforementioned generic layers are also resistant to thermal shock, because the coefficients of thermal expansion of the layer, possibly a. Present metallic intermediate layer and substrate are approximated or adapted to each other. A metal content improves the mechanical properties of the layer. The adaptation of the thermal expansion coefficients is possible by a variation of the glass composition and / or the metal-glass or ceramic / glass ratio.

Diese Glas-Metall/Keramik-Schichten werden als Wärmedämmschichten für Turbinenschaufeln verwendet. Ein Vorteil gegenüber YSZ-Schichten liegt in einem Oxidationsschutz für das Substrat durch die gasdichten Schichtgefüge. Allerdings eignen sich diese Schichten nicht als Korrosionsschutzschicht. Für die Glas-Metall/Keramik-Schichten nach dem Stand der Technik mussten alkalihaltige Gläser ausgewählt werden, um - zwecks Anpassung an das Substrat - einen möglichst hohen Wärmeausdehnungskoeffizient zu erreichen. Bei einer Anwendung als Wärmedämmschichten ist dies auch nicht kritisch.These glass-metal / ceramic layers are used as thermal barrier coatings for turbine blades. An advantage over YSZ layers lies in an oxidation protection for the substrate through the gas-tight layer structure. However, these layers are not suitable as a corrosion protection layer. For the glass-metal / ceramic layers according to the prior art, alkaline glasses had to be selected in order to achieve the highest possible coefficient of thermal expansion for adaptation to the substrate. When used as a thermal barrier coatings, this is not critical.

Demgegenüber ist es die Aufgabe der vorliegenden Erfindung, eine gattungsgemäße, thermisch gespritzte und gasdichte Schutzschicht für metallische Substrate, insbesondere solche auf Basis von Fe, Ni, Al, Mg und/oder Ti, sowie ein Verfahren zu deren Herstellung bereitzustellen, die - auch bei hohen Temperaturen - einen Korrosionsschutz für das Substrat bietet.In contrast, it is the object of the present invention to provide a generic, thermally sprayed and gas-tight protective layer for metallic substrates, in particular those based on Fe, Ni, Al, Mg and / or Ti, and a process for their preparation, which - also in high temperatures - provides corrosion protection for the substrate.

Der Vollständigkeit halber werden noch die folgenden bekannten Pulverzusammensetzungen genannt, welche jedoch andersartige Schutzschichten betreffen.For the sake of completeness, the following known powder compositions are mentioned, but which relate to different types of protective layers.

Nach EP 0455996 A1 sind Spritzpulver aus einer metallischen und einer keramischen Komponente bekannt, wobei nur die metallische Komponente in der Flamme (Plasma) schmilzt und für eine Schichtbildung sorgt. Die keramische Komponente bleibt fest und wird durch das Metall "mitgenommen". Eine dichte Schicht mit guter Haftung zum Grundmaterial ist dabei nicht erzielbar.To EP 0455996 A1 Spray powders of a metallic and a ceramic component are known, with only the metallic component in the flame (plasma) melts and ensures a layer formation. The ceramic component remains solid and is "dragged" by the metal. A dense layer with good adhesion to the base material is not achievable.

DE 4038254 A1 beschreibt eine glasige Schutzschicht aus leicht schmelzbaren Gläsern. Das Pulver besteht aus einem oder aus zwei Gläsern mit Alkaligehalt > 14%, gemessen an der Summe von Li20 + Na20 + K20. Dabei liegen die Schmelztemperaturen der eingesetzten Gläser unter 800°C, so dass hierbei ein Korrosionsschutz für hohe Temperaturen bis etwa 1000°C nicht erzielbar ist. DE 4038254 A1 describes a glassy protective layer of easily fusible glass. The powder consists of one or two glasses with alkali content> 14%, measured on the sum of Li20 + Na20 + K20. The melting temperatures of the glasses used are below 800 ° C, so that in this case a corrosion protection for high temperatures up to about 1000 ° C can not be achieved.

