EP1973677B1 - Elektrischer verbundleiter und herstellverfahren dafür - Google Patents

Elektrischer verbundleiter und herstellverfahren dafür Download PDF

Info

Publication number
EP1973677B1
EP1973677B1 EP06841009A EP06841009A EP1973677B1 EP 1973677 B1 EP1973677 B1 EP 1973677B1 EP 06841009 A EP06841009 A EP 06841009A EP 06841009 A EP06841009 A EP 06841009A EP 1973677 B1 EP1973677 B1 EP 1973677B1
Authority
EP
European Patent Office
Prior art keywords
wire
alloy
composite conductor
core
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06841009A
Other languages
English (en)
French (fr)
Other versions
EP1973677A1 (de
Inventor
Frank Pupke
Kurt Beyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NKT Cables GmbH and Co KG
Original Assignee
NKT Cables GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKT Cables GmbH and Co KG filed Critical NKT Cables GmbH and Co KG
Priority to PL06841009T priority Critical patent/PL1973677T3/pl
Priority to SI200630364T priority patent/SI1973677T1/sl
Publication of EP1973677A1 publication Critical patent/EP1973677A1/de
Application granted granted Critical
Publication of EP1973677B1 publication Critical patent/EP1973677B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/22Making metal-coated products; Making products from two or more metals
    • B21C23/24Covering indefinite lengths of metal or non-metal material with a metal coating
    • B21C23/26Applying metal coats to cables, e.g. to insulated electric cables
    • B21C23/30Applying metal coats to cables, e.g. to insulated electric cables on continuously-operating extrusion presses
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/1291Next to Co-, Cu-, or Ni-base component

