EP1941520B1 - Resistor, particularly smd resistor, and associated production method - Google Patents

Resistor, particularly smd resistor, and associated production method Download PDF

Info

Publication number
EP1941520B1
EP1941520B1 EP07819122A EP07819122A EP1941520B1 EP 1941520 B1 EP1941520 B1 EP 1941520B1 EP 07819122 A EP07819122 A EP 07819122A EP 07819122 A EP07819122 A EP 07819122A EP 1941520 B1 EP1941520 B1 EP 1941520B1
Authority
EP
European Patent Office
Prior art keywords
resistor
support element
connection parts
underside
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07819122A
Other languages
German (de)
French (fr)
Other versions
EP1941520A1 (en
Inventor
Ulrich Hetzler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IsabellenHuette Heusler GmbH and Co KG
Isabellen Huette GmbH
Original Assignee
IsabellenHuette Heusler GmbH and Co KG
Isabellen Huette GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38950785&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1941520(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by IsabellenHuette Heusler GmbH and Co KG, Isabellen Huette GmbH filed Critical IsabellenHuette Heusler GmbH and Co KG
Priority to PL07819122T priority Critical patent/PL1941520T3/en
Publication of EP1941520A1 publication Critical patent/EP1941520A1/en
Application granted granted Critical
Publication of EP1941520B1 publication Critical patent/EP1941520B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making

Definitions

  • the invention relates to a resistor, in particular an SMD resistor, as well as a corresponding manufacturing method according to the independent claims.
  • FIG. 4 shows an embodiment of a conventional SMD resistor 1 (SMD: S urface M ounted D evice), which is marketed by the Applicant and in similar form, for example, in DE 43 39 551 C1 is described.
  • the known SMD resistor 1 has a plate-shaped metallic carrier 2, which may for example consist of copper.
  • an electrically insulating adhesive layer 3 is applied during manufacture, with which then a resistive layer is glued to the upper side of the carrier 2.
  • the resistance layer is etched by etching, so that forms a meandering resistance path 4 at the top of the support 2.
  • the resistor 1 is then covered at the top by a protective lacquer 5 which electrically insulates the resistance track 4.
  • a transversely extending recess 6 is then introduced into the carrier 2, which divides the carrier 2 into two separate carrier elements 2.1, 2.2 and thereby prevents a direct flow of current between the two carrier elements 2.1, 2.2.
  • the support elements 2.1, 2.2 in this case thus form the electrical connection parts of the SMD resistor 1, which can be soldered onto solder pads 7, 8, as indicated schematically in the drawing by the arrows.
  • a disadvantage of the known SMD resistor 1 is the complex electrical connection of the underlying support elements 2.1, 2.2 with the Being.aufgebbten resistor layer, which forms the resistance path 4.
  • a conductive surface must first be achieved (chemical through-plating), in order subsequently to apply a copper layer in a multi-stage galvanic process, which safely conducts the total current.
  • this contact is part of the current path through the SMD resistor and therefore also affects the resistance of the SMD resistor 1, which in low-resistance designs with a resistance of less than 25m ⁇ requires that the resistor match be made on the isolated SMD resistor 1, whereas Resistance adjustment on a multi-resistor benefit is excluded here.
  • Another disadvantage of the known SMD resistor 1 comes from the recess 6 in the carrier 2, since the recess 6 for mechanical stabilization of the SMD resistor 1 is filled with a paint or an epoxy resin which expands during soldering and for bending the SMD Resistance 1 results, wherein the bending is virtually frozen after the solidification of the solder and is retained in the finished component at least as a visual defect. This problem occurs especially when using lead-free solders that require a higher soldering temperature. In addition, in the recess 6 a certain paint volume is required to mechanically stabilize the SMD resistor 1 despite the incision 6, which in turn requires that the carrier 2 is relatively thick.
  • the carrier 2 must have a thickness of at least 0.5 mm, which limits the miniaturization of the SMD resistor 1. Regardless of the thickness of the carrier 2, the mechanical strength of the SMD resistor 1 due to the mechanical weakening is limited by the incision 6.
  • SMD resistor 1 Another disadvantage of the SMD resistor 1 is the high electroplating cost, which accounts for about 25% of the total manufacturing cost. These high electroplating costs are due to the fact that the lateral Umrome ist of the two support elements 2.1, 2.2 to the resistance path 4 must take over the full current flow, so that the requirements for the density and the effective cross section of the electrodeposited copper layer are relatively high. In addition, with low resistance values, the influence of copper on the electrical properties is not completely negligible.
  • the support elements 2.1, 2.2 as connecting parts do not correspond to the usual standard dimensions of solder pads, but have a much greater length. However, a shortening of the two support elements 2.1, 2.2 and thus a widening of the incision 6 would lead to a further mechanical and thermal weakening and is therefore not possible.
  • FIG. 5 shows another construction of a known SMD resistor 9, which is sold by the applicant, wherein a similar construction in EP 0 929 083 B1 is described.
  • the SMD resistor 9 has a plate-shaped thin carrier 10 made of aluminum, wherein the carrier 10 in this construction has no incision and thus no mechanical weakening.
  • a resistive layer 12th glued, which is etched technically structured and forms a meander-shaped resistance path.
  • strip-shaped Kupferutton réelleen 13 are applied to the bottom, the strip-shaped connection parts 14, 15 contact electrically.
  • the SMD resistor 9 in this construction at the top and at the bottom of a protective lacquer layer 16, 17.
  • An advantage of this design of the SMD resistor 9 is first the fact that the carrier 10 has no mechanical weakening, so that the problems based thereon and described above are avoided.
  • connection parts 14, 15 and thus also the solder joints lie on the underside of the SMD resistor 9, where the solder joints are not accessible to visual inspection.
  • a lateral attachment of the solder joints is not possible with the SMD resistor 9, since the solder joints would otherwise produce an undesirable electrical shunt across the electrically conductive carrier 10.
  • SMD resistor 9 Another disadvantage of the SMD resistor 9 is that the carrier 10 made of anodized aluminum is relatively hard and therefore reduces the service life of the saw blade used when separating the SMD resistor 9 by sawing. Moreover, due to the low melting point of the aluminum compared to copper, the sawing off of the individual SMD resistors 9 from an aluminum benefit results in an interfering sawing ridge on the sawed-off SMD resistor 9.
  • solder caps made of a highly conductive, usually galvanically reinforced, solderable metal layer (eg nickel-chromium alloy), the solder caps are in cross-section U-shaped and the opposite narrow edges of the SMD resistor embrace cap-shaped.
  • the solder caps are here accessible laterally, so that when soldering laterally visible solder joints arise that allow easy visual inspection of the solder joints.
  • a disadvantage of this construction is the fact that the carrier is made of ceramic and therefore compared to copper (see. Fig. 4 ) or aluminum (cf. Fig. 5 ) has a relatively low thermal conductivity and a low, a normal PCB poorly matched coefficient of thermal expansion.
  • the resistance layer is arranged on top of the carrier, which leads to the adverse effects described above on the total resistance.
  • off DE 196 46 441 A1 a resistor known in which, however, the connecting parts exclusively at the bottom are attached, so that no visual inspection of the solder joint is possible.
  • the invention is therefore based on the known SMD resistor 9 according to FIG. 5 , the object of which is to eliminate the disadvantages of the SMD resistor 9, by allowing a simple visual inspection of the solder joints.
  • the invention includes the general technical teaching of laterally exposing the connection parts to the resistor so that the connection parts can be visibly wetted laterally by a solder in order to allow a visual inspection of the respective solder connection.
  • the resistor according to the invention is preferably designed as an SMD resistor and allows conventional surface mounting.
  • the invention is not limited to SMD resistors, but basically also includes other types of Widertand, for example, provide a conventional contact with solder pins.
  • the resistor according to the invention has a flat, metallic carrier element, which has a good thermal conductivity and an adapted coefficient of thermal expansion due to its metallic material composition, which is advantageous in the operation of the resistor according to the invention.
  • the resistor according to the invention has a planar resistance element made of a resistance material, wherein the resistance element is arranged on the underside of the flat carrier element.
  • a flat resistive element or carrier element is to be understood generally and is not limited to the mathematical-geometric definition of a surface.
  • this feature is preferably based on the fact that the lateral extent of the carrier element or of the resistance element is substantially greater than the thickness of the carrier element or resistance element.
  • this feature preferably also includes that the top side and the bottom side of the carrier element or resistance element respectively extend parallel to one another.
  • the support element and the resistance element are preferably flat, but also curved and curved shapes for the support element and the resistance element are possible.
  • the resistor according to the invention has at least two separate metallic connecting parts, which electrically contact the resistance element and are arranged partially on the underside of the carrier element.
  • the connection parts are not completely arranged on the bottom, but are at least partially laterally free of the resistor, so that form during soldering laterally visible solder joints, which allow easy visual inspection.
  • connection parts in each case extend laterally upwards on the resistor up to the metallic carrier element, where the connecting parts contact the carrier element and contact it electrically and thermally.
  • connection parts can each have a U-shaped cross section have and embrace the resistor at opposite edges in each case cap-shaped, wherein a lateral metallization in the contact area is possible.
  • the metallic carrier element in the resistor according to the invention has an incision which divides the carrier element into at least two electrically isolated parts and prevents current flow through the carrier element between the two connecting parts.
  • the incision may be formed in the same way as in the known SMD resistor according to FIG FIG. 4 However, in which the resistance layer is arranged at the top of the carrier.
  • the incision in the carrier element runs at least partially obliquely, for example V-shaped, W-shaped or meandering.
  • Such a shaping of the incision in the carrier element advantageously leads to a greater mechanical stability of the resistance than in the case of a transverse incision.
  • connection parts in the resistor according to the invention are preferably adapted in size to standard solder pads, resulting in the inventive resistance of the known SMD resistor according to FIG. 4 differs in which the connecting parts have a much larger lateral extent.
  • the connecting parts therefore preferably have a lateral extent which is less than 30%, 20% or 15% of the distance between the two connecting parts.
  • Limit values of 1mm, 0.5mm or 0.1mm can then be specified as maximum values for the lateral expansion of the connection parts.
  • the strip-shaped connecting parts can have a width in the range of 0, 1-0, 3 mm (design 0402), 0, 15-0, 40 mm (design 0603), 0.25-0.75 mm (design 1206) or 0.35- 0.85 mm (type 2512).
  • the resistance material of the resistor according to the invention consists of a copper-manganese alloy, such as a copper-manganese-nickel alloy.
  • a copper-manganese alloy such as a copper-manganese-nickel alloy.
  • the alloys CuMn12Ni, CuMn7Sn or CuMn3 can be used as resistance material.
  • a nickel-chromium alloy in particular a nickel-chromium-aluminum alloy is used as the resistance material.
  • the resistance element may also consist of a copper-nickel alloy, such as CuNi15 or CuNi10.
  • the invention is not limited to the examples mentioned above with regard to the usable resistance materials, but in principle also with other resistance materials feasible.
  • the resistor according to the invention preferably has a high degree of miniaturization .
  • the thickness of the resistor according to the invention may be less than 2mm, 1mm, 0.5mm or even 0.3mm.
  • the length of the resistor according to the invention may be less than 10mm, 5mm, 2mm or even less than 1mm.
  • the width of the invention Resistance is preferably less than 5mm, 2mm or even less than 1mm.
  • the carrier element preferably has a thickness which is in the range of 0.05-0.3 mm.
  • solder resist a heat-resistant insulating layer
  • solder resist is therefore preferably applied in the resistor according to the invention on the upper side of the support member and on the underside of the resistive element.
  • connection parts are preferably made of a highly conductive material in order to achieve the lowest possible connection resistance.
  • the carrier element and / or the connecting parts are preferably made of a highly thermally conductive material in order to achieve effective heat removal from the resistance element.
  • the connection parts and / or the support element for this purpose may consist of copper or a copper alloy.
  • the individual connecting parts are preferably cap-shaped and can be U-shaped in cross-section, for example.
  • the upper leg of the connecting part surrounds the carrier element above, while the lower leg of the U-shaped connecting part engages around the resistance element below.
  • the cap-shaped connecting part is preferably provided that the cap-shaped connecting parts engage around the support element and / or the resistance element not only above or below, but also laterally. This is possible if the cap-shaped connection parts, only be applied when the resistors are separated from the benefits in the context of the manufacturing method according to the invention, since only then the lateral cut surfaces of the isolated resistors are exposed.
  • an adhesive layer is preferably arranged between the planar resistance element and the planar carrier element.
  • the adhesive layer fixes the planar resistance element on the underside of the carrier element.
  • the adhesive layer is electrically insulating and therefore prevents disturbing electrical shunts on the metallic support element.
  • the planar resistance element is preferably etched or otherwise structured (eg by laser machining) so that the resistance element has a simple rectangular or meandering resistance path, as is the case with the known SMD resistors described above is.
  • the resistor according to the invention advantageously enables low resistance values in the milliohm range, the resistance being less than 500m ⁇ , 200m ⁇ , 50m ⁇ , 30m ⁇ , 20m ⁇ , 10m ⁇ , 5m ⁇ or even less than 1m ⁇ .
  • the resistance element is preferably complete in the case of the resistor according to the invention is electrically insulated to the outside, if one disregards the connection parts.
  • the invention includes not only the resistor according to the invention described above, but also a corresponding manufacturing method, in which the connection parts are attached to the resistor so that the connection parts are exposed laterally and are visibly wettable by a solder, for a visual inspection of the respective solder joint to enable.
  • the incision in the metallic carrier element described above can be produced in the context of the production method according to the invention, for example by etching or by laser processing. '
  • the separation of the resistances by sawing, punching or by laser cutting can be of use.
  • the invention advantageously allows a longer life of the saw blade used, since copper is much softer than that in the known SMD resistor described in the introduction FIG. 5 used anodized aluminum.
  • the invention advantageously makes it possible to carry out a resistance compensation on a utility with a plurality of resistors that have not yet been isolated, so that after the separation of the resistors no resistance compensation is required.
  • the cross-sectional view in FIG. 1 shows an inventive SMD resistor 18, which may have, for example, the design 0604.
  • the SMD resistor 18 in the X direction has a length of 0.06 inches (1.524 mm) and a width in the Z direction of 0.04 inches (1.016 mm).
  • the SMD resistor 18 may have a thickness in the Y direction of, for example, 0.4 mm.
  • the SMD resistor 18 has a plate-shaped carrier element 19 made of copper, wherein on the underside of the carrier element 19 by means of an adhesive layer 20, a resistance layer 21 is glued from a copper-manganese-nickel alloy (CuMn12Ni).
  • the adhesive layer 20 effects a fixation of the resistance layer 21 on the underside of the plate-shaped carrier element 19.
  • the adhesive layer 20 is electrically insulating and therefore insulates the conductive carrier element 19 from the resistance layer 21.
  • the SMD resistor 18 laterally each cap-shaped connecting parts 22, 23, wherein the two connection parts 22, 23 surround the support member 19 and the resistance layer 21 above, laterally and below.
  • the two connection parts 22, 23 thus contact the resistance layer 21 electrically, so that in the mounted state a current can flow via the two connection parts 22, 23 and the resistance layer 21.
  • the plate-shaped support member 19 is a substantially V-shaped recess 24, which divides the support member 19 into two parts 19.1, 19.2, wherein the two parts 19.1, 19.2 are electrically isolated from the incision 24 against each other.
  • the adhesive layer 20 between the resistive layer 21 and the plate-shaped support member 19 thus prevents in connection with the incision 24 interfering electrical shunts on the support member 19.
  • the support member 19 thus serves only as a mechanical support and heat dissipation, but not to the power line.
  • a Lötstopplack 25 is applied areally.
  • a solder resist 26 is also applied to the underside of the resistance layer 21 between the two connection parts 22, 23 in a planar manner. The resistance layer 21 is thus in the SMD resistor 18 except for the connection parts 22, 23 completely outwardly insulated.
  • the carrier element 19 is initially provided in the form of a copper foil, as in FIG FIG. 2A is shown.
  • step S2 the resistance layer 21 is then glued to the underside of the carrier element 19, wherein the bonding takes place by means of the adhesive layer 20, as shown FIG. 2B is apparent.
  • Step S3 the incision 24 is then introduced into the carrier element 19 in order to prevent an electrical shunt via the electrically conductive carrier element 19 later.
  • the generation of the incision 24 can be made, for example, by etching or by laser processing.
  • Step S3 leads to the intermediate stage according to FIG. 2C.
  • step S4 a solder resist is then applied to the upper side of the carrier element 19, which is known per se.
  • an etching-technical structuring of the resistance layer 21 takes place, which then subsequently forms a meander-shaped resistance path.
  • step S6 the solder resist 26 is then applied to the underside of the resistive layer 21, as shown FIG. 2D is apparent.
  • a step S9 the deposition of a copper layer having a thickness of e.g. 10 ⁇ m on the exposed edges of the resistive layer 21 at the bottom thereof.
  • step S10 then takes place at a benefit with numerous, not yet isolated SMD resistors, a resistance balance.
  • the individual SMD resistors 18 are then separated from the use in a step S11, which can be done by sawing, punching or laser machining.
  • connection parts 22, 23 are then applied as soldering caps to the exposed edges.
  • This application of the connection parts 22, 23 after the separation of the SMD resistor 18 makes it possible for the connection parts 22, 23 to later surround the support element 19 laterally at the cut surfaces, as shown in the perspective view in FIG. 1 is apparent.
  • FIG. 2G Finally, the SMD resistor 18 according to the invention on a circuit board 27 with two standard solder pads 28, 29 and two solder joints 30, 31. From the cross-sectional view it can be seen that the solder joints 30, 31 are exposed laterally on the SMD resistor 18 and therefore a visual inspection are accessible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Details Of Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Control Of Electrical Variables (AREA)
  • Organic Insulating Materials (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Glass Compositions (AREA)
  • Secondary Cells (AREA)

