EP1971805B1 - Heizbrenner - Google Patents

Heizbrenner Download PDF

Info

Publication number
EP1971805B1
EP1971805B1 EP06841098A EP06841098A EP1971805B1 EP 1971805 B1 EP1971805 B1 EP 1971805B1 EP 06841098 A EP06841098 A EP 06841098A EP 06841098 A EP06841098 A EP 06841098A EP 1971805 B1 EP1971805 B1 EP 1971805B1
Authority
EP
European Patent Office
Prior art keywords
fuel
heating burner
interval
ignition
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06841098A
Other languages
English (en)
French (fr)
Other versions
EP1971805A1 (de
Inventor
Peter Schaller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryll-Tech GmbH
Original Assignee
Ryll-Tech GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102006014633A external-priority patent/DE102006014633B4/de
Application filed by Ryll-Tech GmbH filed Critical Ryll-Tech GmbH
Publication of EP1971805A1 publication Critical patent/EP1971805A1/de
Application granted granted Critical
Publication of EP1971805B1 publication Critical patent/EP1971805B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/04Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying action being obtained by centrifugal action
    • F23D11/06Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying action being obtained by centrifugal action using a horizontal shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/44Preheating devices; Vaporising devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99009Combustion process using vegetable derived fuels, e.g. from rapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/22Pilot burners