Definitions

  • the invention relates to an electrical composite conductor, in particular contact wire, and a manufacturing method thereof.
  • the proposed composite conductor excels in its mechanical and electrical properties the materials available so far. At the same time, it is adaptable to a wide range of different requirements. This increases the flexibility of the manufacturing process and the expansion of product diversity.
  • the invention and thus the composite conductor consists of a base alloy of CuAg with an Ag content of 0.08 to 0.12%, and the edge or the core of the composite conductor consists of an alloy of CuMg with an Mg content of 0.1 to 0.7%.
  • the Mg content of the CuMg alloy is preferably 0.5% Mg.
  • the silver content in the base alloy is 0.1% Ag.
  • the area fraction of the alloy present on the core side at the cross section of the composite conductor is between 10 and 80%.
  • the area ratio of a CuMg alloy present in the core should be 50%.
  • the structure of the core may consist of a single or multiple strands of wire.
  • the wire strands have approximately the same diameter.
  • the composite conductor can be produced in different cross sections. Such cross sections can be: circular for the production of a round wire, approximately rectangular for the production of a busbar or profiled for a profile wire. As a preferred application of a profile wire trolley wires should be addressed. In this connection reference is made to the standard EN 50149, in which contact wires are standardized.
  • the known strand-pressing process is proposed. It is the production of rods or wires via extrusion.
  • the jacket material is introduced into (two) peripheral grooves of an extrusion wheel, wherein a flowable, tubular structure is produced by high friction on an abutment, which emerges as casing of the core material from the extruder opening.
  • the core material is inserted through a hollow portal mandrel tangential to the extrusion wheel; the jacket material envelops the core material.
  • the product is then passed through one or more dies and pulled down to final dimensions. It has already been mentioned that suitable extrusion presses are on the market.
  • the invention utilizes the high strength and good conductivity of CuMg alloys in combination with the high conductivity, moderate hardenability, and good wear characteristics of CuAg alloys.
  • the physically limited range of conventional contact wires consisting of only one alloy can be significantly extended with the proposed alloying partners in terms of strength and electrical conductivity.
  • the proposed composite driving wire in addition to its better electrical conductivity, is not susceptible to corrosion and also capable of being recycled.
  • a grooved contact wire which contains at least one wire of CuMg 0.1... 0.7 in the core and is surrounded by a jacket of CuAg 0.1.
  • the core wire may be round or more or less adapted to the outer profile of the sheath (Ri profile).
  • the area fraction of the core wire in the cross section of the composite conductor can vary within wide limits.
  • the core wire is characterized in that it is adjusted by means of different degrees of cold work to a desired strength and is introduced with this strength in the composite. By an additional after the Holton-Conform extrusion (for example) applied cold forming a further solidification of the composite trolley wire.
  • a variability of the adjustable product properties especially the strength and the electrical conductivity
  • the material pairing is also possible in other forms, where in the core at least one wire of CuAg 0.1 is embedded, and the core is surrounded by a jacket of CuMg 0.1 ... 0.7.
  • An advantage for the laying properties of the contact wire (low or reduced ripple after rolling off the cable reel) is likely to affect that when using a relatively high degree of cold work after the Holton-Conform process, the solidification of the CuAg shell already in the saturation (thermodynamic Equilibrium) and the overall strength of the jacket is significantly lower than that of the core wire. Furthermore, the homogeneity of the structure of the high strength core wire is much higher than that of a conventional contact wire of a single material, whereby more uniform mechanical properties over the contact wire length can be achieved.
  • a core wire round or as a profile wire having a defined (high) strength and conductivity is made of a CuMg alloy (e.g., CuMg 0.5).
  • the surface of the core wire or wires is carefully removed from foreign or corrosion layers, for example by chemical treatment. In the case of core wires with an extraneous-free, activated surface, it is ensured that a good material connection to the cladding material can be produced. Surface cleaning is important so that the tight material connection between core wire and sheathing is maintained during the further forming process.
  • a core wire produced and pretreated in this way is encased in a conform cladding process with the highly conductive material CuAg 0.1. During the process control, it should preferably be prevented that the core wire recrystallizes under the resulting thermal load.
  • the resulting composite wire is brought by further drawing steps in its final profile shape and further solidified. Depending on the required cross-sectional portion of the core wire can be introduced as a round or profile wire.
  • the manufacturing process is to be controlled in such a way that no core wires come to lie in the edge or cladding region near the surface of the composite conductor, so that in the cladding zone of about 10% of the diameter no core wire is present.
  • the cross-sectional reduction in the drawing process has an influence on the final strength of the product.
  • busbars are used stationary in electrical distribution systems, so that for this application, the mechanical strength plays only a minor role.
  • a round wire 12 is drawn, in which a plurality of core wires 22 are located.
  • the individual wires 22 are distributed irregularly in the material 14 and are spaced from the surface of the round wire, so that a kernerahtget edge zone is present.
  • the regularity of the individual wire distribution depends on the manufacturing method used, and is accordingly controllable.
  • Fig. 2 shows a contact wire 10 (grooved wire or trolley wire) - according to EN 50149, which contains a wire of CuMg 0.1 ... 0.7 in the core 20 and is surrounded by a sheath 14 of CuAg 0.1.
  • the core wire 20 comes from a round wire, which was deformed by the profiling, whereby it has received a pear-shaped cross-section. It is readily understood that the cross-sectional shape of the core wire depends on the magnitude of the deformation and the shape of the extruded starting profile, so that contact wires can be produced, which still have a nearly round core wire.
  • the area fraction of the core wire in the cross section of the composite conductor can vary within wide limits (10 to 80%).
  • the area ratio of this CuMg alloy should preferably be 50%.
  • Fig. 3 shows a trolley wire 11, which contains a plurality of wire strands 22 in the core, which are distributed more or less regularly.
  • the wire strands 22 are preferably made of a wire supply with a uniform diameter, so that the embedded wire strands have approximately uniform cross section, unless they undergo a different deformation in the manufacturing phase.
  • the wire strands may also have non-circular cross-section.
  • Cross section for the core wire 4 mm 2 As a numerical example of a contact wire is still specified: Cross section for the core wire 4 mm 2 . With a surface portion of the core wires of 50%, a corrugated contact wire (according to the above-mentioned standard) with a cross-section of approximately 120 mm 2 would require approximately 15 core wires.

