EP1998870A1 - Procede de mise en contact de deux phases dont le contact s'accompagne de formation de chaleur - Google Patents

Procede de mise en contact de deux phases dont le contact s'accompagne de formation de chaleur

Info

Publication number
EP1998870A1
EP1998870A1 EP07726988A EP07726988A EP1998870A1 EP 1998870 A1 EP1998870 A1 EP 1998870A1 EP 07726988 A EP07726988 A EP 07726988A EP 07726988 A EP07726988 A EP 07726988A EP 1998870 A1 EP1998870 A1 EP 1998870A1
Authority
EP
European Patent Office
Prior art keywords
phase
absorbent
aqueous solution
contactor
exhausted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07726988A
Other languages
German (de)
English (en)
Other versions
EP1998870B2 (fr
EP1998870B1 (fr
Inventor
Mauricio Grobys
Norbert Asprion
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38068895&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1998870(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Priority to EP07726988.4A priority Critical patent/EP1998870B2/fr
Publication of EP1998870A1 publication Critical patent/EP1998870A1/fr
Application granted granted Critical
Publication of EP1998870B1 publication Critical patent/EP1998870B1/fr
Publication of EP1998870B2 publication Critical patent/EP1998870B2/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a method for contacting two phases which are not completely miscible with one another, the contact of which is accompanied by a heat development due to a mass transfer and / or a chemical reaction.
  • the invention relates to a method for removing acidic gases from a fluid stream.
  • fluid flows occur, which are acid gases, e.g. CO2, H2S, SO2, CS2, HCN, COS or mercaptans as impurities.
  • These fluid streams may be, for example, gas streams such as natural gas, synthesis gas from heavy oil or heavy residues, refinery gas or partial oxidation of organic materials such as coal or petroleum, reaction gases formed, or liquid or liquefied hydrocarbon streams such as LPG (liquified petroleum gas) or NGL (natural gas liquids).
  • LPG liquid petroleum gas
  • NGL natural gas liquids
  • sulfur compounds from these fluid streams is desirable for a variety of reasons.
  • the content of sulfur compounds of natural gas must be reduced by suitable treatment measures directly at the natural gas source, because the sulfur compounds form with the water often entrained by natural gas acids that have a corrosive effect.
  • predetermined limits of the sulfur-containing impurities must be complied with.
  • many sulfur compounds are malodorous or toxic even at low concentrations.
  • the reaction gases resulting from the oxidation of organic materials must be removed to reduce the emission of gases that can damage nature or affect the climate.
  • washes are often used with aqueous solutions of organic or inorganic bases.
  • acid gases When acid gases are dissolved in the absorbent, ions form with the bases.
  • the absorbent may be regenerated by depressurization to a lower pressure or stripping whereby the ionic species react back to sour gases and / or are stripped by steam. After the regeneration process, the absorbent can be reused.
  • the reaction between the sour gases and the absorbent is exothermic.
  • the resulting heat is partly absorbed by the fluid flow.
  • the fluid stream may exit the absorber at a temperature that is above the temperature of the regenerated absorbent. Since many uses of the treated fluid flow contain restrictions on the maximum permissible temperature, the fluid flow must additionally be cooled. In addition, the higher the temperature at which he exits the absorber, the more water or absorbent vapors the treated fluid stream will carry. In many cases, one must provide a downstream dewatering unit of sufficient capacity. In addition, the energy dissipated with the hot treated fluid stream is lost to the overall process and must be reapplied in the regeneration step. In this way, the specific energy requirement of the process increases.
  • WO 2004/073838 discloses a process for removing carbon dioxide from a gas stream by means of an absorbent in which the absorbent is cooled during absorption by transferring heat to a receiving medium.
  • a receiving medium is used for.
  • This method has the disadvantage that the installation of additional heat exchanger represents a significant investment.
  • the invention has for its object to provide a method for contacting two phases, the contact of which is accompanied by heat generation due to a mass transfer and / or a chemical reaction in which the temperature of the emerging from the Kunststoffor treated first phase can be limited and with can be implemented low equipment costs.
  • the invention In particular, it is an object of the invention to provide a process for removing acidic gases from a fluid stream which, in addition to the stated advantages, has a low specific energy consumption.
