EP1957706A1 - Verfahren zur ausrüstung von textilien - Google Patents

Verfahren zur ausrüstung von textilien

Info

Publication number
EP1957706A1
EP1957706A1 EP06818684A EP06818684A EP1957706A1 EP 1957706 A1 EP1957706 A1 EP 1957706A1 EP 06818684 A EP06818684 A EP 06818684A EP 06818684 A EP06818684 A EP 06818684A EP 1957706 A1 EP1957706 A1 EP 1957706A1
Authority
EP
European Patent Office
Prior art keywords
compounds
microcapsules
polymeric dispersants
wetting agents
textiles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06818684A
Other languages
English (en)
French (fr)
Inventor
Jürgen FALKOWSKI
Raymond Mathis
Robert Schütz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis IP Management GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis IP Management GmbH filed Critical Cognis IP Management GmbH
Publication of EP1957706A1 publication Critical patent/EP1957706A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0208Tissues; Wipes; Patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/67Vitamins
    • A61K8/678Tocopherol, i.e. vitamin E
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/05Cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/06Processes in which the treating agent is dispersed in a gas, e.g. aerosols
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns

Definitions

  • the invention relates to a method for finishing textiles.
  • microcapsules with different ingredients are increasingly being used.
  • the task of the microcapsules is a delayed release of active substance taking place on the surface of the textile in order, for example, to achieve cosmetic effects on the skin.
  • the preparation of the microcapsules with the appropriate ingredients can be done by different techniques. A summary of these techniques can be found, for example, in the following reference: K. Lacasse, W. Baumann; Textile Chemicals, Table 6-22, Berlin 2004.
  • the microcapsules prepared by these techniques usually have a diameter of 1-10 ⁇ m.
  • To furnish textiles with these microcapsules it is customary to use an aqueous dispersion of this microcapsule, which is further diluted in the textile liquor. These aqueous solutions can then be used, for example, in a padding or drawing process for finishing textiles.
  • the object of the present invention was to develop a process whereby microcapsules can be applied to textiles without loss and staining. This object is perfectly solved by the method of the present invention in every respect.
  • the present invention is a process for finishing textiles with microcapsules comprising aqueous microcapsule dispersions containing a) water, b) microcapsules, c) one or more polymeric dispersants and n) one or more anionic wetting agents, said wetting agents being polymeric
  • Dispersants are applied differently to textiles, with the proviso that the aqueous microcapsule dispersion is applied by spraying on the textile.
  • an aqueous composition is sprayable or homogeneously distributed to textile during spraying without leaving residue or stains.
  • the Applicant has found the following in their own investigations: Dilute an aqueous microcapsule dispersion, the above components a) and b), with water to one for spraying Particularly suitable viscosity of about 10 - 50 mPas and sprayed such a dispersion on a textile, it is found that it comes to visible drops on the textile, which then dry to larger and visible agglomerates. Adding to such Mokrokapseldispersionen additional conventional nonionic, anionic or cationic emulsifiers, so this leads to no improvement in appearance on the textile. In addition, there is a risk that these emulsifiers soften the polymeric capsule shell of the microcapsules and the ingredients prematurely and not expire as intended.
  • the aqueous microcapsule dispersion must contain not only the abovementioned components a) and b) but also c) and n) and be applied by spraying.
  • the dispersions containing the components a), b), c) and n) are long-term storage-stable.
  • the polymeric capsule shell of the microcapsules is not damaged or softened by the compounds c).
  • the Aufzieh the microcapsules on textiles is not affected by the compounds c), it also does not occur when applying the microcapsules on the textiles to deposits on the rollers.
  • aqueous microcapsule dispersions to be used in the process according to the invention may optionally additionally contain viscosity regulators d), with the proviso that the compounds d) must be chemically different from the compounds c) and the compounds n). If desired, the microcapsule dispersions may also contain other additives commonly used in finishing textiles.
  • microcapsules are understood in principle to mean organic polymers having a specific spatial structure (cf., for this, K. Lacasse and W. Baumann, Textile Chemicals, Environmental Data and Facts, Berlin 2004, pages 468-482).
  • spatial structure it is true that they are hollow bodies which typically have a diameter in the range of 2 to 2000 ⁇ m and an outer diameter in the range of 0.1 to 200 ⁇ m and in particular 0.5 to 150 ⁇ m. Due to this hollow body structure, the microcapsules may be loaded with ingredients or active ingredients.
  • microcapsules which are loaded with one or more ingredients or active ingredients.
  • substances which can be applied to the skin when the textile is loaded with the loaded microcapsules are used as ingredients or active ingredients.
  • ingredients or active ingredients may be, for example, fats, oils, plant extracts, vitamins, fragrances, repellants, insecticides and the like.
  • oils vegetable oils with skin-care and health-promoting properties are preferred, such as coconut oil, passion flower oil, shea butter, rose hip seed oil, lavender oil, apricot kernel oil.
  • plant extracts rhodysterol and aloe vera are preferred.
  • Wirk. Ingredients that have the following properties: nourishing, moisturizing, stimulating, soothing, cellulite-reducing, skin-tightening, repellent, refreshing, stimulating.
  • the encapsulated substances also referred to below as core material, may consist of any solid, liquid or gaseous materials which are to be incorporated in encapsulated form into corresponding products.
  • the core materials used are fragrances, such as perfume oils, or substances which have a nourishing effect in the particular field of use.
  • fragrance compounds for example the synthetic products of the ester type, ethers, aldehydes, ketones, alcohols and hydrocarbons, can be used. Hydrocarbons are used. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyfmethylphenylglycinate, allylcyclohexylpropionate, styrallyl propionate and benzylsaturate.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes, for example, the linear alkanals having 8-18 C atoms. Citral (geranial), citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal.
  • the ketones for example, the Jonone, ⁇ -isomethylionone and methyl cedrylketone to the alcohols anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol
  • the hydrocarbons include mainly the terpenes such as limonene and ⁇ -pinene.
  • Eucalyptol (1,8-cineole) can also be used as the fragrance.
  • mixtures of different fragrances are used, which together produce an attractive fragrance.
  • perfume oils may also contain natural fragrance mixtures as are available from vegetable sources, eg pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • natural fragrance mixtures are available from vegetable sources, eg pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • clary sage oil chamomile oil, clove oil, lemon balm oil, mint oil, eucalyptus oil, cinnamon leaf oil, lime blossom oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and labdanum oil, as well as orange blossom oil, neroliol, orange peel oil and Sandelhotz oil.