Bei der vorliegenden Erfindung gemäß Patentanspruch 1 handelt es sich um thermisch gespritzte Schutzschichten der eingangs genannten Art, wobei das Applizieren der Schutzschicht auf das metallische Substrat durch Flammspritzen, Hochgeschwindigkeit-Flammspritzen (HVOF) oder Plasmaspritzen erfolgt, die speziell als Korrosionsschutz gegen extrem aggressive Medien bei normalen und besonders bei hohen Temperaturen entwickelt wurden und die dadurch gekennzeichnet sind, dass der Anteil an silikatischem Mineral oder Gestein im Spritzpulver einen Alkaligehalt von kleiner als 6 Gewichtsprozent aufweist und dass die Korngröße der wenigstens einen silikatischen Komponente des Spritzpulvers derart gewählt wird, dass bei der Applikation der Schutzschicht durch deren partielles Entglasen eine Anpassung des Wärmeausdehnungskoeffizienten der Schutzschicht an das Substrat erfolgt und dass die Wärmeleitfähigkeit der Schutzschicht zwischen 0,8 und 5 W/mK beträgt. Unter Alkaligehalt ist dabei der Gewichtsanteil an Oxiden von Alkalimetallen bzw. auch von Alkalimetallen als solchen zu verstehen.
Diese Schichten bieten einen Schutz für metallische Grundwerkstoffe gegenüber allen wässrigen Salzlösungen und Säuren (außer HF) in einem Niedertemperaturbereich und gegenüber vielen korrosiven Aschen, Salzschmelzen und korrosiven Gasen in einem Hochtemperaturbereich. Da die Schichten eine niedrige Wärmeleitfähigkeit besitzen und mit einer großen Schichtdicke appliziert werden können, ist deren Einsatz auch als Wärmedämmung möglich.
Im Unterschied zu oben genannten Glas-Metall/KeramikSchichten verwendet man für das Spritzpulver der erfindungsgemäßen Schutzschichten keine gewöhnliche Silikatgläser, sondern wählt Mischungen von besonders korrosionsbeständigen, alkaliarmen, natürlichen oder künstlich hergestellten Mineralen und Gesteinen aus, die während des Spritzens verglasen und in der entstehenden Schicht sofort teilweise entglasen, d.h. kristallisieren.
In the present invention according to claim 1 are thermally sprayed protective layers of the type mentioned, wherein the application of the protective layer on the metallic substrate by flame spraying, high-velocity flame spraying (HVOF) or plasma spraying, especially as corrosion protection against extremely aggressive media normal and especially at high temperatures were developed and which are characterized in that the proportion of silicate mineral or rock in the spray powder has an alkali content of less than 6 weight percent and that the grain size of the at least one silicate component of the spray powder is selected such that in the Application of the protective layer through the partial Entglasen an adjustment of the coefficient of thermal expansion of the protective layer to the substrate is carried out and that the thermal conductivity of the protective layer between 0.8 and 5 W / mK. Alkaline content is to be understood as meaning the proportion by weight of oxides of alkali metals or of alkali metals as such.
These coatings provide protection for metallic base materials against all aqueous salt solutions and acids (excluding HF) in a low temperature range and against many corrosive ashes, molten salts, and corrosive gases in a high temperature range. Since the layers have a low thermal conductivity and can be applied with a large layer thickness, their use is also possible as thermal insulation.
In contrast to the above-mentioned glass-metal / ceramic layers are used for the spray powder of the invention Protective layers not ordinary silicate glasses, but selects mixtures of particularly corrosion-resistant, low-alkali, natural or artificially produced minerals and rocks, which glaze during spraying and immediately in the resulting layer partially devitrify, ie crystallize.

Das erfindungsgemäße Herstellungsverfahren gemäß Patentanspruch 8 beinhaltet das Applizieren der Schutzschicht auf das metallische Substrat mittels Flammspritzen, Hochgeschwindigkeit-Flammspritzen (HVOF) oder Plasmaspritzen und ist dadurch gekennzeichnet, dass der Anteil an silikatischem Mineral oder Gestein in Spritzpulver einen Alkaligehalt von kleiner als 6 Gewichtsprozent aufweist und dass bei der Applikation der Schutzschicht durch gesteuertes partielles Entglasen der wenigstens einen silikatischen Komponente des Spritzpulvers eine Anpassung des Wärmeausdehnungskoeffizienten der Schutzschicht an das Substrat und bei geeigneter Wahl der Korngröße der wenigstens einen silikatischen Komponente des Spritzpulvers eine Wärmeleitfähigkeit der Schutzschicht zwischen 0,8 und 5 W/mk erzielt wird.The manufacturing method according to the invention according to claim 8 involves applying the protective layer to the metallic substrate by means of flame spraying, high-velocity flame spraying (HVOF) or plasma spraying and is characterized in that the proportion of silicate mineral or rock in spray powder has an alkali content of less than 6 weight percent, and in the case of the application of the protective layer by controlled partial devitrification of the at least one silicate component of the spray powder, an adaptation of the thermal expansion coefficient of the protective layer to the substrate and with a suitable choice of grain size of the at least one siliceous component of the spray powder, a thermal conductivity of the protective layer between 0.8 and 5 W. / mk is achieved.

Der Wärmeausdehnungskoeffizient der Schicht wird damit durch in der Schicht wachsende, neue kristalline Phasen so abgestimmt, dass er an das Substrat angepasst ist. Durch die gezielte Kristallisation der silikatischen Komponenten kann man - auch ohne einen hohen Alkalianteil in der wenigstens einen silikatischen Komponente in Kauf nehmen zu müssen - eine breite Palette von Wärmeausdehnungskoeffizienten erzeugen. Für eine gesteuerte Kristallisation ist damit nicht mehr nur eine geeignete Auswahl der mineralischen Werkstoffe ausschlaggebend; vielmehr ist insbesondere auch deren Korngrößenverteilung von entscheidender Bedeutung. Denn durch eine Variation der Korngröße werden die Temperaturen der Teilchen in der Flamme bzw. im Plasma und damit das Kristallisationsverhalten in der entstehenden Schicht stark beeinflusst, was letztlich eine Anpassung des Wärmeausdehnungskoeffizienten erlaubt.The thermal expansion coefficient of the layer is thus adjusted by growing in the layer, new crystalline phases, that it is adapted to the substrate. By targeted crystallization of the silicate components can be - even without a high alkali content in the at least one silicate component to have to accept - to produce a wide range of thermal expansion coefficients. For a controlled crystallization is thus no longer only a suitable choice of mineral materials crucial; rather, in particular, their particle size distribution is of crucial importance. Because a variation of the grain size, the temperatures of the particles in the flame or in the plasma and thus the crystallization behavior in the resulting layer are strongly influenced, which ultimately allows an adjustment of the coefficient of thermal expansion.