Definitions

  • the present invention relates to a heating burner for a heating system.
  • Heating burners are used for a variety of applications. They are used to heat buildings, surfaces and liquids, whether for everyday use or, for example, for a swimming pool. Even though the requirements that arise in the individual application areas sometimes differ greatly, a requirement for the burner is common to all application scenarios. It is necessary to set a certain required temperature at any time in the system to be heated, wherein the temperature can vary greatly over time, but the reaction time of the heating burner should be short. To make matters worse, the system often reacts lazily to the heating of the burner.
  • the heating burners have an input that determines the desired setpoint temperature and at least one sensor that determines the actual temperature in the system.
  • Internal control methods try to control the heating burner or its combustion flame so that the actual temperature corresponds as closely as possible to the setpoint temperature.
  • the reaction time of the entire heating system is relatively sluggish, the setpoint requirements constantly vary and an efficient and maintenance-free heating is required.
  • a high efficiency of the heating burner and a low-emission and soot-free burning of the fuel used in each case is required in the commercial heating burners.
  • an area is set around the desired setpoint temperature.
  • the heating burner only knows two states. In a burning status, unregulated fuel is burned and heat energy is produced. In a switched-off state, no fuel is burned, additional heat energy is not passed on to the heating system. If the actual value falls below the lower interval limit of the setpoint, the heating burner is ignited and burns until the actual value exceeds the upper limit of the interval. The burner is then switched off again and remains in this state until the actual value specifies that a renewed ignition is necessary.
  • An actual temperature curve, as it usually arises in a heating burner with an intermetierenden method can the FIG. 4a be removed.
  • the intermingling method has the disadvantage that in order to ensure low-emission combustion and the calorific value of the fuel optimally exploiting combustion, the interval length is chosen to be relatively generous and, in addition, because of the possibly long reaction time hysteresis occurs. Therefore, there is a strong over- and under-regulation that affects the quality and efficiency of the system. On the one hand, only the heat energy that is really desired is rarely delivered; on the other hand, the excessive overriding of the actual power increases the heat loss in the piping systems and leads to wear (eg calcification). Heating burners with intermittent combustion are off US 4,922,861 and EP0 884 532 known.
  • the modulating process regulates the heating power in the same way as the actual value of the temperature in the system.
  • the fuel supply can be regulated within the scope of a control range.
  • the control range is finite, if the control range is exceeded or not reached, the intermittent procedure must be changed. The disadvantages mentioned in this method occur in the same way, if not even stronger.
  • control variables for example, air supply and fuel supply
  • the central idea of the invention is that the control device ignites the fuel at regular intervals and operates a combustion flame at a predefined power.
  • the heating power produced by the heating burner is only regulated by the respective burning time, ie the adjustable burning interval.
  • the controller need only distinguish three phases within a firing interval, an initialization phase in which the firing power is ramped up to a predefined value, a constant firing phase in which the firing power is maintained at a constant value, and a stop phase in which the firing Burning power is reduced back to almost zero.
  • the control device can thus be designed so that it optimally operates the actuators for these three phases in such a way that an efficient combustion of the fuel is ensured.
  • the control device of the actuators is particularly the regulation of the fuel-air ratio decide, therefore, according to the invention, at least the flow rate of the fuel conveyor freely adjustable.
  • the ignition intervals are less than or equal to 60 seconds.
  • a fast reaction of the heating burner is thus ensured and the actual output of the heating burner adapts optimally to the target power. An overshoot and undershoot the heating power can be avoided.
  • the fuel is a liquid fuel, especially rapeseed oil or other natural oils.
  • the actuators comprise a motor which sets a truncated cone in rotational movements about its longitudinal axis such that fuel introduced into the truncated cone via an inlet opening escapes at an outlet opening due to the centrifugal force and is atomized.
  • the truncated cone is thus a cylindrically shaped tube through which at the inlet, where the tube has the smaller diameter, fuel is introduced, which is driven due to the rotation in the direction of the outlet opening. If the truncated cone is driven fast enough, the fuel emerging at the outlet opening will be atomized due to the centrifugal forces acting on it. Long-chain liquid fuels crack the molecular chains.
  • the ignition device comprises a heat return, which is made of thermally conductive material and emits heat occurring in a combustion of the fuel to nachströmenden fuel.
  • the heat recovery may be, for example, a rod, an internally-powered, motor-driven impeller, or other construction suitable for dissipating some of the heat generated during the combustion of the fuel. This derivation takes place in the direction of a fuel supply line.
  • the inflowing fuel can be heated to just below the ignition temperature without the provision of additional preheaters.
  • this heat recovery is at least partially arranged in the interior of the above-described hollow cylinder, the outlet opening towering.
  • the heat generated at the outlet opening of the truncated cone is transported away in the direction of the inlet opening of the truncated cone.
  • the fuel can be preheated to temperatures above the ignition point. Only at the exit from the truncated cone through the outlet opening it comes to the inflammation.
  • the ignition device preferably comprises a preheater, which heats the fuel to ignition temperature. Since there is not enough burning power outside the firing interval to sufficiently preheat the inflowing fuel in the initialization interval, it is helpful to provide external preheating. Preheating can be ohmic or inductive. It is crucial that the preheating is controllable by the control device and is regulated according to the phases.
  • the preheating comprises a heating coil which surrounds the truncated cone.
  • the fuel is heated indirectly via the truncated cone.
  • the control device is designed such that it controls the fuel delivery device and the air conveyor so that during the firing interval, preferably in an initialization and initialization phase and a stop interval or stop phase, there is a substantially constant air-fuel ratio at the ignition device.
  • the air-fuel ratio can be chosen so that the most efficient and particularly soot-free combustion of the fuel is ensured. Because of this type of intelligent control device, the heating burner rarely needs servicing and ensures efficient fuel utilization despite the frequent relight.
  • the heating burner has an air flow sensor for determining the delivery rate of the air delivery device.
  • the control device can thus not only control the air required for igniting and burning the fuel according to a preset mode, but also regulate it as needed.
