EP1911929A1 - Method for determining changes in the position of tubbing rings - Google Patents

Method for determining changes in the position of tubbing rings Download PDF

Info

Publication number
EP1911929A1
EP1911929A1 EP07117857A EP07117857A EP1911929A1 EP 1911929 A1 EP1911929 A1 EP 1911929A1 EP 07117857 A EP07117857 A EP 07117857A EP 07117857 A EP07117857 A EP 07117857A EP 1911929 A1 EP1911929 A1 EP 1911929A1
Authority
EP
European Patent Office
Prior art keywords
tubbing
scanning
measuring zone
measuring
rings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07117857A
Other languages
German (de)
French (fr)
Inventor
Helge Grafinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1911929A1 publication Critical patent/EP1911929A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
    • E21D9/004Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines using light beams for direction or position control

Definitions

  • the invention relates to a method for determining the change in the position of tubbing rings in a tunnel cross-section during tunneling, using an optical measuring device, and a device for carrying out the method.
  • the DE 44 45 464 A1 describes a scanning device for measuring the free, passable space via traffic routes.
  • the scanning device generates by means of a laser, as well as a rotating deflecting a running in a plane transverse to the direction of rotation of the transmitting beam.
  • the transmit beam scans the wall of the tunnel with a helical blanket scan line.
  • the reflected light from the wall of the tunnel is received by the deflector and fed to a detector.
  • the distance of the wall of the tunnel from the deflection device can be determined.
  • the DE 42 25 270 A1 describes a method for determining the position of a position body relative to a reference body.
  • mounted on the object marks to be positioned in a well-defined arrangement which are detected by an imaging device with projection surface on the reference object. From geometric relationships between the marks on the object and the image of these marks on the projection surface, the relative position can be calculated. It is a pure solution of projective, geometric relationships without direct distance measurement.
  • the EP 0 791 725 A1 describes a method which serves the purpose of automating the installation of individual tubbing elements positionally accurate. This is realized by detecting with one detector the vertices of one or two adjacent segments and controlling the positioning of the tubbings on these vertices. It is only a punctual measurement - and no flat measurement - performed.
  • a method of determining the distance between the inner surface of a shield and the outer surface of a tubing liner is known.
  • at least three distance sensors are provided which are installed at a fixed angle with respect to the shield axis and which measure the distances to the inner edge of the sign or to the inner edge of the tubing.
  • the strength of the gap can be measured with the aid of angle functions and the knowledge of the thickness of the tubing.
  • the object of the invention is to develop a method with which a metrological monitoring of the tubbing shell is made possible with little effort.
  • the acquisition of the chord length is done immediately before each stroke after installation of tubbing rings.
  • a device which is characterized in that by the three-dimensional non-contact scanning Three-dimensional coordinates of the measuring zone and / or the reflection intensity of the surface of the measuring zone are detected, and wherein the scanning device is directed counter to the direction of advance on at least one defined measuring surface on the inside of the tubbing rings, wherein preferably the scanning device is controlled by a control computer at the control station of the tunnel boring machine.
  • Previous measuring methods work with target devices to be installed on the tubbing rings and geometric measurement by means of a surveying instrument or by direct length measurement by means of measuring tape or laser rangefinder, which are manually stopped at correspondingly marked points.
  • the present method works with a laser scanner, which detects the tubbing surfaces in a dense grid three-dimensionally without contact from a fixed position.
  • the measured data obtained are three-dimensional coordinates, on the other hand the reflection intensity of the surface, which additionally provides image information.
  • the boundary lines (joints) between the individual segment segments are detected using methods of digital image processing.
  • the detected boundary lines subsequently serve for the calculation of the exact 3D position of various significant points on the tubbing surfaces, between which distances can then be calculated. Measurements of different acquisition times can thus be unambiguously identified by the detection of the edges and significant points derived therefrom. with respect to physically identical points on the tubbing surfaces. The comparison of these measurement results thereby provides the desired changes in the tubal tendon and the tubbing position.
  • the full-surface automatic measurement by means of non-contact and pictorial sensors enables a digital and automatic evaluation of the measured data.
  • a second scanning device can be provided in the region of the tunnel boring machine follower, wherein the second scanning device is directed in the advancing direction to at least one defined measuring zone on the inner circumferential surface of the tubbing rings.
  • a second scanning device is also advantageous in order to generally detect the behavior of the tendon changes in a longer spatial and temporal distance.
  • a 3D laser scanner is used, that is, the laser beam is deflected over two axes of rotation.
  • the laser scanner is permanently mounted on a tunnel boring machine.
  • the measurement itself is carried out when the machine is at a standstill.
  • the result of the measurement includes information about the geometry of the tubbing elements as well as the surface condition.