Die Schutzschichten der vorliegenden Erfindung besitzen alle Vorteile der bereits bekannten Glas-Metall/Keramik-Schichten, weil während des Schichtaufbaus die Mineral- bzw. Gesteinskomponente als Glas vorliegt. Dieses Glas trägt zu einer guten Benetzung des Substrates und der Metallteilchen und damit einer guten Haftung am Substrat bei, lässt sich plastisch verformen und bildet eine perfekte porenfreie Mischung mit der ggfs. vorhandenen Metallkomponente.The protective layers of the present invention have all the advantages of the already known glass-metal / ceramic layers, because during the layer construction the mineral or rock component is present as glass. This glass contributes to a good wetting of the substrate and the metal particles and thus a good Adhesion to the substrate, can be plastically deformed and forms a perfect non-porous mixture with the possibly existing metal component.

Die partielle Kristallisation erfolgt in der noch plastischen Schicht so, dass dadurch keine mechanischen Spannungen in der Schutzschicht entstehen. Der entscheide Vorteil der erfindungsgemäßen Schutzschicht und des erfindungsgemäßen Verfahrens gegenüber Glas-Metall/Keramik-Schichten und Emaillen liegt darin, dass im Rahmen der vorliegenden Erfindung auch alkaliarme und damit korrosionsbeständige Silikate verwendet werden, die im vorbekannten Stand der Technik wegen eines niedrigen Wärmeausdehnungskoeffizienten und hoher Schmelztemperaturen als unbrauchbar für die Beschichtung von Metallen galten.The partial crystallization takes place in the still plastic layer in such a way that no mechanical stresses develop in the protective layer. The decisive advantage of the protective layer according to the invention and of the method according to the invention over glass-metal / ceramic layers and enamels is that in the context of the present invention also low-alkali and thus corrosion-resistant silicates are used, which in the prior art because of a low thermal expansion coefficient and high Melting temperatures were considered unusable for the coating of metals.

Als Metallkomponente im Spritzpulver für die Schutzschicht kommen im Prinzip alle möglichen Metalle bzw. Metalllegierungen in Frage. Bevorzugt handelt es sich dabei jedoch um ein Metallpulver aus einer Nickel- oder Kupferbasislegierung.As a metal component in the spray powder for the protective layer are in principle all possible metals or metal alloys in question. However, it is preferably a metal powder of a nickel or copper-based alloy.

Das Spritzpulver besteht vorteilhaft aus insgesamt drei Komponenten, nämlich aus einem ersten und einem zweiten silikatischen Mineral oder Gestein und einem Metallpulver. Mit geeigneten Korngrößen der drei Komponenten des Spritzpulvers und durch geeignete Wahl ihres jeweiligen Mengenanteils kann die Verglasung und die partielle Entglasung des Spritzpulvers für eine auf das jeweilige Substrat optimal angepasste Schutzschicht gesteuert werden.The spray powder advantageously consists of a total of three components, namely a first and a second silicate mineral or rock and a metal powder. With suitable particle sizes of the three components of the spray powder and by suitable choice of their respective proportions, the glazing and the partial devitrification of the spray powder can be controlled for a protective layer optimally adapted to the respective substrate.

Im Spritzpulver ist bevorzugt ein Anteil von wenigstens 10 Gewichtsprozent einer silikatischen Komponente mit hoher Reinheit an Siliziumdioxid vorhanden, der vorteilhaft einen Anteil von 99 % in der Komponente übersteigt.In the spray powder is preferably a proportion of at least 10 weight percent of a silicate component with high purity of silica present, which advantageously exceeds a proportion of 99% in the component.

Erfindungsgemäße Schutzschichten können in vorteilhafter Weise eine auch für wärmedämmende Zwecke geeignete Wärmeleitfähigkeit zwischen 0,8 und 5 W/mK aufweisen und in einer Schichtdicke von 100 - 2500 µm appliziert werden. Schichtdicken von über 2 mm erweisen sich bei einer erfindungsgemäßen Schutzschicht, insbesondere wenn auch deren wärmedämmende Eigenschaft benötigt wird, als besonders vorteilhaft.Protective layers according to the invention can advantageously have a thermal conductivity of between 0.8 and 5 W / mK which is also suitable for heat-insulating purposes and can be applied in a layer thickness of from 100 to 2500 μm. Layer thicknesses of more than 2 mm prove to be particularly advantageous in a protective layer according to the invention, in particular if its heat-insulating property is required.

Die vorliegende Erfindung betrifft im übrigen nicht nur eine erfindungsgemäße Schutzschicht, sondern auch ein wenigstens zwei-komponentiges Spritzpulver zu deren Herstellung. Im übrigen richtet sich die Erfindung auch auf die Verwendung der Schutzschicht zum Schutz von als Substrat dienenden Teilen der Brennkammer eines Verbrennungsmotors oder einer Gasturbine gegen hohe Temperaturen, Korrosion und Erosion. Im Falle eines Verbrennungsmotors sind dies insbesondere Ventile, Kolben und Zylinderköpfe; bei Gasturbinen betrifft dies insbesondere die Schaufeln und Platten. Die erfindungsgemäße Schutzschicht eignet sich jedoch auch hervorragend für andere als Substrate dienende Maschinenteile, z.B. um Teile von Dampfturbinen, Chemieanlagen, Wärmetauschern, etc. effektiv gegen Temperatur, Korrosion und Erosion zu schützen.Incidentally, the present invention relates not only to a protective layer according to the invention but also to an at least two-component spray powder for the production thereof. Moreover, the invention is also directed to the use of the protective layer for protecting parts of the combustion chamber of an internal combustion engine or of a gas turbine serving as substrate against high temperatures, corrosion and erosion. In the case of an internal combustion engine these are in particular valves, pistons and cylinder heads; in gas turbines, this relates in particular to the blades and plates. However, the protective layer according to the invention is also ideal for other machine parts serving as substrates, for example for protecting parts of steam turbines, chemical plants, heat exchangers, etc. effectively against temperature, corrosion and erosion.