  • fragrances nitriles, sulfides, oximes.
  • vitamins and provitamins such as vitamin A, vitamin C, vitamin E ( ⁇ -tocopherol), vitamin F (polyene fatty acids), panthenol (provitamin B5), beta carotene (provitamin A) and their derivatives (eg Esters, such as stearyl ascorbate), plant extracts, biopolymers, antidandruff agents, UV protectants, emollients (cosmetic oils), silicone oils.
  • tocopherols and their lipid-soluble derivatives are preferred as caring components.
  • Suitable tocopherols are, for example, the natural tocopherols and mixtures thereof, as well as synthetic tocopherols.
  • Suitable derivatives include tocopheryl acetate, tocopheryl nicotinate, tocopheryl ascorbate, tocopheryl retinoate, tocopheryl succinate. Tocopheryl linoleate or tocopheryl benzoate.
  • the compounds c) are polymeric dispersants, ie compounds which are to be regarded as structurally polymers and which have a dispersing and / or emulsifying effect with regard to the microcapsules b).
  • the polymers c) may be homopolymers or copolymers. They must be composed of at least 5 monomer building blocks.
  • homopolymers are used as compounds c).
  • the compounds c) used are polymers c) having molecular weights of at least 500.
  • the monomer building blocks which are based on the polymeric dispersants c), may be derived from natural raw material sources or of synthetic origin.
  • polymeric dispersants c) whose monomer units are of natural origin are, for example, polymers based on cellulose (for example Na-carboxymethylcellulose) or polysaccharides (for example xanthan gum, gellan gum, guar or pectins).
  • polymeric dispersants c) whose monomer units are of synthetic origin are, for example, acrylates (for example Na polyacrylates), methacrylates or alkyl acrylates (for example pemulen).
  • the monomer building blocks from which the dispersants c) are constructed may also be chemically modified.
  • the polymeric dispersants used are c) compounds selected from the group consisting of xanthan gum, gelatin gum, guar and polyacrylates. These dispersants can be used individually or mixed with one another.
  • anionic wetting agents must, as already stated, be different from the polymeric dispersants c). In addition, they must be different from the viscosity regulators d).
  • Suitable anionic wetting agents n) are alkyl sulfates (for example Sulfopone from Cognis), or alkyl or dialkyl sulfosuccinates (for example Disponil SUS products from Cognis), alkylsulfosuccinamates, alkylsulfosuccinamides, alkylsulfosuccinimides or mixtures of compounds of these classes.
  • the alkyl chain of the product classes mentioned preferably contains from 6 to 24 carbon atoms, which compounds may if desired be ethoxylated or propoxylated; ethoxylated alkyl sulfates would be - as known to those skilled in the art - alkyl ether sulfates (eg Texapone from Cognis), etc.
  • the degree of ethoxylation in the alkyl ether sulfates is preferably between 1 and 50, and in particular in the range from 2 to 10.
  • the viscosity regulators must be different from the anionic wetting agents n). They must also be different from the polymeric dispersants c).
  • the viscosity regulators d) may be, for example, organic or inorganic salts.
  • alkali or alkaline earth salts such as sodium chloride or magnesium chloride can be used.
  • Suitable organic salts are, for example, urea, urea derivatives or amino acids.
  • Inorganic salts are preferred as viscosity regulators d).
  • the microcapsule dispersions according to the invention preferably have a concentration of capsules of 1 to 50% by weight.
  • concentration of microcapsules is in the range of 1 to 20% by weight.
  • The% data in each case mean:% by weight of microcapsules b) based on the total dispersion.
  • the microcapsules may have a diameter of 0.1 to 200 microns, with the preferred range is 1 to 20 microns.
  • microcapsules loaded with one or more active substances and / or active substances can be carried out by all methods known to those skilled in the art.
  • a compilation of corresponding techniques can be found, for example, in the following reference: K. Lacasse, W. Baumann; Textile Chemicals, Table 6-22, Berlin 2004.
  • the amount of the polymeric dispersants c) to be used in the aqueous microcapsule dispersions according to the invention is not subject to any particular limitations. Preferably, however, they are used in amounts of from 0.05 to 2% by weight, and in particular from 0.1 to 1% by weight.
  • The% data in each case mean:% by weight of dispersants c) based on the total dispersion.
  • the polymeric Disperatoren c) can directly b in an aqueous dispersion of the microcapsules) were charged and are dissolved therein, where applicable, the temperature is increased somewhat, is preferably carried out in the range of 20 to 80 0 C.
  • a use of dispersing machines, such as Zahndispergiermaschinen or high pressure homogenizers may be desired but are generally not necessary. It is preferably avoided in order to prevent unwanted damage to the microcapsules before or during application to the textile, which could also lead to an undesirable, premature release of the active ingredients contained.
  • Another object of the invention is the use of aqueous microcapsule dispersions containing
  • the dispersions contain viscosity regulators d) as an additional component, with the proviso that the compounds d) are different from the compounds c) and from the compounds n).
  • the viscosity regulators used are d) inorganic salts.
  • the polymeric dispersants used are c) compounds selected from the group consisting of xanthan gum, gellan gum, guar and polyacrylates.
  • a Mikroskapseldispersion which consisted of 30 wt% of about 2-5 microns large capsules with nourishing, oil-containing ingredients and 70% water, with 800 g of deionized water and 2 g of a Dialkylsulfosuccinates (Disponil SUS IC 875 Fa. Cognis) and heated to 70 0 C. Subsequently, 1.5 g of a Na polyacrylate (Cosmedia SP Fa. Cognis) were added and stirred briefly until all the solid particles had dissolved. The resulting dispersion had a viscosity of 40 mPas and was sprayed onto a black textile fabric using a commercial pump spray bottle.
  • the sprayed application amount of the dispersion was 20% by weight of the textile weight. After drying the textile fabric at room temperature, no visible stains (eg Mikrokapselagglomera- te) were recognizable. The dispersion remained stable during storage, did not thicken (no increase in viscosity during storage) and could be sprayed without residue even after several months of storage.
  • a wetting agent was omitted.
  • 200 g of a Mikroskapseldispersion which consisted of 30 wt% from about 2-5 micron large capsules with nourishing, oil-containing ingredients and 70% water, was mixed with 800 g of deionized water and heated to 70 0 C.
  • 1.5 g of a Na polyacrylate (Cosmedia SP Fa. Cognis) were added and stirred briefly until all the solid particles had dissolved.
  • the resulting dispersion had a viscosity of 35 mPas and was sprayed onto a black textile fabric using a commercial pump spray bottle. Here were already on spraying larger drops on the textile. After drying on the black clear white spots that consisted of agglomerates of microcapsules recognizable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