Abstract

The invention relates to a resistor (18), particularly an SMD resistor, including a planar, metallic support element (19) that has a top surface and a bottom surface, a planar resistor element (21) which is made of a resistive material and is disposed on the bottom surface of the support element (19), and at least two separate metallic connecting parts (23, 23) which electrically contact the resistor element (21) and are arranged in part on the bottom surface of the support element (19). The connecting parts (22, 23) are laterally exposed on the resistor (18) and can be laterally wetted in a visible manner by a solder. The invention further relates to a corresponding production method.

Description

Die Erfindung betrifft einen Widerstand, insbesondere einen SMD-Widerstand, sowie ein entsprechendes Herstellungsverfahren gemäß den nebengeordneten Ansprüchen.The invention relates to a resistor, in particular an SMD resistor, as well as a corresponding manufacturing method according to the independent claims.

Figur 4 zeigt ein Ausführungsbeispiel eines herkömmlichen SMD-Widerstands 1 (SMD: Surface Mounted Device), der von der Anmelderin vertrieben wird und in ähnlicher Form beispielsweise in DE 43 39 551 C1 beschrieben ist. Der bekannte SMD-Widerstand 1 weist einen plattenförmigen metallischen Träger 2 auf, der beispielsweise aus Kupfer bestehen kann. Auf die Oberseite des Trägers 2 wird bei der Herstellung eine elektrisch isolierende Kleberschicht 3 aufgebracht, mit der dann eine Widerstandsschicht auf die Oberseite des Trägers 2 festgeklebt wird. Anschließend wird die Widerstandsschicht ätztechnisch strukturiert, so dass sich an der Oberseite des Trägers 2 eine mäanderförmig verlaufende Widerstandsbahn 4 bildet. Der Widerstand 1 wird dann oben von einem Schutzlack 5 abgedeckt, der die Widerstandsbahn 4 elektrisch isoliert. Vor der Fertigstellung wird dann in den Träger 2 ein quer verlaufender Einschnitt 6 eingebracht, der den Träger 2 in zwei getrennte Trägerelemente 2.1, 2.2 aufteilt und dadurch einen direkten Stromfluss zwischen den beiden Trägerelementen 2.1, 2.2 verhindert. Die Trägerelemente 2.1, 2.2 bilden hierbei also die elektrischen Anschlussteile des SMD-Widerstands 1, die auf Lötpads 7, 8 aufgelötet werden können, wie in der Zeichnung durch die Pfeile schematisch angedeutet ist. FIG. 4 shows an embodiment of a conventional SMD resistor 1 (SMD: S urface M ounted D evice), which is marketed by the Applicant and in similar form, for example, in DE 43 39 551 C1 is described. The known SMD resistor 1 has a plate-shaped metallic carrier 2, which may for example consist of copper. On the upper side of the carrier 2, an electrically insulating adhesive layer 3 is applied during manufacture, with which then a resistive layer is glued to the upper side of the carrier 2. Subsequently, the resistance layer is etched by etching, so that forms a meandering resistance path 4 at the top of the support 2. The resistor 1 is then covered at the top by a protective lacquer 5 which electrically insulates the resistance track 4. Before completion, a transversely extending recess 6 is then introduced into the carrier 2, which divides the carrier 2 into two separate carrier elements 2.1, 2.2 and thereby prevents a direct flow of current between the two carrier elements 2.1, 2.2. The support elements 2.1, 2.2 in this case thus form the electrical connection parts of the SMD resistor 1, which can be soldered onto solder pads 7, 8, as indicated schematically in the drawing by the arrows.