Im Folgenden wird die Erfindung anhand von Beispielen näher erläutert.In the following the invention will be explained in more detail by means of examples.

Beispiel 1example 1

Das Substrat besteht aus einem Stahl oder einer Nickelbasislegierung. Darauf wird durch Flammspritzen, Plasmaspritzen oder HVOF ein erfindungsgemäßes Mineral-Metall-Spritzpulver aufgespritzt. Das Spritzen erfolg auf ein sandgestrahltes, nicht vorgewärmtes Substrat ohne Nachschmelzen. Das Spritzpulver mit einer Körnung < 50µm wird durch Sprühtrocknen mit nachfolgenden Sintern (850°C, Schutzgas) aus folgenden Komponenten produziert: 65 wt.% Metallpulver aus gasverdüster 80Ni20Cr-Legierung (Nickelchrom), Körnung < 25 µm; 25 wt.% geschmolzenem und feingemahlenem künstlichen schwarzen Basalt, wt%: SiO2-50, CaO-20, Al2O3-15, MgO-8, Fe2O3-7, Körnung < 10µm; Alkaligehalt < 0,5 wt.% 10 wt.% gemahlenem und gesiebtem natürlichen Quarz oder Kristoballit (Körnung 25-50 µm) mit einer Reinheit von > 99 % SiO2. The substrate is made of a steel or a nickel-based alloy. Then an inventive mineral metal spray powder is sprayed by flame spraying, plasma spraying or HVOF. The spraying succeeds on a sandblasted, not preheated substrate without re-melting. The spray powder with a grain size <50 μm is produced by spray-drying with subsequent sintering (850 ° C, inert gas) from the following components: 65% Metal powder of gas-atomized 80Ni20Cr alloy (nickel chrome), grain size <25 μ m; 25% molten and finely ground artificial black basalt, wt%: SiO 2 -50, CaO-20, Al 2 O 3 -15, MgO-8, Fe 2 O 3 -7, grit <10 μm ; Alkali content <0.5 wt.% 10% Ground and sieved natural quartz or cristoballite (grain size 25-50 μ m) with a purity of> 99% SiO 2 .

Die Mineral-Metall-Schicht, die aus diesem Spritzpulver entsteht, ist poren- und rissfrei und besitzt bei 20°C einen Wärmeausdehnungskoeffizient von ca. 12x10-6K-1. Die Wärmeleitfähigkeit der Schicht liegt bei 700°C bei ca. 3 W/mK. Die Schichtdicke kann im Bereich 100 - 2500 µm variiert werden. Die maximale Betriebstemperatur an Luft beträgt 1200°C. Die Beschichtung ist geeignet als Korrosionsschutz und Wärmedämmung für verschiedene hoch temperatur- und thermoschockbelastete Teile aus Stählen und Nickelbasislegierungen.The mineral-metal layer, which results from this spray powder, is free of pores and cracks and has a thermal expansion coefficient of approx. 12x10 -6 K -1 at 20 ° C. The thermal conductivity of the layer at 700 ° C is about 3 W / mK. The layer thickness can be varied in the range 100 - 2500 μm . The maximum operating temperature in air is 1200 ° C. The coating is suitable as corrosion protection and thermal insulation for various high-temperature and thermal shock-stressed parts made of steels and nickel-based alloys.

Beispiel 2Example 2

Das Substrat besteht aus einem Stahl, Guss oder einer Nickelbasislegierung. Darauf wird durch Flammspritzen oder Plasmaspritzen ein erfindungsgemäßes, zwei-komponentiges Mineral-Spritzpulver aufgespritzt. Das Spritzen erfolg auf ein sandgestrahltes, auf ca. 500°C vorgewärmtes Substrat mit einem Nachschmelzen bei ca. 1100°C. Das Spritzpulver mit einer Körnung < 100 µm wird durch Zusammenmischen von folgenden mineralischen Komponenten produziert: 67 wt.% geschmolzenem, gemahlenem und gesiebtem (Körnung 25 - 50 µm) künstlichem weißem Basalt, wt%: SiO2-54, CaO-20, MgO-5, Al2O3-16, Na2O-5; Alkaligehalt ≤ 5 wt.% 33 wt.% gemahlenem und gesiebtem (Körnung 25-100 µm) Kristoballit mit einer Reinheit von > 99 % SiO2. The substrate consists of a steel, cast or a nickel-based alloy. Then, an inventive, two-component mineral spray powder is sprayed by flame spraying or plasma spraying. The spraying success on a sandblasted, preheated to about 500 ° C substrate with a re-melting at about 1100 ° C. The spray powder with a grain size <100 μ m is produced by mixing together the following mineral components: 67% melted, ground and sieved (particle size 25 - 50 μ m) artificial white basalt, wt%: SiO 2 -54, CaO 20 MgO 5, Al 2 O 3 -16, Na 2 O-5; Alkali content ≤ 5 wt.% 33% Ground and sieved (grain size 25-100 μ m) Kristoballit with a purity of> 99% SiO 2 .

