EP1936203B1 - Vakuumpumpe mit Lüfter - Google Patents

Vakuumpumpe mit Lüfter Download PDF

Info

Publication number
EP1936203B1
EP1936203B1 EP07022564.4A EP07022564A EP1936203B1 EP 1936203 B1 EP1936203 B1 EP 1936203B1 EP 07022564 A EP07022564 A EP 07022564A EP 1936203 B1 EP1936203 B1 EP 1936203B1
Authority
EP
European Patent Office
Prior art keywords
vacuum pump
section
fan
housing
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07022564.4A
Other languages
English (en)
French (fr)
Other versions
EP1936203A3 (de
EP1936203A2 (de
Inventor
Jürgen Metzger
Stefan Sänger
Jürgen Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP1936203A2 publication Critical patent/EP1936203A2/de
Publication of EP1936203A3 publication Critical patent/EP1936203A3/de
Application granted granted Critical
Publication of EP1936203B1 publication Critical patent/EP1936203B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum

Definitions

  • the invention relates to a vacuum pump for generating coarse or fine vacuum with a housing which gas inlet and gas outlet, a motor and a fan.
  • the invention also relates to a method of operating this vacuum pump for producing coarse or fine vacuum with a housing having gas inlet and outlet, a motor with a motor shaft, and a fan.
  • the WO 03/042542 describes a vacuum pump with an outer housing in which an inner housing containing the pump unit including the engine, gas inlet and gas outlet and axially behind a separate fan with its own motor is arranged. An electronic control unit is placed outside the outer housing.
  • the amount of gas delivered and thus the cooling effect achieved depends inter alia on the speed of the shaft.
  • the heat balance of the vacuum pump is therefore rigidly coupled to the operation of the electric motor.
  • this is often undesirable and makes compromises among other things in the speed position necessary, which may be necessary from the perspective of vacuum technology, for example, to control a process.
  • the object of the invention is therefore to present a cooling system for a vacuum pump, which avoids the disadvantages of the prior art.
  • the fan has its own fan motor, it is possible to adjust the gas flow generated by it independently of the speed of the motor of the vacuum pump. By the fan motor, it is also possible to place the fan at the most favorable for the heat balance location on the vacuum pump.
  • the cooling can thus be fully aligned with the needs and now represents no compromise between vacuum and cooling requirements.
  • the claims 2 to 5 illustrate advantageous developments of the invention.
  • the cooling behavior of the vacuum pump is improved by having its housing in a further development of cooling fins, in which the fan promotes air. This can be achieved by placing it so that its gas stream blows into the space between the cooling fins.
  • This measure can be improved by a hood surrounding at least a part of the vacuum pump and ensures that the gas flow of the fan is directed into the space between the cooling fins.
  • control electronics which contains cool electronic components to be held
  • pumping system in which much heat due to the compression of the gas, each arranged in a separate housing section are. This allows a thermal separation of the areas.
  • the vacuum pump can then be designed in a development that the fan flows against that portion of the housing, which includes the pumping system. As a result, the cooling air is used most effectively for cooling.
  • the vacuum pump with sections housing construction can be further developed such that the section with the control electronics is cooled by free convection.
  • the air flow of the fan can be fully exploited for the cooling of the hot sections of the vacuum pump.
  • the last development relates to the pumping system of the vacuum pump.
  • rotary vane pumps With rotary vane pumps, the advantages of independent cooling from the drive are particularly evident. Since a lubricant is used for lubrication and sealing, unfavorable cooling behavior can lead to its destruction.
  • the first figure shows a vacuum pump, which is constructed of four sections and surrounded by a hood 1.
  • This hood is shown in the figure part a) in the disassembled state, while it is mounted in the imaging part b) on the vacuum pump and surrounds a part of the housing of this vacuum pump.
  • the vacuum pump itself rests on a foot 10.
  • the sections of the vacuum pump contain different functional units.
  • the control section 2 contains the control electronics, which processes the mains voltage for the energization of the coils of the drive.
  • a fan 6 is arranged, which sucks in air and promotes in the space between the housing provided on the cooling ribs 8, whereby a cooling effect is achieved.
  • the suction and conveying effect of the fan is illustrated by the dashed arrows.
  • a peripheral section 4 has the gas connections, ie gas inlet 9 and outlet. At the periphery of the foot 10 is also arranged. This has means, such as elastomer body, with which the vibration transmission between the vacuum pump and the ground is reduced.
  • those components are arranged with which the gas is compressed so far that it can be expelled against the atmosphere.
  • These four sections are arranged axially in succession, wherein the Intermediate section between the peripheral section and control section is located. On the opposite side of the intermediate portion of the peripheral portion of the pump portion is provided.
  • the sections of the vacuum pump are at least partially surrounded by the hood 1. It is designed in the example so that it covers the lower part of the vacuum pump. Below here refers to the direction in which the foot of the vacuum pump is mounted. While it is shaped so that the control and intermediate sections are completely concealed, it is less high in the area of the pump section so that it covers only the lower part.
  • cooling fins 8 are provided, which may also be present in the upper part.
  • the hood covers at least a portion of the cooling fins, so that channels are formed, which are limited by hood, housing and cooling fins. It also hides the fan. So that this air can suck in and then convey into the channels, the hood has an opening. In the example, this is designed as a plurality of ventilation slots 7. The number and shape of the air vents may vary depending on the vacuum pump and the gas flow requirements of the fan.
  • FIG. 2 shows in a vertical section through the vacuum pump the structure of control and intermediate section.
  • the control section 2 has a closed housing which has cooling fins 11. This is cooled by free convection.
  • electronic components are arranged, which form a control electronics 12 and are mounted for example on a circuit board. These electronic components transform a supply voltage such that voltages and currents can be applied in a suitable form to the coils of the drive in order to subsequently achieve a rotation of a drive shaft.
  • the supply voltage can be a standard mains voltage such as 220 V with 50 Hz or one of the common Industrial voltages should be like 48V.
  • Such components of the control electronics which generate heat to a particular extent, can be arranged such that they touch the inner wall of the housing of the control section. This is preferably realized in the region of the cooling fins 11. It is also conceivable to embed the control electronics completely or partially in a potting compound. This also increases the heat dissipation. In addition, this achieves a higher mechanical stability.