  • the measurement results can also be used to detect the joints between the individual tubbing elements. With the help of the recognized joints, the chord lengths of the individual segments can be calculated. Due to repetitive measurements, the change in chord length can be further determined.
  • Fig. 1 shows a longitudinal section through a tunnel 1 with a tunnel boring machine 2.
  • the tunnel boring machine 2 has at its front a cutting wheel 3 and a shield 4, in which a scanning device 5 is arranged.
  • Reference numeral 6 designates the working region of a tubbing displacement device 14 for the erection of the tubbing rings 7, which are numbered n0, n-1, n-2, n-3, n-4, n-5,...
  • the work area 6 of the Tübbingerversetzettis 14 follows the control station 8 with the control computer 9. Then the tunnel boring machine 2 has a trailer 10.
  • Each tubbing ring 7 consists of several tubbing segments, of which the first tubule segment 7a and two ulm tubule segments 7b are shown in FIG. Between the first-segment segment 7a and the Ulm-segment segments 7b joints 11 are formed. Further parting lines 12 are located between the segmental segmental segments 7b and the segmental segmental segments 7c (not shown in FIG. 2). The parting lines 11, 12 between the segments adjacent segmental rings 7 can - as shown in Fig. 1 - be aligned or staggered in the direction of the tunnel axis.
  • the 3D San Love 5 is arranged in a not further apparent protective housing which is mounted in the region of the front platform of the tunnel boring machine 2 in the height of the parting lines 11 between ridge and Ulm segments 7a, 7b.
  • the control computer 9 in the control station 8 can be equipped with a touchscreen for operation and for graphical presentation of results.
  • the power connection of the 3D scanner 5 takes place in the control station 8. Control and power lines are formed between the scanning device 5 and the control computer 9 arranged in the control station 8.
  • the measurement takes place at a fixed time within the work cycle, for example before each stroke and after installation of the tubbing ring 7. Other measuring times are basically possible and can be started manually.
  • a plurality of rings for example n0 to n-3, are detected, where n0 is the last inserted tubbing ring 7.
  • the optional installation of a second scanning device at a suitable location in the region of the post-rotor 10 offers itself.
  • the behavior of the tendon changes in a longer spatial and temporal distance could possibly also be detected in general.
  • the start of the next stroke of the tunnel boring machine 2 can take place immediately.
  • the ring number of the current ring n0 is entered once at system startup and automatically increased by one each time the measurement passes. Manually started measurements also require manual entry of the respective ring number.
  • chord lengths s1, s2, etc. takes place by an automatic detection of the respective measuring zones 13 on the tubbing surface above and below the parting line 11 separately for each ring 7 and following calculation of the 3D coordination of the center of gravity of each zone.
  • the result data are stored structured for a long-term and sustainable usability.
  • FIG. 2 schematically shows the chord lengths s1 between two segmental segmental segments 7b and the chordal length s2 for the first segmentation chord.
  • the current status of the deformation of each individual segmental ring 7 can be displayed on the control computer 9. This is done by a simple time-deformation graph and also by a station-related representation of the respective maximum deformations.
  • the result of the measurement can be, for example, the ring-related or the time-related deformation of the tubbing rings 7.
  • FIG. 3 shows the ring-related deformation V over the ring numbers n for a zero measurement T1 and for follow-up measurements T2, T3 and T4.
  • FIG. 4 shows the deformation V in millimeters over the time T for the tubbing rings n 1 to n 7 .
  • the measuring zones 13 of the tubbing rings 7 are detected in a three-dimensional contactless manner in a three-dimensional manner via the scanning device 5 which moves along with the plate 4 and is designed as a laser scanner.
  • the measured data obtained are three-dimensional coordinates, on the other hand the reflection intensity of the surface, which additionally provides image information.
  • the separation joints 11 between the individual tubbing segments 7a, 7b are detected using methods of digital image processing.
  • the boundary lines are then used to calculate the exact 3D position of various significant points on the tubbing surfaces, between which distances can then be calculated. Measurements of different recording times can thus be clearly compared by detecting the edges and the significant points derived therefrom. The comparison of these measurement results thus provides the desired changes in the segmental tendon and Tübbinglage.
  • a non-contact detection of at least one chord length S 1 ; S 2 performed at least one tubbing ring 7 at a first time by means of a scanner scan. Furthermore, after retraction of the shield 4 of the tunnel boring machine 2, a further non-contact detection of this chord length s 1 ; s 2 of the tubbing ring 7 and the determined chord lengths s 1 ; s 2 compared with each other. The deformation of the tubbing ring 7 is calculated from the difference between the determined chord lengths s 1 ; s 2 is calculated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The method involves contactless scanning of a defined measuring zone (13) on an inner cover tubbing ring (7) by a scanner device (5) as optical measuring device, particularly a laser scanner. A contactless three dimensional scanning of the measuring zone is done and cord lengths of a tubbing ring chord from two points of time, are determined. The change for the difference of the cord lengths detected from both the points of time, is determined.