Darüber hinaus können dem Spritzpulver zum Färben der Schicht 1-6 wt.% von folgenden Oxiden zugemischt werden: CoO, Cr2O3, TiO2, ZrO2, ZnO und Fe2O3.
Eine Mineral-Schicht, die aus diesem Spritzpulver entsteht, ist porenarm (<3%), rissfrei und besitzt einen Wärmeausdehnungskoeffizient bei 20°C von ca. 11x10-6K-1. Die Wärmeleitfähigkeit der Schicht liegt bei ca. 1 W/mK bei 700°C. Die Schichtdicke kann im Bereich 100 - 600 µm variiert werden. Die maximale Betriebstemperatur an Luft beträgt ca. 1000°C. Da die Beschichtung keine metallische Komponente enthält ist sie weniger thermoschockbeständig als metallhaltigen Mineral-MetallSchichten. Das bevorzugte Anwendungsgebiet der Schicht liegt somit in einem Korrosionsschutz insbesondere gegen Säuren für mittel thermoschockbelastete Teile.
In addition, wt .-% of the following oxides can be added to the spray powder for dyeing the layer: CoO, Cr 2 O 3 , TiO 2 , ZrO 2 , ZnO and Fe 2 O 3 .
A mineral layer, which results from this spray powder, is pore-poor (<3%), free of cracks and has a thermal expansion coefficient at 20 ° C of approx. 11x10 -6 K -1 . The thermal conductivity of the layer is approx. 1 W / mK at 700 ° C. The layer thickness can be varied in the range 100-600 μm . The maximum operating temperature in air is approx. 1000 ° C. Since the coating contains no metallic component, it is less thermally shock resistant than metal-containing mineral-metal layers. The preferred field of application of the layer is thus corrosion protection, in particular against acids for medium thermally shock-stressed parts.

Beispiel 3Example 3

Das Substrat besteht aus einer Aluminium- oder Magnesiumlegierung. Darauf wird durch Plasmaspritzen oder HVOF ein Mineral-Metall-Spritzpulver aufgespritzt. Das Spritzen erfolg auf ein sandgestrahltes, nicht vorgewärmtes Substrat ohne Nachschmelzen. Das Spritzpulver mit einer Körnung < 50µm wird durch Sprühtrocknen mit nachfolgenden Sintern (620°C, Schutzgas) aus folgenden Komponenten produziert: 62 wt.% Metallpulver aus gasverdüster 90Cu10Sn-Legierung (Zinnbronze), Körnung < 25 µm; 18 wt.% feingemahlener (Körnung < 10µm) natürlicher schwarzer Basalt (Basaltmehl); Alkaligehalt < 5 wt.% 20 wt.% gemahlener und gesiebter (Körnung 25-50 µm) natürlicher Quarz oder Kristoballit mit einer Reinheit von > 99 % SiO2. The substrate is made of an aluminum or magnesium alloy. Then a mineral-metal spray powder is sprayed on by plasma spraying or HVOF. The spraying succeeds on a sandblasted, not preheated substrate without re-melting. The spray powder with a grain size of <50 μm is produced by spray-drying with subsequent sintering (620 ° C, inert gas) from the following components: 62% Metal powder made of gas-atomized 90Cu10Sn alloy (tin bronze), grain size <25 μ m; 18% finely ground (grain size <10 μ m) natural black basalt (basalt flour); Alkali content <5 wt.% 20% Ground and sieved (grain size 25-50 μ m) natural quartz or crystallite with a purity of> 99% SiO 2 .

Die Mineral-Metall-Schicht, die aus diesem Spritzpulver entsteht, ist poren- und rissfrei und besitzt bei 20°C einen Wärmeausdehnungskoeffizienent von ca. 18x10-6K-1. Die Wärmeleitfähigkeit der Schicht liegt bei 400°C bei ca. 5 W/mK. Die Schichtdicke kann im Bereich 100 - 2500 µm variiert werden. Die maximale Betriebstemperatur der Schutzschicht an Luft beträgt 700°C - abgesehen vom Substrat. Die Beschichtung ist geeignet als Korrosionsschutz und Wärmedämmung für verschiedene hoch thermoschockbelastete Teile aus Aluminium- und Magnesiumlegierungen.The mineral-metal layer that results from this spray powder is free of pores and cracks and has a coefficient of thermal expansion of approx. 18x10 -6 K -1 at 20 ° C. The thermal conductivity of the layer is at 400 ° C at about 5 W / mK. The layer thickness can be varied in the range 100 - 2500 μm . The maximum operating temperature of the protective layer in air is 700 ° C - apart from the substrate. The coating is suitable as corrosion protection and thermal insulation for various high thermal shock loaded parts made of aluminum and magnesium alloys.