Vorgeschlagen wird ein Verfahren zur Ausrüstung von Textilien mit Mikrokapseln, wobei man wäßrige Mikrokapseldispersionen enthaltend (a) Wasser, (b) Mikrokapseln, (c) ein oder mehrere polymere Dispergatoren und (n) ein oder mehrere anionische Netzmittel, wobei diese Netzmittel von den polymeren Dispergatoren verschieden sind, auf Textilien aufbringt, mit der Maßgabe, dass die wässrige Mikrokapseldispersion durch Versprühen auf das Textil aufgebracht wird.

Description

»j , Verfahren zur Ausrüstung von Textilien"
Gebiet der Erfindung
Die Erfindung betrifft ein Verfahren zur Ausrüstung von Textilien.
Stand der Technik
Zur Ausrüstung von Textilien werden immer häufiger Mikrokapseln mit verschiedenen Inhaltsstoffen verwendet. Aufgabe der Mikrokapseln ist eine auf der Oberfläche des Textils stattfindende verzögerte Wirkstofffreisetzung, um beispielsweise kosmetische Effekte auf der Haut zu erzielen.
Die Herstellung der Mikrokapseln mit den entsprechenden Inhaltsstoffen kann nach unterschiedlichen Techniken erfolgen. Eine Zusammenstellung dieser Techniken kann beispielsweise folgender Literaturstelle entnommen werden: K. Lacasse, W. Baumann; Textile Chemicals, Tabelle 6-22, Berlin 2004. Die mit diesen Techniken hergestellten Mikrokapseln haben üblicherweise einen Durchmesser von 1-10 μm. Zur Ausrüstung von Textilien mit diesen Mikrokapseln wird üblicherweise eine wäss- rige Dispersion dieser Mikrokapsel, die in der textilen Flotte weiter verdünnt wird, verwendet. Diese wässrigen Lösungen können dann beispielsweise in einem Foulardoder Aufziehverfahren zur Ausrüstung von Textilien eingesetzt werden. Insbesondere bei der Ausrüstung von textilen Geweben oder fertig vernähten Textilien, die teilweise oder vollständig aus modernen Kunstfasern, wie beispielsweise Polyester, Polyamid oder Elasthan, hergestellt wurden, wird vorzugsweise ein Aufziehverfahren in den tex- tilverarbeiteten Betrieben gewählt. Das Ausziehverfahren zur Applikation von Mikrokapseln hat den Nachteil, dass die nicht auf das Textil aufgezogenen Mikrokapseln verloren gehen, was bei den hohen Herstellkosten und teuren Inhaltsstoffen der Mikrokapseln die Ausrüstung unwirtschaftlich werden lässt. Darüber hinaus besteht die Gefahr, dass die Mikrokapseln ungleichmäßig ausziehen und unschöne Flecken oder Ag- glomerate auf den Textilien hinterlassen. Es ist auch vorgeschlagen worden, Mikrokapseln durch Verwendung von Hilfsmitteln zu kationisieren, um sie auf negativ geladene Oberflächen besser aufziehen zu lassen. Derartige Verfahren erfordern aber zusätzliche Chemikalien bzw. zusätzliche Bearbeitungsstufen. In vielen Fällen kommt es dennoch zu Agglomeraten auf den Textilien, da sowohl die Mikrokapseln als auch die zu behandelnden Textilien unterschiedliche Ladungen tragen und die verwendeten Hilfsmittelbzw, die notwendigen Prozessbedingungen bei jeder Ausrüstung neu angepasst werden müssen.
Beschreibung der Erfindung
Aufgabe der vorliegenden Erfindung war es, ein Verfahren zu entwickeln, wodurch Mikrokapseln ohne Verluste und Fleckenbildung auf Textilien aufgebracht werden können. Diese Aufgabe wird in jeder Hinsicht ausgezeichnet gelöst durch das Verfahren der vorliegenden Erfindung.
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Ausrüstung von Textilien mit Mikrokapseln, wobei man wäßrige Mikrokapseldispersionen enthaltend a) Wasser, b) Mikrokapseln, c) ein oder mehrere polymere Dispergatoren und n) ein oder mehrere anionische Netzmittel, wobei diese Netzmittel von den polymeren
Dispergatoren verschieden sind auf Textilien aufbringt, mit der Maßgabe, dass die wässrige Mikrokapseldispersion durch Versprühen auf das Textil aufgebracht wird.
Es sei ausdrücklich betont, dass es nicht selbstverständlich ist, dass eine wässrige Zusammensetzung sprühfähig ist oder sich beim Sprühen homogen auf Textil verteilt ohne Rückstande oder Flecken zu hinterlassen. So hat die Anmelderin folgendes in eigenen Untersuchungen festgestellt: Verdünnt man eine wässrige Mikrokapseldispersion, die oben genannten Komponenten a) und b) besteht, mit Wasser auf eine zum Sprühen besonders geeignete Viskosität von ca. 10 - 50 mPas und sprüht eine derartige Dispersion auf ein Textil, so stellt man fest, dass es zu sichtbaren Tropfen auf dem Textil kommt, die dann zu grosseren und sichtbaren Agglomeraten eintrocknen. Fügt man solchen Mokrokapseldispersionen zusätzliche herkömmliche nichtionische, anionische oder kationische Emulgatoren zu, so fuhrt dies zu keiner Verbesserung im Erscheinungsbild auf dem Textil. Darüber hinaus besteht die Gefahr, dass diese Emulgatoren die polymere Kapselhülle der Mikrokapseln erweichen und die Inhaltsstoffe vorzeitig und nicht bestimmungsgemäß auslaufen.