Description

Die Erfindung betrifft ein Verfahren zur Bestimmung der Veränderung der Lage von Tübbingringen in einem Tunnelquerschnitt während des Tunnelvortriebs, unter Verwendung einer optischen Messeinrichtung, sowie eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for determining the change in the position of tubbing rings in a tunnel cross-section during tunneling, using an optical measuring device, and a device for carrying out the method.

Tunnelbohrmaschinen, wie sie bei der Auffahrung unterirdischer Hohlräume in wasserführendem Gebirge mit einschaligem Tübbingausbau eingesetzt werden, bestehen in der Regel aus einem vorderen Teil, dem eigentlichen Vortriebsschild, einem Tübbingversetzgerät für die Errichtung der Tübbingringe, einen Leitstand mit Steuerrechner und einem Nachläufer. Der Einbau der Tübbingringe erfolgt dabei im Schutz des Vortriebsschildes unmittelbar vor dem Hub der Maschine. Im Zug des Hubes verlässt der Schild einen zwischen Tübbingring und Gebirge ausgebildeten Spalt. Der Spalt wird anschließend hinterfüllt. Aufgrund des sich auf den Tübbingring auswirkenden Gebirgsdruckes ist eine messtechnische Überwachung der Tübbingschale erforderlich, um eine dauerhafte Schädigung des Ausbaues zu vermeiden. Verschiedene Messmethoden wurden bisher eingesetzt, jedoch weisen alle verschiedene Eigenschaften auf, die nur zu einer eingeschränkten Akzeptanz geführt haben:

  • zu lange Messdauer (teilweise größer als 5 Minuten)
  • manuelle Durchführung
  • Montage von geeigneten Zielmarken erforderlich (Montage, Beschädigungsgefahr)
Tunnel boring machines, as they are used in the excavation of underground cavities in water-bearing mountains with einschaligem segmental lining, usually consist of a front part, the actual tunneling shield, a Tübbingversetzgerät for the construction of tubbing rings, a control room with control computer and a trailer. The installation of the tubbing rings takes place in the protection of the tunneling shield immediately before the stroke of the machine. In the course of the stroke, the shield leaves a gap formed between the tubbing ring and the mountains. The gap is then backfilled. Due to the effect on the tubbing ring rock pressure is a metrological monitoring of the tubbing shell required to avoid permanent damage to the expansion. Various measuring methods have been used so far, but all have different properties that have only led to a limited acceptance:
  • too long measurement time (sometimes more than 5 minutes)
  • manual execution
  • Installation of suitable targets required (installation, risk of damage)