Description

  • Die Erfindung betrifft einen elektrischen Verbundleiter, insbesondere Fahrdraht, und ein Herstellverfahren dafür.
  • Es sind verschiedene Vorschläge gemacht worden, Verbundleiter (insbesondere Fahrdraht) bezüglich ihrer mechanischen Festigkeit zu verbessern, wobei jedoch eine Verringerung der elektrischen Leitfähigkeit nicht eintreten soll. Hierbei sind beispielsweise zu Kupferleitmaterial weitere Legierungspartner hinzugefügt worden, die zu einer mechanischen Verfestigung des Leitermaterials beitragen und unter Beteiligung von beispielsweise Silber die elektrische Leitfähigkeit nicht wesentlich absinkt.
  • Stand der Technik
  • Verbundleiter und zugehörige Herstellverfahren sind bekannt. Für unterschiedliche Anwendungsfälle in der elektrischen Leitungstechnik wurden schon entsprechend unterschiedliche Gestaltungen vorgeschlagen. Sehr spezielle Anwendungen werden in der Supraleitungstechnik verlangt. Weite Anwendbarkeit zur Herstellung von Stangen, Profilen und Hohlkörpern haben Strangpress-Anlagen gefunden, die unter der Bezeichnung Conform-Verfahren (= continuos forming) bekannt sind. Ältere Anlagen gehen auf eine Erfindung zurück, die in der DE 221169C2 beschrieben sind. Namentlich prägend ist die Bezeichnung Holton Conform für das Verfahren geworden, da dies auf eine Firma Holton zurückgeht, von der beispielsweise die Anmeldung EP 0494 755 A1 stammt. Die Umhüllung von langgestrecktem Gut wird mit conform cladding bezeichnet. Neuere Varianten der Herstelltechnik findet sich beispielsweise in EP 0125 788 A2 . Die JP-A-02 267 811 offenbart einer elektrischen Verbundleiter mit einem Kern aus einer Basislegierung aus CuAg und einem Rand aus Cu.
  • Aufgabenstellung
  • Es ist die Aufgabe der Erfindung, den Aufbau eines elektrischen Verbundleiters und ein Herstellverfahren dafür anzugeben, um einen Leiter mit maximaler elektrischer Leitfähigkeit und bester mechanischer Festigkeit zu erhalten.
  • Die Lösung der Aufgabe wird im Hauptanspruch angegeben. Weitere vorteilhafte Weiterbildungen sind in den Unteransprüchen formuliert. Das Herstellverfahren wird in einem Nebenanspruch definiert.
  • Die Erfindung
  • Der vorgeschlagene Verbundleiter übertrifft in seinen mechanischen und elektrischen Eigenschaften die bisher verfügbaren Materialien. Gleichzeitig ist er in einem weiten Bereich anpassbar an verschiedene Anforderungen. Damit erhöht sich die Flexibilität des Herstellungsprozesses und die Erweiterung der Produktvielfalt.
  • Die Erfindung und damit der Verbundleiter besteht aus einer Basislegierung aus CuAg mit einem Ag-Anteil von 0,08 bis 0,12 %, und der Rand oder der Kern des Verbundleiters besteht aus einer Legierung aus CuMg mit einem Mg-Anteil von 0,1 bis 0,7 %.
  • Weitere Ausgestaltungen bestehen in folgendem:
  • Der Mg-Anteil der CuMg-Legierung ist vorzugsweise 0,5 % Mg. Vorzugsweise ist der Silberanteil in der Basislegierung 0,1 % Ag.
  • Der Flächenanteil der kernseitig vorhandenen Legierung am Querschnitt des Verbundleiters liegt zwischen 10 und 80 %. Vorzugsweise soll der Flächenanteil einer im Kern vorhandenen CuMg-Legierung 50 % sein.
  • Der Aufbau des Kerns kann aus einem einzigen oder aus mehreren Drahtsträngen bestehen.
  • Falls mehrere Drahtstränge kernseitig vorhanden sind, haben die Drahtstränge untereinander etwa denselben Durchmesser.
  • Der Verbundleiter kann in unterschiedlichen Querschnitten hergestellt werden. Solche Querschnitte können sein: kreisrund zur Herstellung eines Runddrahtes, etwa rechteckig zur Herstellung einer Stromschiene oder profiliert für einen Profildraht. Als bevorzugtes Einsatzgebiet eines Profildrahtes sollen Fahrdrähte (trolley wires) angesprochen werden. In diesem Zusammenhang wird auf die Norm EN 50149 verwiesen, in der Fahrdrähte standardisiert sind.