Nachteilig an dem bekannten SMD-Widerstand 1 ist die aufwendige elektrische Verbindung der unten liegenden Trägerelemente 2.1, 2.2 mit der oben.aufgeklebten Widerstandsschicht, welche die Widerstandsbahn 4 bildet. Hierzu muss zunächst als Vorbereitung einer strombelastbaren, galvanisch aufgebrachten Kontaktierung auf der Außenkante der Kleberschicht 3 eine leitfähige Oberfläche erreicht werden (chemische Durchkontaktierung), um anschließend in einem mehrstufigen galvanischen Prozess eine Kupferschicht aufzubringen, die den Gesamtstrom sicher leitet. Diese Kontaktierung ist jedoch Teil des Strompfads durch den SMD-Widerstand und beeinflusst deshalb ebenfalls den Widerstandswert des SMD-Widerstands 1, was bei niederohmigen Ausführungen mit einem Widerstandswert von weniger als 25mΩ erfordert, dass der Widerstandsabgleich am vereinzelten SMD-Widerstand 1 erfolgen muss, wohingegen ein Widerstandsabgleich an einem Nutzen mit mehreren Widerständen hierbei ausgeschlossen ist.A disadvantage of the known SMD resistor 1 is the complex electrical connection of the underlying support elements 2.1, 2.2 with the oben.aufgebbten resistor layer, which forms the resistance path 4. For this purpose, in order to prepare a current-carrying, galvanically applied contacting on the outer edge of the adhesive layer 3, a conductive surface must first be achieved (chemical through-plating), in order subsequently to apply a copper layer in a multi-stage galvanic process, which safely conducts the total current. However, this contact is part of the current path through the SMD resistor and therefore also affects the resistance of the SMD resistor 1, which in low-resistance designs with a resistance of less than 25mΩ requires that the resistor match be made on the isolated SMD resistor 1, whereas Resistance adjustment on a multi-resistor benefit is excluded here.

Ein weiterer Nachteil des bekannten SMD-Widerstands 1 rührtvon dem Einschnitt 6 in dem Träger 2 her, da der Einschnitt 6 zur mechanischen Stabilisierung des SMD-Widerstands 1 mit einem Lack oder einem Epoxidharz gefüllt wird, der sich beim Auflöten ausdehnt und zur Verbiegung des SMD-Widerstands 1 führt, wobei die Verbiegung nach der Erstarrung des Lötzinns quasi eingefroren wird und in dem fertigen Bauteil zumindest als optischer Mangel erhalten bleibt. Dieses Problem tritt insbesondere bei einer Verwendung bleifreier Lote auf, die eine höhere Löttemperatur erfordern. Darüber hinaus ist in dem Einschnitt 6 ein bestimmtes Lackvolumen erforderlich, um den SMD-Widerstand 1 trotz des Einschnitts 6 mechanisch zu stabilisieren, was wiederum voraussetzt, dass der Träger 2 relativ dick ist. In der Praxis muss der Träger 2 deshalb eine Dicke von mindestens 0,5mm aufweisen, was der Miniaturisierung des SMD-Widerstands 1 Grenzen setzt. Unabhängig von der Dicke des Trägers 2 ist die mechanische Belastbarkeit des SMD-Widerstands 1 aufgrund der mechanischen Schwächung durch den Einschnitt 6 begrenzt.Another disadvantage of the known SMD resistor 1 comes from the recess 6 in the carrier 2, since the recess 6 for mechanical stabilization of the SMD resistor 1 is filled with a paint or an epoxy resin which expands during soldering and for bending the SMD Resistance 1 results, wherein the bending is virtually frozen after the solidification of the solder and is retained in the finished component at least as a visual defect. This problem occurs especially when using lead-free solders that require a higher soldering temperature. In addition, in the recess 6 a certain paint volume is required to mechanically stabilize the SMD resistor 1 despite the incision 6, which in turn requires that the carrier 2 is relatively thick. In practice, therefore, the carrier 2 must have a thickness of at least 0.5 mm, which limits the miniaturization of the SMD resistor 1. Regardless of the thickness of the carrier 2, the mechanical strength of the SMD resistor 1 due to the mechanical weakening is limited by the incision 6.

Ein weiterer Nachteil des SMD-Widerstands 1 sind die hohen Galvanik-Kosten, die ungefähr 25% der gesamten Fertigungskosten ausmachen. Diese hohen Galvanik-Kosten rühren daher, dass die seitlich Umkontaktierung von den beiden Trägerelementen 2.1, 2.2 zu der Widerstandsbahn 4 den vollen Stromfluss übernehmen muss, so dass die Anforderungen an die Dichte und den effektiven Querschnitt der galvanisch aufgebrachten Kupferschicht relativ hoch sind. Darüber hinaus ist bei niederohmigen Widerstandswerten der Kupfereinfluss auf die elektrischen Eigenschaften nicht völlig vernachlässigbar.Another disadvantage of the SMD resistor 1 is the high electroplating cost, which accounts for about 25% of the total manufacturing cost. These high electroplating costs are due to the fact that the lateral Umkontaktierung of the two support elements 2.1, 2.2 to the resistance path 4 must take over the full current flow, so that the requirements for the density and the effective cross section of the electrodeposited copper layer are relatively high. In addition, with low resistance values, the influence of copper on the electrical properties is not completely negligible.

Schließlich entsprechen die Trägerelemente 2.1, 2.2 als Anschlussteile nicht den üblichen Standardabmessungen von Lötpads, sondern weisen eine wesentlich größere Länge auf. Eine Verkürzung der beiden Trägerelemente 2.1, 2.2 und damit eine Verbreiterung des Einschnitts 6 würde jedoch zu einer weiteren mechanischen und thermischen Schwächung führen und ist deshalb nicht möglich.Finally, the support elements 2.1, 2.2 as connecting parts do not correspond to the usual standard dimensions of solder pads, but have a much greater length. However, a shortening of the two support elements 2.1, 2.2 and thus a widening of the incision 6 would lead to a further mechanical and thermal weakening and is therefore not possible.

Figur 5 zeigt eine andere Bauweise eines bekannten SMD-Widerstands 9, der von der Anmelderin vertrieben wird, wobei eine ähnliche Bauweise auch in EP 0 929 083 B1 beschrieben ist. Der SMD-Widerstand 9 weist einen plattenförmigen dünnen Träger 10 aus Aluminium auf, wobei der Träger 10 bei dieser Bauweise keinen Einschnitt und damit keine mechanische Schwächung aufweist. An der Unterseite des plattenförmigen Trägers 10 ist mit einer Kleberschicht 11 eine Widerstandsschicht 12 festgeklebt, die ätztechnisch strukturiert ist und eine mäanderförmige Widerstandsbahn bildet. An den schmalen Stirnseiten des SMD-Widerstands 9 sind an der Unterseite streifenförmige Kupferkontaktierungen 13 aufgebracht, die streifenförmige Anschlussteile 14, 15 elektrisch kontaktieren. Schließlich weist der SMD-Widerstand 9 bei dieser Bauweise an der Oberseite und an der Unterseite eine Schutzlackschicht 16, 17 auf. FIG. 5 shows another construction of a known SMD resistor 9, which is sold by the applicant, wherein a similar construction in EP 0 929 083 B1 is described. The SMD resistor 9 has a plate-shaped thin carrier 10 made of aluminum, wherein the carrier 10 in this construction has no incision and thus no mechanical weakening. At the bottom of the plate-shaped carrier 10 is an adhesive layer 11, a resistive layer 12th glued, which is etched technically structured and forms a meander-shaped resistance path. At the narrow end sides of the SMD resistor 9 strip-shaped Kupferkontaktierungen 13 are applied to the bottom, the strip-shaped connection parts 14, 15 contact electrically. Finally, the SMD resistor 9 in this construction at the top and at the bottom of a protective lacquer layer 16, 17.

Vorteilhaft an dieser Bauweise des SMD-Widerstands 9 ist zunächst die Tatsache, dass der Träger 10 keine mechanische Schwächung aufweist, so dass die darauf beruhenden und vorstehend beschriebenen Probleme vermieden werden.An advantage of this design of the SMD resistor 9 is first the fact that the carrier 10 has no mechanical weakening, so that the problems based thereon and described above are avoided.

Nachteilig an dem SMD-Widerstand 9 ist jedoch die Tatsache, dass die Anschlussteile 14, 15 und damit auch die Lötstellen an der Unterseite des SMD-Widerstands 9 liegen, wo die Lötstellen keiner Sichtkontrolle zugänglich sind. Eine seitliche Anbringung der Lötstellen ist jedoch bei dem SMD-Widerstand 9 nicht möglich, da die Lötstellen andernfalls einen unerwünschten elektrischen Nebenschluss über den elektrisch leitenden Träger 10 herstellen würden.A disadvantage of the SMD resistor 9, however, is the fact that the connection parts 14, 15 and thus also the solder joints lie on the underside of the SMD resistor 9, where the solder joints are not accessible to visual inspection. However, a lateral attachment of the solder joints is not possible with the SMD resistor 9, since the solder joints would otherwise produce an undesirable electrical shunt across the electrically conductive carrier 10.

Ein weiterer Nachteil des SMD-Widerstands 9 besteht darin, dass der Träger 10 aus eloxiertem Aluminium relativ hart ist und deshalb beim Vereinzeln des SMD-Widerstands 9 durch Sägen die Standzeit des verwendeten Sägeblatts herabsetzt. Darüber hinaus führt das Absägen der einzelnen SMD-Widerstände 9 von einem Aluminium-Nutzen aufgrund des niedrigen Schmelzpunkts des Aluminiums im Vergleich zu Kupfer zu einem störenden Sägegrat an dem abgesägten SMD-Widerstand 9.Another disadvantage of the SMD resistor 9 is that the carrier 10 made of anodized aluminum is relatively hard and therefore reduces the service life of the saw blade used when separating the SMD resistor 9 by sawing. Moreover, due to the low melting point of the aluminum compared to copper, the sawing off of the individual SMD resistors 9 from an aluminum benefit results in an interfering sawing ridge on the sawed-off SMD resistor 9.

Schließlich verursacht die Aufbringung des Schutzlacks 6 auf der Oberseite des SMD-Widerstands 9 und die Beschriftung des SMD-Widerstands 9 materialbedingte Produktionsschwierigkeiten.Finally, the application of the protective lacquer 6 on top of the SMD resistor 9 and the lettering of the SMD resistance 9 material-related production difficulties.

Eine andere herkömmliche Bauweise eines SMD-Widerstands weist schließlich einen plattenförmigen Keramikträger auf, der an seiner Oberseite eine strukturierte Widerstandsschicht trägt, wobei die Widerstandsschicht ebenfalls eine mäanderförmige Widerstandsbahn bildet. Die elektrische Kontaktierung des SMD-Widerstands erfolgt bei dieser Bauweise durch Lötkappen aus einer hochleitfähigen, meist galvanisch verstärkten, lötfähigen Metallschicht (z.B. Nickel-Chrom-Legierung), wobei die Lötkappen im Querschnitt U-förmig sind und die gegenüberliegenden schmalen Kanten des SMD-Widerstands kappenförmig umgreifen. Die Lötkappen sind hierbei seitlich zugänglich, so dass beim Festlöten seitlich sichtbare Lötstellen entstehen, die eine einfache Sichtkontrolle der Lötverbindungen ermöglichen.Another conventional construction of an SMD resistor finally has a plate-shaped ceramic carrier, which carries on its upper side a structured resistance layer, wherein the resistance layer also forms a meander-shaped resistance path. The electrical contacting of the SMD resistor is carried out in this design by solder caps made of a highly conductive, usually galvanically reinforced, solderable metal layer (eg nickel-chromium alloy), the solder caps are in cross-section U-shaped and the opposite narrow edges of the SMD resistor embrace cap-shaped. The solder caps are here accessible laterally, so that when soldering laterally visible solder joints arise that allow easy visual inspection of the solder joints.