Erst wenn alle oben genannten Merkmale der vorliegenden Erfindung eingehalten werden, wird die gestellte Aufgabe erfolgreich gelöst. Dazu muß die wässrige Mikro- kapseldispersion nicht nur die oben genannten Komponenten a) und b), sondern darüber hinaus c) und n) enthalten und durch Sprühen appliziert werden.
Ferner ist hervorzuheben: Die Dispersionen enthaltend die Komponenten a), b), c) und n) sind langfristig lagerstabil. Die polymere Kapselhülle der Mikrokapseln wird durch die Verbindungen c) nicht geschädigt oder erweicht. Das Aufziehverhalten der Mikrokapseln auf Textilien wird durch die Verbindungen c) nicht beeinträchtigt, auch kommt es beim Aufbringen der Mikrokapseln auf die Textilien nicht zu Ablagerungen auf den Walzen.
Die im Rahmen des erfindungsgemäßen Verfahrens einzusetzenden wässrigen Mikro- kapseldispersionen können optional zusätzlich Viskositätsregulatoren d) enthalten, mit der Maßgabe, dass die Verbindungen d) chemisch von den Verbindungen c) und den Verbindungen n) verschieden sein müssen. Gewünschtenfalls können die Mikrokapsel- Dispersionen auch weitere Additive enthalten, die üblicherweise bei der Ausrüstung von Textilien eingesetzt werden.
Zu den Mikrokapseln b) Unter Mikrokapseln werden im Rahmen der vorliegenden Erfindungen prinzipiell organische Polymere mit einer bestimmten Raumstruktur verstanden (vergl. hierzu: K. Lacasse und W. Baumann, Textile Chemicals, Environmental Data and Facts, Berlin 2004, Seiten 468-482). Bezüglich der Raumstruktur gilt, dass es sich um Hohlkörper handelt, die typischerweise einen Durchmesser im Bereich von 2 bis 2000 μm und einen äußeren Durchmesser im Bereich von 0,1 bis 200 μm und insbesondere 0,5 bis 150 μm haben. Auf Grund dieser Hohlkörper- Struktur können die Mikrokapseln mit Inhaltsstoffen bzw. Wirkstoffen beladen sein.
Im Rahmen der vorliegenden Erfindung werden stets beladene Mikrokapseln eingesetzt, also Mikrokapseln, die mit ein oder mehreren Inhalts- bzw. Wirkstoffen beladen sind. Als Inhalts- bzw. Wirkstoffe kommen prinzipiell alle Substanzen in Betracht, die beim Tragen des Textils, das mit den beladenen Mikrokapseln ausgerüstet ist (was durch in-Kontakt-Bringen des Textils mit den erfindungsgemäßen Mikrokapsel- Dispersionen geschieht) auf die Haut gelangen sollen. Dabei kann es sich beispielsweise um Fette, Öle, Pflanzenextrakte, Vitamine, Duftstoffe, Repellants, Insektizide und dergleichen handeln. Bei den Ölen sind pflanzliche Öle mit hautpflegenden und gesundheitsfördernden Eigenschaften bevorzugt, etwa Kokosöl, Passionsblumenöl, Sheabutter, Hagebuttenkernöl, Lavendelöl, Aprikosenkernöl. Bei den Pflanzenextrakten sind Rhodysterol und Aloe vera bevorzugt.
Von besonderer Bedeutung sind im Rahmen der vorliegenden Erfindung solche Wirkbzw. Inhaltsstoffe, die folgende Eigenschaften aufweisen: hautpflegend, feuchtigkeits- spendend, anregend, beruhigend, Cellulitis-mindernd, hautstraffend, repellierend, erfrischend, anregend.
Die verkapselten Substanzen, im folgenden auch Kernmaterial genannt, können aus beliebigen, festen, flüssigen oder gasförmigen Materialien bestehen, die in verkapselter Form in entsprechende Produkte eingearbeitet werden sollen. Vorzugsweise werden als Kernmaterialien Duftstoffe, wie Parfümöle, oder bei dem jeweiligen Einsatzgebiet pflegend wirkende Substanzen verwendet.
Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Koh- lenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, E- thyfmethylphenylgiycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsa- licylat. Zu den Ethem zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen. Citral (Geranial), Citronellal, Citronellylo- xyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal. Zu den Ketonen z.B. die Jonone, α-Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und α- Pinen. Als Duftstoff kann auch Eucalyptol (1,8-Cineol) eingesetzt werden. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskatellersalbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Eukalyptusöl, Zimt- blätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenbtütenöl, Neroliol, Orangenschalenöl und Sandelhotzöl. Außerdem können als Riechstoffe Nitrile, Sulfide, Oxime. Acetale, Ketale, Säuren, Schiffsche Basen, heterocyclische Stickstoffverbindungen wie Indol und Chinolin, Py- razine, Amine wie Anthanilate, Amide, halogenorganische Verbindungen wie Rose- acetat, nitrierte Verbindungen wie Nitromoschus, heterocyclische Schwefelverbindungen wie Thiazole und heterocylische Sauerstoffverbindungen wie Epoxide, die alle dem Fachmann als mögliche Riechstoffe bekannt sind, eingesetzt werden. Beispiele für pflegende Komponenten sind Vitamine und Provitamine, wie Vitamin A, Vitamin C, Vitamin E (α- Tocopherol), Vitamin F (Polyen-Fettsäuren), Panthenol (Provitamin B5), Betakarotin (Provitamin A) und deren Derivate (z. B. Ester wie Stea- rylascorbat), Pflanzenextrakte, Biopolymere, Antischuppenmittel, UV- Schutzmittel, Emollients (kosmetische Öle), Silikonöle. Im Falle von kosmetischen Anwendungen sind als pflegende Komponenten Tocophe- role und deren lipidlösliche Derivate bevorzugt. Geeignete Tocopherole sind z.B. die natürlichen Tocopherole und deren Gemische sowie synthetische Tocopherole. Geeignete Derivate sind z.B. Tocopherylacetat, Tocopherylnicotinat, Tocopherylascorbat, Tocopherylretinoat, Tocopherylsuccinat. Tocopheryllinoleat oder Tocopherylbenzoat.
Zu den Verbindungen c)
Wie bereits ausgeführt handelt es sich bei den Verbindungen c) um polymere Disper- gatoren, also um Verbindungen, die als strukturell als Polymere anzusprechen sind und die im Hinblick auf die Mikrokapseln b) eine dispergierende und/oder emulgierende Wirkung entfalten. Dabei können die Polymeren c) Homo- oder Copolymere sein. Sie müssen zwingend aus mindestens 5 Monomerbausteinen aufgebaut sein.
In einer bevorzugten Ausführungsform werden als Verbindungen c) Homopolymere eingesetzt.
In einer weiteren bevorzugten Ausführungsform setzt man als Verbindungen c) Polymere c) mit Molekulargewichten von mindestens 500 ein.
Die Monomerbausteine, die den polymeren Dispergatoren c) zu Grunde liegen, können aus natürlichen Rohstoffquellen stammen oder synthetischen Ursprungs sein. Beispiel für polymeren Dispergatoren c), deren Monomerbausteine natürlichen Ursprungs sind, sind etwa Polymere auf Basis von Cellulose (z.B. Na- Carboxymethylcellulose) oder Polysaccharide, (zB. Xanthan Gum, Gellan Gum, Guar oder Pektine).
Beispiel für polymeren Dispergatoren c), deren Monomerbausteine synthetischen Ursprungs sind, sind etwa Acrylate (z.B. Na-Polyacrylate), Methacrylate oder Alkylacry- late (z.B. Pemulen).
Gewünschtenfalls können die Monomerbausteine, aus denen die Dispergatoren c) aufgebaut sind, auch chemisch modifiziert sein. In einer ganz besonders bevorzugten Ausfuhrungsform setzt man als polymere Disper- gatoren c) Verbindungen ein, die ausgewählt sind aus der Gruppe Xanthan Gum, GeI- lan Gum, Guar, Polyacrylate. Diese Dispergatoren können einzeln oder im Gemisch untereinander eingesetzt werden.
Zu den anionischen Netzmitteln n)
Die anionischen Netzmittel müssen wie bereits gesagt von den polymeren Dispergatoren c) verschieden sein. Darüber hinaus müssen sie von den Viskositätsregulatoren d) verschieden sein.
Beispiele für geeignete anionische Netzmittel n) sind Alkylsulfate (z.B. Sulfopone der Fa. Cognis), oder Alkyl- bzw. Dialkylsulfosuccinate (z.B. Disponil SUS -Produkten der Fa. Cognis), Alkylsulfosuccinamate, Alkylsulfosuccinamide, Alkylsulfosuccinimi- de oder Gemische von Verbindungen dieser Klassen. Die Alkylkette der erwähnten Produktklassen enthält vorzugsweisse 6 bis 24 C-Atome, wobei die Verbindungen ge- wünschtenfalls ethoxyliert oder propoxyliert sein können; ethoxylierte Alkylsulfate wären - wie dem Fachmann bekannt - Alkylethersulfate (z. B. Texapone der Fa. Cognis), usw. Der Ethoxylierungsgrad bei den Alkylethersulfaten liegt vorzugsweise zwischen 1 und 50 liegen, und insbesondere im Bereich von 2 bis 10.
Zu den Viskositätregulatoren d)
Die Viskositätsregulatoren müssen von den anionischen Netzmitteln n) verschieden sein. Sie müssen außerdem von den polymeren Dispergatoren c) verschieden sein. Bei den Viskositätsregulatoren d) kann es sich beispielsweise um organische oder anorganische Salze handeln. Beispielsweise können Alkali- oder Erdalkalisalze, etwa Natriumchlorid oder Magnesiumchlorid verwendet werden. Als organische Salze kommen etwa Harnstoff, Harnstoffderivate oder Aminosäuren in Betracht. Anorganische Salze sind als Viskositätsregulatoren d) bevorzugt. Zu den Mikropkapseldispersionen