Beispiel 4Example 4

Das Substrat besteht aus einer Titanlegierung. Darauf wird durch Plasmaspritzen oder HVOF ein Mineral-Metall-Spritzpulver aufgespritzt. Das Spritzen erfolg auf ein sandgestrahltes, nicht vorgewärmtes Substrat ohne Nachschmelzen. Das Spritzpulver mit einer Körnung < 50µm wird durch Sprühtrocknen mit nachfolgenden Sintern (800°C, Schutzgas) aus folgenden Komponenten produziert: 57 wt.% Metallpulver aus gasverdüster 80Ni20Cr-Legierung (Nickelchrom), Körnung < 25 µm; 31 wt.% feingemahlener (Körnung < 10µm) natürlicher schwarzer Basalt (Basaltmehl) 12 wt.% gemahlener und gesiebter (Körnung 25-50 µm) natürlicher Spodumen mit einer Reinheit von > 95 % LiAlSi2O6. The substrate consists of a titanium alloy. This is followed by plasma spraying or HVOF a mineral-metal spray powder sprayed. The spraying succeeds on a sandblasted, not preheated substrate without re-melting. The spray powder with a grain size <50 μ m is produced by spray drying with subsequent sintering (800 ° C, inert gas) from the following components: 57% Metal powder of gas-atomized 80Ni20Cr alloy (nickel chrome), grain size <25 μ m; 31% finely ground (grain size <10 μ m) natural black basalt (basalt flour) 12% Ground and sieved (grain size 25-50 μ m) of natural spodumene with a purity of> 95% LiAlSi2O6.

Eine Mineral-Metall-Schicht, die aus diesem Spritzpulver entsteht, ist poren- und rissfrei und besitzt bei 20°C einen Wärmeausdehnungskoeffizient von ca. 7,5x10-6K-1. Der Alkaligehalt der mineralischen Komponenten liegt auch hier (inkl. Li) bei < 5 wt.%. Die Wärmeleitfähigkeit der Schicht liegt bei ca. 2 W/mK bei 700°C. Die Schichtdicke kann im Bereich 100 - 2500 µm variiert werden. Die maximale Betriebstemperatur an Luft beträgt 900°C. Die Beschichtung ist geeignet als Hochtemperatur-Korrosionsschutz und Wärmedämmung für verschiedene hoch thermoschockbelastete Teile aus Titanlegierungen. A mineral-metal layer, which results from this spray powder, is free of pores and cracks and has a thermal expansion coefficient of approx. 7.5x10 -6 K -1 at 20 ° C. The alkali content of the mineral components is also here (including Li) at <5 wt.%. The thermal conductivity of the layer is approx. 2 W / mK at 700 ° C. The layer thickness can be varied in the range 100 - 2500 μm . The maximum operating temperature in air is 900 ° C. The coating is suitable as high-temperature corrosion protection and thermal insulation for various highly thermally shock-stressed titanium alloy parts.

Claims (9)

  1. A thermally sprayed, gas-tight protective layer for metallic substrates, in particular those on the basis of Fe, Ni, Al, Mg and/or Ti, the protective layer being applied to the metallic substrate by flame spraying, high-velocity oxy-fuel spraying (HVOF) or plasma spraying, and the spray powder therefor comprising at least two components, the first of which is a silicate mineral or rock, and the second of which is a metal powder and/or a further silicate mineral or rock,
    characterised in that
    the portion of silicate mineral or rock in the spray powder has an alkali content of less than 6 per cent by weight, that the grain size of the at least one silicate component of the spray powder is selected such that the coefficient of thermal expansion of the protective layer is adapted to the substrate by the partial devitrification of the protective layer when same is applied, and that the thermal conductivity of the protective layer is between 0.8 and 5 W/mK.
  2. The protective layer according to claim 1,
    characterised in that
    the metal powder consists of a nickel- or copper-based alloy.
  3. The protective layer according to claim 1 or 2,
    characterised in that
    the at least one silicate component of the spray powder consists of natural or synthetically produced minerals or rocks.
  4. The protective layer according to claim 1,
    characterised in that
    the spray powder consists of three components, specifically of a first and a second silicate mineral or rock and of a metal powder.
  5. The protective layer according to claim 1,
    characterised in that
    a proportion of at least 10 per cent by weight of the spray powder consists of a third component consisting of silicate mineral or rock having a proportion of > 99 % SiO2.
  6. The protective layer according to claim 1,
    characterised in that
    the protective layer has a layer thickness of 100 - 2500 µm.
  7. The protective layer according to claim 6,
    characterised in that
    the protective layer has a layer thickness of more than 2 mm.
  8. A method for producing a sprayed, gas-tight protective layer for metallic substrates according to at least one of claims 1 to 7, the spray powder comprising at least two components, the first of which is a silicate mineral or rock, and the second of which is a metal powder and/or a further silicate mineral or rock, the protective layer being applied to the metallic substrate by flame spraying, high-velocity oxy-fuel spraying (HVOF) or plasma spraying, characterised in that
    the portion of silicate mineral or rock in the spray powder has an alkali content of less than 6 per cent by weight, and that the coefficient of thermal expansion of the protective layer is adapted to the substrate by the controlled partial devitrification of the at least one silicate component of the spray powder when the protective layer is applied, and, with suitable selection of the grain size of the at least one silicate component of the spray powder, a thermal conductivity of the protective layer between 0.8 and 5 W/mK is achieved.
  9. The use of a protective layer according to any one of claims 1 to 7 for protecting parts of the combustion chamber of an internal combustion engine or of a gas turbine, acting as the substrate, from high temperatures, corrosion and erosion.
EP08007173.1A 2007-06-19 2008-04-11 Thermal sprayed protective layer for metallic substrates Active EP2006410B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007028109A DE102007028109A1 (en) 2007-06-19 2007-06-19 Thermally sprayed, gas-tight protective layer for metallic substrates