Nachteilig an dieser Bauweise ist jedoch die Tatsache, dass der Träger aus Keramik besteht und deshalb im Vergleich zu Kupfer (vgl. Fig. 4) oder Aluminium (vgl. Fig. 5) eine relativ geringe Wärmeleitfähigkeit und einen geringen, einer normalen Leiterplatte schlecht angepassten Wärmeausdehnungskoeffizient aufweist. Darüber hinaus ist die Widerstandsschicht hierbei auf der Oberseite des Trägers angeordnet, was zu den vorstehend beschriebenen nachteiligen Einflüssen auf den Gesamtwiderstand führt.A disadvantage of this construction, however, is the fact that the carrier is made of ceramic and therefore compared to copper (see. Fig. 4 ) or aluminum (cf. Fig. 5 ) has a relatively low thermal conductivity and a low, a normal PCB poorly matched coefficient of thermal expansion. In addition, the resistance layer is arranged on top of the carrier, which leads to the adverse effects described above on the total resistance.

Ähnliche Widerstände mit einem nicht-metallischen Trägerelement sind beispielsweise aus US 2004/0252009 A1 und DE 30 27 122 A1 bekannt.Similar resistors with a non-metallic support element are for example made US 2004/0252009 A1 and DE 30 27 122 A1 known.

Schließlich ist aus DE 196 46 441 A1 ein Widerstand bekannt, bei dem jedoch die Anschlussteile ausschließlich an der Unterseite angebracht sind, so dass keine Sichtkontrolle der Lötverbindung möglich ist.Finally is off DE 196 46 441 A1 a resistor known in which, however, the connecting parts exclusively at the bottom are attached, so that no visual inspection of the solder joint is possible.

Ferner ist zum Stand der Technik hinzuweisen auf DE 37 05 279 A1 , EP 0 841 668 A , EP 0 509 582 A und US 5 379 016 A .Furthermore, it should be noted on the prior art DE 37 05 279 A1 . EP 0 841 668 A . EP 0 509 582 A and US 5,379,016 ,

Der Erfindung liegt deshalb, ausgehend von dem bekannten SMD-Widerstand 9 gemäß Figur 5, die Aufgabe zugrunde, die Nachteile des SMD-Widerstands 9 zu beseitigen, indem eine einfache Sichtkontrolle der Lötstellen ermöglicht wird.The invention is therefore based on the known SMD resistor 9 according to FIG. 5 , the object of which is to eliminate the disadvantages of the SMD resistor 9, by allowing a simple visual inspection of the solder joints.

Diese Aufgabe wird durch einen erfindungsgemäßen Widerstand bzw. ein erfindungsgemäßes Herstellungsverfahren gemäß den unabhängigen Ansprüchen 1 bzw. 15 gelöst.This object is achieved by a resistor according to the invention or an inventive manufacturing method according to independent claims 1 and 15, respectively.

Die Erfindung umfasst die allgemeine technische Lehre, die Anschlussteile an dem Widerstand seitlich freiliegend anzuordnen, so dass die Anschlussteile seitlich sichtbar von einem Lot benetzbar sind, um eine Sichtkontrolle der jeweiligen Lötverbindung zu ermöglichen.The invention includes the general technical teaching of laterally exposing the connection parts to the resistor so that the connection parts can be visibly wetted laterally by a solder in order to allow a visual inspection of the respective solder connection.

Der erfindungsgemäße Widerstand ist vorzugsweise als SMD-Widerstand ausgebildet und ermöglicht eine herkömmliche Oberflächenmontage. Die Erfindung ist jedoch nicht auf SMD-Widerstände beschränkt, sondern umfasst grundsätzlich auch andere Widertandstypen, die beispielsweise eine herkömmliche Kontaktierung durch Lötpins vorsehen.The resistor according to the invention is preferably designed as an SMD resistor and allows conventional surface mounting. However, the invention is not limited to SMD resistors, but basically also includes other types of Widertand, for example, provide a conventional contact with solder pins.

Weiterhin weist der erfindungsgemäße Widerstand ein flächiges, metallisches Trägerelement auf, das aufgrund seiner metallischen Materialzusammensetzung eine gute Wärmeleitfähigkeit und einen angepassten Wärmeausdehnungskoeffizienten aufweist, was im Betrieb des erfindungsgemäßen Widerstands vorteilhaft ist.Furthermore, the resistor according to the invention has a flat, metallic carrier element, which has a good thermal conductivity and an adapted coefficient of thermal expansion due to its metallic material composition, which is advantageous in the operation of the resistor according to the invention.

Darüber hinaus weist der erfindungsgemäße Widerstand ein flächiges Widerstandselement aus einem Widerstandsmaterial auf, wobei das Widerstandselement auf der Unterseite des flächigen Trägerelements angeordnet ist.Moreover, the resistor according to the invention has a planar resistance element made of a resistance material, wherein the resistance element is arranged on the underside of the flat carrier element.

Der im Rahmen der Erfindung verwendete Begriff eines flächigen Widerstandselements bzw. Trägerelements ist allgemein zu verstehen und nicht auf die mathematisch-geometrische Definition einer Fläche beschränkt. Vorzugsweise stellt dieses Merkmal jedoch darauf ab, dass die seitliche Ausdehnung des Trägerelements bzw. des Widerstandselements wesentlich größer ist als die Dicke des Trägerelements bzw. Widerstandselements. Darüber hinaus umfasst dieses Merkmal vorzugsweise auch, dass die Oberseite und die Unterseite des Trägerelements bzw. Widerstandselements jeweils parallel zueinander verlaufen. Ferner sind das Trägerelement und das Widerstandselement vorzugsweise eben, jedoch sind auch gekrümmte und gebogene Formgebungen für das Trägerelement und das Widerstandselement möglich.The term used in the context of the invention of a flat resistive element or carrier element is to be understood generally and is not limited to the mathematical-geometric definition of a surface. However, this feature is preferably based on the fact that the lateral extent of the carrier element or of the resistance element is substantially greater than the thickness of the carrier element or resistance element. In addition, this feature preferably also includes that the top side and the bottom side of the carrier element or resistance element respectively extend parallel to one another. Furthermore, the support element and the resistance element are preferably flat, but also curved and curved shapes for the support element and the resistance element are possible.

Darüber hinaus weist der erfindungsgemäße Widerstand mindestens zwei getrennte metallische Anschlussteile auf, die das Widerstandselement elektrisch kontaktieren und teilweise an der Unterseite des Trägerelements angeordnet sind. Im Gegensatz zu dem eingangs beschriebenen bekannten SMD-Widerstand gemäß Figur 5 sind die Anschlussteile jedoch nicht vollständig an der Unterseite angeordnet, sondern liegen zumindest teilweise seitlich an dem Widerstand frei, so dass sich beim Festlöten seitlich sichtbare Lötstellen bilden, die eine einfache Sichtkontrolle ermöglichen.In addition, the resistor according to the invention has at least two separate metallic connecting parts, which electrically contact the resistance element and are arranged partially on the underside of the carrier element. In contrast to the known SMD resistor described in the introduction FIG. 5 However, the connection parts are not completely arranged on the bottom, but are at least partially laterally free of the resistor, so that form during soldering laterally visible solder joints, which allow easy visual inspection.

Hierbei reichen die metallischen Anschlussteile jeweils seitlich an dem Widerstand nach oben bis zu dem metallischen Trägerelement, wo die Anschlussteile das Trägerelement berühren und elektrisch und thermisch kontaktieren. Beispielsweise können die Anschlussteile jeweils einen U-förmigen Querschnitt aufweisen und den Widerstand an gegenüberliegenden Kanten jeweils kappenförmig umgreifen, wobei auch eine seitliche Metallisierung im Kontaktbereich möglich ist.In this case, the metallic connecting parts in each case extend laterally upwards on the resistor up to the metallic carrier element, where the connecting parts contact the carrier element and contact it electrically and thermally. For example, the connection parts can each have a U-shaped cross section have and embrace the resistor at opposite edges in each case cap-shaped, wherein a lateral metallization in the contact area is possible.

Das metallische Trägerelement hat jedoch bei dem erfindungsgemäßen Widerstand nur die Funktion eines Trägers und eines Wärmeleiters, wohingegen das Trägerelement bei dem erfindungsgemäßen Widerstands kein Stromleiter sein soll, um einen unerwünschten Nebenschluss über das metallische Trägerelement zu vermeiden. Erfindungsgemäß weist das metallische Trägerelement deshalb bei dem erfindungsgemäßen Widerstand einen Einschnitt auf, der das Trägerelement in mindestens zwei elektrisch voneinander isolierte Teile aufteilt und einen Stromfluss über das Trägerelement zwischen den beiden Anschlussteilen verhindert. In der einfachsten Form kann der Einschnitt in der gleichen Weise ausgebildet sein wie bei dem bekannten SMD-Widerstand gemäß Figur 4, bei dem die Widerstandsschicht jedoch an der Oberseite des Trägers angeordnet ist. Vorzugsweise verläuft der Einschnitt in dem Trägerelement jedoch mindestens teilweise schräg, beispielsweise V-förmig, W-förmig oder mäanderförmig. Eine derartige Formgebung des Einschnitts in dem Trägerelement führt vorteilhaft zu einer größeren mechanischen Stabilität des Widerstands als bei einem quer verlaufenden Einschnitt.However, in the case of the resistor according to the invention, the metallic carrier element only has the function of a carrier and of a heat conductor, whereas in the case of the resistor according to the invention the carrier element should not be a current conductor in order to avoid an undesired shunt across the metallic carrier element. According to the invention, therefore, the metallic carrier element in the resistor according to the invention has an incision which divides the carrier element into at least two electrically isolated parts and prevents current flow through the carrier element between the two connecting parts. In the simplest form, the incision may be formed in the same way as in the known SMD resistor according to FIG FIG. 4 However, in which the resistance layer is arranged at the top of the carrier. Preferably, however, the incision in the carrier element runs at least partially obliquely, for example V-shaped, W-shaped or meandering. Such a shaping of the incision in the carrier element advantageously leads to a greater mechanical stability of the resistance than in the case of a transverse incision.

