EP1931181B1 - Ballast pour lampe à décharge - Google Patents

Ballast pour lampe à décharge Download PDF

Info

Publication number
EP1931181B1
EP1931181B1 EP07121725A EP07121725A EP1931181B1 EP 1931181 B1 EP1931181 B1 EP 1931181B1 EP 07121725 A EP07121725 A EP 07121725A EP 07121725 A EP07121725 A EP 07121725A EP 1931181 B1 EP1931181 B1 EP 1931181B1
Authority
EP
European Patent Office
Prior art keywords
voltage
ballast
vout
vignit
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07121725A
Other languages
German (de)
English (en)
Other versions
EP1931181A1 (fr
Inventor
Philippe Clavier
Sylvain Yvon
Bruno Cassese
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP1931181A1 publication Critical patent/EP1931181A1/fr
Application granted granted Critical
Publication of EP1931181B1 publication Critical patent/EP1931181B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2821Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage
    • H05B41/2822Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/02Details
    • H05B41/04Starting switches
    • H05B41/042Starting switches using semiconductor devices

Definitions

  • the present invention relates to a lighting ballast for a discharge lamp and a fire device incorporating a lamp connected to such a ballast.
  • these high voltages are produced by a power supply module, which also provides power regulation, known as "ballast".
  • the most recent ballasts include in particular a DC / DC switching converter producing a high DC voltage of several hundred volts from the battery voltage for example, a DC / AC converter ensuring the supply of the lamp in steady state to from the high-voltage DC, and a high-voltage module supplying a generator producing the very high voltage necessary for lighting the lamp, the very high voltage being produced from the high DC voltage produced by the DC / DC converter.
  • the DC / DC converter of such a ballast comprises a transformer comprising a main winding and two secondary windings with a transformation ratio equal to 8 with more than 20 turns in the two secondary windings and a rectifier voltage associated with each secondary winding, each rectifier comprising a diode and a capacitor.
  • the main winding is connected to a switching unit connected to the power source.
  • the repetitive interruption of the latter by the switching unit induces at the terminals of the two secondary windings of the transformer respectively two high voltages each rectified by the diode and filtered by the capacitor of the associated rectifier.
  • the difference between these two high voltages makes it possible to obtain a voltage of 1000V. From this voltage of 1000V, an ignition voltage of about 25kV is obtained by the high voltage module connected between the DC / DC converter and the discharge lamp.
  • the transformer occupies a very large volume because of the important transformation ratio.
  • the leakage elements are important which can create overvoltages in the switching unit and interfere with the control of the DC / DC converter.
  • the rectifying diodes must be dimensioned for a voltage of 1000V, which poses problems of realization and cost.
  • the document JP 2001 284 089 discloses a discharge lamp ballast comprising a converter, a voltage multiplier and a transformer comprising a main winding, a secondary winding and an auxiliary winding.
  • the present invention aims to overcome these disadvantages of the state of the art.
  • the invention relates to a second object, a vehicle fire device comprising a discharge lamp to which is connected a ballast according to any one of the preceding characteristics, the ballast being able to provide a voltage to allow a lighting of the lamp for discharge.
  • a BLST ballast connected to a discharge lamp LA in the context of a non-limiting application of vehicle fire FX.
  • the FX fire is for example, a traffic light (night lights, codes, taillights) or lighting called projector (lighthouse).
  • the term "fire" will be used indifferently to designate such lighting or signaling devices.
  • the LA discharge lamp can be used for day and / or night lighting.
  • ballast BLST is positioned on the same PCB type PCB ("Printed Circuit Board").
  • the DC / DC converter Ccc makes it possible to adapt the power source, in this case the battery voltage Vbat, to the discharge lamp voltage by generating the continuous high voltage rectified Vout and the ignition voltage Vignit.
  • the HV high voltage module of the discharge lamp LA will be able to generate a first ignition pulse Um, of the order of 25kV to turn on said lamp LA.
  • the DC / DC converter Ccc may furthermore comprise a resistor R1 mounted at the output of the multiplier circuit MU to allow the charging of a capacitor of the high voltage module HV of the discharge lamp LA to be delayed as we will see in detail later.
  • the secondary winding n2 is defined in such a way that the transformation ratio n2 / n1 between this winding n2 and the main winding n1 is equal to 5.
  • the auxiliary winding n3 is defined in such a way that the transformation ratio n3 / n1 between this winding n3 and the main winding n1 is equal to 2.
  • the number of turns in the main winding n1 is equal to 4
  • the number of turns in the secondary winding n2 is equal to 20
  • the number of turns in the auxiliary winding n3 is equal at 8.
  • the switching member is a MOSFET transistor.
  • the circuit RD comprising for this purpose a rectifying diode Dout and a filtering capacitor Cout.
  • the rectifying diode Dout is connected to the node P1 between the secondary windings n2 and auxiliary winding n3 by its cathode as illustrated in FIG. Fig. 2 .
  • the multiplier MU is composed of two diodes D1, D2 and two capacitors C1, C2.
  • the capacitors C1 and C2 provide the ignition voltage Vignit, while the diodes D1 and D2, during the ignition phase, on the one hand to charge the capacitors C1 and C2 associated and on the other hand their avoid being discharged in a sense as we will see later.
  • the DC / DC converter Ccc has the same elements as in the first embodiment but with an inverted bias of the rectifying diode Dout and the diodes of the multiplier circuit D1, D2. Moreover, the rectifier circuit RD makes it possible to rectify the induced auxiliary voltage Vn3 instead of the induced secondary voltage Vn2. At this time, the rectified voltage Vout is positive and the ignition voltage Vignit is negative.
  • This converter makes it possible to make the rectified high voltage Vout alternative necessary for the operation of the steady-state discharge lamp LA, that is to say during normal operation of the lamp, from the continuous rectified voltage Vout supplied by the DC / DC converter.
  • the DC / AC converter Cca comprises four transistors (not shown) mounted in complete bridge, the simultaneous opening or closing of a pair of transistors being controlled alternately with that of the another pair to make the voltage rectified.
  • these transistors are NPN transistors of the IGBT type "Insulated Gate Bipolar Transistor", well adapted to the high voltages involved, both during the ignition phase and during the steady state of the lamp LA.
  • control unit UC makes it possible to control, by means of control signals in response to external control commands, the width of the switching pulses of the DC / DC converter Ccc, as well as the operation of the complete bridge of the AC / DC converter whether in the ignition phase or in steady state.
  • the BLST ballast provides the voltage necessary to turn on the lamp during an ignition phase, but also provides the voltage required to operate the lamp when it is on.
  • the BLST ballast operates in the following manner.
  • a supply voltage Vbat equal to 10 V is used.
  • this battery voltage Vbat varies between 8V (for example during a start) and 12V with possible peaks at 19V (norm given by the manufacturer).
  • the ballast BLST will provide on the one hand the continuous rectified voltage Vout and on the other hand the ignition voltage Vignit, the potential difference between these two voltages, to feed the high module HV lamp voltage LA to turn on said lamp.
  • the switching member GMOS when closed, it allows a loading of the second capacitor C2 of the multiplier circuit MU for supplying the ignition voltage Vignit, while when it is open , it allows to charging the filter capacitor Cout for providing the DC rectified voltage Vout, and charging the first capacitor C1 MU multiplier circuit to also provide the Vignit boot voltage.
  • the switching member GMOS which is controlled by cutting pulses, allows through its opening and closing repetitive gradually load the three capacitors alternately.
  • the switching frequency of the GMOS switching element is 100 kHz during this ignition phase.