  • the intermediate section 3 has several components in its housing.
  • a switch 15 is used to turn on and off the vacuum pump. Other switches can be arranged there, with which, for example, a standby circuit or a speed position can be realized.
  • a socket 16 to which the power supply is connected. This voltage is given on the one hand to the control electronics, on the other hand to a small power supply 17, which supplies via auxiliary electrical line connections an auxiliary electronics 18 with operating voltage. This is used to implement the switching state of the switch 15 in a control signal, which is also given via suitable electrical line connections to the control electronics.
  • the auxiliary electronics also has means by which the fan motor 6a is supplied with voltage and switched on / off. In a development, further communication means are arranged in this intermediate section.
  • switch, plug and socket which are arranged on the housing wall similar to the switch 15. These components are then connected via electrical line connections or the like with an extended auxiliary electronics, which includes, for example, means for operating a fieldbus or serial interface and the like. Status information such as "pump in operation”, current speed or activated standby of the vacuum pump can be queried by external control means via this interface.
  • a seal 14 is provided between the housing of the intermediate portion 3 and the control portion 2. On the one hand, this ensures a seal of the interior against moisture and dust, on the other hand, it represents a thermal barrier, so that the heat input into the control section from the direction of the intermediate section is made more difficult. Such a seal is also provided between the intermediate portion and the peripheral portion 4, so that tightness and difficult heat transfer are also provided here.
  • the fan which has the fan motor and a fan blade 6b. Dashed arrows illustrate the gas flow generated by the fan: air is drawn in and conveyed between the cooling fins 8.
  • Cooling fins 11 can be seen in section. They are oriented with their longitudinal axis in the direction of gravity to optimize the free convection.
  • the cooling fins of the control section are not covered by the hood 1, so as not to hinder the air flow of the free convection.
  • electrical supply lines go through a provided in the intermediate section cable channel to the peripheral section 4. This cable channel is protected at both ends by channel seals 21 and 22 against moisture and heat transfer.
  • a cable bushing 27 is provided on the side of the engine control.
  • the coils 26 of the drive are arranged.
  • the energization of these coils is effected by the control electronics 12.
  • a rotationally symmetrical separating element 23 is provided inside the coils and separates them hermetically from the interior of the separating element. In this projecting end of a shaft 24, are mounted on the permanent magnet 25.
  • dashed arrows illustrate the gas flow generated by the fan.
  • the suction takes place through the ventilation slots 7, the gas is then conveyed in the direction of the peripheral portion.
  • ventilation slots are also arranged in the bottom of the vacuum pump. The foot of the vacuum pump then has the task of creating a distance through which air can be sucked.
  • Figure 3 illustrates that the invention is not limited to a fan alone.
  • a plurality of fans may be provided.
  • two fans are provided in the lower part of the intermediate section, each of them conveying cooling air into the channels mounted on either side of the vacuum pump, in particular the peripheral and pumping sections.
  • Other fans may be arranged to assist in cooling the cooling source to supply heat sources from the vacuum pump with cooling air.
  • a section through the peripheral and the pumping section 5 of the vacuum pump shows Figure 4 ,
  • the example shows a single-stage, lubricant-sealed rotary vane vacuum pump.
  • This has a pumping system 30 in the pump section. This is connected on one end face over a large area with the peripheral section, so that there is a good heat transfer there.
  • the housing of the pumping section 5 is connected in good heat-conducting manner to the peripheral section, so that the heat is transferred from the peripheral section to a body with a large surface area.
  • a provided in this pumping system cylindrical bore is penetrated by the shaft 24 eccentric.
  • the shaft can be made in one or more pieces. It is rotatably supported by a first sliding bearing 31 and a second sliding bearing 32.
  • lubricant derived from the lubricant reservoir 35 surrounding the pumping system.
  • Sliders 33 run around in the cylindrical bore, the scoop space 34 being formed between sliders and wall of the cylindrical bore becomes. Gas passes through the gas inlet 9 in this pump chamber.
  • permanent magnets 25 are fixed, which cooperate with the coils 26 provided in the peripheral portion, whereby the shaft is rotated. Together, permanent magnets and coils form an electric motor.
  • This example is a brushless DC motor.
  • the pump section is in Figure 5 shown in section along AA '. It is clarified in this illustration, the eccentric position of the shaft 24 and the position of the slide 33. Between these springs not shown are provided.
  • the housing of the pump section has cooling ribs 8.
  • the hood 1 covers the cooling fins, whereby flow channels 42 arise. Through these flow channels, which can be interconnected, the gas supplied by the fan flows, absorbs heat from the housing and transports them in the sequence away from the housing. This heat is generated in the pumping system 30 and is discharged via the lubricant reservoir to the housing.
  • the hood is designed so that the channels are open at their end. This is easiest to accomplish, in that the hood does not cover the pump section side end face of the vacuum pump.
  • an intermediate member 40 is arranged, which has, for example, high elastomer components. This provides both a thermal barrier and a reduction in vibration transfer from the pump housing to the hood. Fasteners, such as screws 41, fix the hood.
  • the vacuum pump shown in this embodiment has a favorable heat balance.
  • a first strong heat source is due to the heat of compression in the pump section 5.
  • Another strong heat source is the peripheral portion, since there the coils of the drive are arranged, in which power loss is converted into heat.
  • heat is introduced into the peripheral section via the end face of the pumping system 30, since at this point the pumping system and the peripheral section are in contact with each other over a large area.
  • These heat sources are kept away from the control section by the intermediate section. Due to the order of the sections, the distance is maximized.
  • the thermal resistances of the seals which are provided between the intermediate section and its neighboring sections. These passive measures cause a very favorable heat balance. To these is added the active cooling by the fan (s).
  • This embodiment presents an oil-sealed rotary vane vacuum pump. It is conceivable, however, to adapt the invention to other vacuum pumps for generating coarse or fine vacuum by replacing the pump section. In this pump section then other pumping principles are used. Conceivable pumping principles are, for example, dry reciprocating compressors, dry rotary vane or barrier vane pumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