  • Zum Herstellen des erfindungsgemäßen Verbundleiters wird der bekannte Strang-Press-Prozess vorgeschlagen. Es handelt sich um die Herstellung von Stäben oder Drähten über Extrusion. Das Mantelmaterial wird in (zwei) Umfangsnuten eines Extrusionsrades eingebracht, wobei durch hohe Reibung an einem Gegenlager ein fließfähiges, röhrenförmiges Gebilde erzeugt wird, welches als Umkleidung des Kernmaterials aus der Extruderöffnung austritt. Das Kernmaterial wird durch einen hohlen Portaldorn tangential zum Extrusionsrad eingeschoben; das Mantelmaterial umhüllt das Kernmaterial. Anschließend wird das Produkt durch einen oder mehrere Ziehsteine geführt und auf Endmaß heruntergezogen. Es wurde schon erwähnt, dass geeignete Strangpress-Anlagen auf dem Markt sind.
  • Bei der Erfindung wird die hohe Verfestigungsfähigkeit und die gute Leitfähigkeit von CuMg-Legierungen in Kombination mit der hohen Leitfähigkeit, mittlerer Verfestigungsfähigkeit und gutem Verschleißverhalten von CuAg-Legierungen genutzt. Damit kann der physikalisch begrenzte Bereich der herkömmlichen Fahrdrähte, die nur aus einer Legierung bestehen, mit den vorgeschlagenen Legierungspartnern bezüglich Festigkeit und elektrischer Leitfähigkeit deutlich erweitert werden. Insbesondere gegenüber den vorbekannten Verbundfahrdrähten aus Staku (stahlummantelter Kupfer-Draht) ist der vorgeschlagene Verbundfahrdraht neben seiner besseren elektrischen Leitfähigkeit nicht korrosionsanfällig und auch werthaltiger recycling-fähig.
  • Als Fahrdraht ist ein Rillenfahrdraht herstellbar, der im Kern mindestens einen Draht aus CuMg 0,1...0,7 enthält und von einem Mantel aus CuAg 0,1 umgeben ist. Der Kerndraht kann rund sein oder dem äußeren Profil des Mantels (Ri-Profil) mehr oder weniger angepasst sein. Der Flächenanteil des Kerndrahtes im Querschnitt des Verbundleiters kann in weiten Grenzen variieren. Der Kerndraht zeichnet sich dadurch aus, dass er mittels unterschiedlicher Kaltumformgrade auf eine gewünschte Festigkeit eingestellt wird und mit dieser Festigkeit in den Verbund eingebracht wird. Durch eine zusätzliche nach dem Holton-Conform-Strangpressen (beispielsweise) angewendete Kaltumformung erfolgt eine weitere Verfestigung des Verbundfahrdrahtes. Damit ist eine Variabilität der einstellbaren Produkteigenschaften (speziell der Festigkeit und der elektrischen Leitfähigkeit) möglich. Weiterhin ist abhängig von den gewünschten Eigenschaften des Verbundfahrdrahtes eine endprofilnahe Fertigung mit reduziertem Ziehaufwand möglich.
  • Die Materialpaarung ist jedoch auch in anderer Form möglich, wo im Kern mindestens ein Draht aus CuAg 0,1 eingebettet ist, und der Kern von einem Mantel aus CuMg 0,1...0,7 umgeben ist.
  • Vorteilhaft für die Verlegeeigenschaften des Fahrdrahtes (geringe bzw. verminderte Welligkeit nach dem Abrollen von der Kabelrolle) dürfte sich auswirken, dass bei Anwendung eines relativ hohen Kaltumformgrades nach dem Holton-Conform-Prozeß die Verfestigung des CuAg-Mantels bereits im Bereich der Sättigung (thermodynamisches Gleichgewicht) liegt und die Festigkeit des Mantels insgesamt deutlich unter der des Kerndrahtes liegt. Weiterhin ist die Homogenität des Gefüges des hochfesten Kerndrahtes wesentlich höher als vergleichsweise eines herkömmlichen Fahrdrahtes aus einem einzigen Werkstoff, wodurch gleichmäßigere mechanische Eigenschaften über die Fahrdrahtlänge erzielt werden können.
  • Als Materialeigenschaften kann man abschätzen, dass beispielsweise bei einem Flächenanteil des Kerndrahts von 25 % aus CuMg 0,5 sich eine Leitfähigkeit von 90 % IACS (52 MS m-1) sowie eine Zugfestigkeit mindestens von 435 N/mm2 und bei einem Flächenanteil des Kerndrahts von 50 % aus CuMg 0,5 sich eine Leitfähigkeit von 81 % IACS (47 MS m-1) und eine Zugfestigkeit von 490 N/mm2 ergibt.
  • Herstellverfahren
  • Mittels konventionellem Herstellverfahren wird ein Kerndraht (rund oder als Profildraht) mit definierter (hoher) Festigkeit und Leitfähigkeit aus einer CuMg-Legierung (z.B. CuMg 0,5) hergestellt. Die Oberfläche des oder der Kerndrähte wird sorgfältig von Fremd- oder Korrosionsschichten befreit, beispielsweise durch chemische Behandlung. Bei Kerndrähten mit fremdstofffreier, aktivierter Oberfläche ist sicher gestellt, dass eine gute Materialverbindung zum Ummantelungswerkstoff herstellbar ist. Die Oberflächenreinigung ist wichtig, damit im weiteren Umformprozess die enge Materialverbindung zwischen Kerndraht und Ummantelung erhalten bleibt.