Die erfindungsgemäßen Mikrokapseldispersionen weisen vorzugsweise eine Konzentration an Kapseln von 1 - 50 Gew% auf. Vorzugsweise beträgt die Konzentration an Mikrokapseln im Bereich von 1 bis 20 Gew%. Die %- Angaben bedeuten dabei jeweils: Gew.-% an Mikrokapseln b) bezogen auf die gesamte Dispersion. Die Mikrokapseln können einen Durchmesser 0,1 bis 200 μm haben, wobei der bevorzugte Bereich bei 1 bis 20 μm liegt.
Die Herstellung der mit ein oder mehreren Wirkstoffen und/oder Wirkstoffen belade- nen Mikrokapseln kann an sich nach allen dem Fachmann einschlägig bekannten Methoden erfolgen. Eine Zusammenstellung entsprechender Techniken kann beispielsweise folgender Literaturstelle entnommen werden: K. Lacasse, W. Baumann; Textile Chemicals, Tabelle 6-22, Berlin 2004.
Die Menge der in den wässrigen Mikrokapsel-Dispersionen enthaltenen erfindungsgemäß einzusetzenden polymeren Dispergatoren c) unterliegt an sich keinen besonderen Einschränkungen. Vorzugsweise werden sie jedoch in Mengen von 0,05 bis 2 Gew.- % eingesetzt und insbesondere 0,1 bis 1 Gew.-% eingesetzt. Die %- Angaben bedeuten dabei jeweils: Gew.-% an Dispergatoren c) bezogen auf die gesamte Dispersion.
Die polymeren Disperatoren c) können direkt in eine wässrige Dispersion der Mikrokapseln b) eingebracht und darin gelöst werden, wobei gegebenenfalls die Temperatur etwas erhöht wird, vorzugsweise arbeitet man dabei im Bereich von 20 bis 80 0C. Ein Einsatz von Dispergiermaschinen, wie z.B. Zahndispergiermaschinen oder Hochdruckhomogenisatoren kann gewünscht sein, ist jedoch im Allgemeinen nicht notwendig. Er wird vorzugsweise vermieden, um zu verhindern, dass es zu einer unerwünschten Schädigung der Mikrokapseln vor oder bei der Applikation auf dem Textil kommt, was auch zu einer unerwünschten, frühzeitigen Freisetzung der enthaltenen Wirkstoffe führen könnte. Ein weiterer Gegenstand der Erfindung ist die Verwendung von wässrigen Mikrokap- sel-Dispersionen enthaltend
(a) Wasser,
(b) Mikrokapseln,
(c) ein oder mehrere polymere Dispergatoren und
(n) ein oder mehrere anionische Netzmittel, wobei diese Netzmittel von den poly- meren Dispergatoren verschieden sind zur Ausrüstung von Textilien, wobei das Ausrüsten durch Versprühen geschieht.
In einer Ausfuhrungsform enthalten dabei die Dispersionen als zusätzliche Komponente Viskositätsregulatoren d), mit der Maßgabe, dass die Verbindungen d) von den Verbindungen c) und von den Verbindungen n) verschieden sind.
In einer Ausfuhrungsform setzt man als Viskositätsregulatoren d) anorganische Salze ein.
In einer Ausfuhrungsform setzt man als polymere Dispergatoren c) Verbindungen ein, die ausgewählt sind aus der Gruppe Xanthan Gum, Gellan Gum, Guar, Polyacrylate.
Beispiele
Beispiel 1 (erfindungsgemäß)
200g einer Mikroskapseldispersion, die zu 30 Gew% aus ca. 2-5 μm großen Kapseln mit pflegenden, ölhaltigen Inhaltsstoffen und zu 70% aus Wasser bestand, wurde mit 800 g vollentsalztem Wasser und 2 g eines Dialkylsulfosuccinates (Disponil SUS IC 875 der Fa. Cognis) vermischt und auf 70 0C aufgeheizt. Anschließend wurden 1,5 g eines Na-Polyacrylates (Cosmedia SP der Fa. Cognis) zugegeben und kurz nachgerührt bis sich alle Feststoffteilchen gelöst hatten. Die entstandene Dispersion hatte eine Viskosität von 40 mPas und wurde mit einer handelsüblichen Pumpsprühflasche auf ein schwarzes Textilgewebe aufgesprüht. Die hierbei versprühte Auftragsmenge der Dispersion betrug 20 Gew% des Textilgewichtes. Nach dem Trocknen des textilen Gewebes bei Raumtemperatur waren keine sichtbaren Flecken (z.B. Mikrokapselagglomera- te) erkennbar. Die Dispersion blieb bei Lagerung stabil, dickte nicht nach (keine Viskositätserhöhung bei Lagerung) nicht und ließ sich auch nach mehrmonatiger Lagerung noch rückstandsfrei versprühen.
Beispiel 2 (zum Vergleich)
Im nachfolgenden Beispiel wurde auf den Einsatz eines Netzmittels verzichtet. 200g einer Mikroskapseldispersion, die zu 30 Gew% aus ca. 2-5 μm großen Kapseln mit pflegenden, ölhaltigen Inhaltsstoffen und zu 70% aus Wasser bestand, wurde mit 800 g vollentsalztem Wasser vermischt und auf 70 0C aufgeheizt. Anschließend wurden 1,5 g eines Na-Polyacrylates (Cosmedia SP der Fa. Cognis) zugegeben und kurz nachgerührt bis sich alle Feststoffteilchen gelöst hatten. Die entstandene Dispersion hatte eine Viskosität von 35 mPas und wurde mit einer handelsüblichen Pumpsprühflasche auf ein schwarzes Textilgewebe aufgesprüht. Hierbei zeigten sich schon beim Aufsprühen größere Tropfen auf dem Textil. Nach Trocknung waren auf dem schwar- zen Textil deutlich weiße Flecken, die aus Agglomeraten von Mikrokapseln bestanden, erkennbar.