  • Die Erfindung betrifft eine Vakuumpumpe zur Erzeugung von Grob- oder Feinvakuum mit einem Gehäuse, welches Gaseinlass und Gasauslass aufweist, einem Motor und einem Lüfter. Die Erfindung betrifft außerdem ein Verfahren zum Betrieb dieser Vakuumpumpe zur Erzeugung von Grob- oder Feinvakuum mit einem Gehäuse, welches Gaseinlass und Gasauslass aufweist, einem Motor mit einer Motorwelle, und einem Lüfter.
  • In Vakuumpumpen gibt es einige Wärmequellen, beispielsweise das Pumpsystem, in welchem das Gas verdichtet wird. Diese Wärme darf nicht zu Betriebsstörungen durch Überhitzung von Bauteilen führen. Daher müssen gerade solche Bauteile, die der entstehenden Wärme ausgesetzt sind, ausreichend gekühlt werden. Den gängigen Stand der Technik zeigt die EP-A 1 242 744 . Ein Elektromotor besitzt eine Welle, welche zum Antrieb der pumpaktiven Bauteile des Pumpsystems dient. Auf wenigstens einem der Wellenenden des Elektromotors sitzt ein Lüfterrad, welches Schaufeln aufweist. Durch die Drehung der Welle erzeugen sie einen Gasstrom, der auf die Bauteile der Vakuumpumpe gerichtet ist.
  • Die WO 03/042542 beschreibt eine Vakuumpumpe mit einem äußeren Gehäuse in welchem ein inneres Gehäuse die Pumpeneinheit samt Motor, Gaseinlass und Gasauslass enthält und axial dahinter ein separater Lüfter mit eigenem Motor angeordnet ist. Eine Steuerelektronik ist außerhalb des äußeren Gehäuses platziert.
  • Die Menge des geförderten Gases und damit auch die erzielte Kühlwirkung ist unter anderem abhängig von der Drehzahl der Welle. Der Wärmehaushalt der Vakuumpumpe ist daher starr an den Betrieb des Elektromotors gekoppelt. Dies ist aber oftmals unerwünscht und macht Kompromisse unter anderem bei der Drehzahlstellung notwendig, die aus Sicht der Vakuumtechnik notwendig sein kann, um beispielsweise einen Prozess zu steuern.
  • Die Aufgabe der Erfindung ist es daher, eine Kühlung für eine Vakuumpumpe vorzustellen, die die Nachteile des Standes der Technik vermeidet.
  • Gelöst wird diese Aufgabe durch eine Vakuumpumpe mit den Merkmalen des ersten Anspruchs und durch ein Verfahren mit den Merkmalen des sechsten Anspruchs.
  • Dadurch, dass der Lüfter einen eigenen Lüftermotor aufweist, ist es möglich, den von ihm erzeugten Gasstrom unabhängig von der Geschwindigkeit des Motors der Vakuumpumpe einzustellen. Durch den Lüftermotor ist es zudem möglich, den Lüfter an der für den Wärmehaushalt günstigsten Ort an der Vakuumpumpe zu platzieren. Die Kühlung kann somit vollkommen nach den Bedürfnissen ausgerichtet werden und stellt nunmehr keinen Kompromiss zwischen Vakuum- und Kühlungsanforderungen dar. Das Betriebsverfahren der Vakuumpumpe offenbart, den Lüftermotor mit einer ersten und den Pumpenmotor mit einer zweiten Drehzahl zu betreiben, wobei die Drehzahlen wenigstens zeitweise voneinander verschieden sind. Dies erlaubt es, beispielsweise die Drehzahl der Vakuumpumpe abzusenken und gleichzeitig den vom Lüfter erzeugten Strom an Kühlluft zu steigern. Dies kann beispielsweise beim Abschalten der Vakuumpumpe von Vorteil sein.
  • Die Ansprüche 2 bis 5 stellen vorteilhafte Weiterbildungen der Erfindung dar. Verbessert wird das Kühlverhalten der Vakuumpumpe, indem ihr Gehäuse in einer Weiterbildung Kühlrippen aufweist, in die der Lüfter Luft fördert. Dies kann erreicht werden, indem er so angeordnet wird, dass sein Gasstrom in den Raum zwischen den Kühlrippen hineinbläst.
  • Diese Maßnahme lässt sich verbessern, indem eine Haube wenigstens einen Teil der Vakuumpumpe umgibt und dafür sorgt, dass der Gasstrom des Lüfters in den Raum zwischen den Kühlrippen gelenkt wird.
  • Weitere Vorteile lassen sich für die Kühlung der Vakuumpumpe erzielen, weil der Lüfter in einem eigenen Abschnitt des Gehäuses der Vakuumpumpe angeordnet wird. Dies erlaubt es, den Lüfter nahe an den Bereichen des Gehäuses zu bringen, wo die Kühlung benötigt wird.
  • Für den Wärmehaushalt der Vakuumpumpe und damit auch für die notwendige Kühlung ist es von Vorteil, dass die Steuerelektronik, welche kühl zu haltende elektronische Bauteile beinhaltet, und das Pumpsystem, in welchem viel Wärme aufgrund der Verdichtung des Gases entsteht, jeweils in einem eigenen Gehäuseabschnitt angeordnet sind. Dies ermöglicht eine thermische Trennung der Bereiche.
  • Die Vakuumpumpe kann dann in einer Weiterbildung so gestaltet werden, dass der Lüfter jenen Abschnitt des Gehäuses anströmt, der das Pumpsystem beinhaltet. Dadurch wird die Kühlluft am wirkungsvollsten zur Kühlung genutzt.
  • Die Vakuumpumpe mit abschnittsweisem Gehäuseaufbau lässt sich derart weiterbilden, dass der Abschnitt mit der Steuerelektronik durch freie Konvektion gekühlt wird. Der Luftstrom des Lüfters kann so vollständig für die Kühlung der heißen Abschnitte der Vakuumpumpe ausgenutzt werden.