Weiterhin sind die Anschlussteile bei dem erfindungsgemäßen Widerstands vorzugsweise in ihrer Größe an Standard-Lötpads angepasst, wodurch sich der erfindungsgemäße Widerstand von dem bekannten SMD-Widerstand gemäß Figur 4 unterscheidet, bei dem die Anschlussteile eine wesentlich größere seitliche Ausdehnung aufweisen. Bei dem erfindungsgemäßen Widerstand weisen die Anschlussteile deshalb vorzugsweise eine seitliche Ausdehnung auf, die kleiner ist als 30%, 20% oder 15% des Abstands zwischen den beiden Anschlussteilen. Bei einer extremen Miniaturisierung des erfindungsgemäßen Widerstands führt eine relative Bemessung der Anschlussteile relativ zu dem Abstand zwischen.den Anschlussteilen dagegen zu übermäßig kleinen Anschlussteilen. Als Maximalwerte für die seitliche Ausdehnung der Anschlussteile können dann Grenzwerte von 1mm, 0,5mm oder 0,1mm vorgegeben werden. Beispielsweise können die streifenförmigen Anschlussteile eine Breite im Bereich von 0, 1-0, 3mm (Bauform 0402), 0, 15-0, 40mm (Bauform 0603), 0,25-0,75mm (Bauform 1206) oder 0,35-0,85mm (Bauform 2512) aufweisen.Furthermore, the connection parts in the resistor according to the invention are preferably adapted in size to standard solder pads, resulting in the inventive resistance of the known SMD resistor according to FIG. 4 differs in which the connecting parts have a much larger lateral extent. In the case of the resistor according to the invention, the connecting parts therefore preferably have a lateral extent which is less than 30%, 20% or 15% of the distance between the two connecting parts. At an extreme Miniaturization of the resistor according to the invention results in a relative sizing of the connection parts relative to the distance between the connection parts, however, to excessively small connection parts. Limit values of 1mm, 0.5mm or 0.1mm can then be specified as maximum values for the lateral expansion of the connection parts. For example, the strip-shaped connecting parts can have a width in the range of 0, 1-0, 3 mm (design 0402), 0, 15-0, 40 mm (design 0603), 0.25-0.75 mm (design 1206) or 0.35- 0.85 mm (type 2512).

Vorzugsweise besteht das Widerstandsmaterial des erfindungsgemäßen Widerstands aus einer Kupfer-Mangan-Legierung, wie beispielsweise einer Kupfer-Mangan-Nickel-Legierung. Beispielsweise können die Legierungen CuMn12Ni, CuMn7Sn oder CuMn3 als Widerstandsmaterial eingesetzt werden. Alternativ besteht im Rahmen der Erfindung die Möglichkeit, dass als Widerstandsmaterial eine Nickel-Chrom-Legierung, insbesondere eine Nickel-Chrom-Aluminium-Legierung eingesetzt wird. Beispiele derartiger möglicher Legierungen sind NiCr20AlSilMnFe, NiCr6015, NiCr8020 und NiCr3020. Darüber hinaus kann das Widerstandselement auch aus einer Kupfer-Nickel-Legierung, wie beispielsweise CuNi15 oder CuNi10, bestehen. Die Erfindung ist jedoch hinsichtlich der einsetzbaren Widerstandsmaterialien nicht auf die vorstehend genannten Beispiele beschränkt, sondern grundsätzlich auch mit anderen Widerstandsmaterialien realisierbar.Preferably, the resistance material of the resistor according to the invention consists of a copper-manganese alloy, such as a copper-manganese-nickel alloy. For example, the alloys CuMn12Ni, CuMn7Sn or CuMn3 can be used as resistance material. Alternatively, it is within the scope of the invention, the possibility that a nickel-chromium alloy, in particular a nickel-chromium-aluminum alloy is used as the resistance material. Examples of such possible alloys are NiCr20AlSilMnFe, NiCr6015, NiCr8020 and NiCr3020. In addition, the resistance element may also consist of a copper-nickel alloy, such as CuNi15 or CuNi10. However, the invention is not limited to the examples mentioned above with regard to the usable resistance materials, but in principle also with other resistance materials feasible.

Ferner ist zu erwähnen, dass der erfindungsgemäße Widerstand vorzugsweise einen hohen Miniaturisierungsgrad aufweist. Beispielsweise kann die Dicke.des erfindungsgemäßen Widerstands kleiner als 2mm, 1mm, 0,5mm oder sogar 0,3mm sein. Die Länge des erfindungsgemäßen Widerstands kann kleiner als 10mm, 5mm, 2mm oder sogar kleiner als 1mm sein. Die Breite des erfindungsgemäßen Widerstands ist dagegen vorzugsweise kleiner als 5mm, 2mm oder sogar kleiner als 1mm.It should also be mentioned that the resistor according to the invention preferably has a high degree of miniaturization . For example, the thickness of the resistor according to the invention may be less than 2mm, 1mm, 0.5mm or even 0.3mm. The length of the resistor according to the invention may be less than 10mm, 5mm, 2mm or even less than 1mm. The width of the invention Resistance, on the other hand, is preferably less than 5mm, 2mm or even less than 1mm.

Entsprechend weist das Trägerelement bei dem erfindungsgemäßen Widerstand vorzugsweise eine Dicke auf, die im Bereich von 0,05-0,3mm liegt.Accordingly, in the case of the resistor according to the invention, the carrier element preferably has a thickness which is in the range of 0.05-0.3 mm.

Weiterhin ist zu erwähnen, dass der Widerstand an seiner Außenseite vorzugsweise mit einer temperaturbeständigen Isolationsschicht (im Folgenden allgemein als Lötstopplack bezeichnet) beschichtet ist, was von herkömmlichen SMD-Widerständen bekannt ist. Der Lötstopplack ist deshalb bei dem erfindungsgemäßen Widerstand vorzugsweise auf die Oberseite des Trägerelements und auf die Unterseite des Widerstandselements aufgebracht.It should also be mentioned that the resistor on its outside is preferably coated with a heat-resistant insulating layer (hereinafter generally referred to as solder resist), which is known from conventional SMD resistors. The solder resist is therefore preferably applied in the resistor according to the invention on the upper side of the support member and on the underside of the resistive element.

Darüber hinaus ist zu erwähnen, dass die Anschlussteile vorzugsweise aus einem hochleitfähigen Material bestehen, um einen möglichst geringen Anschlusswiderstand zu erreichen. Darüber hinaus bestehen das Trägerelement und/oder die Anschlussteile bei dem erfindungsgemäßen Widerstand vorzugsweise aus einem thermisch hochleitfähigen Material, um eine effektive Wärmeabfuhr von dem Widerstandselement zu erreichen. Beispielsweise können die Anschlussteile und/oder das Trägerelement hierzu aus Kupfer oder einer Kupferlegierung bestehen.In addition, it should be mentioned that the connection parts are preferably made of a highly conductive material in order to achieve the lowest possible connection resistance. Moreover, in the case of the resistor according to the invention, the carrier element and / or the connecting parts are preferably made of a highly thermally conductive material in order to achieve effective heat removal from the resistance element. For example, the connection parts and / or the support element for this purpose may consist of copper or a copper alloy.

Die einzelnen Anschlussteile sind vorzugsweise kappenförmig und können im Querschnitt beispielsweise U-förmig sein. Bei einem derartigen kappenförmigen Anschlussteil mit einem U-förmigen Querschnitt umgreift der obere Schenkel des Anschlussteils das Trägerelement oben, während der untere Schenkel des U-förmigen Anschlussteils das Widerstandselement unten umgreift. Bei einem derartigen kappenförmigen Anschlussteil ist vorzugsweise vorgesehen, dass die kappenförmigen Anschlussteile das Trägerelement und/oder das Widerstandselement nicht nur oben bzw. unten umgreifen, sondern auch seitlich. Dies ist möglich, wenn die kappenförmigen Anschlussteile, erst dann aufgebracht werden, wenn die Widerstände im Rahmen des erfindungsgemäßen Herstellungsverfahrens von dem Nutzen abgetrennt sind, da erst dann die seitlichen Schnittflächen der vereinzelten Widerstände frei liegen.The individual connecting parts are preferably cap-shaped and can be U-shaped in cross-section, for example. In such a cap-shaped connecting part with a U-shaped cross section, the upper leg of the connecting part surrounds the carrier element above, while the lower leg of the U-shaped connecting part engages around the resistance element below. In such a cap-shaped connecting part is preferably provided that the cap-shaped connecting parts engage around the support element and / or the resistance element not only above or below, but also laterally. This is possible if the cap-shaped connection parts, only be applied when the resistors are separated from the benefits in the context of the manufacturing method according to the invention, since only then the lateral cut surfaces of the isolated resistors are exposed.

Ferner ist zu erwähnen, dass auch bei dem erfindungsgemäßen Widerstand vorzugsweise eine Kleberschicht zwischen dem flächigen Widerstandselement und dem flächigen Trägerelement angeordnet ist. Zum einen fixiert die Kleberschicht das flächige Widerstandselement an der Unterseite des Trägerelements. Zum anderen ist die Kleberschicht elektrisch isolierend und verhindert deshalb störende elektrische Nebenschlüsse über das metallische Trägerelement.It should also be mentioned that, even in the case of the resistor according to the invention, an adhesive layer is preferably arranged between the planar resistance element and the planar carrier element. On the one hand, the adhesive layer fixes the planar resistance element on the underside of the carrier element. On the other hand, the adhesive layer is electrically insulating and therefore prevents disturbing electrical shunts on the metallic support element.

Weiterhin ist das flächige Widerstandselement bei dem erfindungsgemäßen Widerstand vorzugsweise ätztechnisch oder in sonstiger Weise (z.B. durch Laser-Bearbeitung) strukturiert, so dass das Widerstandselement eine einfache rechteckige oder mäanderförmig verlaufende Widerstandsbahn aufweist, wie es auch bei den eingangs beschriebenen bekannten SMD-Widerständen der Fall ist.Furthermore, in the case of the resistor according to the invention, the planar resistance element is preferably etched or otherwise structured (eg by laser machining) so that the resistance element has a simple rectangular or meandering resistance path, as is the case with the known SMD resistors described above is.

Der erfindungsgemäße Widerstand ermöglicht vorteilhaft niedrige Widerstandswerte im Milliohmbereich, wobei der Widerstand kleiner als 500mΩ, 200mΩ, 50mΩ, 30mΩ, 20mΩ, 10mΩ, 5mΩ oder sogar kleiner als 1mΩ sein kann.The resistor according to the invention advantageously enables low resistance values in the milliohm range, the resistance being less than 500mΩ, 200mΩ, 50mΩ, 30mΩ, 20mΩ, 10mΩ, 5mΩ or even less than 1mΩ.

Weiterhin ist zu, erwähnen, dass das Widerstandselement bei dem erfindungsgemäßen Widerstand vorzugsweise vollständig nach außen elektrisch isoliert ist, sofern man von den Anschlussteilen absieht.Furthermore, it should be mentioned that the resistance element is preferably complete in the case of the resistor according to the invention is electrically insulated to the outside, if one disregards the connection parts.