  • the MOSFET transistor that composes the switching member GMOS comprises a gate voltage Vgs and a drain-source voltage Vds that vary as a function of the opening-closing of the MOSFET transistor also causing a variation of the main voltages Vn1, secondary induced. Vn2 and induced auxiliary Vn3 of transformer TR1.
  • the evolution of these voltages Vn1, Vn2, Vn3 associated with the transformers TR1 makes it possible to charge the capacitors C1, C2, Cout supplying the continuous rectified voltage Vout and the ignition voltage Vignit.
  • transformer voltages TR1 as a function of the two states (closed-open) of the MOSFET transistor is described below when the capacitors C1, C2, Cout are fully charged.
  • the main winding n1 is connected directly to the power source Vbat.
  • the main voltage Vn1 is equal to the battery voltage Vbat, ie is equal to 10V in the example taken.
  • a main current Ip is then generated and passes through the main winding n1 of the transformer TR1.
  • the induced currents ln2 and ln3 go in the opposite direction of the clockwise.
  • the induced secondary voltage Vn2 is equal to 50 and the induced auxiliary voltage Vn3 is equal to 20 as illustrated in FIG. Fig. 3 .
  • the righting diode Dout is then blocked. It is represented in dashed line at Fig. 4 . It is the same for the first diode D1 MU multiplier circuit.
  • the second diode D2 of the multiplying circuit MU is conducting (there is approximately 0V at its terminals).
  • the second capacitor C2 of the multiplier circuit MU is loaded via this second diode D2.
  • the first diode D1 being blocked, the first capacitor C1 of the multiplier circuit MU discharges via the second diode D2 to the second capacitor C2.
  • the second capacitor C2 is thus charged with the induced secondary voltages Vn2, induced auxiliary Vn3 and the voltage Vc1 of the first capacitor C1.
  • Vignit + 630V.
  • the ignition voltage Vignit is well supplied by the charging of the second capacitor C2 of the multiplier circuit MU and is well generated from the rectified voltage Vout.
  • Vn2_off Vn3_off the voltages across respective windings n2 and n3 when the MOSFET is open
  • Vn2_on, Vn3_on the voltages when the MOSFET is closed.
  • the MOSFET transistor is open.
  • the gate voltage Vgs is zero, the MOSFET transistor behaves like a diode passing from the source to the drain.
  • the drain-source voltage Vds is therefore positive as illustrated in FIG. Fig. 3 .
  • the opening of the MOSFET transistor prevents the main current Ip from flowing.
  • the recovery diode Dout is busy, as well as the first diode D1 of the multiplier circuit MU, while the second diode D2 of the multiplier circuit MU is blocked (it is represented in dotted lines).
  • the Dout rectifying diode being conducting one has about 0V at its terminals
  • the filtering capacitor Cout is charged by said diode Dout.
  • the GMOS switching element is controlled in such a way that the charge of the filter capacitor Cout is equal to -400V.
  • a control device (not shown) which measures the charge of the filter capacitor Cout.
  • Vout -400V at the end of the loading of the capacitor Cout.
  • the first diode D1 being conducting (one has about 0V at its terminals), the first capacitor C1 of the multiplier circuit MU is charged through this diode D1.
  • the first capacitor C1 is thus charged with the induced secondary voltages Vn2 and induced auxiliary Vn3.
  • the second capacitor C2 of the multiplier circuit MU can not at this time be discharged towards the first capacitor C1 because the second diode D2 is blocked.
  • the second capacitor C2 discharges into the circuit (capacitor C3) of the lamp LA as will be seen below.
  • the charging time of the second capacitor C2 is around tens of microseconds (1 / 100kHz) while the discharge time is around a few milliseconds (thanks to a resistance R1 as discussed below) .
  • the capacitor C2 becomes charged thereby providing the Vignit ignition voltage from the rectified voltage Vout, while when the MOSFET transistor is open, the filter capacitor Cout is charged thereby providing the rectified voltage Vout.
  • the diodes D1 and D2 of the multiplier circuit MU must be sized to hold a voltage of the order of 800V.
  • Vrmax is equal to Vignit.
  • the first diode D1 when the first capacitor C1 is charged, the first diode D1 is conducting (therefore the voltage at its terminals is 0V), so the voltage of the second diode D2 corresponds to Vignit.
  • the second diode D1 when the second capacitor C2 is charged, the second diode D1 is conducting (therefore the voltage at its terminals is 0V), so the voltage of the first diode D1 corresponds to Vignit.
  • the voltage difference Vdiff is applied to the HV high voltage module as indicated in FIG. Fig. 6 .
  • the gas spark gap Gz behaves like an open switch.
  • the capacitor C3 is charged.
  • a predetermined threshold of charging of the order of 800V in a non-limiting example, the spark gap Gz becomes abruptly conductive and creates a current pulse in the primary winding of the transformer TR2 which produces in the secondary the very high Um voltage of 25kV, thus creating a first electric arc necessary for lighting the lamp LA.
  • the capacitor C3 discharges very quickly in the transformer TR2.
  • This voltage is of the order of -85V steady state for a xenon lamp with mercury (Hg + ) and of the order of -42V for a mercury-free xenon lamp (Hg - ).
  • control unit UC acts to activate and deactivate the transistors of the DC / AC converter so that it supplies this AC voltage from the rectified voltage Vout necessary to continue operating the lamp LA.
  • This AC voltage is obtained from the DC rectified voltage Vout supplied by the DC / DC converter Ccc.
  • the DC / DC converter Ccc provides the power necessary for the rectified voltage Vout is in this case equal to -85V.
  • the frequency switching speed of the GMOS switching element is 300kHz in steady state.
  • the MOSFET switching transistor remains open longer than steady state.
  • the Fig. 7 summarizes the evolution of the voltage Ula across the discharge lamp LA during the ignition phase and during the steady state.
  • the interval t0-t1 represents the ignition phase, while the interval t3-t4 represents the steady-state operating phase.
  • intervals t1-t2 and t2-t3 represent transition phases.
  • the rectified voltage Vout begins to decrease (the capacitor Cout of the rectifier circuit discharges) while the ignition voltage Vignit drops to -400V because the capacitor C3 discharges suddenly, its voltage Vc3 becomes zero, the rectified voltage Vout remaining at -400V.
  • the rectified voltage continues Vout is made alternative by means of the DC / AC converter Cca.
  • the voltage Ula of the lamp LA is equal to the rectified voltage Vout.
  • the two curves Cvignit and Cvout representative respectively of the two voltages Vignit and Vout illustrate the progressive loading of capacitors C2 and Cout corresponding.
  • the slope of the curve Cvignit representative of the ignition voltage Vignit is greater than that of the curve Cvout representative of the rectified voltage Vout because the filter capacitor Cout is dimensioned so as to be larger than the second capacitor C2.
  • the capacitor Cout generates the greatest power to the lamp LA and corresponds to a reserve of energy. Indeed, in steady state, it is the only one to supply energy to the lamp LA.
  • the Vignit ignition voltage can reach its maximum value + 630V at time t1 before the rectified voltage reaches its -400V. This could generate a voltage difference at time t1 less than 1030V, for example at about 800V, the rectified voltage Vout reaching only 200V for example. This voltage difference Vdiff can cause ignition of the lamp LA.
  • the conduction threshold of the gas spark gap Gz is of the order of 800V
  • the voltage difference Vdiff is at the threshold limit of the gas spark gap; also the LA lamp may not light properly.
  • the resistor R1 of the BLST ballast makes it possible to delay the charging of the capacitor C3 of the lamp LA with the ignition voltage Vignit as illustrated by the curve CRvignit.
  • the two voltage Vignit and Vout will reach their maximum value at the same time so as to provide a potential difference sufficient to exceed the loading threshold of the gas spark gap thus allowing a reliable ignition of the lamp LA.
  • the resistor R1 makes it possible to wait for the rectified voltage Vout to be stabilized at -400V in order to make it possible to obtain a voltage difference Vdiff greater than the conduction threshold of the gas spark gap Gz so as to obtain an arc of sufficient voltage. (25kV) required for reliable ignition of the LA lamp.
  • this resistor R1 prevents current peaks in the second diode D2 and thus prevents the latter from being damaged.
  • the vehicle fire application was taken as an example, but of course, the described ballast can be used in other applications such as, in non-limiting examples, interior lighting building ("Interior Lighting ”) Or street lighting ("General Lighting ").