  • air flow sensors various temperature sensors for both fuel and air as well as flow sensors for the flow rate of the fuel can be provided.
  • the control device adjusts the actuators, in particular the fuel pump or conveying device and the air conveying device, in such a way that outside the firing interval a pilot flame is present. A reignition of the fuel is thus not necessary and a sufficiently powerful device for this need not be provided.
  • the pilot flame may also serve to provide heat for preheating fuel and thus ensure efficient burning of the fuel throughout the ignition interval.
  • control device is designed such that, in order to supply the pilot flame, it controls the fuel pump outside the firing interval so that less than one percent, preferably less than one per thousand, of the maximum delivery rate of the fuel pump is conveyed.
  • An inventive heating burner can in the FIG. 1a include components shown.
  • a central unit of the heating burner forms the control device 10.
  • This is connected to a plurality of actuators, in the present example an ignition device 50, an atomizer 70, an air conveyor 80, a fuel conveyor 20, a cracking device 30 and a preheater 40.
  • the control device 10 of the heating burner controls or controls the respective actuators such that an efficient burning, ignition and down rules or deletion of the fuel is ensured. Efficient in this case means that the calorific value of the fuel is utilized optimally while a low-pollution and soot-free combustion is ensured, so that maintenance of the heating burner according to the invention is rarely necessary.
  • the control device 10 receives signals from a plurality of sensors 60. These sensors 60 comprise at least one primary sensor, by means of which the control device can determine an actual temperature of the system to be heated.
  • this primary sensor is a heating water temperature sensor 65, which determines the temperature of a heated by the heating burner heat cycle.
  • the control device is designed such that it can determine a difference between the actual temperature and a setpoint temperature and regulates the actuators in such a way that this difference is as small as possible at any point in time.
  • the heating burner according to the invention has a very low number of states, namely the ignition of fuel, the burning of fuel, the extinction of the combustion flame or the reduction of the combustion flame and an idle without combustion flame or with a reduced combustion flame, a preconfiguration of the control device 10 is conceivable.
  • This preconfiguration determines, for each of the states mentioned, optimal parameters for controlling the actuators.
  • the sensors 60 additionally include an air temperature sensor 61, an air flow sensor 62, a fuel temperature sensor 63, and a fuel flow sensor 64.
  • the fuel flow sensor 64 and the air flow sensor 62 provide signals to the controller 10 allowing it to draw conclusions about the performance of the engine Fuel conveyor 20 and the air conveyor 80 to pull.
  • the air temperature sensor 61 and the fuel temperature sensor 63 help the controller 10 to control the preheater 40 so that optimum combustion of the fuel occurs.
  • a combustion chamber 1 comprises, as shown schematically in FIG. 2 illustrated two leads.
  • the fuel to be combusted is rapeseed oil.
  • the fuel is stored in a fuel tank 24 and conveyed via the fuel line 21 by means of a fuel delivery device 20 to the combustion chamber 1.
  • the crude oil passes through a preheater 40, which heats the fuel for easier ignition, and a cracker 30, which processes the fuel.
  • Another functional unit, an atomizer 70 is provided directly on the combustion chamber 1 and mixes the fuel with the air supplied via the air line 81.
  • An ignition device 50 ensures the ignition of the air fuel mixture in the combustion chamber. 1
  • the preheating device 40 thus assumes the functionality of the ignition device 50.
  • FIG. 3 shows the structure of in FIG. 2 schematically illustrated embodiment of the heating burner according to the invention.
  • the air line 81 is in the form of a generously sized tube.
  • the fuel pipe 21 passes through the outer wall of the air pipe 81 and continues inside the same.
  • the fuel line 21 and the air line 81 are still separated from each other.
  • a first opening of the fuel line 21 opens into the fuel tank 24 from which the fuel is conveyed to a second opening of the fuel line 21.
  • This second opening closes in the interior of the air line 81 airtight with an inlet opening 35 of a truncated cone 32 from.
  • the truncated cone is driven by a motor 37, not shown, such that the fuel entering via the inlet opening 35 is conveyed inside the hollow truncated cone 32 due to the centrifugal force to an outlet opening 36 which opposes the inlet opening 35, but due to the shape of the Truncated cone 32 has a larger diameter.
  • the motor 37 By applied by the motor 37 centrifugal force introduced into the truncated cone 32 crude oil is both mechanically cracked at a trailing edge along the outlet opening 36 as well as mixed with the brought about the air line 81, the truncated cone 42 surrounding air.
  • the motor 37 and the truncated cone 32 thus form the funktonal units of the atomizer 70 and the cracking device 30 from the FIG. 1a ,
  • the truncated cone 32 is loosely surrounded by a heating coil 44. This heats not only the surrounding the truncated cone air but also the truncated cone 32 itself. Since the truncated cone 32 is made of thermally conductive material, the heat energy of the heating coil 44 is passed on to the fuel inside the truncated cone 32.
  • the heating coil 44 thus has a dual functionality and heats both air and fuel.
  • the preheated fuel ignites as soon as it is mixed with the air.
  • the resulting heat output is not only given off as heating power of the heating burner but to a small extent via a heat return 42, which extends in the form of a metal rod in the interior of the truncated cone, delivered to the inflowing fuel in the truncated cone 32.
  • a fuel conveyor 20 and an air conveyor 80 are in the FIG. 3 not shown, but can be easily provided on or in the fuel line 21 and the air line 81.
  • the actuators are, as in FIG. 1 a shown, connected to the control device 10 and control according to the invention the heating burner, that it controls the combustion flame in a preset preset ignition intervals t Z to a preset fuel output L and maintains it for the duration of the firing interval t B (see FIG. 5a ).
  • the duration of the combustion interval t B is determined by the control device 10 as a function of the heating power to be provided by the heating burner.
  • the FIG. 5a shows a time-burning diagram. Here are three ignition intervals t Z shown. An ignition interval in the selected embodiment has the length of 100 seconds.
  • the control unit thus regulates the burning power L to a preset level every 100 seconds. And keeps this higher burning power L during the firing interval t B.
  • the control device 10 (cf. FIG. 1a ) is designed such that it determines the length of the firing interval t B for the optimum heating power required at the respective time.
  • the control device 10 determines that approximately 60% of the maximum power is required for an optimum heating power in a second ignition interval t Z. Accordingly, the firing interval t B is about 60 seconds in this second firing interval t Z.
  • FIG. 5b shows a time-burning power diagram of the first ignition interval t Z from FIG. 5a the length of the firing interval t B is, as already mentioned, 20 seconds.