Die Erfindung umfasst jedoch nicht nur den vorstehend beschriebenen erfindungsgemäßen Widerstand, sondern auch ein entsprechendes Herstellungsverfahren, bei dem die Anschlussteile an dem Widerstand so angebracht werden, dass die Anschlussteile seitlich frei liegen und seitlich sichtbar von einem Lot benetzbar sind, um eine Sichtkontrolle der jeweiligen Lötstelle zu ermöglichen.However, the invention includes not only the resistor according to the invention described above, but also a corresponding manufacturing method, in which the connection parts are attached to the resistor so that the connection parts are exposed laterally and are visibly wettable by a solder, for a visual inspection of the respective solder joint to enable.

Der vorstehend beschriebene Einschnitt in dem metallischen Trägerelement kann im Rahmen des erfindungsgemäßen Herstellungsverfahren beispielsweise ätztechnisch oder durch eine Laserbearbeitung hergestellt werden. 'The incision in the metallic carrier element described above can be produced in the context of the production method according to the invention, for example by etching or by laser processing. '

Das gleiche gilt für die Strukturierung des Widerstandselements zur Ausbildung der mäanderförmigen Widerstandsbahn, die ebenfalls ätztechnisch oder durch Laserbearbeitung erfolgen kann.The same applies to the structuring of the resistance element for the formation of the meander-shaped resistance path, which can also be done by etching or laser machining.

Weiterhin ist zu dem erfindungsgemäßen Herstellungsverfahren zu erwähnen, dass die Vereinzelung der Widerstände durch Sägen, Stanzen oder durch Laserschneiden von einem Nutzen verfolgen kann. Bei einer Fertigung des Trägerelements aus Kupfer ermöglicht die Erfindung vorteilhaft eine längere Standzeit des verwendeten Sägeblattes, da Kupfer wesentlich weicher ist als das bei dem eingangs beschriebenen bekannten SMD-Widerstand gemäß Figur 5 verwendete eloxierte Aluminium.Furthermore, mention should be made of the production method according to the invention that the separation of the resistances by sawing, punching or by laser cutting can be of use. In a production of the support member made of copper, the invention advantageously allows a longer life of the saw blade used, since copper is much softer than that in the known SMD resistor described in the introduction FIG. 5 used anodized aluminum.

Darüber hinaus ermöglicht die Erfindung vorteilhaft die Durchführung eines Widerstandsabgleichs an einem Nutzen mit mehreren, noch nicht vereinzelten Widerständen, so dass nach der Vereinzelung der Widerstände kein Widerstandsabgleich mehr erforderlich ist.In addition, the invention advantageously makes it possible to carry out a resistance compensation on a utility with a plurality of resistors that have not yet been isolated, so that after the separation of the resistors no resistance compensation is required.

Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet oder werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Figuren näher erläutert. Es zeigen:

Figur 1
eine Perspektivansicht eines erfindungsgemäßen SMD-Widerstands,
Figuren 2A-2G
verschiedene Fertigungsstadien eines erfindungsgemäßen SMD-Widerstands,
Figur 3
das erfindungsgemäße Herstellungsverfahren in Form eines Flussdiagramms,
Figur 4
den eingangs beschriebenen bekannten SMD-Widerstand in einer Perspektivansicht, sowie
Figur 5
eine Perspektivansicht des ebenfalls eingangs beschriebenen bekannten SMD-Widerstands.
Other advantageous developments of the invention are characterized in the subclaims or are explained in more detail below together with the description of the preferred embodiments of the invention with reference to FIGS. Show it:
FIG. 1
a perspective view of an SMD resistor according to the invention,
Figures 2A-2G
various stages of manufacture of an SMD resistor according to the invention,
FIG. 3
the manufacturing method according to the invention in the form of a flow chart,
FIG. 4
the well-known SMD resistor described above in a perspective view, as well as
FIG. 5
a perspective view of the well-known SMD resistor also described above.

Die Querschnittsansicht in Figur 1 zeigt einen erfindungsgemäßen SMD-Widerstand 18, der beispielsweise die Bauform 0604 haben kann. Dies bedeutet, dass der SMD-Widerstand 18 in X-Richtung eine Länge von 0,06 Zoll (1,524mm) und eine Breite in Z-Richtung.von 0,04 Zoll (1,016mm) hat. Weiterhin kann der SMD-Widerstand 18 eine Dicke in Y-Richtung von z.B. 0,4mm haben.The cross-sectional view in FIG. 1 shows an inventive SMD resistor 18, which may have, for example, the design 0604. This means that the SMD resistor 18 in the X direction has a length of 0.06 inches (1.524 mm) and a width in the Z direction of 0.04 inches (1.016 mm). Furthermore, the SMD resistor 18 may have a thickness in the Y direction of, for example, 0.4 mm.

Der SMD-Widerstand 18 weist ein plattenförmiges Trägerelement 19 aus Kupfer auf, wobei an der Unterseite des Trägerelements 19 mittels einer Kleberschicht 20 eine Widerstandsschicht 21 aus einer Kupfer-Mangan-Nickel-Legierung (CuMn12Ni) festgeklebt ist. Zum einen bewirkt die Kleberschicht 20 eine Fixierung der Widerstandsschicht 21 an der Unterseite des plattenförmigen Trägerelements 19. Zum anderen ist die Kleberschicht 20 elektrisch isolierend und isoliert deshalb das leitfähige Trägerelement 19 gegenüber der Widerstandsschicht 21.The SMD resistor 18 has a plate-shaped carrier element 19 made of copper, wherein on the underside of the carrier element 19 by means of an adhesive layer 20, a resistance layer 21 is glued from a copper-manganese-nickel alloy (CuMn12Ni). On the one hand, the adhesive layer 20 effects a fixation of the resistance layer 21 on the underside of the plate-shaped carrier element 19. On the other hand, the adhesive layer 20 is electrically insulating and therefore insulates the conductive carrier element 19 from the resistance layer 21.

Weiterhin weist der SMD-Widerstand 18 seitlich jeweils kappenförmige Anschlussteile 22, 23 auf, wobei die beiden Anschlussteile 22, 23 das Trägerelement 19 und die Widerstandsschicht 21 oben, seitlich und unten umgreifen. Die beiden Anschlussteile 22, 23 kontaktieren also die Widerstandsschicht 21 elektrisch, so dass im montierten Zustand ein Strom über die beiden Anschlussteile 22, 23 und die Widerstandsschicht 21 fließen kann.Furthermore, the SMD resistor 18 laterally each cap-shaped connecting parts 22, 23, wherein the two connection parts 22, 23 surround the support member 19 and the resistance layer 21 above, laterally and below. The two connection parts 22, 23 thus contact the resistance layer 21 electrically, so that in the mounted state a current can flow via the two connection parts 22, 23 and the resistance layer 21.

In dem plattenförmigen Trägerelement 19 befindet sich ein im wesentlichen V-förmiger Einschnitt 24, der das Trägerelement 19 in zwei Teile 19.1, 19.2 aufteilt, wobei die beiden Teile 19.1, 19.2 von dem Einschnitt 24 elektrisch gegeneinander isoliert werden. Die Kleberschicht 20 zwischen der Widerstandsschicht 21 und dem plattenförmigen Trägerelement 19 verhindert also in Verbindung mit dem Einschnitt 24 störende elektrische Nebenschlüsse über das Trägerelement 19. Das Trägerelement 19 dient hierbei also lediglich als mechanischer Träger und zur Wärmeableitung, aber nicht zur Stromleitung.In the plate-shaped support member 19 is a substantially V-shaped recess 24, which divides the support member 19 into two parts 19.1, 19.2, wherein the two parts 19.1, 19.2 are electrically isolated from the incision 24 against each other. The adhesive layer 20 between the resistive layer 21 and the plate-shaped support member 19 thus prevents in connection with the incision 24 interfering electrical shunts on the support member 19. The support member 19 thus serves only as a mechanical support and heat dissipation, but not to the power line.

Schließlich ist noch zu erwähnen, dass auf die Oberseite des Trägerelements 19 zwischen den beiden Anschlussteilen 22, 23 flächig ein Lötstopplack 25 aufgetragen ist. Darüber hinaus ist auch auf die Unterseite der Widerstandsschicht 21 zwischen den beiden Anschlussteilen 22, 23 flächig ein Lötstopplack 26 aufgetragen. Die Widerstandsschicht 21 ist also in dem SMD-Widerstand 18 bis auf die Anschlussteile 22, 23 vollständig nach außen isoliert.Finally, it should be mentioned that on the top of the support member 19 between the two connection parts 22, 23 a Lötstopplack 25 is applied areally. In addition, a solder resist 26 is also applied to the underside of the resistance layer 21 between the two connection parts 22, 23 in a planar manner. The resistance layer 21 is thus in the SMD resistor 18 except for the connection parts 22, 23 completely outwardly insulated.

Im Folgenden wird nun anhand der Figuren 2A-2G und anhand des Flussdiagramms gemäß Figur 3 das erfindungsgemäße Herstellungsverfahren beschrieben, wobei die Figuren 2A-2G verschiedene Zwischenstadien des erfindungsgemäßen SMD-Widerstands 18 zeigen.The following will now be based on the Figures 2A-2G and with reference to the flowchart of FIG FIG. 3 the production process according to the invention described, wherein the Figures 2A-2G show various intermediate stages of the SMD resistor 18 according to the invention.

In einem ersten Schritt S1 des erfindungsgemäßen Herstellungsverfahren wird zunächst das Trägerelement 19 in Form einer Kupfer-Folie bereitgestellt, wie in Figur 2A dargestellt ist.In a first step S1 of the production method according to the invention, the carrier element 19 is initially provided in the form of a copper foil, as in FIG FIG. 2A is shown.

In einem weiteren Schritt S2 wird dann auf die Unterseite des Trägerelements 19 die Widerstandsschicht 21 aufgeklebt, wobei die Verklebung mittels der Kleberschicht 20 erfolgt, wie aus Figur 2B ersichtlich ist.In a further step S2, the resistance layer 21 is then glued to the underside of the carrier element 19, wherein the bonding takes place by means of the adhesive layer 20, as shown FIG. 2B is apparent.

Im nächsten Schritt S3 wird dann der Einschnitt 24 in das Trägerelement 19 eingebracht, um später einen elektrischen Nebenschluss über das elektrisch leitfähige Trägerelement 19 zu verhindern. Die Erzeugung des Einschnitts 24 kann beispielsweise ätztechnisch oder durch eine Laserbearbeitung erfolgen. Der Schritt S3 führt zu dem Zwischenstadium gemäß Figur 2C.In the next step S3, the incision 24 is then introduced into the carrier element 19 in order to prevent an electrical shunt via the electrically conductive carrier element 19 later. The generation of the incision 24 can be made, for example, by etching or by laser processing. Step S3 leads to the intermediate stage according to FIG. 2C.