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

    Domaine de l'invention
  • La présente invention concerne un ballast d'éclairage pour lampe à décharge et un dispositif de feu incorporant une lampe reliée à un tel ballast.
  • Elle trouve une application particulière dans le domaine des véhicules automobiles.
  • Etat de la technique
  • Dans le but d'améliorer à la fois la puissance lumineuse et le rendement énergétique des sources lumineuses utilisées dans de nombreux domaines, tels que ceux des phares de véhicules ou des vidéo projecteurs, l'évolution technique actuelle conduit à remplacer les lampes à filament par des lampes à décharge gazeuse à haute intensité. A la différence des lampes à filament, qui étaient conçues pour être connectées directement à une source basse tension, comme la batterie d'un véhicule, ou moyenne tension, telle que le secteur domestique à 110 ou 220V, ces nouvelles lampes nécessitent des tensions élevées pour créer un arc électrique permettant de les allumer.
  • Dans le domaine de l'automobile, par exemple, ces tensions élevées sont produites par un module d'alimentation, qui assure également la régulation de puissance, connu sous le nom de "ballast".
  • Les ballasts les plus récents comportent en particulier un convertisseur continu/continu à découpage produisant une haute tension continue de plusieurs centaines de volts à partir de la tension batterie par exemple, un convertisseur continu/alternatif assurant l'alimentation de la lampe en régime permanent à partir de la haute tension continue, et un module haute tension alimentant un générateur produisant la très haute tension nécessaire à l'allumage de la lampe, la très haute tension étant produite à partir de la haute tension continue produite par le convertisseur continu/continu.
  • Selon un état de la technique connu, le convertisseur continu/continu d'un tel ballast comprend un transformateur comprenant un enroulement principal et deux enroulements secondaires avec un rapport de transformation égal à 8 avec plus de 20 spires dans les deux enroulements secondaires et un redresseur de tension associé à chaque enroulement secondaire, chaque redresseur comprenant une diode et un condensateur. L'enroulement principal est relié à une unité de commutation reliée à la source d'alimentation. L'interruption répétitive de cette dernière par l'unité de commutation induit aux bornes des deux enroulements secondaires du transformateur respectivement deux hautes tensions redressée chacune par la diode et filtrée par le condensateur du redresseur associé. La différence entre ces deux hautes tensions permet d'obtenir une tension de 1000V. A partir de cette tension de 1000V, une tension d'allumage d'environ 25kV est obtenue par le module haute tension relié entre le convertisseur continu/continu et la lampe à décharge.
  • Une telle solution présente les inconvénients suivants. Le transformateur occupe un volume très important du fait du rapport de transformation important. De plus, du fait de ce volume, les éléments de fuite sont importants ce qui peut créer des surtensions dans l'unité de commutation et gêner la commande du convertisseur continu/continu. Par ailleurs, les diodes de redressement doivent être dimensionnées pour une tension de 1000V, ce qui pose des problèmes de réalisation et de coût.
  • On connaît également du document US 6 124 681 , par exemple sur la figure 3 de ce document, un circuit de correction de facteur de puissance (Power Factor correction circuit) dont l'énergie accumulée dans un transformateur est transférée par simple redressement à diode à deux condensateurs en série. Un tel circuit constitue un convertisseur à découpage élévateur, et non un multiplieur de tension.
  • Le document JP 2001 284 089 divulgue un ballast de lampe à décharge comprenant un convertisseur, un multiplieur de tension et un transformateur comprenant un enroulement principal, un secondaire et un auxiliaire.
  • Objet de l'invention
  • La présente invention a pour but de remédier à ces inconvénients de l'état de la technique.
  • En effet, elle concerne selon un premier objet, un ballast pour lampe à décharge comprenant :
    • un convertisseur de tension continu/continu pour fournir une tension redressée continue,
    caractérisé en ce que le convertisseur de tension continu/continu comporte :
    • un transformateur comprenant un enroulement principal, un enroulement secondaire et un enroulement auxiliaire, le transformateur permettant de fournir la tension redressée continue, et
    • un circuit multiplieur de tension pour fournir une tension d'amorçage, la différence de potentiel entre cette tension et la tension redressée continue permettant de créer une tension d'allumage pour la lampe à décharge.
  • Comme on le verra en détail plus loin, le fait de combiner un circuit multiplieur avec un transformateur muni d'un enroulement secondaire et d'un enroulement auxiliaire va permettre d'obtenir une tension d'amorçage à partir d'une tension redressée continue, et par conséquent va permettre de réduire le nombre de spires dans les enroulements secondaire et auxiliaire de sorte à obtenir de faibles rapports de transformation et donc un dimensionnement du transformateur n'entraînant pas des éléments de fuite importants. Par suite, on évite un dimensionnement hors standard de composants tels que des diodes, tout en fournissant une tension en entrée d'un module haute tension de la lampe à décharge suffisamment élevée pour fournir la tension d'allumage à ladite lampe.
  • Selon des modes de réalisation non limitatifs, le ballast comporte les caractéristiques supplémentaires suivantes :
    • le circuit multiplieur de tension comporte deux condensateurs et deux diodes. Les deux condensateurs permettent de fournir la tension d'amorçage tandis que les deux diodes permettent le chargement des condensateurs pendant une phase d'allumage ;
    • l'enroulement auxiliaire vient dans le prolongement de l'enroulement secondaire. Cela permet de générer la tension d'amorçage en utilisant la somme des tensions générées par l'enroulement secondaire et l'enroulement auxiliaire dont fait partie la tension redressée continue ;
    • le ballast comporte en outre une résistance en sortie du circuit multiplieur de tension. Elle permet de retarder le chargement d'un condensateur fournissant la tension d'amorçage de sorte que la différence de potentiel entre cette tension et la tension redressée soit optimale pour l'allumage de la lampe ;
    • le convertisseur continu/continu comprend un unique redresseur de tension. Il permet de fournir la tension redressée continue ;
    • l'enroulement secondaire comporte un rapport de transformation avec l'enroulement principal de l'ordre de 5. Ainsi, le faible rapport de transformation permet de réduire le volume global du transformateur et donc les éléments de fuite ;