  • Die letzte Weiterbildung bezieht sich auf das Pumpsystem der Vakuumpumpe. Bei Drehschieberpumpen kommen die Vorteile der vom Antrieb unabhängigen Kühlung besonders zur Geltung. Da ein Schmiermittel zum Schmieren und Dichten eingesetzt wird, kann ein ungünstiges Kühlverhalten zu dessen Zerstörung führen.
  • Anhand eines Ausführungsbeispiels soll die Erfindung näher erläutert werden. Es zeigen:
  • Fig. 1:
    a) seitlicher Blick auf eine mit Haube ausgestattete Vakuumpumpe, demontierter Zustand, b) seitlicher Blick, montiert.
    Fig. 2:
    Senkrechter Schnitt durch Zwischenabschnitt und Steuerungsabschnitt der Vakuumpumpe.
    Fig. 3:
    Waagrechter Schnitt entlang B-B' durch die Vakuumpumpe.
    Fig. 4:
    Senkrechter Schnitt durch Pumpabschnitt und Peripherieabschnitt.
    Fig. 5:
    Schnitt entlang A-A' durch die Vakuumpumpe nach Figur 1.
  • In den nachfolgenden Abbildungen bezeichnen gleiche Ziffern gleiche Teile.
  • Die erste Abbildung zeigt eine Vakuumpumpe, welche aus vier Abschnitten aufgebaut und von einer Haube 1 umgeben ist. Diese Haube ist im Abbildungsteil a) im demontierten Zustand gezeigt, während sie im Abbildungsteil b) an der Vakuumpumpe montiert ist und einen Teil des Gehäuses dieser Vakuumpumpe umgibt. Die Vakuumpumpe selbst ruht auf einem Fuß 10.
  • Die Abschnitte der Vakuumpumpe beinhalten unterschiedliche Funktionseinheiten. Der Steuerungsabschnitt 2 enthält die Steuerelektronik, welche die Netzspannung für die Bestromung der Spulen des Antriebs aufbereitet. In einem Zwischenabschnitt 3 ist ein Lüfter 6 angeordnet, der Luft ansaugt und in den Raum zwischen am Gehäuse vorgesehen Kühlrippen 8 fördert, wodurch eine Kühlwirkung erzielt wird. Die Ansaug- und Förderwirkung des Lüfters ist durch die gestrichelten Pfeile verdeutlicht. Ein Peripherieabschnitt 4 weist die Gasanschlüsse auf, also Gaseinlass 9 und -auslass. Am Peripherieabschnitt ist außerdem der Fuß 10 angeordnet. Dieser weist Mittel auf, beispielsweise Elastomerkörper, mit denen die Schwingungsübertragung zwischen Vakuumpumpe und Boden verringert wird. Im Pumpabschnitt 5 sind diejenigen Bauteile angeordnet, mit denen das Gas so weit verdichtet wird, dass es gegen die Atmosphäre ausgestoßen werden kann. Diese vier Abschnitte sind axial aufeinanderfolgend angeordnet, wobei sich der Zwischenabschnitt zwischen Peripherieabschnitt und Steuerungsabschnitt befindet. Auf der dem Zwischenabschnitt gegenüberliegenden Seite des Peripherieabschnitts ist der Pumpabschnitt vorgesehen.
  • Die Abschnitte der Vakuumpumpe sind zumindest teilweise von der Haube 1 umgeben. Sie ist in dem Beispiel so gestaltet, dass sie den unteren Teil der Vakuumpumpe abdeckt. Unten bezieht sich hier auf die Richtung, in der der Fuß der Vakuumpumpe montiert ist. Während sie so geformt ist, dass Steuerungs- und Zwischenabschnitt vollständig verdeckt sind, ist sie im Bereich der Pumpabschnitts weniger hoch, so dass sie nur den unteren Teil verdeckt. In diesem unteren Teil sind Kühlrippen 8 vorgesehen, wobei diese auch im oberen Teil vorhanden sein können. Die Haube verdeckt wenigstens einen Teil der Kühlrippen, so dass Kanäle entstehen, die durch Haube, Gehäuse und Kühlrippen begrenzt werden. Sie verdeckt außerdem den Lüfter. Damit dieser Luft ansaugen und anschließend in die Kanäle fördern kann, weist die Haube eine Öffnung auf. Im Beispiel ist diese als eine Mehrzahl von Lüftungsschlitzen 7 gestaltet. Zahl und Form der Lüftungsschlitze kann je nach Vakuumpumpe und den Anforderungen an den Gasstrom des Lüfters variieren.
  • Abbildung 2 zeigt in einem senkrechten Schnitt durch die Vakuumpumpe den Aufbau von Steuerungs- und Zwischenabschnitt. Der Steuerungsabschnitt 2 besitzt ein geschlossenes Gehäuse, welches Kühlrippen 11 aufweist. Über diese erfolgt eine Kühlung durch freie Konvektion. Innerhalb des Steuerungsabschnitts sind elektronische Bauteile angeordnet, die eine Steuerelektronik 12 bilden und beispielsweise auf einer Platine montiert sind. Diese elektronischen Bauteile formen eine Versorgungsspannung derart um, dass Spannungen und Ströme in geeigneter Form an die Spulen des Antriebs angelegt werden können, um in der Folge eine Drehung einer Antriebswelle zu erzielen. Die Versorgungsspannung kann dabei eine übliche Netzspannung wie 220 V mit 50 Hz oder eine der gängigen Industriespannungen wie 48 V sein. Solche Bauteile der Steuerelektronik, die in besonderem Maße Wärme erzeugen, können derart angeordnet sein, dass sie die Innenwand des Gehäuses des Steuerungsabschnitts berühren. Vorzugsweise wird dies im Bereich der Kühlrippen 11 realisiert. Ebenfalls denkbar ist, die Steuerelektronik ganz oder teilweise in eine Vergussmasse einzubetten. Dies erhöht ebenfalls die Wärmeableitung. Zudem wird dadurch eine höhere mechanische Stabilität erreicht.