Publications (3)

Publication Number Publication Date
EP2006410A2 EP2006410A2 (en) 2008-12-24
EP2006410A3 EP2006410A3 (en) 2010-09-01
EP2006410B1 true EP2006410B1 (en) 2019-04-03

Family

ID=39535282

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08007173.1A Active EP2006410B1 (en) 2007-06-19 2008-04-11 Thermal sprayed protective layer for metallic substrates

Country Status (6)

Country Link
US (2) US8784979B2 (en)
EP (1) EP2006410B1 (en)
JP (1) JP5296421B2 (en)
KR (1) KR20080112099A (en)
CN (1) CN101328569B (en)
DE (1) DE102007028109A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009034307A1 (en) 2009-07-21 2011-01-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High temperature heating and process for its production
DE102011119087B3 (en) * 2011-11-22 2013-03-14 Märkisches Werk GmbH Method for producing a chromium protective layer and its use
KR101924810B1 (en) * 2012-08-29 2018-12-04 현대중공업 주식회사 Coated exhaust valve spindle of diesel engine using the mixed coating compositions of Inconel-Ni-Cr system and the coating method for improving corrosion resistance thereof
CN103147034A (en) * 2013-03-21 2013-06-12 齐齐哈尔大学 Preparation method of metal/modified basalt composite powder used for thermal spraying technology
DE102013211681A1 (en) 2013-06-20 2014-12-24 Robert Bosch Gmbh Fuel injection valve and device for thermal spray coating
DE102013108428A1 (en) * 2013-08-05 2015-02-05 Tenedora Nemak, S.A. De C.V. Enamel powder, metal component with a surface portion provided with an enamel coating and method for producing such a metal component
DE102014018693A1 (en) * 2014-12-18 2016-06-23 Mahle International Gmbh Method for producing a thermal barrier coating and thermal barrier coating produced by this method
RU2601049C1 (en) * 2015-04-29 2016-10-27 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Method of applying gas-tight coating of silicon carbide
CN106521479A (en) * 2016-12-13 2017-03-22 大连圣洁热处理科技发展有限公司 Manufacturing method of titanium plate comprising composite layer
CN106702368A (en) * 2016-12-13 2017-05-24 大连圣洁热处理科技发展有限公司 Composite-layer metal plate
CN107312996A (en) * 2017-06-26 2017-11-03 安徽雷萨重工机械有限公司 A kind of low-cost aluminum alloy surface heat spraying method
CN107675161B (en) * 2017-09-20 2019-05-10 兰州理工大学 The method that the cold air driving ultra-fine powdered frit of nickel coated prepares enamel coating
CN115044856B (en) * 2022-06-24 2024-01-02 中国人民解放军陆军装甲兵学院 Preparation method of abrasion self-repairing sealing coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1141437B1 (en) * 1998-11-13 2003-10-01 Forschungszentrum Jülich Gmbh Heat-insulating glass-metal/ceramic layers

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625773A (en) * 1969-12-17 1971-12-07 Gen Electric Method of producing beta-alumina electrolytes
US4405659A (en) 1980-01-07 1983-09-20 United Technologies Corporation Method for producing columnar grain ceramic thermal barrier coatings
US4401697A (en) 1980-01-07 1983-08-30 United Technologies Corporation Method for producing columnar grain ceramic thermal barrier coatings
US4321310A (en) 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings on polished substrates
US4321311A (en) 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings
US4377371A (en) 1981-03-11 1983-03-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Laser surface fusion of plasma sprayed ceramic turbine seals
DE3220185A1 (en) 1981-06-05 1982-12-23 Sandoz-Patent-GmbH, 7850 Lörrach 4-AMINO-BENZYLAMINE DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS PHARMACEUTICALS
FR2508493B1 (en) 1981-06-30 1989-04-21 United Technologies Corp PROCESS FOR APPLYING A THERMAL BARRIER COATING IN CONSTRAIN TOLERANT MATERIAL ON A METAL SUBSTRATE
CA1274859A (en) * 1987-06-26 1990-10-02 Alcan International Limited Insulating lightweight refractory materials
DE3935222A1 (en) 1989-10-23 1991-04-25 Hoellmueller Maschbau H ETCHING PLANT AND METHOD FOR ETCHING OBJECTS
JP2937369B2 (en) * 1989-12-08 1999-08-23 株式会社ナカシマ Glass coating method
US5122182A (en) * 1990-05-02 1992-06-16 The Perkin-Elmer Corporation Composite thermal spray powder of metal and non-metal
SE9002264L (en) 1990-06-27 1991-12-28 Asea Brown Boveri CONTACT DEVICE FOR ELECTRICAL CONNECTORS
JPH04231452A (en) * 1990-12-28 1992-08-20 Nippon Steel Corp Thermal spray material and sprayed heat-resistant member
JPH07122127B2 (en) * 1991-03-12 1995-12-25 秩父小野田株式会社 Ceramic spray material
JPH0679982B2 (en) * 1991-03-30 1994-10-12 東邦オリビン工業株式会社 Ceramic spray material
US5169689A (en) 1991-10-02 1992-12-08 General Electric Company Method of producing thermal barrier coatings on a substrate
JPH0649617A (en) * 1992-07-30 1994-02-22 Onoda Cement Co Ltd Ceramics thermal spray material
JPH10316477A (en) * 1997-05-13 1998-12-02 Chichibu Onoda Cement Corp Thermal spray coating material and thermal spray-coated member
US5989330A (en) * 1997-12-12 1999-11-23 Barrick Gold Corporation Acid resistant cement composition
EP0939142A1 (en) * 1998-02-27 1999-09-01 Ticona GmbH Thermal spray powder incorporating an oxidised polyarylene sulfide
EP0972755B1 (en) * 1998-07-14 2003-07-30 Ngk Spark Plug Co., Ltd Alumina-based sintered material and process for producing the same
US20030165638A1 (en) * 2001-07-06 2003-09-04 Louks John W. Inorganic fiber substrates for exhaust systems and methods of making same
CA2358624C (en) * 2001-10-10 2009-12-22 The Westaim Corporation Sprayable composition
DE10151479A1 (en) * 2001-10-18 2003-05-08 Wacker Chemie Gmbh Microporous molded thermal insulation body containing arcing silica
US6753299B2 (en) * 2001-11-09 2004-06-22 Badger Mining Corporation Composite silica proppant material
US7175786B2 (en) * 2003-02-05 2007-02-13 3M Innovative Properties Co. Methods of making Al2O3-SiO2 ceramics
US7197896B2 (en) * 2003-09-05 2007-04-03 3M Innovative Properties Company Methods of making Al2O3-SiO2 ceramics
JP4412133B2 (en) * 2004-09-27 2010-02-10 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy
WO2006051793A1 (en) * 2004-11-09 2006-05-18 Asahi Glass Company, Limited Fire brick for bottom portion of float bath and method for production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1141437B1 (en) * 1998-11-13 2003-10-01 Forschungszentrum Jülich Gmbh Heat-insulating glass-metal/ceramic layers