  • the start or stop phase ie the period in which the control device 10 up-regulates the firing power L to the preset high level or downshifts it, is referred to as the initialization interval t I or the stop interval t S.
  • a constant fuel Oxygen ratio in these phases is particularly crucial.
  • the controller 10 controls the actuators accordingly.
  • FIG. 5a A detailed view of the second ignition interval t Z out FIG. 5a can the time-burning power diagram of the FIG. 5c be removed.
  • This precise control of the heating power allows an improved actual value setting, as shown in the FIG. 4b shown is achieved.
  • the abscissa indicates the time and the ordinate the actual temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Heizbrenner für ein Heizsystem.
  • Heizbrenner werden für eine Vielzahl von Anwendungen herangezogen. Sie dienen zur Beheizung von Gebäuden, Flächen und Flüssigkeiten, sei es für den alltäglichen Gebrauch oder beispielsweise für ein Schwimmbad. Auch wenn die Anforderungen, die in den einzelnen Anwendungsgebieten entstehen, sich teilweise stark unterscheiden, so ist eine Anforderung an den Brenner allen Anwendungsszenarien gemein. Es gilt, zu jedem Zeitpunkt in dem zu beheizenden System eine gewisse geforderte Temperatur einzustellen, wobei die Temperatur über die Zeit stark variieren kann, die Reaktionszeit des Heizbrenners jedoch kurz sein sollte. Erschwerend kommt hinzu, dass das System häufig träge auf das Beheizen des Brenners reagiert.
  • Um dieser Anforderung zu begegnen, verfügen die meisten Heizbrenner über einen Eingang, der die gewünschte Solltemperatur festlegt, sowie über mindestens einen Sensor, der Isttemperatur im Systems bestimmt. Interne Regelverfahren versuchen den Heizbrenner bzw. dessen Verbrennungsflamme so zu steuern, dass die Isttemperatur möglichst genau der Solltemperatur entspricht. Bei dieser Regelung gilt es, wie gesagt, zu beachten, dass die Reaktionszeit des gesamten Heizsystems relativ träge ist, die Sollwertanforderungen ständig variieren und ein effizientes und wartungsfreies Heizen gefordert wird. Ein hoher Wirkungsgrad des Heizbrenners sowie ein abgasarmes und russfreies Verbrennen des jeweilig verwendeten Brennstoffes wird bei den handelsüblichen Heizbrennern vorausgesetzt.
  • Im Wesentlichen unterscheidet man bei der Regelung der Heizbrenner zwischen zwei Verfahren, die entweder einzeln oder in Kombination verwendet werden:
    • das intermetierende Verfahren
    • das modulierende Verfahren
  • Bei der intermetierenden Regelung wird ein Bereich um die gewünschte Sollwerttemperatur festgelegt. Bei der Verbrennung kennt der Heizbrenner lediglich zwei Stati. In einem brennenden Status wird ungeregelt Brennstoff verbrannt und Wärmeenergie produziert. In einem abgeschalteten Status wird kein Brennstoff verbrannt, zusätzliche Wärmeenergie wird nicht an das Heizsystem weitergegeben. Unterschreitet der Istwert die untere Intervallgrenze des Sollwerts, wird der Heizbrenner gezündet und brennt so lange, bis der Istwert die Obergrenze des Intervalls überschreitet. Danach wird der Brenner wieder abgeschaltet und verharrt in diesem Zustand, bis der Istwert festlegt, dass ein erneutes Zünden notwendig ist. Eine Istwert-Temperaturkurve, wie sie üblicherweise bei einem Heizbrenner mit einem intermetierenden Verfahren entstehet kann der Figur 4a entnommen werden. Das intermetierende Verfahren hat den Nachteil, dass um eine schadstoffarme und den Brennwert des Brennstoffs optimal ausnutzende, Verbrennung zu gewährleisten, die Intervalllänge relativ großzügig gewählt wird und zusätzlich auf Grund der eventuell langen Reaktionszeit eine Hysterese auftritt. Daher kommt es zu einer starken Über- und Unterregelung, die die Qualität und die Effizienz des Systems beeinträchtigt. Zum einen wird nur selten genau die Wärmeenergie geliefert, die auch wirklich erwünscht ist, zum anderen erhöht sich durch das starke Übersteuern der Istleistung der Wärmeverlust in den Leitungssystemen und führt zu Verschleiß (z.B. Verkalkung). Heizbrenner mit intermittierender Verbrennung sind aus US 4 922 861 und EP0 884 532 bekannt.
  • Das modulierende Verfahren regelt die Heizleistung analog zu dem Istwert der Temperatur im System. Beispielsweise kann die Brennstoffzufuhr im Rahmen eines Regelbereichs reguliert werden. Da der Regelbereich jedoch endlich ist, muss bei einem Über- oder Unterschreiten des Regelbereichs in das intermetierende Verfahren gewechselt werden. Die bei diesem Verfahren genannten Nachteile treten genauso, wenn nicht noch stärker, auf.
  • Auch ist es bei diesem Verfahren schwierig, die Regelgrößen (zum Beispiel Luftzufuhr und Brennstoffzufuhr) so zu regeln, dass es über dem gesamten Regelbereich zu einer effizienten, schadstoffarmen Verbrennung kommt.
  • Ausgehend von diesem Stand der Technik ist es Aufgabe der vorliegenden Erfindung, einen Heizbrenner bereitzustellen, der auf effiziente und schadstoffarme Weise eine gewünschte Brennleistung bereitstellt.
  • Die Aufgabe wird erfindungsgemäß durch einen Heizbrenner gemäß den Merkmalen des Patentanspruchs 1 löst.
  • Die zentrale Idee der Erfindung besteht darin, dass die Steuereinrichtung den Brennstoff in regelmäßigen Abständen entzündet und bei vordefinierter Leistung eine Brennflamme betreibt. Die Heizleistung, die der Heizbrenner produziert, wird lediglich durch die jeweilige Brenndauer also dem einstellbaren Brennintervall reguliert. Im Wesentlichen muss die Steuereinrichtung nur drei Phasen innerhalb eines Brennintervalls unterscheiden, eine Initialisierungsphase, in der die Brennleistung bis auf einen vordefinierten Wert hochgefahren wird, eine konstante Brennphase, in der die Brennleistung auf einem konstanten Wert gehalten wird, und eine Stoppphase, in der die Brennleistung wieder auf fast Null zurückgefahren wird.
  • Die Steuereinrichtung kann also so ausgebildet sein, dass sie für diese drei Phasen die Aktuatoren so optimal betreibt, dass ein effizientes Verbrennen des Brennstoffs gewährleistet wird. Bei der Steuereinrichtung der Aktuatoren ist besonders die Regelung des Brennstoff- Luftverhältnisses entscheiden, daher ist erfindungsgemäß zumindest die Fördermenge der Brennstofffördereinrichtung frei einstellbar. Durch das genaue Regeln der Heizleistung kommt es zu geringeren Wärmeverlusten im gesamten Heizsystem, insbesondere in den Leitungen.
  • Vorzugsweise sind die Zündintervalle kleiner gleich 60 Sekunden. Eine schnelle Reaktion des Heizbrenners wird so gewährleistet und die Istleistung des Heizbrenners passt sich optimal an die Sollleistung an. Ein Über- und Unterschwingen der Heizleistung kann vermieden werden.
  • Vorzugsweise ist der Brennstoff ein flüssiger Brennstoff, insbesondere Rapsöl oder andere natürliche Öle.
  • Es ist vorteilhaft, wenn die Aktuatoren einen Motor umfassen, der einen Kegelstumpf so in Rotationsbewegungen um dessen Längsachse versetzt, dass über eine Eintrittsöffnung in den Kegelstumpf eingebrachter Brennstoff aufgrund der Zentrifugalkraft an einer Austrittsöffnung austritt und zerstäubt wird. Der Kegelstumpf ist also eine zylindrisch geformte Röhre durch die an der Eintrittsöffnung, dort wo die Röhre den geringeren Durchmesser hat, Brennstoff eingebracht wird, der auf Grund der Rotation in Richtung der Austrittsöffnung getrieben wird. Wird der Kegelstumpf schnell genug angetrieben so wird der an der Austrittsöffnung austretende Brennstoff aufgrund der wirkenden Zentrifugalkräfte zerstäubt. Bei langkettigen flüssigen Brennstoffen kommt es zu einem Cracken der Molekülketten.