Aus der DE 42 37 689 C2 ist ein Verfahren zum Ermitteln des radialen Abstandes zwischen der Innenfläche des rückwärtigen Teils eines Vortriebsschildes und der Außenfläche einer Tübbingauskleidung bekannt. Die Vermessung des Ringspaltes, also des Abstandes zwischen dem Schild und dem Tübbing, hat insbesondere den Zweck, die Dichtung zu kontrollieren. Es wird dabei nicht die Geometrie zwischen den einzelnen Tübbingen, sondern zwischen Tübbing und Schild gemessen. Zur Messung des Ringspaltes werden mindestens drei fix installierte Entfernungsmesser eingesetzt und zwar für jeden zu messenden Radialwert einen. Der Ringspalt wird nur zu einem einzigen Zeitpunkt ermittelt, es erfolgt somit eine Momentaufnahme ohne spätere Wiederholung. Eine Wiederholungsmessung zu einem späteren Zeitpunkt nach Einbau des nächsten Tübbingringes wäre mit dem bekannten Verfahren auch nicht möglich, da die Sensoren stationär montiert sind, nur einen fixen Messstrahl aufweisen und der für die Berechnung erforderliche Teil des Schildes durch den Tübbing verdeckt ist und daher nicht mehr messbar ist.From the DE 42 37 689 C2 For example, there is known a method for determining the radial distance between the inner surface of the rear part of a shield and the outer surface of a tubing lining. The measurement of the annular gap, so the distance between the shield and the tubbing, in particular has the purpose to control the seal. It is not the geometry between the individual segments, but measured between tubing and shield. At least three permanently installed rangefinders are used to measure the annular gap, specifically for each radial value to be measured. The annular gap is determined only at a single time, so there is a snapshot without later repetition. A repeat measurement at a later time after installation of the next tubbing ring would be with the known method also not possible, since the sensors are mounted stationary, have only a fixed measuring beam and the required part of the calculation of the shield is covered by the tubbing and therefore no longer measurable.

Weiters ist aus der DE 101 03 711 A1 ein Verfahren zur Vermessung des Abstandes zwischen der Schildaußenfläche und dem Gebirge bekannt, um das Volumen bestimmen zu können. Auch hier handelt es sich um eine Bestandsaufnahme zu einem einzigen Zeitpunkt.Furthermore, is from the DE 101 03 711 A1 a method for measuring the distance between the shield outer surface and the mountains known to determine the volume can. Again, this is an inventory at a single time.

Die DE 44 45 464 A1 beschreibt eine Abtastvorrichtung zur Vermessung des freien, passierbaren Raumes über Verkehrswegen. Die Abtastvorrichtung erzeugt mit Hilfe eines Lasers, sowie einer rotierenden Ablenkeinrichtung einen in einer Ebene quer zur Fahrtrichtung verlaufenden rotierenden Sendestrahl. Infolgedessen tastet der Sendestrahl die Wand des Tunnels mit einer schraubenlinienförmigen flächendeckenden Abtastlinie ab. Das von der Wand des Tunnels zurückgeworfene Licht wird von der Ablenkeinrichtung empfangen und einem Detektor zugeführt. Durch Messung der Phasenverschiebung der Modulationsphase des Sendestrahles gegenüber der Modulationsphase eines Empfangsstrahles ist die Entfernung der Wand des Tunnels von der Ablenkeinrichtung bestimmbar. Wesentlich ist, dass mit Hilfe eines Lasers, der über eine rotierende Ablenkeinrichtung zur Tunnelwand gesendet wird, und einer dazugehörigen Sende- und Empfangseinheit, die Entfernung und gleichzeitig der Winkel der Rotationsvorrichtung gemessen werden. Zur Bestimmung der Veränderung der Lage von Tübbing-Ringen während des Tunnelvortriebes ist diese Vorrichtung nicht geeignet.The DE 44 45 464 A1 describes a scanning device for measuring the free, passable space via traffic routes. The scanning device generates by means of a laser, as well as a rotating deflecting a running in a plane transverse to the direction of rotation of the transmitting beam. As a result, the transmit beam scans the wall of the tunnel with a helical blanket scan line. The reflected light from the wall of the tunnel is received by the deflector and fed to a detector. By measuring the phase shift of the modulation phase of the transmission beam relative to the modulation phase of a receiving beam, the distance of the wall of the tunnel from the deflection device can be determined. It is essential that with the aid of a laser, which is sent to the tunnel wall via a rotating deflection device, and an associated transmitting and receiving unit, the distance and at the same time the angle of the rotation device are measured. To determine the change in the position of tubbing rings during tunneling, this device is not suitable.