  • Der Zwischenabschnitt 3 weist in seinem Gehäuse mehrere Komponenten auf. Ein Schalter 15 dient zum Ein- und Ausschalten der Vakuumpumpe. Weitere Schalter können dort angeordnet sein, mit denen beispielsweise eine Standby-Schaltung oder eine Drehzahlstellung realisiert werden kann. Ebenfalls hier angeordnet ist eine Buchse 16, an der die Spannungsversorgung angeschlossen wird. Diese Spannung wird zum einen an die Steuerelektronik gegeben, zum anderen an ein kleines Netzteil 17, welches über geeignete elektrische Leitungsverbindungen eine Hilfselektronik 18 mit Betriebsspannung versorgt. Diese dient zur Umsetzung des Schaltzustandes des Schalters 15 in ein Steuersignal, welches ebenfalls über geeignete elektrische Leitungsverbindungen an die Steuerelektronik gegeben wird. Die Hilfselektronik weist auch Mittel auf, mit denen der Lüftermotor 6a mit Spannung versorgt und ein-/ausgeschaltet wird. In einer Weiterbildung werden in diesem Zwischenabschnitt weitere Kommunikationsmittel angeordnet. Dazu notwendig sind Schalter, Stecker und Buchse, die an der Gehäusewandung ähnlich wie der Schalter 15 angeordnet sind. Diese Bauteile stehen dann über elektrische Leitungsverbindungen oder ähnlichem mit einer erweiterten Hilfselektronik in Verbindung, welche beispielsweise Mittel zum Betreiben einer Feldbus- oder seriellen Schnittstelle und dergleichen beinhaltet. Über diese Schnittstelle können Zustandsinformationen wie "Pumpe in Betrieb", aktuelle Drehzahl oder aktivierter Standby der Vakuumpumpe von externen Steuermitteln abgefragt werden.
  • Zwischen dem Gehäuse des Zwischenabschnitts 3 und dem Steuerungsabschnitt 2 ist eine Dichtung 14 vorgesehen. Diese sorgt zum einen für eine Abdichtung des Innenraumes gegen Feuchtigkeit und Staub, zum anderen stellt sie eine thermische Barriere dar, so dass der Wärmeintrag in den Steuerungsabschnitt aus Richtung des Zwischenabschnitts erschwert wird. Eine solche Dichtung ist auch zwischen Zwischenabschnitt und Peripherieabschnitt 4 vorgesehen, so dass auch hier Dichtheit und erschwerter Wärmetransport gegeben sind. In einem Teil des Zwischenabschnitts trägt eine Tragstruktur 19 den Lüfter, welcher den Lüftermotor und ein Lüfterblatt 6b aufweist. Gestrichelte Pfeile verdeutlichen den Gasstrom, der durch den Lüfter erzeugt wird: Luft wird angesaugt und zwischen die Kühlrippen 8 gefördert.
  • Zwischenabschnitt, Steuerungsabschnitt und ein Teil des Peripherieabschnittes sind in Abbildung 3 einem waagrechten Schnitt durch die Vakuumpumpe entlang der Linie B-B' gezeigt. In dieser Ansicht sind die auf der steuerungsabschnittsseitigen Stirnseite der Vakuumpumpe angeordneten Kühlrippen 11 im Schnitt zu sehen. Sie sind mit ihrer Längsachse in Schwerkraftrichtung orientiert, um die freie Konvektion zu optimieren. Vorzugsweise werden die Kühlrippen des Steuerungsabschnittes nicht von der Haube 1 verdeckt, um den Luftstrom der freien Konvektion nicht zu behindern. Von der Steuerelektronik 12 gehen elektrische Versorgungsleitungen durch einen im Zwischenabschnitt vorgesehenen Kabelkanal zum Peripherieabschnitt 4. Dieser Kabelkanal ist an beiden Enden durch Kanaldichtungen 21 und 22 gegen Feuchtigkeit und Wärmeübergang geschützt. Insbesondere auf der Seite der Motorsteuerung ist eine Kabeldurchführung 27 vorgesehen. Innerhalb des Peripherieabschnitts 4 sind die Spulen 26 des Antriebs angeordnet. Die Bestromung dieser Spulen wird durch die Steuerelektronik 12 bewirkt. Ein rotationssymetrisches Trennelement 23 ist innerhalb der Spulen vorgesehen und trennt diese hermetisch vom Innenraum des Trennelements. In diesen ragt das Ende einer Welle 24, auf dem Permanentmagneten 25 befestigt sind.
  • Auch in dieser Abbildung verdeutlichen gestrichelte Pfeile den vom Lüfter erzeugten Gasstrom. Die Ansaugung erfolgt durch die Lüftungsschlitze 7, das Gas wird dann in Richtung des Peripherieabschnitts gefördert. In einer Weiterbildung sind solche Lüftungsschlitze auch im Boden der Vakuumpumpe angeordnet. Der Fuß der Vakuumpumpe hat dann auch die Aufgabe, einen Abstand zu erzeugen, durch den Luft angesaugt werden kann.
  • Abbildung 3 verdeutlicht, dass die Erfindung nicht auf einen Lüfter alleine beschränkt ist. Eine Mehrzahl von Lüftern kann vorgesehen sein. Im Beispiel sind zwei Lüfter im unteren Teil des Zwischenabschnitts vorgesehen, wobei jeder von ihnen Kühlluft in die Kanäle fördert, die auf jeweils einer Seite der Vakuumpumpe, insbesondere des Peripherie- und des Pumpabschnitts, angebracht sind. Weitere Lüfter können zur Unterstützung der Kühlung so angeordnet sein, dass sie Wärmequellen der Vakuumpumpe mit Kühlluft versorgen.