  • Vorzugsweise umfasst die Zündeinrichtung eine Wärmerückführung, die aus wärmeleitfähigem Material gefertigt ist und bei einer Verbrennung des Brennstoffs auftretende Wärme an nachströmenden Brennstoff abgibt. Die Wärmerückführung kann beispielsweise ein Stab, ein Rohr mit innen liegendem, motorisch betriebenem Flügelrad oder eine andere Konstruktion sein, die dazu geeignet ist, einen Teil der bei der Verbrennung des Brennstoffs auftretenden Wärme abzuleiten. Dieses Ableiten erfolgt in Richtung einer Brennstoffzuführleitung. Somit kann der nachströmende Brennstoff bis knapp unterhalb der Zündtemperatur ohne das Vorsehen von zusätzlichen Vorheizungen erwärmt werden.
  • Alternativ ist es auch denkbar den nachströmenden Brennstoff bis auf eine Temperatur oberhalb der jeweiligen Zündtemperatur vorzuheizen, so dass es bei der Zuführung von Luft unmittelbar zum Entzünden des Brennstoffs kommt.
  • Vorzugsweise wird diese Wärmerückführung mindestens abschnittsweise im Inneren des oben beschriebenen Hohlzylinders die Austrittsöffnung überragend angeordnet. Somit wird die an der Austrittsöffnung des Kegelstumpfs entstehende Wärme in Richtung der Eintrittsöffnung des Kegelstumpfs abtransportiert. Da im Inneren des Kegelstumpfs Sauerstoffmangel vorliegt, kann der Brennstoff bis auf Temperaturen oberhalb des Zündpunktes vorgeheizt werden. Erst beim Austritt aus dem Kegelstumpf durch die Austrittsöffnung kommt es zur Entzündung.
  • Insbesondere zum Entzünden des Brennstoffs im Initialisierungsintervall bzw. der Initialisierungsphase, umfasst die Zündeinrichtung bevorzugt eine Vorheizung, die den Brennstoff auf Zündtemperatur aufheizt. Da außerhalb des Brennintervalls nicht genügend Brennleistung vorliegt, um den nachströmenden Brennstoff in dem Initialisierungsintervall ausreichend vorzuheizen, ist es hilfreich eine externe Vorheizung vorzusehen. Die Vorheizung kann ohmsch oder induktiv erfolgen. Entscheidend ist, dass die Vorheizung von der Steuereinrichtung steuerbar ist und gemäß den Phasen geregelt wird.
  • Vorzugsweise umfasst die Vorheizung eine Heizwendel, die den Kegelstumpf umgibt. Somit wird der Brennstoff indirekt über den Kegelstumpf erhitzt.
  • Bevorzugt ist die Steuereinrichtung derart ausgebildet, dass sie die Brennstofffördereinrichtung und die Luftfördereinrichtung derart steuert, dass während des Brennintervalls, vorzugsweise in einem Initialisierungsintervall bzw. Initialisierungsphase und einem Stoppintervall bzw. Stoppphase, ein im Wesentlichen konstantes Luft-Brennstoffverhältnis an der Zündeinrichtung vorliegt. Das Luft-Brennstoff Verhältnis kann so gewählt werden, dass eine möglichst effiziente insbesondere russfreie Verbrennung des Brennstoffs gewährleistet wird. Aufgrund dieser Art von intelligenter Steuereinrichtung muss der Heizbrenner selten gewartet werden und gewährleistet trotz des häufigen Neuentzündens eine effiziente Nutzung des Brennstoffs.
  • Vorteilhaft ist es, wenn der Heizbrenner einen Luftflusssensor zur Bestimmung der Fördermenge der Luftfördereinrichtung aufweist. Die Steuereinrichtung kann so die für das Entzünden und Brennen des Brennstoffs nötige Luft nicht nur nach einem voreingestellten Modus steuern, sondern je nach Bedarf regeln. Außer Luftflusssensoren können auch diverse Temperaturfühler sowohl für Brennstoff als auch für Luft sowie Flusssensoren für die Fördermenge des Brennstoffs vorgesehen sein.
  • Vorzugsweise stellt die Steuereinrichtung die Aktuatoren, insbesondere die Brennstoffpumpe bzw. -fördereinrichtung und die Luftfördereinrichtung, derart ein, dass außerhalb des Brennintervalls eine Pilotflamme vorhanden ist. Ein Neuentzünden des Brennstoffs ist somit nicht notwendig und eine hinreichend leistungsstarke Vorrichtung dafür muss nicht vorgesehen werden. Durch das Halten einer Pilotflamme kann des Weiteren eine explosionsartige Entzündung des Brennstoffs in der Initialisierungsphase vermieden werden. Die Pilotflamme kann auch dazu dienen, Wärme für das Vorheizen von Brennstoff bereitzustellen und somit ein effizientes Verbrennen des Brennstoffs über das gesamte Zündintervall hinweg zu sichern.
  • Vorzugsweise ist die Steuereinrichtung derart ausgebildet, dass sie zur Versorgung der Pilotflamme die Brennstoffpumpe außerhalb des Brennintervalls so steuert, dass weniger als ein Prozent, vorzugsweise weniger als ein Promille, der maximalen Förderleistung der Brennstoffpumpe gefördert wird.
  • Bevorzugte Ausführungsformen der Erfindung ergeben sich aus den Unteransprüchen.
  • Nachfolgend werden bevorzugte Ausführungsformen der Erfindung an Hand von Abbildungen näher erläutert. Hierbei zeigen
  • - Figur 1a
    ein Blockdiagramm einer Steuereinrichtung eines erfindungsgemäßen Heizbrenners mit zugehörigen Aktuatoren und Sensoren;
    - Figur 1b
    einzelne Sensoren der Steuereinrichtung aus Figur 1a;
    - Figur 2
    die funktionale Anordnung der einzelnen Komponenten eines erfindungsgemäßen Heizbrenners;
    - Figur 3
    den Aufbau eines erfindungsgemäßen Heizbrenners;
    - Figur 4a
    ein Zeit- Temperatur- Diagramm eines Heizbrenners mit intermetierender Regelung;
    - Figur 4b
    ein Zeit-Temperatur-Diagramm eines erfindungsgemäßen Heizbrenners;
    - Figur 5a
    die Brennleistung eines erfindungsgemäßen Heizbrenners über mehrere Zündintervalle;
    - Figur 5b
    die Brennleistung eines erfindungsgemäßen Heizbrenners über ein erstes Zündintervall; und
    - Figur 5c
    die Brennleistung eines erfindungsgemäßen Heizbrenners über ein zweites Zündintervall.
  • In der nachfolgenden Beschreibung werden für gleiche und gleich wirkende Teile die selben Bezugsziffern verwendet.
  • Ein erfindungsgemäßer Heizbrenner kann die in der Figur 1a dargestellten Komponenten umfassen. Eine zentrale Einheit des Heizbrenners bildet die Steuereinrichtung 10. Diese ist mit mehreren Aktuatoren verbunden, im vorliegenden Beispiel einer Zündeinrichtung 50, einem Zerstäuber 70, einer Luftfördereinrichtung 80, einer Brennstofffördereinrichtung 20, einer Crackervorrichtung 30 und einer Vorheizung 40. Die Steuereinrichtung 10 des Heizbrenners regelt bzw. steuert die jeweiligen Aktuatoren derart, dass ein effizientes Verbrennen, Entzünden und Runterregeln bzw. Löschen des Brennstoffs gewährleistet wird. Effizient bedeutet in diesem Fall, dass der Brennwert des Brennstoffs möglichst optimal ausgenützt wird, während eine schadstoffarme und russfreie Verbrennung gewährleistet wird, sodass eine Wartung des erfindungsgemäßen Heizbrenners selten notwendig ist. Für die Steuerung der Aktuatoren empfängt die Steuereinrichtung 10 Signale von mehreren Sensoren 60. Diese Sensoren 60 umfassen zumindest einen Primärsensor, mittels dessen die Steuereinrichtung eine Isttemperatur des zu beheizenden Systems ermitteln kann.
  • In dem vorliegenden Heizbrenner ist dieser Primärsensor ein Heizwassertemperaturfühler 65, der die Temperatur eines von dem Heizbrenner beheizten Wärmekreislaufs bestimmt. Die Steuereinrichtung ist derart ausgebildet, dass sie eine Differenz zwischen der Isttemperatur und einer Solltemperatur bestimmen kann und die Aktuatoren derart regelt, dass diese Differenz zu jedem Zeitpunkt möglichst gering ist.
  • Da der erfindungsgemäße Heizbrenner eine sehr geringe Anzahl an Zuständen nämlich das Entzünden von Brennstoff, das Verbrennen von Brennstoff, das Löschen der Brennflamme bzw. das Reduzieren der Brennflamme sowie einen Leerlauf ohne Brennflamme oder mit reduzierter Brennflamme hat, ist eine Vorkonfiguration der Steuereinrichtung 10 denkbar. Diese Vorkonfiguration bestimmt für jeden der genannten Zustände optimale Parameter zum Steuern der Aktuatoren. In dem in Figur 1 a und 1b dargestellten Ausführungsbeispiel umfassen die Sensoren 60 zusätzlich einen Lufttemperaturfühler 61, einen Luftflusssensor 62, einen Brennstofftemperaturfühler 63 und einen Brennstoffflusssensor 64. Der Brennstoffflusssensor 64 und der Luftflusssensor 62 liefern an die Steuereinrichtung 10 Signale, die es dieser erlauben, Rückschlüsse über die Leistung der Brennstofffördereinrichtung 20 und der Luftfördereinrichtung 80 zu ziehen. Der Lufttemperaturfühler 61 und der Brennstofftemperaturfühler 63 helfen der Steuereinrichtung 10 die Vorheizung 40, so zu regeln, dass es zu einer optimalen Verbrennung des Brennstoffs kommt.