  • Ein so hergestellter und vorbehandelter Kerndraht wird in einem Conform-Cladding-Verfahren mit dem sehr gut leitfähigen Werkstoff CuAg 0,1 ummantelt. Während der Prozessführung sollte vorzugsweise verhindert werden, dass der Kerndraht bei der entstehenden thermischen Belastung rekristallisiert. Der entstandene Verbunddraht wird durch weitere Ziehschritte in seine endgültige Profilform gebracht und dabei weiter verfestigt. Abhängig vom erforderlichen Querschnittsanteil kann der Kerndraht als Rund- oder Profildraht eingebracht werden. Der Herstellprozess ist so zu steuern, dass im Rand- oder Mantelbereich nahe der Oberfläche des Verbundleiters keine Kerndrähte zu liegen kommen, so dass in der Mantelzone von etwa 10 % des Durchmessers kein Kerndraht vorhanden ist. Die Querschnittsverringerung im Ziehprozess hat Einfluss auf die Endfestigkeit des Produkts. Um einen Fahrdraht herzustellen, der für den Einsatz für Hochgeschwindigkeitsbahnen geeignet ist, wird eine relativ hohe Querschnittsreduzierung vorgenommen. Solche Fahrdrähte werden mit besonders hoher Zugspannung montiert, so dass sie dem Andruck eines Stromabnehmers nur gering ausweichen und eine hohe Wellenausbreitungsgeschwindigkeit dieses Anhubes gewährleisten. Es ist also eine hohe mechanische Festigkeit Voraussetzung für die Anwendung.
  • Es wurde angesprochen, dass Verbundleiter nach der Erfindung auch als Stromschienen einsetzbar sind. Stromschienen werden in elektrischen Verteileranlagen stationär eingesetzt, so dass für diese Anwendung die mechanische Festigkeit nur eine nebengeordnete Rolle spielt.
  • Figurenbeschreibung
  • Die Erfindung wird in drei Zeichnungen dargestellt, die im einzelnen zeigen:
  • Fig. 1
    den Querschnitt eines Runddrahts mit mehreren Kerndrähten,
    Fig. 2
    den Querschnitt eines Fahrdrahts mit nur einem Kerndraht und
    Fig. 3
    den Querschnitt eines Fahrdrahts mit mehreren eingebetteten Drahtsträngen.
  • In der Figur 1 ist ein Runddraht 12 gezeichnet, in dem mehrere Kerndrähte 22 liegen. Die Einzeldrähte 22 sind unregelmäßig im Material 14 verteilt und liegen mit Abstand von der Oberfläche des Runddrahts, so dass eine kerndrahtfreie Randzone vorhanden ist. Die Regelmäßigkeit der Einzeldrahtverteilung hängt von dem verwendeten Herstellverfahren ab, und ist dementsprechend steuerbar.
  • Fig. 2 zeigt einen Fahrdraht 10 (Rillenfahrdraht oder trolley wire) - entsprechend EN 50149, der im Kern 20 einen Draht aus CuMg 0,1...0,7 enthält und von einem Mantel 14 aus CuAg 0,1 umgeben ist. Der Kerndraht 20 stammt von einem runden Draht, der durch die Profilierung mit verformt wurde, wodurch er einen birnenförmigen Querschnitt erhalten hat. Es ist unmittelbar verständlich, dass die Querschnittsform des Kerndrahts von der Stärke der Verformung und der Form des stranggepreßten Ausgangsprofils abhängt, so dass auch Fahrdrähte herstellbar sind, die einen noch fast runden Kerndraht aufweisen.
  • Der Flächenanteil des Kerndrahtes im Querschnitt des Verbundleiters kann in weiten Grenzen variieren (10 bis 80 %). Wenn kernseitig eine CuMg-Legierung vorgesehen ist, soll der Flächenanteil dieser CuMg-Legierung vorzugsweise 50 % sein.
  • Fig. 3 zeigt einen Fahrdraht 11, der im Kern mehrere Drahtstränge 22 enthält, die mehr oder weniger regelmäßig verteilt sind. Die Drahtstränge 22 stammen vorzugsweise aus einem Drahtvorrat mit einheitlichem Durchmesser, so dass auch die eingebetteten Drahtstränge etwa einheitlichen Querschnitt haben, soweit sie nicht in der Herstellphase eine unterschiedliche Verformung erfahren. Die Drahtstränge können jedoch auch nichtrunden Querschnitt haben.
  • Als Zahlenbeispiel für einen Fahrdraht sei noch angegeben: Querschnitt für den Kerndraht 4 mm2. Bei einem Flächenanteil der Kerndrähte von 50 % müssten bei einem Rillenfahrdraht (nach der oben genannten Norm) mit einem Querschnitt von ca. 120 mm2 etwa 15 Kerndrähte eingebracht werden.