Claims

Patentansprüche
1. Verfahren zur Ausrüstung von Textilien mit Mikrokapseln, wobei man wäßrige Mikrokapseldispersionen enthaltend
(a) Wasser,
(b) Mikrokapseln,
(c) ein oder mehrere polymere Dispergatoren und
(n) ein oder mehrere anionische Netzmittel, wobei diese Netzmittel von den poly- meren Dispergatoren verschieden sind auf Textilien aufbringt, mit der Maßgabe, dass die wässrige Mikrokapseldispersion durch Versprühen auf das Textil aufgebracht wird.
2. Verfahren nach Anspruch 1, wobei die Dispersionen als zusätzliche Komponente Viskositätsregulatoren d) enthalten, mit der Maßgabe, dass die Verbindungen d) von den Verbindungen c) und von den Verbindungen n) verschieden sind.
3. Verfahren nach Anspruch 1 oder 2, wobei man als polymere Dispergatoren Homo- polymere einsetzt.
4. Verfahren nach Anspruch 1 oder 2, wobei man als polymere Dispergatoren Copo- lymere einsetzt.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei man als polymere Dispergatoren c) Verbindungen einsetzt, die ausgewählt sind aus der Gruppe Xanthan Gum, Gellan Gum, Guar, Polyacrylate.
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei man die anionischen Netzmittel n) auswählt aus der Gruppe der Alkylsulfate, Alkyl- und/oder Dialkylsulfosuc- cinate, Alkylsulfosuccinamate, Alkylsulfosuccinamide, Alkylsulfosuccinimide o- der Gemische von Verbindungen dieser Klassen, wobei die genannten Substanzklassen gewünschtenfalls in Form ihrer ethoxylierten und/oder propoxylierten Derivate eingesetzt werden können.
7. Verfahren nach einem der Ansprüche 2 bis 6, wobei man als Viskositätsregulatoren d) anorganische Salze einsetzt.
8. Verwendung von wässrigen Mikrokapsel-Dispersionen enthaltend (a) Wasser,
(b) Mikrokapseln,
(c) ein oder mehrere polymere Dispergatoren und
(n) ein oder mehrere anionische Netzmittel, wobei diese Netzmittel von den poly- meren Dispergatoren verschieden sind zur Ausrüstung von Textilien, wobei das Ausrüsten durch Versprühen geschieht.
9. Verwendung nach Anspruch 8, wobei die Dispersionen als zusätzliche Komponente Viskositätsregulatoren d) enthalten, mit der Maßgabe, dass die Verbindungen d) von den Verbindungen c) und von den Verbindungen n) verschieden sind.
10. Verwendung nach Anspruch 8 oder 9, wobei man als Viskositätsregulatoren d) anorganische Salze einsetzt.
11. Verwendung nach einem der Ansprüche 8 bis 10, wobei man als polymere Dispergatoren c) Verbindungen einsetzt, die ausgewählt sind aus der Gruppe Xanthan Gum, Gellan Gum, Guar, Polyacrylate.
EP06818684A 2005-11-30 2006-11-21 Verfahren zur ausrüstung von textilien Withdrawn EP1957706A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005056967A DE102005056967A1 (de) 2005-11-30 2005-11-30 Verfahren zur Ausrüstung von Textilien
PCT/EP2006/011119 WO2007062761A1 (de) 2005-11-30 2006-11-21 Verfahren zur ausrüstung von textilien