Also Published As

Publication number Publication date
KR20080112099A (en) 2008-12-24
US20080317966A1 (en) 2008-12-25
CN101328569A (en) 2008-12-24
JP5296421B2 (en) 2013-09-25
US8784979B2 (en) 2014-07-22
EP2006410A2 (en) 2008-12-24
CN101328569B (en) 2015-08-12
DE102007028109A1 (en) 2008-12-24
US20140302299A1 (en) 2014-10-09
EP2006410A3 (en) 2010-09-01
JP2009001903A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
EP2006410B1 (en) Thermal sprayed protective layer for metallic substrates
EP0786017B1 (en) Protective layer for protecting parts against corrosion, oxidation and excessive thermal stresses, as well as process for producing the same
EP1386017B1 (en) Heat insulating layer based on la2 zr2 o7 for high temperatures
DE19681296C2 (en) Composite coating element and method of making the same
KR19990045204A (en) Self enameled steel sheet and frit for enamel processing
WO2007045225A2 (en) Sandwich thermal insulation layer system and method for production
WO2022041785A1 (en) Ground coat glaze of stainless steel enamel plate, and preparation method therefor and application thereof
CN108409138A (en) The enamel coating and its preparation process of a kind of resistance to sulfuric acid, salt acid dew piont corrosion
EP2251457A1 (en) MCrAl coating
DE10040591C1 (en) Production of a coating on a refractory component used in glass industry comprises using a precious metal alloy having a specified melting temperature and formed from platinum, iridium, rhodium, rhenium and/or gold
EP1970461A1 (en) Turbine part with heat insulation layer
EP3426815A1 (en) Adhesion promoter layer for joining a high-temperature protection layer to a substrate, and method for producing same
CN1084360C (en) Glass hot sprayed film material and manufacture thereof
CH616960A5 (en) Components resistant to high-temperature corrosion.
EP1141437B1 (en) Heat-insulating glass-metal/ceramic layers
EP0937786B1 (en) Thermal barrier coating system having an integrated alumina layer
DE1496652A1 (en) Semi-crystallized base coats and enamelled items
DE102009051796A1 (en) Layer system useful for coating a substrate, comprises a silver alloy layer having two alloy elements, where the layer system is dielectrically arranged above or below the silver alloy layer such as oxide layer
EP1256636B1 (en) Thermal insulating material with an essentially magnetoplumbitic crystal structure
DE60024358T2 (en) Thermal spraying powder of dicalcium silicate, coating agent and preparation thereof
JPH02208235A (en) Material for spraying glass
EP4343016A1 (en) Coating material for in-furnace structure, surface coating method, and in-furnace structure
JP2001316129A (en) Frit composition for enamel and enamel ware
JP2024052937A (en) Glass-lined product and production method thereof
DE60212071T2 (en) Process for coating with glass

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20110211

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170322

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008016678

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C23C0004100000

Ipc: C23C0004134000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 4/129 20081224ALI20181010BHEP

Ipc: C23C 4/134 20081224AFI20181010BHEP

INTG Intention to grant announced

Effective date: 20181030

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 4/129 20160101ALI20181010BHEP

Ipc: C23C 4/134 20160101AFI20181010BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 4/134 20160101AFI20181010BHEP

Ipc: C23C 4/129 20160101ALI20181010BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1115828

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008016678

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190704

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190411

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008016678

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

26N No opposition filed

Effective date: 20200106

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190703

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080411

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230421

Year of fee payment: 16

Ref country code: FR

Payment date: 20230424

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20230419

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240422

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240627

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240417

Year of fee payment: 17