    • l'enroulement auxiliaire comporte un rapport de transformation avec l'enroulement principal de l'ordre de 2. Ainsi, le faible rapport de transformation permet de réduire le volume global du transformateur et donc les éléments de fuite.
  • L'invention concerne selon un deuxième objet, un dispositif de feu pour véhicule comprenant une lampe à décharge à laquelle est relié un ballast selon l'une quelconque des caractéristiques précédentes, le ballast étant apte à fournir une tension pour permettre un allumage de la lampe à décharge.
  • Brève description des figures
  • D'autres caractéristiques et avantages de la présente invention seront mieux compris à l'aide de la description et des dessins non limitatifs parmi lesquels :
    • la Fig. 1 représente schématiquement un dispositif de feu de véhicule comprenant une lampe à décharge et un ballast selon l'invention ;
    • la Fig. 2 est un schéma d'un premier mode de réalisation non limitatif d'un ballast selon l'invention ;
    • la Fig. 3 est un premier diagramme de tensions fournies par des composants du ballast selon la Fig. 2 ;
    • la Fig. 4 représente schématiquement un convertisseur tension continu/continu du ballast de la Fig. 2 selon un premier mode de fonctionnement ;
    • la Fig. 5 représente schématiquement un convertisseur tension continu/continu du ballast de la Fig. 2 selon un deuxième mode de fonctionnement ;
    • la Fig. 6 représente une lampe à décharge reliée au ballast selon l'invention ;
    • la Fig. 7 est un diagramme représentant l'évolution de la tension aux bornes de la lampe à décharge de la Fig. 6 ;
    • la Fig. 8 représente une partie du diagramme de la Fig. 7 ; et
    • la Fig. 9 est un schéma d'un deuxième mode de réalisation non limitatif d'un ballast selon l'invention.
    Description détaillée de modes de réalisation non limitatifs de l'invention
  • A la Fig. 1 est représenté un ballast BLST relié à une lampe à décharge LA dans le cadre d'une application non limitative de feu FX de véhicule. Le feu FX est par exemple, un feu de signalisation (veilleuses, codes, feux arrière) ou d'éclairage appelé projecteur (phare). Dans la présente description, le terme de « feu » sera employé indifféremment pour désigner de tels dispositifs d'éclairage ou de signalisation.
  • La lampe à décharge LA permet d'effectuer l'éclairage de jour et/ou de nuit.
  • Ainsi, un tel feu FX comporte principalement :
    • une lampe à décharge LA enfermée dans un boîtier et disposée selon une configuration géométrique déterminée avec un réflecteur RL. La lampe à décharge est une lampe à arc, entre deux électrodes qui nécessite une impulsion de tension aux bornes de ses électrodes afin de créer un premier arc pour l'allumer. La lampe LA est, dans un exemple non limitatif, une lampe au xénon (avec Hg+ ou sans Hg- mercure) qui nécessite notamment une tension d'allumage Um de l'ordre de 25kV. Elle comprend une ampoule Bb et un module haute tension HV ;
    • un ballast BLST relié au module haute tension HV de la lampe à décharge LA via un faisceau de fils, le ballast fournissant une tension Vdiff suffisante au module haute de tension HV de manière à ce que la lampe LA puisse s'allumer ; et
    • un relais RS pour connecter le ballast BLST à une source d'alimentation Vbat.
  • Un premier mode de réalisation du ballast BLST est représenté à la Fig. 2. Il comporte :
    • un convertisseur de tension continu/continu Ccc pour fournir à la lampe à décharge LA :
      • une haute tension redressée continue Vout, et
      • une tension d'amorçage Vignit, les deux tensions Vout et Vignit étant générées à partir d'une source d'alimentation Vbat, ladite source étant dans l'exemple pris la tension batterie du véhicule Vbat ;
    • un convertisseur continu/alternatif Cca pour fournir à la lampe à décharge LA une haute tension alternative à partir de la tension redressée continue Vout fournie par le convertisseur continu/continu Ccc ; et
    • une unité de commande UC pour piloter le convertisseur continu/continu Ccc et le convertisseur continu/alternatif Cca.
  • De façon non limitative, l'ensemble des éléments du ballast BLST est positionné sur une même carte électronique de type PCB («Printed Circuit Board»).
  • Les éléments du ballast BLST sont décrits en détail ci-après.
  • Convertisseur de tension continu/continu Ccc.
  • Le convertisseur continu/continu Ccc permet d'adapter la source d'alimentation, ici la tension batterie Vbat à la tension lampe à décharge en générant la haute tension redressée continue Vout et la tension d'amorçage Vignit. Comme on le verra en détail plus loin, à partir de la différence de potentiel entre ces deux hautes tensions, le module haute tension HV de la lampe à décharge LA va pouvoir générer une première impulsion d'allumage Um, de l'ordre de 25kV, pour allumer ladite lampe LA.
  • Selon un premier mode de réalisation non limitatif à la Fig. 2, il comporte :
    • un transformateur TR1 élévateur de tension;
    • un organe de commutation GMOS ;
    • un circuit redresseur RD ; et
    • un circuit multiplieur MU.
  • Dans un mode de réalisation non limitatif, le convertisseur continu/continu Ccc peut en outre comporter une résistance R1 montée en sortie du circuit multiplieur MU pour permettre de retarder le chargement d'un condensateur du module haute tension HV de la lampe à décharge LA comme on le verra en détail plus loin.
  • Les différents composants du convertisseur Ccc sont décrits ci-après.
  • Le transformateur TR1.
  • Il comporte :
    • un enroulement principal n1 relié en série à l'organe de commutation GMOS et à la source d'alimentation Vbat ;
    • un enroulement secondaire n2 relié au circuit redresseur de tension RD ; et
    • un enroulement auxiliaire n3 relié au circuit multiplieur MU et bobiné dans le prolongement de l'enroulement secondaire n2 (les deux enroulements n3 et n2 sont donc en série) ;
  • Comme on va le voir en détail plus loin, le fait d'avoir l'enroulement secondaire n2 en série avec l'enroulement auxiliaire n3 va permettre de générer la tension d'amorçage Vignit en utilisant la somme des tensions générées par l'enroulement secondaire n2 et l'enroulement auxiliaire n3 dont fait partie la tension redressée continue Vout. On réduit ainsi le nombre de spires dans l'enroulement auxiliaire n3 en particulier.
  • Les relations qui existent entre la tension principale Vn1 aux bornes de l'enroulement principal n1, la tension secondaire Vn2 aux bornes de l'enroulement secondaire n2 et la tension auxiliaire Vn3 aux bornes de l'enroulement auxiliaire n3 sont les suivantes : Vn 2 / Vn 1 = n 2 / n 1 ; Vn 3 / Vn 1 = n 3 / n 1 ; Vn 3 / Vn 2 = n 3 / n 2
    Figure imgb0001