Claims (9)

  1. Elektrischer Verbundleiter bestehend aus einer Basislegierung aus CuAg mit einem Ag-Anteil von 0,08 bis 0,12 %, bei dem der Rand (14) oder der Kern (20, 22) des Verbundleiters (10, 11, 12) aus einer Legierung aus CuMg mit einem Mg-Anteil von 0,1 bis 0,7 % besteht.
  2. Verbundleiter nach Anspruch 1, dadurch gekennzeichnet, dass ein Anteil des Leiterkerns (20,22) an der Querschnittsfläche des Verbundleiters (10,11,12) zwischen 10 und 80 % liegt.
  3. Verbundleiter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Kern (20, 22) aus mindestens einem Strang (20) besteht.
  4. Verbundleiter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Kern mehrere Drahtstränge (22) angeordnet sind und die Drahtstränge (22) etwa denselben Querschnitt haben.
  5. Verbundleiter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Verbundleiter (12) runden Querschnitt hat.
  6. Verbundleiter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Verbundleiter als Rillendraht (10, 11), insbesondere als Fahrdraht ausgebildet ist.
  7. Verbundleiter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einer Mantelzone von etwa 10 % des Durchmessers kein Drahtstrang vorhanden ist.
  8. Verfahren zur Herstellung eines Verbundleiters mit einer Legierungspaarung nach Anspruch 1, gekennzeichnet durch die Schritte:
    o mindestens ein Drahtstrang (22) wird aus einer ersten Legierung hergestellt,
    o mindestens ein Drahtstrang (22) wird in eine Strangpress-Anlage eingeführt und mit einer Ummantelung (14) aus einer zweiten Legierung versehen,
    o der hergestellte Verbundleiter (10,11,12) wird mindestens einmal durch einen Ziehstein gezogen und dabei auf endgültige Profilform gebracht wobei entweder die erste Legierung eine Legierung aus CuAg mit einem Ag-Anteil von 0,08 bis 0,12 % und die zweite Legierung eine Legierung aus CuMg mit einem Mg-Anteil von 0,1 bis 0,7 % ist, oder die erste Legierung eine Legierung aus CuMg mit einem Mg-Anteil von 0,1 bis 0,7 % und die zweite Legierung eine Legierung aus CuAg mit einem Ag-Anteil von 0,08 bis 0,12 % ist.
  9. Verfahren zur Herstellung eines Verbundleiters nach Anspruch 10, dadurch gekennzeichnet, dass die Oberfläche des oder der Drahtstränge (22) vor der Ummantelung von einer Fremdstoffschicht befreit wird.
EP06841009A 2005-12-20 2006-12-18 Elektrischer verbundleiter und herstellverfahren dafür Not-in-force EP1973677B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL06841009T PL1973677T3 (pl) 2005-12-20 2006-12-18 Przewód elektryczny i sposób jego wytwarzania
SI200630364T SI1973677T1 (sl) 2005-12-20 2006-12-18 Sestavljen elektriäśni prevodnik in postopek za njegovo proizvodnjo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005060809A DE102005060809B3 (de) 2005-12-20 2005-12-20 Elektrischer Verbundleiter
PCT/EP2006/012177 WO2007071355A1 (de) 2005-12-20 2006-12-18 Elektrischer verbundleiter und herstellverfahren dafür