Die DE 42 25 270 A1 beschreibt ein Verfahren zur Lagebestimmung eines Positionskörpers relativ zu einem Bezugskörper. Dabei sind auf den zu positionierenden Objektmarken in einer genau definierten Anordnung angebracht, die durch eine Abbildungsvorrichtung mit Projektionsfläche am Bezugsobjekt erfasst werden. Aus geometrischen Zusammenhängen zwischen den Marken am Objekt und der Abbildung dieser Marken auf der Projektionsfläche kann die Relativposition berechnet werden. Es handelt sich dabei um eine reine Lösung projektiver, geometrischer Zusammenhänge ohne direkte Entfernungsmessung.The DE 42 25 270 A1 describes a method for determining the position of a position body relative to a reference body. In this case, mounted on the object marks to be positioned in a well-defined arrangement, which are detected by an imaging device with projection surface on the reference object. From geometric relationships between the marks on the object and the image of these marks on the projection surface, the relative position can be calculated. It is a pure solution of projective, geometric relationships without direct distance measurement.

Die EP 0 791 725 A1 beschreibt ein Verfahren, welches dem Zweck dient, den Einbau einzelner Tübbing-Elemente positionsgenau zu automatisieren. Dies wird dadurch realisiert, dass mit einem Detektor die Eckpunkte eines oder zweier benachbarter Tübbinge erkannt werden und die Positionierung des Tübbings auf diese Eckpunkte gesteuert wird. Es wird dabei nur eine punktuelle Messung - und keine flächige Messung - durchgeführt.The EP 0 791 725 A1 describes a method which serves the purpose of automating the installation of individual tubbing elements positionally accurate. This is realized by detecting with one detector the vertices of one or two adjacent segments and controlling the positioning of the tubbings on these vertices. It is only a punctual measurement - and no flat measurement - performed.

Aus der DE 42 37 689 A1 ist ein Verfahren zum Ermitteln des Abstandes zwischen der Innenfläche eines Vortriebsschildes und der Außenfläche einer Tübbing-Auskleidung bekannt. Um den lichten Raum zwischen der Tübbing-Außenkante und der Schildinnenkante zu vermessen, sind dabei mindestens drei Entfernungssensoren vorgesehen, die in einem festen Winkel bezüglich der Schildachse eingebaut sind und die die Entfernungen zur Schildinnenkante, bzw. zur Tübbing-Innenkante messen. Mit Hilfe von Winkelfunktionen und der Kenntnis der Tübbing-Stärke kann die Stärke des Spaltes gemessen werden.From the DE 42 37 689 A1 For example, a method of determining the distance between the inner surface of a shield and the outer surface of a tubing liner is known. In order to measure the clear space between the outer edge of the tubing and the inner edge of the shield, at least three distance sensors are provided which are installed at a fixed angle with respect to the shield axis and which measure the distances to the inner edge of the sign or to the inner edge of the tubing. The strength of the gap can be measured with the aid of angle functions and the knowledge of the thickness of the tubing.

Aufgabe der Erfindung ist es, ein Verfahren zu entwickeln, mit welchem mit geringem Aufwand eine messtechnische Überwachung der Tübbingschale ermöglicht wird.The object of the invention is to develop a method with which a metrological monitoring of the tubbing shell is made possible with little effort.

Erfindungsgemäß wird dies erreicht durch folgende Schritte

  • Bereitstellen zumindest einer Scannereinrichtung als Messeinrichtung, vorzugsweise eines Laserscanners, zum berührungslosen Abtasten zumindest einer definierten Messzone am Innenmantel benachbarter Tübbingringe;
  • Berührungsloses dreidimensionales Abtasten der Messzone und Ermittlung zumindest einer Sehnenlänge zumindest einer Tübbingringsehne zumindest eines Tübbingringes zu einem ersten Zeitpunkt;
  • Berührungsloses dreidimensionales Abtasten der Messzone und Ermittlung der Sehnenlänge dieser Tübbingringsehne zu einem zweiten Zeitpunkt;
  • Ermittlung der Veränderung aus der Differenz der zu den beiden Zeitpunkten erfassten Sehnenlängen.
According to the invention this is achieved by the following steps
  • Providing at least one scanner device as a measuring device, preferably a laser scanner, for non-contact scanning of at least one defined measuring zone on the inner jacket of adjacent tubbing rings;
  • Contactless three-dimensional scanning of the measuring zone and determination of at least one chord length of at least one tubule ring chord of at least one tubbing ring at a first time;
  • Non-contact three-dimensional scanning of the measuring zone and determination of the chord length of this tubbing ring tendon at a second time;
  • Determination of the change from the difference of the chord lengths acquired at the two times.