In dem Schritt S4 wird dann auf die Oberseite des Trägerelements 19 ein Lötstopplack aufgebracht, was an sich bekannt ist.In step S4, a solder resist is then applied to the upper side of the carrier element 19, which is known per se.

In einem weiteren Schritt S5 erfolgt dann eine ätztechnische Strukturierung der Widerstandsschicht 21, die dann anschließend eine mäanderförmige Widerstandsbahn bildet.In a further step S5, an etching-technical structuring of the resistance layer 21 takes place, which then subsequently forms a meander-shaped resistance path.

In dem Schritt S6 wird dann der Lötstopplack 26 auf die Unterseite der Widerstandsschicht 21 aufgebracht, wie aus Figur 2D ersichtlich ist.In step S6, the solder resist 26 is then applied to the underside of the resistive layer 21, as shown FIG. 2D is apparent.

In den nächsten Schritten S7 und S8 erfolgt dann eine streifenförmige Freilegung des Trägerelements 19 an den in X-Richtung gegenüberliegenden Kanten des SMD-Widerstands 18, damit anschließend die Anschlussteile 22, 23 das Trägerelement 19 thermisch kontaktieren können. Die Querschnittsansicht in Figur 2E zeigt diesen Zustand nach der streifenförmigen Freilegung des Trägerelements.In the next steps S7 and S8, a strip-like exposure of the carrier element 19 then takes place at the edges of the SMD resistor 18 which are opposite in the X direction, so that subsequently the connection parts 22, 23 can contact the carrier element 19 thermally. The cross-sectional view in Figure 2E shows this state after the strip-like exposure of the support element.

Anschließend erfolgt dann in einem Schritt S9 die Aufbringung einer Kupferschicht mit einer Dicke von z.B. 10µm auf die freiliegenden Kanten der Widerstandsschicht 21 an deren Unterseite.Then, in a step S9, the deposition of a copper layer having a thickness of e.g. 10μm on the exposed edges of the resistive layer 21 at the bottom thereof.

Im nächsten Schritt S10 erfolgt dann an einem Nutzen mit zahlreichen, noch nicht vereinzelten SMD-Widerständen ein Widerstandsabgleich.In the next step S10 then takes place at a benefit with numerous, not yet isolated SMD resistors, a resistance balance.

Nach dem Widerstandsabgleich werden dann von dem Nutzen in einem Schritt S11 die einzelnen SMD-Widerstände 18 abgetrennt, was durch Zersägen, Stanzen oder durch Laserbearbeitung erfolgen kann.After the resistance adjustment, the individual SMD resistors 18 are then separated from the use in a step S11, which can be done by sawing, punching or laser machining.

In einem letzten Schritt S12 werden dann die Anschlussteile 22, 23 als Lötkappen auf die freigelegten Kanten aufgebracht. Diese Aufbringung der Anschlussteile 22, 23 nach der Vereinzelung des SMD-Widerstands 18 ermöglicht es, dass die Anschlussteile 22, 23 das Trägerelement 19 auch seitlich an den Schnittflächen umgreifen, wie aus der Perspektivansicht in Figur 1 ersichtlich ist.In a last step S12, the connecting parts 22, 23 are then applied as soldering caps to the exposed edges. This application of the connection parts 22, 23 after the separation of the SMD resistor 18 makes it possible for the connection parts 22, 23 to later surround the support element 19 laterally at the cut surfaces, as shown in the perspective view in FIG FIG. 1 is apparent.

Figur 2G zeigt schließlich den erfindungsgemäßen SMD-Widerstand 18 auf einer Leiterplatte 27 mit zwei Standard-Lötpads 28, 29 und zwei Lötstellen 30, 31. Aus der Querschnittsansicht ist ersichtlich, dass die Lötstellen 30, 31 seitlich an dem SMD-Widerstand 18 frei liegen und deshalb einer Sichtkontrolle zugänglich sind. FIG. 2G Finally, the SMD resistor 18 according to the invention on a circuit board 27 with two standard solder pads 28, 29 and two solder joints 30, 31. From the cross-sectional view it can be seen that the solder joints 30, 31 are exposed laterally on the SMD resistor 18 and therefore a visual inspection are accessible.

Die Erfindung ist nicht auf die vorstehend beschriebenen bevorzugten Ausführungsbeispiele beschränkt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen möglich, die in den Schutzbereich fallen, der durch die unabhängigen Ansprüche 1 und 15 definiert ist.The invention is not limited to the preferred embodiments described above. Rather, a variety of variants and modifications are possible, which fall within the scope defined by the independent claims 1 and 15.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
SMD-Wi-derstandSMD Wi-resistor
22
Trägercarrier
2.1, 2.22.1, 2.2
Trägerelementesupport elements
33
Kleberschichtadhesive layer
44
Widerstandsbahnresistance path
55
Schutzlackprotective lacquer
66
Einschnittincision
77
Lötpadsolder pad
88th
Lötpadsolder pad
99
SMD-WiderstandSMD resistor
1010
Trägercarrier
1111
Kleberschichtadhesive layer
1212
Widerstandsschichtresistance layer
1313
KupferkontaktierungenKupferkontaktierungen
14, 1514, 15
Anschlussteileconnectors
16, 1716, 17
SchutzlackschichtProtective lacquer layer
1818
SMD-WiderstandSMD resistor
1919
Trägerelementsupport element
19.1, 19.219.1, 19.2
Teileparts
2020
Kleberschichtadhesive layer
2121
Widerstandsschichtresistance layer
22, 2322, 23
Anschlussteileconnectors
2424
Einschnittincision
25, 2625, 26
Lötstopplacksolder resist
2727
Leiterplattecircuit board
28, 2928, 29
Standard-LötpadsStandard solder pads
30, 3130, 31
Lötstellensolder joints

Claims (26)

  1. Resistor (18), in particular an SMD resistor, with
    a) a flat, electrically and thermally conductive metal support element (19) with an upper side and an underside,
    b) a flat resistor element (21) made of a resistance material, wherein the resistor element (21) is arranged on the underside of the support element (19),
    c) at least two separate metal connection parts (22, 23), which electrically connect the resistor element (21) and are partially arranged on the underside of the support element (19), wherein
    d) the connection parts (22, 23) are exposed laterally on the resistor (18) and are visible from the side to be wettable by a solder,
    e) the metal connection parts (22, 23) respectively extend upwards laterally on the resistor (18) to the metal support element (19) and touch and electrically and thermally connect the support element (19), and
    f) the support element (19) has an incision (24), which divides the support element (19) into at least two parts (19.1, 19.2) insulated electrically from one another and prevents a current flow via the support element (19) between the two connection parts (22, 23).
  2. Resistor (18) according to claim 1, characterised in that the incision (24) in the support element (19) runs at least partially on an angle.
  3. Resistor (18) according to claim 2, characterised in that the incision (24) runs in a V shape, W shape or meander shape in the support element (19).
  4. Resistor (18) according to one of the preceding claims, characterised in that
    a) the connection parts (22, 23) have a lateral extent, which is smaller than 30%, 20% or 15% of the lateral extent of the resistor (18) to facilitate the connection of standard solder pads (28, 29), and/or
    b) that the connection parts (22, 23) have a lateral extent, which is smaller than 1 mm, 0.5 mm or 0.1 mm to facilitate the connection of standard solder pads (28, 29).
  5. Resistor (18) according to one of the preceding claims, characterised in that the high-resistivity material is one of the following materials:
    a) copper-manganese alloy, in particular copper-manganese-nickel alloy, in particular CuMn12Ni, CuMn7Sn or CuMn3,
    b) nickel-chromium alloy, in particular nickel-chromium-aluminium alloy, in particular NiCr20AlSilMnFe, NiCr6015, NiCr8020, NiCr3020,
    c) copper-nickel alloy, in particular CuNi 15 or CuNi10.
  6. Resistor (18) according to one of the preceding claims, characterised by
    a) a thickness of less than 2 mm, 1 mm, 0.5 mm or 0.3 mm, and/or
    b) a length of less than 10 mm, 5 mm, 2 mm or 1 mm, and/or
    c) a width of less than 5 mm, 2 mm or 1 mm.
  7. Resistor (18) according to one of the preceding claims, characterised in that the support element (19) has a thickness that is less than 0.3 mm and/or more than 0.05 mm.
  8. Resistor (18) according to one of the preceding claims, characterised in that
    a) the support element (19) is coated over the surface of its upper side with a solder resist (25), and/or
    b) that the resistor element (21) is coated over the surface of its underside with a solder resist (26).
  9. Resistor element (21) according to one of the preceding claims, characterised in that
    a) the connection parts (22, 23) are made of copper or a copper alloy, and/or
    b) that the support element (19) is made of copper or a copper alloy.
  10. Resistor (18) according to one of the preceding claims, characterised in that
    a) the individual connection parts (22, 23) engage over the support element (19) at the top and the resistor element (21) at the bottom in a cap-like manner, and/or
    b) the individual connection parts (22, 23) engage over the support element (19) and/or the resistor element (21) laterally in a cap-like manner.
  11. Resistor (18) according to one of the preceding claims, characterised by an adhesive layer (20) between the resistor element (21) and the support element (19).
  12. Resistor (18) according to one of the preceding claims, characterised in that the resistor element (21) has a resistance path in a simple rectangular shape or extending in meander shape.
  13. Resistor (18) according to one of the preceding claims, characterised by a resistance value in the milliohm range, in particular a resistance value of less than 500 mΩ, 200 mΩ, 50 mΩ, 30 mΩ, 20 mΩ, 10 mΩ, 5 mΩ or 1 mΩ.
  14. Resistor (18) according to one of the preceding claims, characterised in that the resistor element (21) is fully electrically insulated to the outside except for the connection parts (22, 23).
  15. Process for the production of resistors, in particular for resistors according to one of the preceding claims, with the following steps:
    a) providing a flat electrically and thermally conductive metal support element (19) with an upper side and an underside,
    b) applying a flat resistor element (21) made of a resistance material onto the underside of the support element (19),
    c) electrically connecting the resistor elements (21) by at least two separate metal connection parts (22, 23), which are arranged partially on the underside of the support element (19), wherein
    d) the connection parts (22, 23) are attached to the resistor (18) so that the connection parts (22, 23) are exposed laterally on the resistor (18) and are visible from the side to be wettable by a solder,
    e) the connection parts (22, 23) are attached to the resistor (18) so that the metal connection parts (22, 23) respectively extend laterally on the resistor (18) upwards to the metal support element (19) and touch and electrically and thermally connect the support element (19), and
    f) an incision (24) is generated in the support element, wherein the incision (24) divides the support element (19) into two parts (19.1, 19.2) and prevents a current flow via the support element (19) between the two connection parts (22, 23).
  16. Production process according to claim 15, characterised in that the incision (24) is created in the support element (19) by etching or by laser machining.
  17. Production process according to claim 15 or 16, characterised in that the incision (24) is formed in the support element (19) at least partially on an angle, in particular in a V shape, W shape or meander shape.
  18. Production process according to one of claims 15 to 17, characterised in that the resistor element (21) is adhered to the underside of the support element (19) by an adhesive layer (20).
  19. Production process according to one of claims 15 to 18, characterised in that the resistor element (21) is structured by etching or by laser machining.
  20. Production process according to claim 19, characterised in that a meander-shaped resistance path is generated in the resistor element (21) as a result of the structuring of the resistor element (21).
  21. Production process according to one of claims 15 to 20, characterised by the following steps:
    a) applying a solder resistor (25) over the surface of the upper side of the support element (19), and/or
    b) applying a solder resist (26) over the surface of the underside of the resistor element (21).
  22. Production process according to claim 21, characterised by the following steps:
    a) removal in a strip of the solder resist (25) on the upper side of the support element (19) on two opposite edges, and/or
    b) removal in a strip of the solder resist (26) on the underside of the resistor element (21) on the opposite edges, and/or
    c) removal in a strip of the adhesive layer (20) between the support element (19) and the resistor element (21) on the opposite edges, and/or
    d) removal in a strip of the resistor element (21) on the underside of the support element (19) on the two opposite edges to expose the resistor element (21) in a strip shape for an electrical connection.
  23. Production process according to one of claims 15 to 22, characterised by the following step:
    isolating the resistors (18) by separation from a panel comprising a plurality of resistors (18).
  24. Production process according to claim 23, characterised in that the resistors (18) are isolated by sawing, stamping or by laser-cutting the panel.
  25. Production process according to one of claims 23 or 24, characterised by the following step:
    conducting a resistance balancing before isolating the resistors (18).
  26. Production process according to one of claims 23 to 25, characterised in that the connection parts (22, 23) are attached after resistance balancing and/or after isolation.
EP07819122A 2006-12-20 2007-10-18 Resistor, particularly smd resistor, and associated production method Active EP1941520B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07819122T PL1941520T3 (en) 2006-12-20 2007-10-18 Resistor, particularly smd resistor, and associated production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006060387A DE102006060387A1 (en) 2006-12-20 2006-12-20 Resistor, in particular SMD resistor, and associated manufacturing method
PCT/EP2007/009057 WO2008055582A1 (en) 2006-12-20 2007-10-18 Resistor, particularly smd resistor, and associated production method