Publications (2)

Publication Number Publication Date
EP1973677A1 EP1973677A1 (de) 2008-10-01
EP1973677B1 true EP1973677B1 (de) 2009-06-03

Family

ID=37907125

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06841009A Not-in-force EP1973677B1 (de) 2005-12-20 2006-12-18 Elektrischer verbundleiter und herstellverfahren dafür

Country Status (17)

Country Link
US (1) US7786387B2 (de)
EP (1) EP1973677B1 (de)
JP (1) JP2009520332A (de)
KR (1) KR20080090398A (de)
CN (1) CN101340987B (de)
AT (1) ATE432780T1 (de)
AU (1) AU2006329004A1 (de)
CA (1) CA2633469A1 (de)
DE (2) DE102005060809B3 (de)
DK (1) DK1973677T3 (de)
ES (1) ES2326552T3 (de)
PL (1) PL1973677T3 (de)
PT (1) PT1973677E (de)
RU (1) RU2008129369A (de)
SI (1) SI1973677T1 (de)
WO (1) WO2007071355A1 (de)
ZA (1) ZA200805250B (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2808873A1 (de) * 2013-05-28 2014-12-03 Nexans Elektrisch leitfähiger Draht und Verfahren zu seiner Herstellung
RU2703564C1 (ru) * 2018-09-18 2019-10-21 Общество с ограниченной ответственностью "Научно-производственное предприятие "НАНОЭЛЕКТРО" Композитный контактный провод
CN110660499A (zh) * 2019-10-09 2020-01-07 中铁建电气化局集团康远新材料有限公司 大长度熔融渗透式铜钢复合线材及其电压对称接线方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE216890C (de)
GB8309875D0 (en) * 1983-04-12 1983-05-18 Babcock Wire Equipment Continuous extrusion apparatus
JPH01175535A (ja) * 1987-12-28 1989-07-12 Fujikura Ltd 銅被覆複合トロリ線
JPH0644412B2 (ja) 1989-04-10 1994-06-08 株式会社フジクラ 極細線用銅複合線材
GB9100317D0 (en) 1991-01-08 1991-02-20 Holton Machinery Ltd Co-axial cable
JPH06187851A (ja) 1992-12-18 1994-07-08 Hitachi Cable Ltd 架空送電線用繊維強化複合素線の製造方法及び製造装置
CN1032824C (zh) * 1993-09-06 1996-09-18 铁道部科学研究院机车车辆研究所 铜合金接触线
DE19539174C1 (de) * 1995-10-20 1997-02-27 Siemens Ag Oberleitungsfahrdraht einer elektrischen Hochgeschwindigkeitsbahnstrecke und Verfahren zu dessen Herstellung
JP4456696B2 (ja) * 1999-07-06 2010-04-28 住友電気工業株式会社 同軸ケーブル素線、同軸ケーブル、及び同軸ケーブルバンドル
JP2001148205A (ja) * 1999-11-19 2001-05-29 Hitachi Cable Ltd 超極細銅合金線材及びその製造方法
US7131308B2 (en) * 2004-02-13 2006-11-07 3M Innovative Properties Company Method for making metal cladded metal matrix composite wire
JP5306591B2 (ja) * 2005-12-07 2013-10-02 古河電気工業株式会社 配線用電線導体、配線用電線、及びそれらの製造方法