  • the object is achieved by a method for contacting two phases which are not completely miscible with one another, the contact of which is accompanied by heat evolution due to a mass transfer and / or a chemical reaction in which a first phase is introduced into the lower region of a contactor and a second phase is introduced into the upper region of the contactor and leads to the first phase in the contactor to obtain a treated first phase and a depleted second phase, characterized in that a portion of the depleted second phase is at least one between the upper region and the lower one Area located in the contactor leads back.
  • the first phase is preferably gaseous or liquid; the second phase is preferably liquid.
  • the first and second phases may be, for example, a wet gas to be dried and a polyglycol ether, a liquid mixture of hydrocarbons to be purified from sulfur compounds and an amine solution, a gas to be purified of SO 2 / NO x , and a solution of inorganic bases or an HCl Gas stream and an aqueous solution act.
  • Suitable contactor is any suitable apparatus in which the two phases can be brought into contact with each other in countercurrent. In most cases, these are columns which contain suitable components, such as trays or packings, to improve the mass and heat exchange.
  • the treated first phase is withdrawn at the head of the contactor, the exhausted second phase at the bottom of the contactor.
  • Preferred fields of application of the invention are processes in which, without feedback at the contact head, a temperature difference between the exiting treated first phase and the supplied second phase is more than 2 ° C., in particular more than 5 ° C., most preferably more than 10 ° C occurs.
  • the first phase is an acid gas such as CO2, H2S, SO2, CS2, HCN, COS and / or mercaptans, in particular CO2, containing fluid stream and in the second phase to an absorbent, the an aqueous solution of at least one organic and / or inorganic base.
  • an acid gas such as CO2, H2S, SO2, CS2, HCN, COS and / or mercaptans, in particular CO2, containing fluid stream and in the second phase to an absorbent, the an aqueous solution of at least one organic and / or inorganic base.
  • One embodiment therefore relates to a process for removing acidic gases from a fluid stream, wherein the fluid stream is introduced into the lower region of an absorber and a regenerated absorbent comprising an aqueous solution of at least one amine is introduced into the upper region of the absorber and the fluid stream in the absorber, thereby obtaining a fluid stream freed from acid gases and an absorbent laden with acid gases, characterized in that a part of the loaded absorbent is returned to the absorber at at least one point located between the upper region and the lower region.
  • part of the exhausted second phase is returned to the contactor at at least one point located between the upper region and the lower region.
  • the recycled exhausted second phase may be introduced at one or more locations in the contactor.
  • the recirculated laden absorbent comes into direct contact with the first phase to be treated and mixes with the partly depleted second phase running down in the contactor.
  • the ratio of the mass flow of the recycled exhausted second phase (eg, the loaded absorbent) to the mass flow of the upper phase introduced second phase (eg, the regenerated absorbent) is generally from 0.1 to 3.0, preferably 0, 25 to 2.0, in particular 0.5 to 1.5. At a lower recirculated amount, the advantages of the invention are not fully realized. The return of larger quantities leads to an oversized hydraulic load on the contactor and brings no further advantages.
  • the recirculated exhausted second phase (eg the loaded absorbent) is added, for example, to a bottom of a tray column or, via a distributor tray, to the underlying packing of a packed column.
  • the addition site for at least the major amount is selected so that the height difference between the addition site of the recycled exhausted second phase and the introduction site of the first phase is 20 to 80%, especially 30 to 70%. most preferably 40 to 60%, which is the height difference between the second phase addition site (eg, the regenerated absorbent) and the first phase introduction site.
  • the recirculated laden absorbent is introduced at a location closer to the head of the absorber, it is possible that a "breakthrough" of acid gases and an increase in sour gas concentration in the treated fluid stream leaving the absorber may be observed. Is the recycled loaded absorbent on a Introduced closer to the bottom of the absorber, the advantages of the invention are not fully set.
  • all or a portion of the recirculated exhausted second phase is cooled prior to introduction into the contactor.
  • the inventive recycling of exhausted second phase in those cases in which the heat capacity of the first phase and the heat capacity of the second phase are comparable.
  • the heat capacity depends on the respective mass flow and the respective specific heat capacity. In preferred embodiments, therefore, the mass flow of the treated first phase m (1 '), the specific heat capacity of the treated first phase CpCT), the mass flow of the second phase m (2) and the specific heat capacity of the second phase Cp (2) satisfy the equation :