  • Einen Schnitt durch den Peripherie- und den Pumpabschnitt 5 der Vakuumpumpe zeigt Abbildung 4. Das Beispiel zeigt eine einstufige, schmiermittelgedichtete Drehschiebervakuumpumpe. Dieser weist in dem Pumpabschnitt ein Pumpsystem 30 auf. Dieses ist an einer Stirnseite großflächig mit dem Peripherieabschitt verbunden, so dass es dort eine gute Wärmeüberleitung gibt. Das Gehäuse des Pumpabschnitts 5 ist gut wärmeleitend mit dem Peripherieabschnitt verbunden, so dass die Wärme vom Peripherieabschnitt auf einen Körper mit großer Oberfläche übertragen wird. Eine in diesem Pumpsystem vorgesehene zylindrische Bohrung wird von der Welle 24 exzentrisch durchsetzt. Die Welle kann ein- oder mehrstückig ausgeführt sein. Sie wird von einem ersten Gleitlager 31 und einem zweiten Gleitlager 32 drehbar unterstützt. Diese werden durch Schmiermittel geschmiert, welches aus dem das Pumpsystem umgebenden Schmiermittelreservoir 35 stammt. In der zylindrischen Bohrung laufen Schieber 33 um, wobei zwischen Schiebern und Wandung der zylindrischen Bohrung der Schöpfraum 34 gebildet wird. Gas gelangt über den Gaseinlass 9 in diesen Schöpfraum. An dem Wellenende, welches dem Gleitlager 31 gegenüberliegt und in den Peripherieabschnitt 4 ragt, sind Permanentmagnete 25 befestigt, die mit den im Peripherieabschnitt vorgesehenen Spulen 26 zusammenwirken, wodurch die Welle in Drehung versetzt wird. Zusammen bilden Permanentmagnete und Spulen einen Elektromotor. In diesem Beispiel handelt es sich um eine bürstenlosen Gleichstrommotor. Obwohl die Vorteile der Erfindung bei diesem Motor besonders zur Geltung kommen, ist sie nicht auf diese Art Antrieb beschränkt. Das Schmiermittel, meist ein Öl, dient neben der Lagerschmierung auch zur Schmierung und Dichtung der Schieber.
  • Der Pumpabschnitt ist in Abbildung 5 im Schnitt entlang A-A' dargestellt. Verdeutlicht ist in dieser Darstellung die exzentrische Lage der Welle 24 und die Position der Schieber 33. Zwischen diesen sind nicht gezeigte Federn vorgesehen. Das Gehäuse des Pumpabschnitts weist Kühlrippen 8 auf. Die Haube 1 deckt die Kühlrippen ab, wodurch Strömungskanäle 42 entstehen. Durch diese Strömungskanäle, die untereinander verbunden sein können, strömt das vom Lüfter geförderte Gas, nimmt Wärme vom Gehäuse auf und transportiert sie in der Folge vom Gehäuse weg. Diese Wärme entsteht im Pumpsystem 30 und wird über das Schmiermittelreservoir an das Gehäuse abgegeben. Vorzugsweise ist die Haube so gestaltet, dass die Kanäle an ihrem Ende offen sind. Dies ist am einfachsten zu bewerkstelligen, indem die Haube die pumpabschnittsseitige Stirnseite der Vakuumpumpe nicht bedeckt. Zwischen Haube und Gehäuse ist ein Zwischenbauteil 40 angeordnet, welches beispielsweise hohe Elastomeranteile aufweist. Dies sorgt sowohl für eine thermische Barriere als auch für eine Reduzierung der Schwingungsübertragung von Pumpengehäuse auf die Haube. Befestigungsmittel, beispielsweise Schrauben 41, fixieren die Haube.
  • Die in diesem Ausführungsbeispiel dargestellte Vakuumpumpe weist einen günstigen Wärmehaushalt auf. Eine erste starke Wärmequelle befindet sich aufgrund der Verdichtungswärme im Pumpabschnitt 5. Eine weitere starke Wärmequelle ist der Peripherieabschnitt, da dort die Spulen des Antriebs angeordnet sind, in denen Verlustleistung in Wärme umgewandelt wird. Außerdem wird über die Stirnseite des Pumpsystems 30 Wärme in den Peripherieabschnitt eingeleitet, da an dieser Stelle Pumpsystem und Peripherieabschnitt großflächig miteinander in Kontakt stehen. Diese Wärmequellen werden durch den Zwischenabschnitt vom Steuerungsabschnitt ferngehalten. Aufgrund der Reihenfolge der Abschnitte ist der Abstand maximiert. Hinzu kommen die thermischen Widerstände der Dichtungen, die zwischen dem Zwischenabschnitt und seinen Nachbarabschnitten vorgesehen sind. Diese passiven Maßnahmen bewirken einen sehr günstigen Wärmehaushalt. Zu diesen tritt die aktive Kühlung durch den oder die Lüfter hinzu. Durch deren Platzierung im Zwischenabschnitt werden direkt die am meisten Wärme abgebenden Abschnitte der Vakuumpumpe mit Kühlluft angeblasen. Gefördert wird dies noch durch die Haube, die einerseits als Berührungsschutz dient, andererseits die vom Lüfter geförderte Kühlluft optimal an die Wärmequellen Pumpabschnitt und Peripherieabschnitt lenkt. In der Summe ist die Kühlung der vorgeschlagenen Vakuumpumpe gegenüber dem Stand der Technik entscheidend verbessert.
  • Dieses Ausführungsbeispiel stellt eine ölgedichtete Drehschiebervakuumpumpe vor. Denkbar ist es jedoch, die Erfindung auch auf andere Vakuumpumpen zur Erzeugung von Grob- oder Feinvakuum durch Austausch des Pumpabschnitts anzupassen. In diesem Pumpabschnitt kommen dann andere Pumpprinzipien zum Einsatz. Denkbare Pumpprinzipien sind beispielsweise trockenen Kolbenverdichter, trockene Drehschieber- oder Sperrschieberpumpen.