    que ce soit lors d'une magnétisation du transformateur (lorsqu'un courant circule dans le transformateur), ou lors d'une démagnétisation, avec n2/n1, n3/n1 et n3/2 les rapports de transformations entre ces différents enroulements.
  • Dans un mode de réalisation non limitatif, l'enroulement secondaire n2 est défini de manière à ce que le rapport de transformation n2/n1 entre cet enroulement n2 et l'enroulement principal n1 soit égal à 5.
  • Dans un mode de réalisation non limitatif, l'enroulement auxiliaire n3 est défini de manière à ce que le rapport de transformation n3/n1 entre cet enroulement n3 et l'enroulement principal n1 soit égal à 2.
  • Dans un exemple non limitatif, le nombre de spires dans l'enroulement principal n1 est égal à 4, le nombre de spires dans l'enroulement secondaire n2 est égal à 20, et enfin le nombre de spires dans l'enroulement auxiliaire n3 est égal à 8.
  • On obtient : n 2 / n 1 = 20 / 4 = 5 et n 3 / n 1 = 8 / 4 = 2 ;
    Figure imgb0002

    et : n 3 + n 2 / n 2 = n 3 / n 1 + n 2 / n 1 / n 2 / n 1 = 8 / 4 + 20 / 4 / 20 / 4 = 2 + 5 / 5 = 7 / 5
    Figure imgb0003
  • Comme on le verra par la suite, ces rapports de transformation faibles ainsi que le nombre de spires associé sont suffisants pour permettre de générer une tension d'amorçage Vignit nécessaire à l'allumage de la lampe à décharge LA.
  • Bien entendu, un autre nombre de spires peut être utilisé ainsi que d'autres rapports de transformation permettant d'obtenir la tension d'amorçage Vignit et la tension redressée Vout suffisantes permettre pour l'allumage de la lampe LA.
  • L'organe de commutation GMOS
  • II est piloté par des impulsions de découpage et son ouverture-fermeture répétitive permet d'induire la tension secondaire induite Vn2 aux bornes de l'enroulement secondaire n2 et la tension auxiliaire induite Vn3 aux bornes de l'enroulement auxiliaire n3. Dans un mode de réalisation non limitatif, l'organe de commutation est un transistor MOSFET.
  • Le circuit redresseur RD
  • II permet de fournir la tension redressée continue Vout à partir de la tension secondaire induite Vn2, le circuit RD comprenant à cet effet une diode de redressement Dout et un condensateur de filtrage Cout. Dans un mode de réalisation non limitatif, la diode de redressement Dout est reliée au noeud P1 entre les enroulements secondaire n2 et auxiliaire n3 par sa cathode comme illustré à la Fig. 2.
  • Le circuit multiplieur MU
  • II permet de fournir la tension d'amorçage Vignit. Dans un mode de réalisation non limitatif, le multiplieur MU est composé de deux diodes D1, D2 et de deux condensateurs C1, C2. Les condensateurs C1 et C2 permettent de fournir la tension d'amorçage Vignit, tandis que les diodes D1 et D2, lors de la phase d'allumage, permettent d'une part de charger les condensateurs C1 et C2 associés et d'autre part leur évitent de se décharger dans un sens comme on va le voir plus loin.
  • Selon un deuxième mode de réalisation illustré à la Fig. 9, le convertisseur continu/continu Ccc comporte les mêmes éléments que dans le premier mode de réalisation mais avec une polarisation inversée de la diode de redressement Dout et des diodes du circuit multiplieur D1, D2. Par ailleurs, le circuit redresseur RD permet de redresser la tension auxiliaire induite Vn3 au lieu de la tension secondaire induite Vn2. A ce moment, la tension redressée Vout est positive et la tension d'amorçage Vignit est négative.
  • Convertisseur de tension continu/alternatif Cca
  • Ce convertisseur permet de rendre la haute tension redressée Vout alternative nécessaire au fonctionnement de la lampe à décharge LA en régime permanent, c'est-à-dire lors du fonctionnement normal de la lampe, à partir de la tension redressée continue Vout fournie par le convertisseur continu/continu Ccc.
  • De manière connue de l'homme du métier, le convertisseur continu/alternatif Cca comporte quatre transistors (non représentés) montés en pont complet, l'ouverture ou la fermeture simultanée d'une paire de transistors étant commandée en alternance avec celle de l'autre paire pour rendre la tension redressée Vout alternative. Dans un mode de réalisation non limitatif, ces transistors sont des transistors NPN de type IGBT « Insulated Gate Bipolar Transistor », bien adaptés aux hautes tensions mises en jeu, tant pendant la phase d'allumage que pendant le régime permanent de la lampe LA.
  • L'unité de commande UC
  • De manière connue de l'homme du métier, l'unité de commande UC permet de contrôler, au moyen de signaux de commande en réponse à des consignes de pilotage extérieures, la largeur des impulsions de découpage du convertisseur continu/continu Ccc, ainsi que le fonctionnement du pont complet du convertisseur continu/alternatif Cca que ce soit en phase d'allumage ou en régime permanent.
  • En effet, comme on va le voir par la suite, le ballast BLST fournit la tension nécessaire pour allumer la lampe lors d'une phase d'allumage, mais également fournit la tension nécessaire pour faire fonctionner la lampe lorsqu'elle est allumée.
  • Ainsi, le ballast BLST fonctionne de la manière suivante.
  • Le fonctionnement est décrit pour le premier mode de réalisation illustré à la Fig. 2. Le même principe de fonctionnement sera à appliquer pour le mode de réalisation illustré à la Fig. 9.
  • On prend comme exemple une tension d'alimentation Vbat égale à 10V. En général, cette tension batterie Vbat varie entre 8V (par exemple lors d'un démarrage) et 12V avec des pics possibles à 19V (norme donnée par le constructeur).
  • 1) Phase d'allumage
  • Lors de la phase d'allumage, le ballast BLST va fournir d'une part la tension redressée continue Vout et d'autre part la tension d'amorçage Vignit, la différence de potentiel entre ces deux tensions, permettant d'alimenter le module haute tension HV de la lampe LA pour allumer ladite lampe.
  • Ces deux tensions sont fournies à partir d'un chargement de condensateurs respectifs, chaque chargement s'effectuant de manière alternative grâce à l'organe de commutation GMOS.
  • Ainsi, comme on va le voir ci-après, lorsque l'organe de commutation GMOS est fermé, il permet un chargement du deuxième condensateur C2 du circuit multiplieur MU permettant de fournir la tension d'amorçage Vignit, tandis que lorsqu'il est ouvert, il permet de charger le condensateur de filtrage Cout permettant de fournir la tension redressée continue Vout, et de charger le premier condensateur C1 du circuit multiplieur MU permettant de fournir également la tension d'amorçage Vignit.
  • On rappelle que le chargement d'un condensateur est progressif. En conséquence, l'organe de commutation GMOS, qui est piloté par des impulsions de découpage, permet grâce à son ouverture et fermeture répétitive de charger progressivement les trois condensateurs de manière alternative.
  • Dans un exemple non limitatif, la fréquence de commutation de l'organe de commutation GMOS est de 100kHz lors de cette phase d'allumage.
  • On rappelle que le transistor MOSFET qui compose l'organe de commutation GMOS comporte une tension grille Vgs et une tension drain-source Vds qui varient en fonction de l'ouverture-fermeture du transistor MOSFET entraînant également une variation des tensions principale Vn1, secondaire induite Vn2 et auxiliaire induite Vn3 du transformateur TR1. L'évolution de ces tensions Vn1, Vn2, Vn3 associées aux transformateurs TR1 permet de charger les condensateurs C1, C2, Cout fournissant la tension redressée continue Vout et la tension d'amorçage Vignit.
  • La variation des tensions du transformateur TR1 en fonction des deux états (fermé-ouvert) du transistor MOSFET est décrite ci-après lorsque les condensateurs C1, C2, Cout sont complètement chargés.
  • • Transistor MOSFET fermé
  • Comme on peut le voir à la Fig. 3, dans les intervalles t0-t1, t2-t3, etc., lorsque le transistor MOSFET est fermé, la tension grille Vgs est positive, et la tension drain-source Vds est nulle.
  • L'enroulement principal n1 est relié directement à la source d'alimentation Vbat. La tension principale Vn1 est donc égale à la tension batterie Vbat, soit est égale à 10V dans l'exemple pris.
  • Un courant principal Ip est alors généré et traverse l'enroulement principal n1 du transformateur TR1. Il en résulte une création d'un flux magnétique dans le transformateur TR1 créant un courant secondaire induit In2 et un courant auxiliaire induit In3, ces derniers induisant respectivement une tension secondaire induite Vn2 aux bornes de l'enroulement secondaire n2 et une tension auxiliaire induite Vn3 aux bornes de l'enroulement auxiliaire n3 tels qu'illustrés à la Fig. 4. Les courants induits ln2 et ln3 vont dans le sens inverse des aiguilles d'une montre.
  • Étant donné les rapports de transformation respectivement égaux à 5 et 2, la tension secondaire induite Vn2 est égale à 50 et la tension auxiliaire induite Vn3 est égale à 20 telles qu'illustrées à la Fig. 3.
  • Étant donné le sens des courants induits ln2 et ln3 (sens illustré en pointillés sur la Fig. 4), la diode de redressement Dout est alors bloquée. Elle est représentée en pointillés à la Fig. 4. Il en est de même pour la première diode D1 du circuit multiplieur MU.
  • Par contre la deuxième diode D2 du circuit multiplieur MU est passante (on a environ 0V à ses bornes).
  • La deuxième diode D2 étant passante, le deuxième condensateur C2 du circuit multiplieur MU est chargé via cette deuxième diode D2. La première diode D1 étant bloquée, le premier condensateur C1 du circuit multiplieur MU se décharge via la deuxième diode D2 vers le deuxième condensateur C2.
  • Le deuxième condensateur C2 est donc chargé avec les tensions secondaires induites Vn2, auxiliaire induite Vn3 et la tension Vc1 du premier condensateur C1.
  • La tension Vc2 aux bornes de le deuxième condensateur C2 du circuit multiplieur MU est donc égale à : Vc 2 = Vn 2 + Vn 3 + Vc 1 , soit = 50 + 20 + 560 V = + 630 V
    Figure imgb0004