Publications (2)

Publication Number Publication Date
EP1941520A1 EP1941520A1 (en) 2008-07-09
EP1941520B1 true EP1941520B1 (en) 2009-07-08

Family

ID=38950785

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07819122A Active EP1941520B1 (en) 2006-12-20 2007-10-18 Resistor, particularly smd resistor, and associated production method

Country Status (13)

Country Link
US (1) US8013713B2 (en)
EP (1) EP1941520B1 (en)
JP (1) JP5237299B2 (en)
KR (1) KR101371053B1 (en)
CN (1) CN101484952B (en)
AT (1) ATE436077T1 (en)
BR (1) BRPI0720449A2 (en)
CA (1) CA2654216A1 (en)
DE (3) DE102006060387A1 (en)
ES (1) ES2329425T3 (en)
MX (1) MX2009000553A (en)
PL (1) PL1941520T3 (en)
WO (1) WO2008055582A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105374478B (en) * 2009-09-11 2018-04-20 乾坤科技股份有限公司 Micro resistance component
TWM439246U (en) * 2012-06-25 2012-10-11 Ralec Electronic Corp Micro metal sheet resistance
TW201401305A (en) * 2012-06-25 2014-01-01 Ralec Electronic Corp Massive production method of micro metal sheet resistor
US20150076700A1 (en) * 2013-09-18 2015-03-19 Weng Foong Yap System-in-packages containing embedded surface mount devices and methods for the fabrication thereof
DE102015214407A1 (en) * 2015-07-29 2017-02-02 Robert Bosch Gmbh Device for detecting at least one property of a medium and method for adjusting a signal of the device
US10083781B2 (en) * 2015-10-30 2018-09-25 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
WO2017110079A1 (en) 2015-12-22 2017-06-29 パナソニックIpマネジメント株式会社 Resistor
DE102016000751B4 (en) * 2016-01-25 2019-01-17 Isabellenhütte Heusler Gmbh & Co. Kg Manufacturing process for a resistor and corresponding manufacturing plant
DE102016107931A1 (en) * 2016-04-28 2017-11-02 Epcos Ag Electronic component for inrush current limiting and use of an electronic component
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation
JP7216602B2 (en) * 2019-04-17 2023-02-01 Koa株式会社 Current detection resistor
DE102022113553A1 (en) 2022-05-30 2023-11-30 Isabellenhütte Heusler Gmbh & Co. Kg Manufacturing process for an electrical resistor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3027122A1 (en) * 1980-07-17 1982-02-11 Siemens AG, 1000 Berlin und 8000 München Chip-resistor for printed circuit boards - comprise insulating foil carrying contact coated resistor, folded over with contact layer
JPH0429014B2 (en) * 1980-09-24 1992-05-15 Commw Of Australia
JPS57154102U (en) * 1981-03-24 1982-09-28
GB8403968D0 (en) * 1984-02-15 1984-03-21 Heraeus Gmbh W C Chip resistors
US4792781A (en) 1986-02-21 1988-12-20 Tdk Corporation Chip-type resistor
EP0509582B1 (en) 1991-04-16 1996-09-04 Koninklijke Philips Electronics N.V. SMD-resistor
US5179366A (en) * 1991-06-24 1993-01-12 Motorola, Inc. End terminated high power chip resistor assembly
US5379016A (en) 1993-06-03 1995-01-03 E. I. Du Pont De Nemours And Company Chip resistor
DE4339551C1 (en) * 1993-11-19 1994-10-13 Heusler Isabellenhuette Resistor, constructed as a surface-mounted device, and method for its production, as well as a printed circuit board having such a resistor
WO1998011567A1 (en) * 1996-09-13 1998-03-19 Philips Electronics N.V. Thin-film resistor and resistance material for a thin-film resistor
DE19646441A1 (en) 1996-11-11 1998-05-14 Heusler Isabellenhuette Electrical resistance and process for its manufacture
TW424245B (en) * 1998-01-08 2001-03-01 Matsushita Electric Ind Co Ltd Resistor and its manufacturing method
JP4047760B2 (en) * 2003-04-28 2008-02-13 ローム株式会社 Chip resistor and manufacturing method thereof

Also Published As

Publication number Publication date
PL1941520T3 (en) 2009-12-31
BRPI0720449A2 (en) 2014-01-21
CA2654216A1 (en) 2008-05-15
DE202006020215U1 (en) 2008-02-21
DE102006060387A1 (en) 2008-06-26
JP2010514171A (en) 2010-04-30
US20090322467A1 (en) 2009-12-31
EP1941520A1 (en) 2008-07-09
CN101484952B (en) 2011-03-30
DE502007001025D1 (en) 2009-08-20
KR20090096304A (en) 2009-09-10
CN101484952A (en) 2009-07-15
WO2008055582A1 (en) 2008-05-15
US8013713B2 (en) 2011-09-06
JP5237299B2 (en) 2013-07-17
MX2009000553A (en) 2009-01-28
KR101371053B1 (en) 2014-03-10
ATE436077T1 (en) 2009-07-15
ES2329425T3 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
EP1941520B1 (en) Resistor, particularly smd resistor, and associated production method
EP0654799B1 (en) Chip form of surface mounted electrical resistance and its manufacturing method
DE4310288B4 (en) Surface mountable resistor
EP2274749B1 (en) Electronic component and corresponding production method
EP3262667B1 (en) Electrical terminal for a ceramic component, ceramic component, components assembly and method for manufacturing it
EP1713124B1 (en) Power semiconductor module with connecting tracks and with connecting elements connected to the connecting tracks
EP2165204B1 (en) Vehicle battery sensor element and method for producing a motor vehicle battery sensor element
DE102012013036B4 (en) Resistance, in particular low-impedance current measuring resistor, and coating method for this purpose
EP3069582B1 (en) Printed circuit board with at least one embedded precision resistor
EP3929594B1 (en) Device for measuring current intensities and method for manufacturing a device for measuring current intensities
DE202008018126U1 (en) solder connection
DE112009001287T5 (en) resistance
DE102004021054A1 (en) Semiconductor component for a flip-chip structure has contact layers between a semiconductor chip and a chip carrier
EP0841668B1 (en) Electrical resistor and method of manufacturing the same
DE102015112723A1 (en) Current measuring resistor and method for producing the same
EP1313109A2 (en) Surface mount resistor
WO2008022632A1 (en) Electrical component, particularly measuring resistor, and method for the production of such an electrical component
DE102022113553A1 (en) Manufacturing process for an electrical resistor
EP1283528B1 (en) Low impedance electrical resistor and method of making it
DE102008044379A1 (en) Electrical circuit producing method for high-performance application, involves providing wire that extends to separation point provided in separation surface, where electrical contact point in surface is provided at separation point
EP1229558A2 (en) Fabrication of low resistance resistors
EP3537122B1 (en) Electrical temperature sensor
DE3611595A1 (en) Electrical resistor for alternating current and a method for its production
EP1124238B1 (en) Process for connecting contact areas of electric component blanks
DE102022131916A1 (en) Electrical or electronic component and method for its manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080325

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

RIN2 Information on inventor provided after grant (corrected)

Inventor name: HETZLER, ULLRICH

RIN2 Information on inventor provided after grant (corrected)

Inventor name: HETZLER, ULLRICH

REF Corresponds to:

Ref document number: 502007001025

Country of ref document: DE

Date of ref document: 20090820

Kind code of ref document: P

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2329425

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 6198

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091108

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20091009

Year of fee payment: 3

Ref country code: SE

Payment date: 20091026

Year of fee payment: 3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20091002

Year of fee payment: 3

Ref country code: SK

Payment date: 20090922

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091008

BERE Be: lapsed

Owner name: ISABELLENHUTTE HEUSLER G.M.B.H. & CO.KG

Effective date: 20091031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20091103

Year of fee payment: 3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

26N No opposition filed

Effective date: 20100409

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E007293

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091018

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 6198

Country of ref document: SK

Effective date: 20101018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101018

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101019

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20110929

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20111021

Year of fee payment: 5

Ref country code: HU

Payment date: 20111221

Year of fee payment: 5

Ref country code: FI

Payment date: 20111019

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101018

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121018

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121019

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 436077

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R008

Ref document number: 502007001025

Country of ref document: DE

Ref country code: DE

Ref legal event code: R039

Ref document number: 502007001025

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R039

Ref document number: 502007001025

Country of ref document: DE

Effective date: 20141127

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007001025

Country of ref document: DE

Ref country code: DE

Ref legal event code: R040

Ref document number: 502007001025

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231117

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231031

Year of fee payment: 17

Ref country code: FR

Payment date: 20231023

Year of fee payment: 17

Ref country code: DE

Payment date: 20230926

Year of fee payment: 17