Vorzugsweise ist dabei vorgesehen, dass die Erfassung der Sehnenlänge unmittelbar vor jedem Hub nach Einbau des Tübbingringe erfolgt.Preferably, it is provided that the acquisition of the chord length is done immediately before each stroke after installation of tubbing rings.

Mit dem erfindungsgemäßen Verfahren ist es möglich, bei jedem Scanvorgang mehrere Tübbingringe gleichzeitig zu erfassen. Besonders vorteilhaft ist es dabei, wenn die Berechnung der Sehnenlängen durch eine automatische Erkennung der jeweiligen Messzonen auf der inneren Mantelfläche der Tübbingringsegmente beideits einer Trennfuge zwischen einem First-Tübbingsegment und einem Ulm-Tübbingsegment erfolgt. Auf die Montage von geeigneten Zielmarken kann verzichtet werden, wenn idente Flächen für die Folgemessungen anhand der den Tübbingsegmenten eigenen Geometrie und Oberflächenbeschaffenheit identifiziert werden.With the method according to the invention, it is possible to detect several tubbing rings simultaneously during each scan. It is particularly advantageous if the calculation of the chord lengths by an automatic detection of the respective measurement zones on the inner circumferential surface of the tubbing ring segments on both sides of a parting line between a first-segment segment and a Ulm-Tübbingsegment takes place. The installation of suitable target marks can be dispensed with if identical areas for the subsequent measurements are identified on the basis of the segment geometry and surface texture.

Zur Durchführung des Verfahrens ist eine Vorrichtung vorgesehen, welche dadurch gekennzeichnet ist, dass durch die dreidimensionale berührungslose Abtastung dreidimensionale Koordinaten der Messzone und/oder die Reflexionsintensität der Oberfläche der Messzone erfasst werden, und wobei die Scaneinrichtung entgegen der Vortriebsrichtung auf zumindest eine definierte Messfläche auf der Innenseite der Tübbingringe gerichtet ist, wobei vorzugsweise die Scaneinrichtung über einen Steuerrechner am Leitstand der Tunnelbohrmaschine gesteuert wird.To carry out the method, a device is provided, which is characterized in that by the three-dimensional non-contact scanning Three-dimensional coordinates of the measuring zone and / or the reflection intensity of the surface of the measuring zone are detected, and wherein the scanning device is directed counter to the direction of advance on at least one defined measuring surface on the inside of the tubbing rings, wherein preferably the scanning device is controlled by a control computer at the control station of the tunnel boring machine.

Bisherige Messverfahren arbeiten mit zu installierenden Zieleinrichtungen auf den Tübbingringen und geometrischer Einmessung mittels eines Vermessungsinstrumentes oder durch direkte Längenmessung mittels Maßband oder Laserentfernungsmesser, welche an entsprechend gekennzeichneten Punkten manuell angehalten werden.Previous measuring methods work with target devices to be installed on the tubbing rings and geometric measurement by means of a surveying instrument or by direct length measurement by means of measuring tape or laser rangefinder, which are manually stopped at correspondingly marked points.

Das vorliegende Verfahren arbeitet mit einem Laserscanner, welcher von einer fixen Position aus die Tübbingflächen in einem dichten Raster dreidimensional berührungslos erfasst. Die dabei gewonnenen Messdaten sind einerseits dreidimensionale Koordinaten, andererseits die Reflexionsintensität der Oberfläche, wodurch zusätzlich eine Bildinformation vorliegt.The present method works with a laser scanner, which detects the tubbing surfaces in a dense grid three-dimensionally without contact from a fixed position. On the one hand, the measured data obtained are three-dimensional coordinates, on the other hand the reflection intensity of the surface, which additionally provides image information.