    avec la tension Vc1 = +560V = -Vout - Vn3 provenant de l'étape où le transistor MOSFET est ouvert comme décrit plus loin.
  • Étant donné que la tension Vc2 est égale à la tension d'amorçage Vignit, on obtient Vignit = +630V.
  • Ainsi, la tension d'amorçage Vignit est bien fournie par le chargement du deuxième condensateur C2 du circuit multiplieur MU et est bien générée à partir de la tension redressée Vout.
  • On notera que le rapport de transformation de n3/n1 = 2 permet d'obtenir une tension d'amorçage Vignit supérieure à 600V dans les pire cas d'allumage (Vout_min = 400V et Vbat_min = 8V).
  • En effet, dans ce cas, la tension d'amorçage Vignit est égale à :
    • Vignit min
    • = Vc1 + Vn2_on +Vn3_on
    • = Vn2_off+Vn3_off+Vn2_on +Vn3_on
    • = Vout_min +n3/n2*Vout_min +n2/n1*Vbat_min+n3/n1*Vbat_min
    • = Vout_min *(n3+n2)/n2 + Vbat min * (n3+n2)/n1
    • = 400*7/5+8*7 = 616V.
  • Avec Vn3_off/Vn2_off = n3/n2 et Vn1 = Vbat, et Vn2_off, Vn3_off les tensions aux bornes des enroulements n2 et n3 respectif lorsque le transistor MOSFET est ouvert, et Vn2_on, Vn3_on les tensions lorsque le transistor MOSFET est fermé.
  • • Transistor MOSFET ouvert
  • Comme on peut le voir à la Fig. 3, dans les intervalles t1-t2, t3-t4 etc..., le transistor MOSFET est ouvert.
  • La tension grille Vgs est nulle, le transistor MOSFET se comporte comme une diode passante de la source vers le drain.
  • La tension drain-source Vds est donc positive telle qu'illustré à la Fig. 3. L'ouverture du transistor MOSFET empêche le courant principal Ip de circuler.
  • La conservation du flux magnétique dans le transformateur TR1 provoque l'apparition des courants secondaire ln2 et auxiliaire ln3 respectivement dans l'enroulement secondaire n2 et l'enroulement auxiliaire n3 tels qu'illustrés à la Fig. 5 dans le sens des aiguilles d'une montre.
  • Étant donné le sens des courants induits In2 et In3 (sens illustré en pointillés sur la Fig.5), la diode de redressement Dout est passante, ainsi que la première diode D1 du circuit multiplieur MU, tandis que la deuxième diode D2 du circuit multiplieur MU est bloquée (elle est représentée en pointillés).
  • La diode de redressement Dout étant passante (on a environ 0V à ses bornes), le condensateur de filtrage Cout est chargée par ladite diode Dout.
  • L'organe de commutation GMOS est piloté de manière à ce que la charge du condensateur de filtrage Cout soit égale à -400V. A cet effet, il existe un dispositif de régulation (non représenté) qui mesure la charge du condensateur de filtrage Cout.
  • Par conséquent Vout = -400V à la fin du chargement du condensateur Cout. Comme dans ce cas, la tension secondaire induite Vn2 est égale à la tension redressée Vout, Vn2 = -400V telle qu'illustrée à la Fig. 3.
  • Étant donné le rapport de transformation n2/n1=5, la tension principale Vn1 = -400/5 = -80V.
  • Étant donné le rapport de transformation n3/n1 = 2, la tension auxiliaire induite Vn3 =-80*2 = -160V.
  • Par ailleurs, La première diode D1 étant passante (on a environ 0V à ses bornes), le premier condensateur C1 du circuit multiplieur MU se charge au travers de cette diode D1.
  • Le premier condensateur C1 est donc chargé avec les tensions secondaire induite Vn2 et auxiliaire induite Vn3.
  • On obtient donc Vc 1 = - Vn 2 - Vn 3 = - Vout - Vn 3 = 400 V + 160 V = + 560 V
    Figure imgb0005
  • On notera que le deuxième condensateur C2 du circuit multiplieur MU ne peut à ce moment se décharger en direction du premier condensateur C1 car la deuxième diode D2 est bloquée. Par contre, le deuxième condensateur C2 se décharge dans le circuit (condensateur C3) de la lampe LA comme on le verra plus loin.
  • On notera que le temps de charge du deuxième condensateur C2 se situe aux environs des dizaines de microsecondes (1/100kHz) tandis que le temps de décharge se situe aux alentours de quelques millisecondes (grâce à une résistance R1 comme on le verra plus loin).
  • Ainsi, lorsque le transistor de commutation MOSFET est fermé, le condensateur C2 se charge procurant ainsi la tension d'amorçage Vignit à partir de la tension redressée Vout, tandis que lorsque le transistor MOSFET est ouvert, le condensateur de filtrage Cout se charge procurant ainsi la tension redressée Vout.
  • On notera que les diodes D1 et D2 du circuit multiplieur MU doivent être dimensionnées pour tenir une tension de l'ordre de 800V. En effet, la tension maximale inverse Vrmax des diodes est égale à : Vrmax = Vout_max * n 3 + n 2 / n 2 + Vbat_max * n 3 + n 2 / n 1 = 450 * 1 , 4 + 19 * 7 = 763 V .
    Figure imgb0006
  • En effet, Vrmax est égal à Vignit. En effet, lorsque le premier condensateur C1 se charge, la première diode D1 est passante (donc la tension à ses bornes est de 0V), donc la tension de la deuxième diode D2 correspond à Vignit. De même, lorsque le deuxième condensateur C2 se charge, la deuxième diode D1 est passante (donc la tension à ses bornes est de 0V), donc la tension de la première diode D1 correspond à Vignit.
  • Ainsi, on obtient bien une tension redressée Vout de -400V et une tension d'amorçage Vignit de +630V, la différence de potentiel Vdiff=Vignit-Vout étant égale à 1030V. Cette différence de potentiel Vdiff permet de fournir la très haute tension d'allumage Um de 25kV nécessaire à l'allumage de la lampe à décharge LA de la manière suivante.
  • La différence de tension Vdiff est appliquée au module haute tension HV comme indiqué à la Fig. 6.
  • Ce module HV comprend :
    • un condensateur C3,
    • un transformateur TR2 comprenant un enroulement primaire et un enroulement secondaire et apte à fournir une tension très élevée Um, de l'ordre de 25kV, à partir de la différence de tension Vdiff fournie par le convertisseur continu/continu Ccc,
    • un éclateur à gaz Gz connecté en série avec l'enroulement primaire du transformateur TR2, et
    • l'ampoule Bb de la lampe à décharge LA.
  • Lorsque la lampe LA est éteinte, l'éclateur à gaz Gz se comporte comme un interrupteur ouvert. Lorsque la différence de tension Vdiff est appliquée en entrée du module haute tension HV, le condensateur C3 se charge. Lorsqu'il atteint un seuil prédéterminé de chargement, de l'ordre de 800V dans un exemple non limitatif, l'éclateur Gz devient brusquement conducteur et crée une impulsion de courant dans l'enroulement primaire du transformateur TR2 qui produit au secondaire la très haute tension Um de 25kV, créant ainsi un premier arc électrique nécessaire à l'allumage de la lampe LA. Au même moment, lorsque l'éclateur à gaz devient passant, le condensateur C3 se décharge très vite dans le transformateur TR2.
  • Ainsi, la lampe à décharge LA s'allume.
  • 2) Régime permanent
  • Lorsque la lampe est allumée, afin de fonctionner correctement, une tension alternative est appliquée à ses bornes. Cette tension est de l'ordre de -85V en régime permanent pour une lampe à xénon avec mercure (Hg+) et de l'ordre de -42V pour une lampe à xénon sans mercure (Hg-).
  • Comme décrit précédemment, l'unité de commande UC agit pour activer et désactiver les transistors du convertisseur continu/alternatif Cca afin que ce dernier fournisse cette tension alternative à partir de la tension redressée Vout nécessaire pour continuer à faire fonctionner la lampe LA. Cette tension alternative est obtenue à partir de la tension redressée continue Vout fournie par le convertisseur continu/continu Ccc.
  • On rappelle que le convertisseur continu/continu Ccc permet de fournir la puissance nécessaire pour que la tension redressée Vout soit dans ce cas égale à -85V. Dans un exemple non limitatif, la fréquence de commutation de l'organe de commutation GMOS est de 300kHz en régime permanent.