  • Eine erfindungsgemäße Brennkammer 1 umfasst wie schematisch in Figur 2 dargestellt zwei Zuleitungen. Die eine, eine Brennstoffleitung 21 führt der Brennkammer 1 Brennstoff zu, die andere eine Luftleitung 81 sorgt für den nötigen Sauerstoff bzw. das für die Verbrennung nötige Oxidationsmittel. Im vorliegenden Ausführungsbeispiel handelt es sich bei dem zu verbrennenden Brennstoff um Rapsöl. Der Brennstoff wird in einem Brennstofftank 24 gelagert und über die Brennstoffleitung 21 mittels einer Brennstofffördereinrichtung 20 zur Brennkammer 1 gefördert. Hierbei passiert das Rohöl eine Vorheizung 40, die den Brennstoff zum leichteren Entzünden erhitzt sowie eine Crackereinrichtung 30, die den Brennstoff aufbereitet. Eine weitere funktionale Einheit, ein Zerstäuber 70, ist unmittelbar an der Brennkammer 1 vorgesehen und vermengt den Brennstoff mit der über die Luftleitung 81 zugeführten Luft. Eine Zündeinrichtung 50 sorgt für das Entzünden des Luftbrennstoffgemisches in der Brennkammer 1.
  • Es kann auf eine gesonderte Zündeinrichtung 50 im Inneren der Brennkammer 1 verzichtet werden, wenn die Vorheizung 40 den Brennstoff auf eine Temperatur oberhalb der spezifischen Zündtemperatur erhitzt. Bei einem Vermischen des Brennstoffs mit der Luft kommt es zu einer Selbstentzündung. Die Vorheizeinrichtung 40 übernimmt also die Funktionalität der Zündeinrichtung 50.
  • Die Figur 3 zeigt den Aufbau der in Figur 2 schematisch dargestellten Ausführungsform des erfindungsgemäßen Heizbrenners. Die Luftleitung 81 liegt in Form einer großzügig bemessenen Röhre vor. An einem Punkt der Luftleitung 81 tritt die Brennstoffleitung 21 durch die Außenwand der Luftleitung 81 und verläuft im Weiteren im Inneren der Selben. Die Brennstoffleitung 21 und die Luftleitung 81 sind nach wie vor von einander getrennt.
  • Eine erste Öffnung der Brennstoffleitung 21 mündet in den Brennstofftank 24 aus dem der Brennstoff zu einer zweiten Öffnung der Brennstoffleitung 21 gefördert wird. Diese zweite Öffnung schließt im Inneren der Luftleitung 81 luftdicht mit einer Eintrittsöffnung 35 eines Kegelstumpfes 32 ab. Der Kegelstumpf wird von einem nicht dargestellten Motor 37 derart angetrieben, dass der über die Eintrittsöffnung 35 eintretende Brennstoff im Inneren des hohlen Kegelstumpfes 32 auf Grund der Zentrifugalkraft zu einer Austrittsöffnung 36 gefördert wird, die der Eintrittsöffnung 35 gegenüber liegt, jedoch auf Grund der Form des Kegelstumpfs 32 einen größeren Durchmesser aufweist. Durch die von dem Motor 37 aufgebrachten Zentrifugalkraft wird das in den Kegelstumpf 32 eingebrachte Rohöl an einer Abrisskante entlang der Austrittsöffnung 36 sowohl mechanisch gekrackt wie auch mit der über die Luftleitung 81 herangebrachten, den Kegelstumpf 42 umgebenden Luft vermischt. Der Motor 37 und der Kegelstumpf 32 bilden also die funktonalen Einheiten des Zerstäubers 70 und der Crackvorrichtung 30 aus der Figur 1a. Der Kegelstumpf 32 ist lose von einer Heizwendel 44 umgeben. Diese heizt nicht nur die den Kegelstumpf umgebende Luft sondern auch den Kegelstumpf 32 selbst. Da der Kegelstumpf 32 aus wärmeleitfähigem Material gefertigt ist, wird die Wärmeenergie der Heizwendel 44 an den Brennstoff im Inneren des Kegelstumpfs 32 weitergegeben. Die Heizwendel 44 hat also eine doppelte Funktionalität und heizt sowohl Luft wie auch Brennstoff vor.
  • Der vorgeheizte Brennstoff entzündet sich sobald er mit der Luft vermischt wird. Die hier entstehende Wärmeleistung wird nicht nur als Heizleistung des Heizbrenners abgegeben sondern zu einem geringen Teil über eine Wärmerückführung 42, die sich in Form eines Metallstabs im Inneren des Kegelstumpfes erstreckt, an den nachströmenden Brennstoff in dem Kegelstumpf 32 abgegeben.
  • Eine Brennstofffördereinrichtung 20 und eine Luftfördereinrichtung 80 (vergleiche Figur 1a) sind in der Figur 3 nicht dargestellt, können aber problemlos an bzw. in der Brennstoffleitung 21 bzw. der Luftleitung 81 vorgesehen werden.
  • Die Aktuatoren sind, wie in Figur 1 a gezeigt, mit der Steuereinrichtung 10 verbunden und steuern erfindungsgemäß den Heizbrenner, dass dieser in konstanten voreingestellten Zündintervallen tZ die Brennflamme auf eine voreingestellte Brennleistung L hoch regelt und diese für die Dauer des Brennintervalls tB aufrecht erhält (vergleiche Figur 5a). Die Dauer des Brennintervalls tB wird von der Steuereinrichtung 10 in Abhängigkeit der von dem Heizbrenner zu leistenden Heizleistung bestimmt. Die Figur 5a zeigt ein Zeit-Brennleistungs-Diagramm. Hier sind drei Zündintervalle tZ dargestellt. Ein Zündintervall hat im gewählten Ausführungsbeispiel die Länge von 100 Sekunden. Die Steuereinrichtung regelt also alle 100 Sekunden die Brennleistung L auf ein voreingestelltes Niveau hoch. Und behält diese höhere Brennleistung L während des regelbaren Brennintervalls tB bei. Die Steuereinrichtung 10 (vergleiche Figur 1a) ist derart ausgebildet, dass sie für die zum jeweiligen Zeitpunkt benötigte optimale Heizleistung die Länge des Brennintervalls tB bestimmt. Im Diagramm der Figur 5a bestimmt die Steuereinrichtung 10 dass ca. 20% der maximalen Heizleistung in einem ersten Zündintervall tZ benötigt wird. Demgemäß regelt sie zum Zeitpunkt t = 0 die Brennleistung L auf das voreingestellte Niveau und hält diese Niveau für ca. 20 Sekunden. Die restlichen 80 Sekunden des ersten Zündintervalls tZ werden die Aktuatoren von der Steuereinrichtung 10 so geregelt, dass die Brennleistung L quasi Null ist. Zum Zeitpunkt t = 100 bestimmt die Steuereinrichtung 10 das für eine optimale Heizleistung in einem zweiten Zündintervall tZ ca. 60% der Maximalleistung nötig ist. Demgemäß ist das Brennintervall tB in diesem zweiten Zündintervall tZ ca. 60 Sekunden lang. Das gleiche gilt für ein drittes Zündintervall tZ das zum Zeitpunkt t = 200 beginnt.
  • Figur 5b zeigt ein Zeit-Brennleistungs-Diagramm des ersten Zündintervalls tZ aus Figur 5a die Länge des Brennintervalls tB beträgt wie bereits erwähnt 20 Sekunden. Die Start- bzw. Stoppphase, also der Zeitraum in dem die Steuereinrichtung 10 die Brennleistung L auf das voreingestellte hohe Niveau hochregelt bzw. von diesem runterregelt wird als Initialisierungsintervall tI bzw. Stoppintervall tS bezeichnet. Für eine effiziente und schadstoffarme Verbrennung des erfindungsgemäßen Heizbrenners ist ein konstantes Brennstoff- Sauerstoffverhältnis in diesen Phasen besonders entscheidend. Die Steuereinrichtung 10 regelt die Aktuatoren demgemäß.
  • Eine Detailansicht des zweiten Zündintervalls tZ aus Figur 5a kann dem Zeit-Brennleistungs-Diagramm der Figur 5c entnommen werden. Durch diese genaue Steuerung der Heizleistung lässt sich eine verbesserte Istwerteinstellung, wie sie in der Figur 4b gezeigt ist, erzielen. Hier gibt die Abszisse die Zeit und die Ordinate die Isttemperatur an.
  • Bezugszeichenliste
  • 1
    Brennkammer
    10
    Steuereinrichtung
    20
    Brennstofffördereinrichtung
    21
    Brennstoffleitung
    24
    Brennstofftank
    30
    Crackervorrichtung
    32
    Kegelstumpf
    35
    Eintrittsöffnung
    36
    Austrittsöffnung
    37
    Motor
    40
    Vorheizung
    42
    Wärmerückführung
    44
    Heizwendel
    50
    Zündeinrichtung
    60
    Sensoren
    61
    Lufttemperaturfühler
    62
    Luftflusssensor
    63
    Brennstofftemperaturfühler
    64
    Brennstoffflusssensor
    65
    Heizwassertemperaturfühler
    70
    Zerstäuber
    80
    Luftfördereinrichtung
    81
    Luftleitung
    tB
    Brennintervall
    tZ
    Zündintervall
    t1
    Initialisierungsintervall
    ts
    Stoppintervall
    L
    Brennleistung