  • the process according to the invention is described in more detail below with reference to a preferred embodiment in which the first phase is a sour gas-containing fluid stream and the second phase is an absorbent comprising an aqueous solution of at least one organic and / or inorganic base contains.
  • the invention is not limited to such a method.
  • the recirculated laden absorbent preferably has a temperature of 0 to 80 ° C, especially 20 to 60 ° C.
  • the recirculated laden absorbent is cooled prior to introduction into the absorber.
  • conventional heat exchangers are suitable, which are operated with a suitable cooling medium.
  • the regenerated absorbent entering the top of the absorber preferably has a temperature of 20 to 110 ° C, especially 30 to 60 ° C.
  • the bottom temperature in the absorber is generally about 20 to 120 ° C, preferably about 20 to 80 ° C, particularly preferably 20 to 60 ° C.
  • the total pressure (absolute) in the absorber is generally about 1 to 150 bar, preferably about 1 to 100 bar, particularly preferably 1 to 85 bar.
  • Suitable absorber columns are, for example, packed columns, packed columns and tray columns. In tray columns sieve, bell or valve trays are installed, over which the liquid flows. Through special slots or holes of the steam is passed, so that a bubble layer is formed. On each of these floors, a new equilibrium is established. Packed columns can be filled with different moldings. Heat and mass transfer are improved by the enlargement of the surface due to the usually about 25 to 80 mm large moldings.
  • Raschig ring a hollow cylinder
  • Pall ring Hiflow ring
  • Intoxox saddle and the like.
  • the packing can be ordered, but also random (as a bed) are introduced into the column. Possible materials are glass, ceramics, metal and plastics.
  • Structured packings are a further development of the ordered packing. They have a regularly shaped structure. This makes it possible for packings to reduce pressure losses in the gas flow.
  • the non-recirculated partial flow of the laden absorbent is regenerated in the usual way by relaxation, heating and / or stripping.
  • the loaded absorbent is conveniently passed into a regeneration column.
  • the regeneration column may likewise be a packed, packed or tray column.
  • the regeneration column has a heater at the bottom, z. B. a forced circulation evaporator with circulation pump. At the top, the regeneration column has an outlet for the liberated acid gases. Entrained absorbent vapors are condensed in a condenser and returned to the column.
  • the loaded absorbent is partially regenerated by relaxation and stripping and / or thermally regenerated by direct or indirect heating.
  • the pressure (absolute) at the top of the regeneration column is generally about 0.5 to 5 bar, preferably about 1 to 3 bar.
  • the process according to the invention can also be carried out as a process with two-stage absorption and two-stage regeneration of the absorbent. This one proceeds in such a way that one
  • the second absorption zone is arranged above the first absorption zone in an absorber.
  • the fluid stream ascending from the first absorption zone enters the second absorption zone and the purified fluid stream is withdrawn at the top of the absorber.
  • the laden from the second absorption zone laden absorbent enters the first absorption zone and is withdrawn together with the loaded absorbent at the bottom of the absorber.
  • the recycling of the loaded absorbent according to the invention takes place in the case of the two-stage absorption preferably in the central region of the first or second absorption zone, for. B. at a level of 20 to 80%, preferably 30 to 70% of the total height of the respective absorption zone.
  • the fluid stream which is treated by the process according to the invention is, for example, synthesis gas, in particular synthesis gas for ammonia production. Alternatively, it may be natural gas, refinery gas or gas streams in chemical or metallurgical processes.
  • the fluid stream is preferably gaseous.
  • the absorbents used are aqueous solutions of organic and / or inorganic bases, such as amines, potash or metal salts of amino acids and Mixtures of said components and mixtures thereof with phosphoric acid or physical solvents.
  • Suitable amines are, for. Monoethanolamine (MEA), methylaminopropylamine (MAPA), piperazine, diethanolamine (DEA), triethanolamine (TEA), diethylethanolamine (DEEA), diisopropylamine (DIPA), aminoethoxyethanol (AEE), dimethylaminopropanol (DIMAP) and methyldiethanolamine (MDEA), methyl diisopropanolamine (MDIPA), 2-amino-1-butanol (2-AB) or mixtures thereof.
  • the Automatamingehalt is z. B. 10 to 70 wt .-%, in particular 30 to 60 wt .-%.
  • Suitable metal salts of amino acids are, for. Potassium N, N-dimethylglycinate, potassium bis-N-methylalaninate or potassium 2-aminoethanesulfonate