  • Ainsi, on notera qu'en phase d'allumage, le transistor de commutation MOSFET reste ouvert plus longtemps qu'en régime permanent.
  • La Fig. 7 résume l'évolution de la tension Ula aux bornes de la lampe à décharge LA lors de la phase d'allumage et lors du régime permanent.
  • On notera que l'échelle des intervalles t0-t1 , t1-t2, t2-t3, t3-t4 se situe aux alentours des millisecondes, tandis que l'échelle de l'intervalle t4-t5 et la suite se situe aux alentours des secondes.
  • L'intervalle t0-t1 représente la phase d'allumage, tandis que l'intervalle t3-t4 représente la phase de fonctionnement en régime permanent.
  • Les intervalles t1-t2 et t2-t3 représentent des phases de transition.
  • Au temps t0 = 0, tous les condensateurs Cout, C1, et C2 sont à 0. La tension d'amorçage Vignit et la tension redressée Vout sont à 0.
  • Dans l'intervalle t0-t1, les condensateurs Cout, C1 et C2 se chargent. La tension d'amorçage Vignit et la tension redressée Vout augmentent.
  • Au temps t1, elles atteignent respectivement 630V et -400V, la différence étant de 1030V. La tension Ula de la lampe LA est égale à la différence de tension Vignit - Vout.
  • On a atteint la fin de la phase d'allumage.
  • Entre t1 et t2, la tension redressée Vout commence à diminuer (le condensateur Cout du circuit redresseur se décharge) tandis que la tension d'amorçage Vignit chute jusqu'à -400V car le condensateur C3 se décharge brutalement, sa tension Vc3 devient nulle, la tension redressée Vout demeurant à -400V.
  • A partir du temps t3, la tension redressée continue Vout est rendue alternative au moyen du convertisseur continu/alternatif Cca. La tension Ula de la lampe LA est égale à la tension redressée alternative Vout.
  • Au temps t3, on assiste ainsi à une première commutation des transistors de commutation du convertisseur continu/alternatif Cca. Puis à partir du temps t4, le régime permanent de la lampe à décharge LA s'installe aux alentours de -85V.
  • On notera qu'entre le temps t3 et le temps t4, il existe un temps d'attente entre la première commutation du pont complet du convertisseur continu/alternatif Cca et une seconde commutation, de l'ordre de quelques dizaines de millisecondes, afin d'éviter à la lampe à décharge de s'éteindre. En effet, l'arc électrique créé doit être maintenu suffisamment longtemps pour chauffer la première électrode de la lampe LA avant d'inverser le sens de l'arc (c'est-à-dire avant d'inverser le courant dans la lampe qui en conséquence passera par zéro), pour chauffer la deuxième électrode de la lampe LA.
  • L'évolution des deux tensions d'amorçage Vignit et redressée Vout est illustrée de façon plus précise à la Fig. 8.
  • Les deux courbes Cvignit et Cvout représentatives respectivement des deux tensions Vignit et Vout illustrent le chargement progressif des condensateurs C2 et Cout correspondant. Comme on peut le voir, la pente de la courbe Cvignit représentative de la tension d'amorçage Vignit est plus grande que celle de la courbe Cvout représentative de la tension redressée Vout car le condensateur Cout de filtrage est dimensionné de manière à être plus important que le deuxième condensateur C2. En effet, le condensateur Cout génère la puissance la plus importante à la lampe LA et correspond à une réserve d'énergie. En effet, en régime permanent, il est le seul à fournir l'énergie à la lampe LA.
  • En raison de cette différence de pente, la tension d'amorçage Vignit peut atteindre au temps t1 sa valeur maximale +630V avant que la tension redressée n'atteigne la sienne -400V. Cela pourrait engendrer une différence de tension au temps t1 inférieure à 1030V, soit par exemple aux environ de 800V, la tension redressée Vout n'ayant atteint que 200V par exemple. Cette différence de tension Vdiff peut engendrer un allumage de la lampe LA.
  • Cependant étant donné que le seuil de conduction de l'éclateur à gaz Gz est de l'ordre de 800V, la différence de tension Vdiff se trouve à la limite du seuil de l'éclateur à gaz; aussi la lampe LA peut mal s'allumer.
  • Afin de remédier à cet inconvénient, la résistance R1 du ballast BLST permet de retarder le chargement du condensateur C3 de la lampe LA avec la tension d'amorçage Vignit comme illustré par la courbe CRvignit. Ainsi, les deux tension Vignit et Vout atteindront leur valeur maximale au même moment de manière à fournir une différence de potentiel suffisante pour dépasser le seuil de chargement de l'éclateur à gaz permettant ainsi un allumage fiable de la lampe LA. Ainsi, la résistance R1 permet d'attendre que la tension redressée Vout soit stabilisée à -400V pour permettre d'obtenir une différence de tension Vdiff supérieure au seuil de conduction de l'éclateur à gaz Gz de sorte à obtenir un arc de tension suffisant (25kV) nécessaire à un allumage fiable de la lampe LA.
  • Par ailleurs, cette résistance R1 permet d'éviter des pics de courant dans la deuxième diode D2 et évite ainsi à cette dernière de s'abîmer.
  • On notera que dans la description, l'application feu de véhicule a été pris en exemple, mais bien entendu, le ballast décrit peut être utilisé dans d'autres applications telles que, dans des exemples non limitatifs, éclairage intérieur bâtiment («Interior Lighting») ou éclairage voirie («General Lighting»).
  • En conclusion, l'invention présente les avantages suivants.
    • Elle permet d'avoir des rapports de transformation (5 et 2) réduits ce qui réduit les éléments de fuite dues aux capacités et self parasites des spires d'un enroulement; il y a donc moins de risque de surtension sur le transistor de l'organe de commutation GMOS et donc moins de problème CEM (compatibilité électromagnétique).
    • Du fait du faible rapport de transformation n3/n1, elle permet d'avoir des diodes D1, D2 dimensionnées pour des tensions de l'ordre de 700 à 800V maximum (pour tenir la tension d'amorçage de 630V) au lieu de 1000V pour la solution de l'état de la technique antérieur, ce qui permet d'utiliser des composants plus standard et donc de réduire le coût des composants.
    • Elle permet d'obtenir des enroulements plus petits dans le transformateur TR1 et donc une longueur de fil plus petite; par conséquent le volume global du transformateur est réduit. Le fait d'avoir une longueur de fil réduite, permet de diminuer les pertes cuivres.
    • Il existe moins de contrainte au niveau de l'isolement effectué entre l'enroulement secondaire et l'enroulement auxiliaire afin que ces derniers ne se touchent pas. En effet, un tel isolement doit pouvoir tenir 560V (-Vn2-Vn3 comme décrit précédemment) au lieu de 1000V dans l'état de la technique antérieur.
    • Elle permet d'obtenir, grâce à la résistance R1, un allumage fiable de la lampe à décharge grâce à une différence de potentiel suffisante pour rendre passant l'éclateur à gaz.
    • Le fait d'avoir réduit le volume du transformateur TR1 permet d'avoir une surface sur la carte électronique PCB réduite, et par conséquent une augmentation de la fiabilité, une réduction des coûts de test, un temps de process amélioré, et enfin un coût report sur PCB meilleur.
    • La durée de vie du transformateur TR1 est augmentée puisque la tension maximum générée dans ledit transformateur est de 630V contre 1000V pour la solution de l'état de la technique antérieur. Par conséquent, le stress vu par les enroulements est réduit, c'est-à-dire que l'on obtient une meilleure tenue au claquage. Le transformateur est donc plus fiable.
    • Enfin, elle permet de réduire le nombre de composants nécessaire à la fonction d'allumage uniquement, grâce au circuit multiplieur. Deux diodes D1, D2 et deux condensateurs C1, C2 suffisent pour générer la tension d'amorçage Vignit à partir des enroulements secondaire n2 et auxiliaire n3.