Also Published As

Publication number Publication date
SI1973677T1 (sl) 2009-12-31
AU2006329004A1 (en) 2007-06-28
JP2009520332A (ja) 2009-05-21
DK1973677T3 (da) 2009-09-07
CA2633469A1 (en) 2007-06-28
RU2008129369A (ru) 2010-01-27
ES2326552T3 (es) 2009-10-14
PL1973677T3 (pl) 2009-11-30
ATE432780T1 (de) 2009-06-15
ZA200805250B (en) 2009-11-25
PT1973677E (pt) 2009-07-29
WO2007071355A1 (de) 2007-06-28
KR20080090398A (ko) 2008-10-08
DE502006003916D1 (de) 2009-07-16
US20090075117A1 (en) 2009-03-19
EP1973677A1 (de) 2008-10-01
CN101340987B (zh) 2012-07-25
CN101340987A (zh) 2009-01-07
DE102005060809B3 (de) 2007-09-20
US7786387B2 (en) 2010-08-31

Similar Documents

Publication Publication Date Title
EP2289072B1 (de) Verfahren zur herstellung einer litze sowie litze aus mehreren drähten
DE3018105C2 (de) Verfahren zur Herstellung eines Leiters für elektrische Kabel oder Leitungen
DE2059179C3 (de) Verfahren zur Herstellung eines faserverstärkten Formkörpers sowie Anwendung des Verfahrens zur Herstellung spezieller Formkörper
DE102018201790B4 (de) Verdrillter Aluminiumverbunddrahtleiter, verdrillter Aluminiumverbunddraht und Kabelbaum
DE102008011884B4 (de) Verfahren zur Herstellung eines Elementardrahtes, Elementardraht und elektrischer Draht
EP1973677B1 (de) Elektrischer verbundleiter und herstellverfahren dafür
DE4009366C2 (de)
EP0925138B1 (de) Hochfeste erodierelektrode
DE2303603A1 (de) Litzendrahtkabel
DE602006000576T2 (de) Kabel mit Innenleiter aus Aluminium
DE102009043164B4 (de) Elektrisches Kabel
EP2808873A1 (de) Elektrisch leitfähiger Draht und Verfahren zu seiner Herstellung
WO2001042517A1 (de) Verfahren zur herstellung von injektionsdraht
DE102009053199B4 (de) Litze sowie Verfahren zu deren Herstellung
DE102010046955A1 (de) Elektrisches Kabel
EP3172742B1 (de) Verfahren zur herstellung einer elektrischen leitung, elektrische leitung sowie kraftfahrzeug-bordnetz mit einer entsprechenden elektrischen leitung
EP2922069B1 (de) Freileitungsseil
DE2022991C3 (de) Verfahren zur Herstellung eines elektrischen Leiters
DE2054392A1 (de) Verfahren zur Herstellung eines stabilisierten Supraleiters
DE112022002578T5 (de) Drahtleiter, isoliertes kabel und kabelstrang
DE102009042723B4 (de) Elektrisches Kabel, das Einzeldrähte aus Kupfer und aus einer Kupfer-Zinn-Legierung aufweist
DE1947266B2 (de) Verfahren zur herstellung eines verstaerkten supraleiters
DD200231A1 (de) Al-leitdraht mit erhoehter festigkeit und verfahren zu seiner herstellung
DE6909588U (de) Elektrische leitung zur verbindung von stromquelle und verbraucher
DE1165117B (de) Vorrichtung zur Regelung der Abmessungen einer Schutzhuelle aus Metall am Ausgang von Strangpressen zur Herstellung von Schutzhuellen fuer elektrische Kabel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006003916

Country of ref document: DE

Date of ref document: 20090716

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20090721

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SERVOPATENT GMBH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2326552

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20090402205

Country of ref document: GR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090603

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090603

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090603

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E006158

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091003

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090603

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091218

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 5935

Country of ref document: SK

Effective date: 20091218

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20100818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091218

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091218

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20101124

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101222

Year of fee payment: 5

Ref country code: GB

Payment date: 20101221

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20111216

Year of fee payment: 6

Ref country code: CZ

Payment date: 20111214

Year of fee payment: 6

Ref country code: CH

Payment date: 20111227

Year of fee payment: 6

Ref country code: PT

Payment date: 20111219

Year of fee payment: 6

Ref country code: SE

Payment date: 20111223

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20111229

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20111222

Year of fee payment: 6

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20130618

BERE Be: lapsed

Owner name: NKT CABLES G.M.B.H.

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121218

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006003916

Country of ref document: DE

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130702

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121218

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121219