  • Suitable physical solvents are sulfolane, N-methylpyrrolidone (NMP), propylene glycol or polyethylene glycol alkyl ethers.
  • Preferred absorbents include at least one alkanolamine having 2 to 12 carbon atoms. Particularly preferred absorbents comprise at least one tertiary alkanolamine and preferably an activator in the form of a primary or secondary amine. Preferred activators are saturated, 5- to 7-membered heterocyclic compounds having at least one NH group and optionally a further heteroatom in the ring selected from an oxygen and a nitrogen atom. Suitable activators are piperazine, 1-methylpiperazine, 2-methylpiperazine, 1-aminoethylpiperazine, morpholine, piperidine. Other preferred activators are selected from methylaminopropylamine, 2-amino-1-butanol, 2-amino-2-methyl-1-propanol (AMP) and aminoethoxyethanol.
  • AMP 2-amino-2-methyl-1-propanol
  • the absorption agent described in US Pat. No. 4,336,233 has also proven to be particularly suitable. It is an aqueous solution of methyldiethanolamine (MDEA) and piperazine as absorption accelerator or activator (aMDEA®, BASF AG, Ludwigshafen).
  • MDEA methyldiethanolamine
  • aMDEA® piperazine as absorption accelerator or activator
  • the scrubbing liquid described therein contains from 1.5 to 4.5 mol / l of methyldiethanolamine (MDEA) and from 0.05 to 0.8 mol / l, preferably up to 0.4 mol / l of piperazine.
  • Another suitable absorbent comprises an aqueous solution of methyldiethanolamine and methylaminopropylamine.
  • Another suitable absorbent comprises an aqueous solution of methyldiethanolamine and aminoethoxyethanol.
  • Another suitable absorbent comprises an aqueous solution of methyldiethanolamine and 2-amino-1-butanol.
  • Another suitable absorbent comprises an aqueous solution of potassium N, N-dimethylglycinate.
  • Another suitable absorbent comprises an aqueous solution of potassium N-methylalaninate.
  • Figure 1 shows schematically the structure of an absorber A for carrying out the method according to the invention.
  • the absorber A comprises packing or separating trays in order to effect the mass and heat exchange.
  • the fluid stream to be treated is fed into the absorber A and fed to the regenerated absorbent which is introduced via the line 3.
  • the fluid stream freed from oxygen leaves the absorber A via the line 2.
  • a portion of the loaded absorbent withdrawn at the bottom of the absorber A is returned to the absorber A via the optional cooler 6 and the return line 5.
  • the return to the absorber can take place at several points, as indicated by the optional lines 5a, 5b.
  • the other part of the loaded absorbent leaves the absorber A via the line 4 and is the regeneration (not shown) supplied.
  • phase equilibria were determined for the activated MDEA solutions with the Pitzer model (KS Pitzer, Activity Coefficients in Electrolyte Solutions 2nd ed., CRC-Press, 1991, Chapter 3, Ion Interaction Approach: Theory, the parameters were at phase equilibrium measurements in the system CO 2 / H2 ⁇ / MDEA / piperazine adjusted).
  • Examples 1 and 2 show that the following advantages can be achieved with the invention: a lower CO 2 content in the purified gas can be achieved.
  • the absorber shorter or use less absorbent.
  • the temperature of the purified gas is lower (smaller temperature difference (2) - (1)), thereby requiring a lower downstream gas cooling capacity. This is particularly important in LNG applications, where the gas is liquefied after CO 2 removal.
  • the loaded absorbent accumulates at a higher temperature, which leaves more heat in the process. During regeneration, correspondingly less energy must be supplied, ie the energy efficiency of the process increases.
  • the maximum temperature in the column is lower, which reduces the effective gas volume flow. This can reduce the diameter of the column.
  • Example 3 Flue gas scrubbing
  • phase equilibria for flue gas scrubbing with monoethanolamine were measured with the Elektolyt NRTL model (B. Mock, LB Evans, and CC, Chen, "Phase Equilibria in Multiple-Solvent Electrolyte Systems: A New Thermodynamic Model," Paper presented at the Boston Summer Computer Simulation Conference, July 1984.).
  • the parameters of the model are taken from the following publication: D.M. Austgen, GT. Rochelle, X. Peng, and CC. Chen, "A Model of Vapor-Liquid Equilibria in the Aqueous Acid Gas Alkanolamine System Using the Electrolyte NRTL Equation," Paper presented at the New Orleans AICHE Meeting, March 1988.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Separation By Absorption (AREA)
  • Indole Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
EP07726988.4A 2006-03-16 2007-03-16 Procede de mise en contact de deux phases dont le contact s'accompagne de formation de chaleur Active EP1998870B2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07726988.4A EP1998870B2 (fr) 2006-03-16 2007-03-16 Procede de mise en contact de deux phases dont le contact s'accompagne de formation de chaleur