Claims (6)

  1. Un ballast (BLST) pour lampe à décharge (LA) comprenant
    - un convertisseur de tension continu/continu (Ccc) pour fournir une tension redressée continue (Vout), et comportant
    - un unique redresseur de tension (RD),
    - un transformateur (TR1) comprenant un enroulement principal (n1), un enroulement secondaire (n2) et un enroulement auxiliaire (n3), le transformateur (TR1) permettant de fournir la tension redressée continue (Vout), et
    - un circuit multiplieur de tension (MU) pour fournir une tension d'amorçage (Vignit), la différence de potentiel (Vdiff) entre cette tension (Vignit) et la tension redressée continue (Vout) permettant de créer une tension d'allumage (Um) pour la lampe à décharge (LA),
    caractérisé en ce que
    - l'enroulement auxiliaire (n3) est en série avec l'enroulement secondaire (n2), et
    - le circuit multiplieur de tension (MU) est combiné avec les enroulements secondaire (n2) et auxiliaire (n3) du transformateur (TR1).
  2. Ballast (BLST) selon la revendication 1, caractérisé en ce que le circuit multiplieur de tension (MU) comporte deux condensateurs (C1, C2) et deux diodes (D1, D2).
  3. Ballast (BLST) selon l'une des revendications précédentes, caractérisé en ce qu'il comporte en outre une résistance (R1) en sortie du circuit multiplieur de tension (MU).
  4. Ballast (BLST) selon l'une des revendications précédentes, caractérisé en ce que l'enroulement secondaire (n2) comporte un rapport de transformation (n2/n1) avec l'enroulement principal (n1) de l'ordre de 5.
  5. Ballast (BLST) selon l'une des revendications précédentes, caractérisé en ce que l'enroulement auxiliaire (n3) comporte un rapport de transformation (n3/n1) avec l'enroulement principal (n1) de l'ordre de 2.
  6. Dispositif de feu (FX) pour véhicule, comprenant une lampe à décharge (LA) à laquelle est relié un ballast (BLST) selon l'une quelconque des revendications précédentes, le ballast (BLST) étant apte à fournir une tension (Vdiff) pour permettre un allumage de la lampe à décharge (LA).
EP07121725A 2006-11-30 2007-11-28 Ballast pour lampe à décharge Active EP1931181B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0610486A FR2909510B1 (fr) 2006-11-30 2006-11-30 Ballast pour lampe a decharge

Publications (2)

Publication Number Publication Date
EP1931181A1 EP1931181A1 (fr) 2008-06-11
EP1931181B1 true EP1931181B1 (fr) 2011-07-27

Family

ID=38068871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07121725A Active EP1931181B1 (fr) 2006-11-30 2007-11-28 Ballast pour lampe à décharge

Country Status (4)

Country Link
EP (1) EP1931181B1 (fr)
AT (1) ATE518408T1 (fr)
ES (1) ES2370269T3 (fr)
FR (1) FR2909510B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012204324A1 (de) * 2012-03-15 2013-09-19 Osram Gmbh Zündvorrichtung für eine Hochdruckentladungslampe und Betriebsvorrichtung mit einer derartigen Zündvorrichtung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051665A (en) * 1990-06-21 1991-09-24 Gte Products Corporation Fast warm-up ballast for arc discharge lamp
US5036256A (en) * 1990-06-21 1991-07-30 Gte Products Corporation Arc discharge ballast suitable for automotive applications
US6181084B1 (en) * 1998-09-14 2001-01-30 Eg&G, Inc. Ballast circuit for high intensity discharge lamps
KR100291042B1 (ko) * 1999-03-09 2001-05-15 이광연 고출력 고휘도 방전램프용 전자식 안정기
JP2001284089A (ja) * 2000-03-31 2001-10-12 Victor Co Of Japan Ltd ランプ用電源回路

Also Published As

Publication number Publication date
EP1931181A1 (fr) 2008-06-11
FR2909510B1 (fr) 2009-02-13
ES2370269T3 (es) 2011-12-14
ATE518408T1 (de) 2011-08-15
FR2909510A1 (fr) 2008-06-06

Similar Documents

Publication Publication Date Title
FR2661588A1 (fr) Circuit d'eclairage pour lampe a decharge pour vehicules.
JP2007194044A (ja) 点灯回路
FR2795283A1 (fr) Circuit d'allumage de lampe a decharge pour une pluralite de lampes
FR2648000A1 (fr) Circuit d'allumage pour lampe a decharge sous haute pression pour vehicules
EP0567408B1 (fr) Dispositif d'alimentation de lampes à décharge et projecteur de véhicule utilisant un tel dispositif
FR2795282A1 (fr) Circuit d'allumage de lampe a decharge avec circuit d'alimentation, circuit de conversion et circuit d'excitation
EP1931181B1 (fr) Ballast pour lampe à décharge
EP3345456B1 (fr) Convertisseur électronique et système d'éclairage comprenant un tel convertisseur
FR2896121A1 (fr) Ballast de lampe a decharge gazeuse et procede de pilotage de ce ballast
FR2648235A1 (fr) Dispositif de signalisation pour un poste de distribution electrique
WO1999041956A1 (fr) Perfectionnements aux dispositifs pour l'alimentation d'une lampe a decharge de projecteur de vehicule automobile
FR3092444A1 (fr) Dispositif domotique de commande électronique à deux fils
JP2007203946A (ja) 車両用発光装置
US20070080649A1 (en) High voltage discharge lamp lighting apparatus
JP4391199B2 (ja) 放電灯点灯装置
FR2810494A1 (fr) Circuit d'eclairage de lampe a decharge
EP2198507B1 (fr) Dispositif de commande variable
EP0946081A1 (fr) Dispositif pour l'alimentation d'une lampe à décharge de projecteur de véhicule automobile
FR2674723A1 (fr) Circuit d'alimentation pour une charge electrique comme une lampe a decharge, notamment pour projecteur de vehicule et projecteur de vehicule utilisant un tel circuit.
FR2779288A1 (fr) Module d'alimentation d'une lampe a decharge, notamment de projecteur de vehicule automobile
FR3045271A3 (fr) Arrangement de circuit destine a la gradation de sources de lumiere a led
FR2507052A1 (fr) Dispositif d'amorcage de lampes du type lampes d'eclairage a decharge et lampes fluorescentes
FR2492211A1 (fr) Appareil generateur de lumiere-eclair electrique
WO2009098385A2 (fr) Prise photo commandée,sans consommation de veille.
FR2952765A1 (fr) Interrupteur variateur electronique perfectionne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20081114

17Q First examination report despatched

Effective date: 20081215

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007016049

Country of ref document: DE

Effective date: 20110915

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110727

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2370269

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111214

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 518408

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111127

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111128

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111028

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

BERE Be: lapsed

Owner name: VALEO VISION

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20120502

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007016049

Country of ref document: DE

Effective date: 20120502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231218

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231109

Year of fee payment: 17

Ref country code: FR

Payment date: 20231124

Year of fee payment: 17

Ref country code: DE

Payment date: 20231107

Year of fee payment: 17