Anhand der Bildinformation werden unter Anwendung von Methoden der digitalen Bildverarbeitung die Begrenzungslinien (Fugen) zwischen den einzelnen Tübbingsegmenten erkannt. Die erkannten Begrenzungslinien dienen in weiterer Folge für die Berechnung der exakten 3D-Positon von verschiedenen signifikanten Punkten auf den Tübbingflächen, zwischen denen dann Strecken berechnet werden können. Messungen verschiedener Aufnahmezeitpunkte können somit durch die Erkennung der Kanten und daraus abgeleiteten signifikanten Punkten eindeutig, d.h. bezüglich physikalisch identer Punkte an den Tübbingflächen verglichen werden. Der Vergleich dieser Messergebnisse liefert dadurch die gewünschten Veränderungen der Tübbingsehne und der Tübbinglage.Based on the image information, the boundary lines (joints) between the individual segment segments are detected using methods of digital image processing. The detected boundary lines subsequently serve for the calculation of the exact 3D position of various significant points on the tubbing surfaces, between which distances can then be calculated. Measurements of different acquisition times can thus be unambiguously identified by the detection of the edges and significant points derived therefrom. with respect to physically identical points on the tubbing surfaces. The comparison of these measurement results thereby provides the desired changes in the tubal tendon and the tubbing position.

Durch die vollflächige automatische Messung mittels berührungslosen und bildhaften Sensoren kann eine digitale und automatische Auswertung der Messdaten erfolgen.The full-surface automatic measurement by means of non-contact and pictorial sensors enables a digital and automatic evaluation of the measured data.

Falls Sichtbehinderungen zwischen der Scaneinrichtung und den zu messenden Tübbingringen vorliegen, kann eine zweite Scaneinrichtung im Bereich des Nachläufers der Tunnelbohrmaschine vorgesehen sein, wobei die zweite Scaneinrichtung in Vortriebsrichtung auf zumindest eine definierte Messzone an der inneren Mantelfläche der Tübbingringe gerichtet ist. Eine zweite Scaneinrichtung ist auch vorteilhaft, um generell das Verhalten der Sehnenänderungen in einem längeren räumlichen und zeitlichen Abstand zu erfassen.If there are visual obstructions between the scanning device and the tubbing rings to be measured, a second scanning device can be provided in the region of the tunnel boring machine follower, wherein the second scanning device is directed in the advancing direction to at least one defined measuring zone on the inner circumferential surface of the tubbing rings. A second scanning device is also advantageous in order to generally detect the behavior of the tendon changes in a longer spatial and temporal distance.

Zur Durchführung des Verfahrens wird ein 3D-Laserscanner verwendet, d.h., der Laserstrahl wird über zwei Rotationsachsen abgelenkt. Der Laserscanner ist hierbei auf einer Tunnelvortriebsmaschine fix montiert. Die Messung selbst wird bei Stillstand der Maschine durchgeführt. Das Ergebnis der Messung beinhaltet sowohl Informationen über die Geometrie der Tübbing-Elemente, als auch über die Oberflächenbeschaffenheit. Die Messergebnisse können auch zur Erkennung der Fugen zwischen den einzelnen Tübbing-Elementen herangezogen werden. Mit Hilfe der erkannten Fugen können die Sehnenlängen der einzelnen Tübbinge berechnet werden. Aufgrund von Wiederholungsmessungen kann weiters die Änderung der Sehnenlänge ermittelt werden.To perform the method, a 3D laser scanner is used, that is, the laser beam is deflected over two axes of rotation. The laser scanner is permanently mounted on a tunnel boring machine. The measurement itself is carried out when the machine is at a standstill. The result of the measurement includes information about the geometry of the tubbing elements as well as the surface condition. The measurement results can also be used to detect the joints between the individual tubbing elements. With the help of the recognized joints, the chord lengths of the individual segments can be calculated. Due to repetitive measurements, the change in chord length can be further determined.

Dadurch, dass keine Marken auf dem zu erfassenden Objekt aufgebracht werden müssen, kann der Aufwand für die Erfassung der Objektgeometrie und deren Veränderung wesentlich verringert werden.The fact that no marks on the object to be detected must be applied, the cost of detecting the object geometry and its change can be significantly reduced.