Claims (6)

  1. Vakuumpumpe zur Erzeugung von Grob- oder Feinvakuum mit einem Gehäuse, das wenigstens einen Pumpabschnitt (5) mit einem Pumpsystem (30) mit einem Motor, einen Peripherieabschnitt (4), der einen Gaseinlass (9) und Gasauslass aufweist, einen Zwischenabschnitt (3), in dem ein Lüfter (6) angeordnet ist, der einen Lüftermotor (6a) aufweist, und einen Steuerungsabschnitt (2) mit einer Steuerelektronik (12) aufweist, wobei die Abschnitte (5, 4, 3, 2) axial aufeinanderfolgend angeordnet sind und wobei sich der Zwischenabschnitt (3) zwischen dem Peripherieabschnitt (4) und dem Steuerungsabschnitt (2) befindet.
  2. Vakuumpumpe nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Lüfter (6) derart angeordnet ist, dass die geförderte Luft den Abschnitt des Gehäuses anströmt, welcher das Pumpsystem (30) beinhaltet, und dass der Lüfter (6) so angeordnet ist, dass der Steuerungsabschnitt (2) mit der Steuerelektronik (12) durch freie Konvektion gekühlt wird.
  3. Vakuumpumpe nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    das Gehäuse Kühlrippen (8) aufweist und der Lüfter (6) derart angeordnet ist, dass er Luft in den Raum zwischen den Kühlrippen fördert.
  4. Vakuumpumpe nach Anspruch 1, 2 oder 3,
    dadurch gekennzeichnet, dass
    eine das Gehäuse wenigstens teilweise umgebende Haube (1) derart im Bereich der Kühlrippen (8) gestaltet ist, dass die vom Lüfter geförderte Luft in den Raum zwischen den Kühlrippen gelenkt wird.
  5. Vakuumpumpe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Pumpsystem (30) eine Welle (24) enthält, welche exzentrisch eine im Gehäuse des Pumpsystems befindliche zylindrische Bohrung durchsetzt, wobei die Welle eine Pumpwirkung erzielende Schieber (33) aufweist, und dass das Pumpsystem ein Schmiermittel zum Dichten und Schmieren der Schieber enthält.
  6. Verfahren zum Betrieb einer Vakuumpumpe gemäß zumindest einem der vorstehenden Ansprüchen,
    dadurch gekennzeichnet, dass
    der Lüfter mit einer ersten und der Motor mit einer zweiten Drehzahl betrieben wird, wobei erste und zweite Drehzahl wenigstens zeitweise unterschiedlich sind.
EP07022564.4A 2006-12-13 2007-11-21 Vakuumpumpe mit Lüfter Not-in-force EP1936203B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006058842A DE102006058842A1 (de) 2006-12-13 2006-12-13 Vakuumpumpe mit Lüfter