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06005413 2006-03-16
EP07726988.4A EP1998870B2 (fr) 2006-03-16 2007-03-16 Procede de mise en contact de deux phases dont le contact s'accompagne de formation de chaleur
PCT/EP2007/052509 WO2007104800A1 (fr) 2006-03-16 2007-03-16 Procede de mise en contact de deux phases dont le contact s'accompagne de formation de chaleur

Publications (3)

Publication Number Publication Date
EP1998870A1 true EP1998870A1 (fr) 2008-12-10
EP1998870B1 EP1998870B1 (fr) 2012-02-29
EP1998870B2 EP1998870B2 (fr) 2015-09-02

Family

ID=38068895

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07726988.4A Active EP1998870B2 (fr) 2006-03-16 2007-03-16 Procede de mise en contact de deux phases dont le contact s'accompagne de formation de chaleur

Country Status (9)

Country Link
US (1) US9278306B2 (fr)
EP (1) EP1998870B2 (fr)
JP (1) JP2009530073A (fr)
AT (1) ATE547163T1 (fr)
AU (1) AU2007226476B2 (fr)
CA (1) CA2643667C (fr)
EG (1) EG26751A (fr)
NO (1) NO20083757L (fr)
WO (1) WO2007104800A1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005050385A1 (de) 2005-10-20 2007-04-26 Basf Ag Absorptionsmittel und Verfahren zum Entfernen von Kohlendioxid aus Gasströmen
PE20071048A1 (es) 2005-12-12 2007-10-18 Basf Ag Proceso para la recuperacion de dioxido de carbono
DK2026896T3 (en) 2006-05-18 2016-11-28 Basf Se KULDIOXIDABSORPTIONSMIDDEL WITH REDUCED Regeneration ENERGY NEEDS
JP5230080B2 (ja) 2006-06-06 2013-07-10 三菱重工業株式会社 吸収液、co2の除去装置及び方法
JP2008229496A (ja) * 2007-03-20 2008-10-02 Cansolv Technologies Inc 二酸化炭素の分離回収装置及び二酸化炭素の分離回収方法
EP2217353B1 (fr) * 2007-11-15 2017-01-25 Basf Se Procédé pour éliminer du dioxyde de carbone de courants de fluides, en particulier de gaz de combustion
US8192530B2 (en) * 2007-12-13 2012-06-05 Alstom Technology Ltd System and method for regeneration of an absorbent solution
EP2327467B1 (fr) * 2008-02-22 2015-06-17 Mitsubishi Heavy Industries, Ltd. Appareil de récupération de co2 et procédé de récupération de co2
EP2391437B1 (fr) * 2009-01-29 2013-08-28 Basf Se Absorbent comportant d'acide aminé et un promoteur acidique pour l'enlèvement des gaz acides
JP5679995B2 (ja) * 2009-02-02 2015-03-04 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 酸性ガスの除去のための環式アミン含有吸収剤
US9133407B2 (en) 2011-02-25 2015-09-15 Alstom Technology Ltd Systems and processes for removing volatile degradation products produced in gas purification
JP5693344B2 (ja) 2011-04-13 2015-04-01 三菱重工業株式会社 Co2回収装置
US8864878B2 (en) 2011-09-23 2014-10-21 Alstom Technology Ltd Heat integration of a cement manufacturing plant with an absorption based carbon dioxide capture process
US8911538B2 (en) 2011-12-22 2014-12-16 Alstom Technology Ltd Method and system for treating an effluent stream generated by a carbon capture system
WO2013110092A1 (fr) * 2012-01-20 2013-07-25 Board Of Regents, The University Of Texas System Mélanges d'amines avec de la pipérazine pour la capture de co2
US9028654B2 (en) 2012-02-29 2015-05-12 Alstom Technology Ltd Method of treatment of amine waste water and a system for accomplishing the same
JP5986796B2 (ja) * 2012-05-11 2016-09-06 三菱重工業株式会社 複合アミン吸収液、co2又はh2s又はその双方の除去装置及び方法
US9101912B2 (en) 2012-11-05 2015-08-11 Alstom Technology Ltd Method for regeneration of solid amine CO2 capture beds
WO2015046659A1 (fr) * 2013-09-27 2015-04-02 한국에너지기술연구원 Absorbant de dioxyde de carbone à base d'amine tertiaire ayant une vitesse d'absorption améliorée
DE102013019357A1 (de) 2013-11-19 2015-05-21 Thyssenkrupp Industrial Solutions Ag Verfahren und Vorrichtung zur Reinigung von Prozessgasen aus der oxidativen Dehydrogenierung von Kohlenwasserstoffen
WO2015173234A1 (fr) * 2014-05-12 2015-11-19 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Procédé et appareil d'épurement de biogaz
WO2015173253A2 (fr) * 2014-05-12 2015-11-19 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Procédé et appareil de purification du gaz naturel
JP6639918B2 (ja) * 2016-01-14 2020-02-05 三菱重工エンジニアリング株式会社 Co2回収装置及び回収方法
JP2020093187A (ja) * 2018-12-10 2020-06-18 三菱重工エンジニアリング株式会社 酸性ガス吸収装置及び酸性ガス吸収方法
CN114797425A (zh) * 2022-04-18 2022-07-29 成都中科绿生环境科技有限公司 一种可针对性去除h2s与硫醇的试剂及其制备方法和应用