Publications (1)

Publication Number Publication Date
EP1957706A1 true EP1957706A1 (de) 2008-08-20

Family

ID=37564143

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06818684A Withdrawn EP1957706A1 (de) 2005-11-30 2006-11-21 Verfahren zur ausrüstung von textilien

Country Status (7)

Country Link
US (1) US20100255210A1 (de)
EP (1) EP1957706A1 (de)
JP (1) JP2009517556A (de)
CN (1) CN101321906A (de)
BR (1) BRPI0619194A2 (de)
DE (1) DE102005056967A1 (de)
WO (1) WO2007062761A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007001115A1 (de) * 2007-01-04 2008-07-10 Cognis Ip Management Gmbh Verwendung von wässrigen Emulsionen in Schaumform zum Reload von Textilien
CA2882179A1 (en) 2012-08-23 2014-02-27 Gary S. Selwyn Chemical stick finishing method and apparatus
US9790640B2 (en) 2014-02-24 2017-10-17 Gary S Selwyn Composition and process for applying hydrophobic coating to fibrous substrates
CN104126886B (zh) * 2014-08-01 2015-09-16 浙江理工大学 一种用于注射微胶囊溶液的女性文胸整理装置
CN105442329A (zh) * 2015-12-25 2016-03-30 江苏金太阳纺织科技股份有限公司 一种含桉叶油微胶囊的护理剂及其制备方法
CN105442330A (zh) * 2015-12-25 2016-03-30 江苏金太阳纺织科技股份有限公司 一种含肉桂油微胶囊的护理剂及其制备方法
CN107869064A (zh) * 2017-11-27 2018-04-03 无锡昊瑜节能环保设备有限公司 一种微胶囊整理剂及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT951409B (it) * 1972-04-15 1973-06-30 Eurand Spa Metodo per l applicazione di microcapsule su stoffe e prodot ti cosi ottenuti
MXPA02011555A (es) * 2000-05-24 2003-04-25 Procter & Gamble Una composicion suavizante de telas que comprende un agente de control del mal olor.
US20020014178A1 (en) * 2000-07-14 2002-02-07 Haught John Christian Biocide compositions and methods and systems employing same
US20030215417A1 (en) * 2002-04-18 2003-11-20 The Procter & Gamble Company Malodor-controlling compositions comprising odor control agents and microcapsules containing an active material
DE10244215A1 (de) * 2002-09-23 2004-04-01 Bayer Ag Ausrüstungssystem für textile Substrate
ES2287367T3 (es) * 2003-02-18 2007-12-16 Cognis Ip Management Gmbh Composiciones acuosas con compuestos activos microencapsulados.
US7226607B2 (en) * 2003-09-11 2007-06-05 The Procter & Gamble Company Compositions comprising a dispersant and microcapsules containing an active material and a stabilizer
JP4535863B2 (ja) * 2003-12-25 2010-09-01 ライオン株式会社 繊維製品用液状消臭剤組成物及び繊維製品用液状消臭柔軟剤組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007062761A1 *

Also Published As

Publication number Publication date
US20100255210A1 (en) 2010-10-07
DE102005056967A1 (de) 2007-05-31
BRPI0619194A2 (pt) 2011-09-20
CN101321906A (zh) 2008-12-10
WO2007062761A1 (de) 2007-06-07
JP2009517556A (ja) 2009-04-30

Similar Documents

Publication Publication Date Title
EP1957706A1 (de) Verfahren zur ausrüstung von textilien
DE102004037752A1 (de) Ausgerüstete Fasern und textile Flächengebilde
EP2102407B1 (de) Verwendung von wässrigen emulsionen in schaumform zum reload von textilien
EP1845186B1 (de) Zur Insektenabwehr ausgerüstete Fasern und textile Flächengebilde
EP1926853A1 (de) Wässrige mikrokapseldispersionen
WO2003093571A1 (de) Ausgerüstete fasern und textile flächengebilde
DE212014000037U1 (de) Zusammensetzungen mit verbesserten ästhetischen und sensorischen Eigenschaften
EP1359212A1 (de) Tensidzubereitungen enthaltend mikroverkapselte Wirkstoffe
EP1960589A1 (de) Verfahren zur ausrüstung von textilien mit pflegenden ölen
EP2262944B1 (de) Verfahren zum ausrüsten von fasern und textilen flächengebilden mit absorbierenden mikrosphären
EP1600210A1 (de) Beladene Mikrosphären
EP1510619B1 (de) Verwendung von Liposomen zur Ausrüstung von Fasern und Textilien
DE102005049429A1 (de) Verfahren zur Ausrüstung von Textilien
DE4441029A1 (de) Kationische Wachsdispersionen
EP2108735B1 (de) Beladbare Fasern und textile Flächengebilde
AT412286B (de) Zusammensetzung zur ausrüstung von textilien
WO2000066074A1 (de) Verwendung nanoskaliger antimikrobieller wirkstoffe in körperdeodorantien
EP1359213A1 (de) Wässrige Tensidzubereitungen
DE102004006405A1 (de) Drucklabile Mikrokapseln
DE1171865B (de) Verfahren zur antistatischen Ausruestung und zum Vertraeglichmachen von natuerlichenund synthetischen Fasern und Geweben fuer die menschliche Haut

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080521

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT TR

17Q First examination report despatched

Effective date: 20090109

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111025