Claims (12)

  1. Heizbrenner für ein Heizsystem
    mit einer Steuereinrichtung (10),
    mit mindestens einem Primärsensor zur Erfassung einer Heizleistung des Heizbrenners und
    mit Aktuatoren, die eine Zündeinrichtung (50) zum Zünden von Brennstoff eine Luftfördereinrichtung zum Fördern von Verbrennungsluft und eine Brennstofffördereinrichtung (20) zum Fördern von Brennstoff zur Zündeinrichtung (50) umfassen,
    wobei die Fördermenge der Brennstofffördereinrichtung (20) und/oder Luftfördereinrichtung im Wesentlichen frei einstellbar ist, dadurch gekennzeichnet, dass die Steuereinrichtung (10) die Aktuatoren derart einstellt, dass der Brennstoff in periodisch wiederkehrenden Zündintervallen (tZ) entzündet wird und für ein einstellbares Brennintervall (tB) brennt, wobei die Heizleistung durch die Steuereinrichtung (10) über die Länge des Brennintervall (tB) im jeweiligen Zündintervall (tZ) regelbar ist.
  2. Heizbrenner nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Zündintervalle (tZ) kleiner gleich 60 Sekunden sind.
  3. Heizbrenner nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Brennstoff ein flüssiger Brennstoff, insbesondere Rapsöl, ist.
  4. Heizbrenner nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Aktuatoren einen Motor (37) umfassen, der einen Kegelstumpf (32) derart in Rotationsbewegung um dessen Längsachse versetzt, dass über eine Eintrittsöffnung (35) in den Kegelstumpf (32) eingebrachter Brennstoff auf Grund der Zentrifugalkraft an einer Austrittsöffnung (36) austritt und zerstäubt wird.
  5. Heizbrenner nach einem der vorhergehenden Ansprüche, insbesondere nach Anspruch 4,
    dadurch gekennzeichnet, dass
    die Zündeinrichtung (50) eine Wärmerückführung (42) umfasst, die aus wärmeleitfähigem Material gefertigt ist und bei einer Verbrennung des Brennstoffs auftretende Wärme an nachströmenden Brennstoff abgibt.
  6. Heizbrenner nach Anspruch 5,
    dadurch gekennzeichnet, dass
    die Wärmerückführung (42) mindestens abschnittsweise im Inneren des Kegelstumpfes (32) die Austrittsöffnung (36) überragend angeordnet ist.
  7. Heizbrenner nach einem der vorhergehenden Ansprüche, insbesondere nach einem der Ansprüche 4 bis 6,
    dadurch gekennzeichnet, dass
    die Zündeinrichtung (50) eine Vorheizung (40) umfasst, die den Brennstoff auf Zündtemperatur aufheizt.
  8. Heizbrenner nach Anspruch 7,
    dadurch gekennzeichnet, dass
    die Vorheizung (40) eine Heizwendel (44) umfasst, die den Kegelstumpf (32) umgibt.
  9. Heizbrenner nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Steuereinrichtung (10) derart ausgebildet ist, dass sie die Brennstofffördereinrichtung (20) und die Luftfördereinrichtung (80) derart steuert, dass während des Brennintervalls (tB), vorzugsweise in einem Initialisierungsintervall (tI) und einem Stoppintervall (tS), ein im Wesentlichen konstantes Luftbrennstoffverhältnis an der Zündeinrichtung (50) vorliegt.
  10. Heizbrenner nach einem der vorhergehenden Ansprüche, insbesondere nach Anspruch 9,
    gekennzeichnet durch
    einen Luftflusssensor (62) zur Bestimmung der Fördermenge der Luftfördereinrichtung (80).
  11. Heizbrenner nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Steuereinrichtung (10) die Aktuatoren, insbesondere die Brennstofffördereinrichtung (20) und die Luftfördereinrichtung (80), derart einstellt, dass außerhalb des Brennintervalls (tB) eine Pilotflamme vorhanden ist.
  12. Heizbrenner nach einem der vorhergehenden Ansprüche, insbesondere nach Anspruch 11,
    dadurch gekennzeichnet, dass
    die Steuereinrichtung (10) derart ausgebildet ist, dass sie zur Versorgung der Pilotflamme die Brennstofffördereinrichtung (20) außerhalb des Brennintervalls(tB) so steuert, dass weniger als 1% vorzugsweise weniger als 1 Promille der maximalen Förderleistung der Brennstofffördereinrichtung (20) gefördert wird.
EP06841098A 2006-01-02 2006-12-21 Heizbrenner Not-in-force EP1971805B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006000620 2006-01-02
DE102006014633A DE102006014633B4 (de) 2006-03-29 2006-03-29 Heizbrenner
PCT/EP2006/012407 WO2007076962A1 (de) 2006-01-02 2006-12-21 Heizbrenner