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3034853A (en) * 1959-08-04 1962-05-15 Chemie Linz Ag Process for the removal of lower oxides of nitrogen from gaseous mixtures containing them
JPS49119868A (fr) 1973-03-20 1974-11-15
DE2551717C3 (de) 1975-11-18 1980-11-13 Basf Ag, 6700 Ludwigshafen und ggf. COS aus Gasen
DE3612259A1 (de) * 1985-11-07 1987-05-14 Tvt Theisen Verfahrenstechnik Loesemittel-eliminationsverfahren zur reinigung von luft von loesemitteldaempfen
GB8804728D0 (en) * 1988-02-29 1988-03-30 Shell Int Research Process for removing h2s from gas stream
DE3812334A1 (de) 1988-04-14 1989-10-26 Hartmann & Braun Ag Interferometrische einrichtung
DE3828227A1 (de) * 1988-08-19 1990-02-22 Basf Ag Verfahren zum entfernen von co(pfeil abwaerts)2(pfeil abwaerts) und gegebenenfalls h(pfeil abwaerts)2(pfeil abwaerts) aus gasen
AU2962992A (en) 1991-11-25 1993-05-27 Exxon Chemical Patents Inc. Process and apparatus for removing acid gas from a gaseous composition
US5603908A (en) 1992-09-16 1997-02-18 The Kansai Electric Power Co., Inc. Process for removing carbon dioxide from combustion gases
JP2882950B2 (ja) * 1992-09-16 1999-04-19 関西電力株式会社 燃焼排ガス中の二酸化炭素を除去する方法
FR2743083B1 (fr) 1995-12-28 1998-01-30 Inst Francais Du Petrole Procede de deshydratation, de desacidification et de degazolinage d'un gaz naturel, utilisant un melange de solvants
JP3416443B2 (ja) * 1997-01-27 2003-06-16 三菱重工業株式会社 脱炭酸塔内のアミンミストの減少方法
US6207121B1 (en) 1998-09-30 2001-03-27 The Dow Chemical Company Composition and process for removal of acid gases
US6165432A (en) 1998-09-30 2000-12-26 The Dow Chemical Company Composition and process for removal of acid gases
JP4566405B2 (ja) 1998-11-23 2010-10-20 フルー・コーポレイシヨン 分流プロセスおよびその装置
DE10028637A1 (de) 2000-06-09 2001-12-13 Basf Ag Verfahren zum Entsäuern eines Kohlenwasserstoff-Fluidstroms
FR2814379B1 (fr) 2000-09-26 2002-11-01 Inst Francais Du Petrole Procede de desacidification d'un gaz par absorption dans un solvant avec un controle de la temperature
EP1551532B1 (fr) 2002-07-03 2008-11-19 Fluor Corporation Appareil pour traitement a courant divergent ameliore
DE60237046D1 (de) * 2002-09-17 2010-08-26 Fluor Corp Konfigurationen und verfahren zur entfernung von sauren gasen
EP1594592B1 (fr) 2003-02-18 2007-08-15 Union Engineering A/S Procede de recuperation de dioxyde de carbone a partir d'une source gazeuse
US7901487B2 (en) * 2003-03-10 2011-03-08 Board Of Regents, The University Of Texas System Regeneration of an aqueous solution from an acid gas absorption process by multistage flashing and stripping
JP2005177716A (ja) * 2003-12-24 2005-07-07 Cosmo Engineering Co Ltd 水素psa精製装置から排出されるオフガスの処理方法
WO2005069965A2 (fr) 2004-01-23 2005-08-04 Paradigm Processing Group Llc Procede et composition pour traiter des flux de gaz et de liquides acides
DE102004011427A1 (de) 2004-03-09 2005-09-29 Basf Ag Absorptionsmittel mit verbesserter Oxidationsbeständigkeit und Verfahren zum Entsäuern von Fluidströmen
JP4690659B2 (ja) 2004-03-15 2011-06-01 三菱重工業株式会社 Co2回収装置
AU2005278126B2 (en) 2004-08-06 2010-08-19 General Electric Technology Gmbh Ultra cleaning of combustion gas including the removal of CO2