Publications (3)

Publication Number Publication Date
EP1936203A2 EP1936203A2 (de) 2008-06-25
EP1936203A3 EP1936203A3 (de) 2014-01-01
EP1936203B1 true EP1936203B1 (de) 2018-01-10

Family

ID=39217913

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07022564.4A Not-in-force EP1936203B1 (de) 2006-12-13 2007-11-21 Vakuumpumpe mit Lüfter

Country Status (4)

Country Link
US (1) US20080145258A1 (de)
EP (1) EP1936203B1 (de)
JP (1) JP2008151124A (de)
DE (1) DE102006058842A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH706231B1 (fr) * 2012-03-05 2016-07-29 Ateliers Busch Sa Installation de pompage et procédé de contrôle d'une telle installation.
US9611852B2 (en) * 2013-03-29 2017-04-04 Agilent Technology, Inc. Thermal/noise management in a scroll pump
US10208753B2 (en) 2013-03-29 2019-02-19 Agilent Technologies, Inc. Thermal/noise management in a scroll pump
US10704552B2 (en) * 2016-02-02 2020-07-07 Powerex/Iwata Air Technology Inc. Vacuum system
GB2557359A (en) * 2016-12-08 2018-06-20 Edwards Ltd Vacuum Pump
EP3434905B1 (de) 2017-07-25 2023-04-26 Pfeiffer Vacuum Gmbh Vakuumpumpe sowie verfahren zum betreiben einer vakuumpumpe
EP4043733B1 (de) * 2022-06-17 2024-03-27 Pfeiffer Vacuum Technology AG Vakuumpumpe mit separat ansteuerbaren lüftern
KR102522429B1 (ko) * 2022-07-07 2023-04-19 주식회사 부쉬코리아 냉각을 위한 방폭팬과 라디에이터를 포함하는 진공펌프유닛
EP4253720A3 (de) * 2023-08-08 2024-06-19 Pfeiffer Vacuum Technology AG Scrollvakuumpumpe und scrollvakuumpumpen-system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1970033A (en) * 1931-06-24 1934-08-14 Rotorite Corp Fluid compressor
US2476041A (en) * 1946-03-15 1949-07-12 Singer Mfg Co Air blower lubrication
US3670190A (en) * 1971-03-11 1972-06-13 Robbins & Myers Electric motor and higher speed fan assembly
US4268230A (en) * 1979-04-26 1981-05-19 Varian Associates, Inc. Gas ballast for oil sealed mechanical vacuum vane pump
DE3136775A1 (de) * 1981-09-16 1983-03-31 Isartaler Schraubenkompressoren GmbH, 8192 Geretsried "kuehleranordnung fuer eine verdichteranlage"
US4961016A (en) * 1989-08-09 1990-10-02 General Motors Corporation Dual-face cooling fan for a dynamoelectric machine
DE4017193A1 (de) * 1990-05-29 1991-12-05 Leybold Ag Geraeuscharme vakuumpumpe
IT1288737B1 (it) * 1996-10-08 1998-09-24 Varian Spa Dispositivo di pompaggio da vuoto.
US5957667A (en) * 1997-05-23 1999-09-28 Ballard Generation Systems Inc. Oilless compressor with a pressurizable crankcase and motor containment vessel
AU1930001A (en) 1999-11-29 2001-06-04 Thomas Industries Inc. Pump housing
EP1379786B1 (de) * 2001-04-17 2005-03-16 TM.C. S.P.A. Termomeccanica Compressori Schraubenverdichtereinheit mit eingebauter ölkühlung
DE10156179A1 (de) * 2001-11-15 2003-05-28 Leybold Vakuum Gmbh Kühlung einer Schraubenvakuumpumpe
JP3916513B2 (ja) * 2002-06-05 2007-05-16 株式会社神戸製鋼所 スクリュ圧縮機

Also Published As

Publication number Publication date
EP1936203A3 (de) 2014-01-01
DE102006058842A1 (de) 2008-06-19
JP2008151124A (ja) 2008-07-03
EP1936203A2 (de) 2008-06-25
US20080145258A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
EP1936203B1 (de) Vakuumpumpe mit Lüfter
EP1936198B1 (de) Vakuumpumpe
DE102007019126B4 (de) Schallgekapselte Kompressoranordnung
DE10313273B9 (de) Elektromotor mit hoher IP-Schutzart
EP1464106A1 (de) KLEIN- ODER KLEINSTLüFTER
DE102014101916A1 (de) Modulare Pumpenplattform
EP3472470B1 (de) Elektrische fluidpumpe für ein kraftfahrzeug
DE10313274A1 (de) Elektromotor mit hoher IP-Schutzart
EP2959565A2 (de) Elektrische maschine, insbesondere motor
DE102013012143A1 (de) Kühlmittelpumpe für ein Kraftfahrzeug zur Kühlung einer Brennkraftmaschine oder einer alternativen Antriebsvorrichtung
DE112013001169T5 (de) Elektromotorgetriebene Pumpe
DE10213251A1 (de) Spiralkompressoren und Verfahren zum Umlaufenlassen von Schmieröl durch diese Spiralkompressoren
EP1861912B1 (de) Gebläseeinheit, insbesondere für einen staubsauger
EP1419568B1 (de) Elektromotor mit hoher ip-schutzart
DE102007059938A1 (de) Vakuumpumpe und Verfahren zum Betrieb
EP1936202B1 (de) Vakuumpumpe
DE102018104770A1 (de) Elektrische Kühlmittelpumpe
EP1343645B1 (de) Fahrzeugheizgerät mit integrierter wärmeträger-umwälzpumpe
EP1911970A2 (de) Pumpenanordnung und Verfahren zum Betreiben derselben
DE102016205690A1 (de) Gebläseanordnung
EP3871317A1 (de) Elektromotor zum antrieb von arbeitsmaschinen mit medientrennung
DE102023135279A1 (de) Fluidpumpe und Gehäuse mit Statorhalter und Kühlung für Motor und Elektronik
EP3253969A1 (de) VENTILATOR MIT AUßENELEKTRONIK
DE102023114729A1 (de) Fluidpumpe mit integriertem Gehäuse und Austrittsdämpfer
EP3879105A1 (de) Pumpeneinsatz und pumpenanordnung mit einem solchen pumpeneinsatz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 29/04 20060101AFI20131126BHEP

17P Request for examination filed

Effective date: 20140514

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20161019

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170616

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 962722

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016014

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180510

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016014

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

26N No opposition filed

Effective date: 20181011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181121

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 962722

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20201119

Year of fee payment: 14

Ref country code: IT

Payment date: 20201124

Year of fee payment: 14

Ref country code: GB

Payment date: 20201120

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210127

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007016014

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211121

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211121