Publications (2)

Publication Number Publication Date
EP1971805A1 EP1971805A1 (de) 2008-09-24
EP1971805B1 true EP1971805B1 (de) 2012-10-31

Family

ID=37834174

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06841098A Not-in-force EP1971805B1 (de) 2006-01-02 2006-12-21 Heizbrenner

Country Status (3)

Country Link
US (1) US20080318173A1 (de)
EP (1) EP1971805B1 (de)
WO (1) WO2007076962A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11543126B2 (en) 2019-04-08 2023-01-03 Carrier Corporation Method and apparatus for mitigating premix burner combustion tone

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739812A (en) * 1970-06-18 1973-06-19 Robertshaw Controls Co Fuel control system and control device therefor or the like
US3771724A (en) * 1972-07-19 1973-11-13 Richards Of Rockford Inc Apparatus and process for spraying liquids
DE3524230A1 (de) * 1985-07-06 1987-01-08 Honeywell Bv Einrichtung zur regelung der raumtemperatur
KR910000677B1 (ko) * 1985-07-15 1991-01-31 도오도오 기기 가부시기가이샤 가스 순간식 급탕기(給湯機)
JPH03282116A (ja) * 1990-03-30 1991-12-12 Toto Ltd 給湯機における燃焼制御方法
DE4215995C5 (de) * 1992-05-12 2008-02-21 Suntec Industries France, S.A. Düsenstock für Öldruckzerstäubungsbrenner
JP3282944B2 (ja) * 1994-07-18 2002-05-20 トヨタ自動車株式会社 低NOxバーナ
GB9503065D0 (en) * 1995-02-16 1995-04-05 British Gas Plc Apparatus for providing an air/fuel mixture to a fully premixed burner
FR2764674B1 (fr) * 1997-06-11 1999-07-16 Gaz De France Procede et dispositif associe de regulation de la temperature d'un fluide chauffe par un bruleur
AU2003220021A1 (en) * 2002-03-19 2004-07-09 New Power Concepts Llc Fuel injector for a liquid fuel burner
DE10342763A1 (de) * 2003-09-16 2005-07-07 BSH Bosch und Siemens Hausgeräte GmbH Gasbrenner für flüssigen Brennstoff

Also Published As

Publication number Publication date
EP1971805A1 (de) 2008-09-24
WO2007076962A1 (de) 2007-07-12
US20080318173A1 (en) 2008-12-25

Similar Documents

Publication Publication Date Title
AT504398A1 (de) Porenbrenner, sowie verfahren zum betrieb eines porenbrenners
WO2008141722A1 (de) Unterstützter flox-betrieb und brenner dafür
DE2742070A1 (de) Industriebrenner zur beheizung von ofenraeumen in industrieoefen
EP1971805B1 (de) Heizbrenner
DE19605216C2 (de) Verfahren zum Betreiben eines Fahrzeugzusatzheizgerätes und Glüheinrichtung
DE102006014633B4 (de) Heizbrenner
DE10347509B4 (de) Heizgerät mit einer Zerstäuberdüse
DE2816768C2 (de) Kohleverbrennung
EP3650753B1 (de) Verfahren und vorrichtung zur flammenlosen stufenverbrennung
EP1522788A2 (de) Verdampferbrenner
EP3864345A1 (de) Brenner zum reduzieren von nox-emissionen und verfahren zum betreiben des brenners
DE3507962C2 (de)
EP0321858A2 (de) Brenneinrichtung
EP2494275B1 (de) Ölbrenner, regeleinrichtung sowie regelungsverfahren hierzu
EP3242080B1 (de) Vorrichtung und verfahren zur beheizung von öfen mittels strahlrohren
EP2092241B1 (de) Verfahren zum steuern eines verdampferbrenners
EP2527734A1 (de) Industriebrenner mit geringer NOX-Emission
EP2703714A2 (de) Ölbrenner sowie Verfahren zur Regelung einer Mischzonentemperatur hierzu
DE2505335A1 (de) Ringofen
DE3229063C2 (de) Vorrichtung zum Anzünden von Festbrennstoffen in einem für feste und flüssige oder gasförmige Brennstoffe ausgelegten Heizkessel
AT211463B (de) Brenner für Industrieöfen und Verfahren zur Regulierung desselben
DD210412A3 (de) Strahlungsbrenner fuer mehrstoffahrweise mit radial sich erweiternder flachflamme
DE703019C (de) Feuerung, insbesondere fuer Heizungskessel
EP1224421B1 (de) Verfahren zum erzeugen thermischer energie aus kleinkörnigen ölfrüchten, vorzugsweise aus raps, und vorrichtung zur durchführung des verfahrens
DE19807239C2 (de) Einspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080801

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 582228

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006012177

Country of ref document: DE

Effective date: 20121227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130211

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130227

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130201

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130228

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006012177

Country of ref document: DE

BERE Be: lapsed

Owner name: RYLL-TECH G.M.B.H.

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130131

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

26N No opposition filed

Effective date: 20130801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121221

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006012177

Country of ref document: DE

Effective date: 20130801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 582228

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121221

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006012177

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006012177

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701