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007104800A1 *

Also Published As

Publication number Publication date
NO20083757L (no) 2008-10-08
EG26751A (en) 2014-07-22
AU2007226476B2 (en) 2011-03-31
JP2009530073A (ja) 2009-08-27
US9278306B2 (en) 2016-03-08
CA2643667A1 (fr) 2007-09-22
EP1998870B2 (fr) 2015-09-02
ATE547163T1 (de) 2012-03-15
WO2007104800A1 (fr) 2007-09-20
AU2007226476A1 (en) 2007-09-20
US20090068078A1 (en) 2009-03-12
CA2643667C (fr) 2015-06-23
EP1998870B1 (fr) 2012-02-29

Similar Documents

Publication Publication Date Title
EP1998870B1 (fr) Procede de mise en contact de deux phases dont le contact s'accompagne de formation de chaleur
DE112007000375B4 (de) Verfahren zum Entfernen saurer Gase und Verfahren zur Umrüstung von Anlagen zur Entfernung saurer Gase
EP1599274B1 (fr) Agent absorbant et procede pour eliminer des gaz acides presents dans des fluides
EP1682638B1 (fr) Procede d'extraction d'un flux de gaz acide sous haute pression par extraction des gaz acides contenus dans un flux fluidique
EP1303345B1 (fr) Procede de desacidification d'un courant de fluide et liquide de lavage destine a un tel procede
EP1485190B1 (fr) Procede de desacidification d'un courant fluidique et liquide laveur utilise dans ce procede
EP1412056B1 (fr) Procede d'elimination de gaz acides dans un courant gazeux
EP1196233B1 (fr) Procede permettant de supprimer des mercaptans de courants de flux
EP2892633A1 (fr) Procédé pour séparer des gaz acides d'un courant de fluide contenant de l'eau
WO2008145658A1 (fr) Agent d'absorption destiné à éliminer des gaz acides, contenant un acide aminocarboxylique basique
EP1289625A1 (fr) Procede de desacidification d'un courant fluidique d'hydrocarbure
EP3185989B1 (fr) Élimination du sulfure d'hydrogène et du dioxyde de carbone d'un flux de fluide
EP2691163B1 (fr) Rétention d'amines lors de l'élimination de gaz acides au moyen d'agents d'absorption de type amine
WO2019238432A1 (fr) Procédé de production d'un courant de fluide désacidifié
EP3185990A2 (fr) Extraction du dioxyde de carbone d'un flux de fluide
EP3628393B1 (fr) Procédé de séparation des monoxyde de carbone et des gaz acides d'un flux de fluide contenant de monoxyde de carbone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091130

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 547163

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007009378

Country of ref document: DE

Effective date: 20120419

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120629

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

BERE Be: lapsed

Owner name: BASF SE

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ALSTOM TECHNOLOGY LTD

Effective date: 20121128

26 Opposition filed

Opponent name: THE DOW CHEMICAL COMPANY

Effective date: 20121129

Opponent name: ALSTOM TECHNOLOGY LTD

Effective date: 20121128

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502007009378

Country of ref document: DE

Effective date: 20121128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120609

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 547163

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120316

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120529

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120316

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ALSTOM TECHNOLOGY LTD

Effective date: 20121128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070316

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20150902

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502007009378

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20120229

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160324

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160316

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160316

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20170710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20120229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230323

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230321

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 18

Ref country code: GB

Payment date: 20240319

Year of fee payment: 18