Die Erfindung wird im Folgenden anhand der Figuren näher erläutert. Es zeigen schematisch:

Fig. 1
eine Vortriebsmaschine mit einer erfindungsgemäßen ersten Scaneinrichtung in einer Aufrissdarstellung;
Fig. 2
den Tunnel in einem Querschnitt;
Fig.3
ein Diagramm, welches die erfasste ringbezogene Verformung zeigt; und
Fig. 4
ein Diagramm mit einer erfassten zeitbezogenen Verformung.
The invention will be explained in more detail below with reference to FIGS. They show schematically:
Fig. 1
a tunneling machine with a first scanning device according to the invention in an elevational view;
Fig. 2
the tunnel in a cross section;
Figure 3
a diagram showing the detected ring-related deformation; and
Fig. 4
a diagram with a detected time-related deformation.

Fig. 1 zeigt einen Längsschnitt durch einen Tunnel 1 mit einer Tunnelbohrmaschine 2. Die Tunnelbohrmaschine 2 weist an ihrer Front ein Schneidrad 3 und ein Schild 4 auf, in welchem eine Scaneinrichtung 5 angeordnet ist. Mit Bezugszeichen 6 ist der Arbeitsbereich eines Tübbingversetzgerätes 14 für die Errichtung der Tübbingringe 7 bezeichnet, welche mit n0, n-1, n-2, n-3, n-4, n-5, ... durchnumeriert sind. Dem Arbeitsbereich 6 des Tübbingerversetzgerätes 14 folgt der Leitstand 8 mit dem Steuerrechner 9. Daran anschließend weist die Tunnelbohrmaschine 2 einen Nachläufer 10 auf.Fig. 1 shows a longitudinal section through a tunnel 1 with a tunnel boring machine 2. The tunnel boring machine 2 has at its front a cutting wheel 3 and a shield 4, in which a scanning device 5 is arranged. Reference numeral 6 designates the working region of a tubbing displacement device 14 for the erection of the tubbing rings 7, which are numbered n0, n-1, n-2, n-3, n-4, n-5,... The work area 6 of the Tübbingerversetzgerätes 14 follows the control station 8 with the control computer 9. Then the tunnel boring machine 2 has a trailer 10.

Jeder Tübbingring 7 besteht aus mehreren Tübbingsegmenten, von welchen in Fig. 2 das First-Tübbingsegment 7a und zwei Ulm-Tübbingsegmente 7b eingezeichnet sind. Zwischen dem First-Tübbingsegment 7a und den Ulm-Tübbingsegmenten 7b sind Trennfugen 11 ausgebildet. Weitere Trennfugen 12 befinden sich zwischen den Ulm-Tübbingsegmenten 7b und dem in Fig. 2 nicht dargestellten Sohl-Tübbingsegmenten 7c. Die Trennfugen 11, 12 zwischen den Segmenten benachbarter Tübbingringe 7 können - wie in Fig. 1 dargestellt - in Richtung der Tunnelachse fluchtend oder versetzt zueinander ausgebildet sein.Each tubbing ring 7 consists of several tubbing segments, of which the first tubule segment 7a and two ulm tubule segments 7b are shown in FIG. Between the first-segment segment 7a and the Ulm-segment segments 7b joints 11 are formed. Further parting lines 12 are located between the segmental segmental segments 7b and the segmental segmental segments 7c (not shown in FIG. 2). The parting lines 11, 12 between the segments adjacent segmental rings 7 can - as shown in Fig. 1 - be aligned or staggered in the direction of the tunnel axis.

Die 3D-Saneinrichtung 5 ist in einem nicht weiter ersichtlichen Schutzgehäuse angeordnet, welches im Bereich der vorderen Plattform der Tunnelbohrmaschine 2 in der Höhe der Trennfugen 11 zwischen First- und Ulm-Tübbingen 7a, 7b montiert ist. Der Steuerrechner 9 im Leitstand 8 kann mit einem Touchscreen zur Bedienung und zur graphischen Ergebnisdarstellung ausgestattet sein. Der Stromanschluss des 3D-Scanners 5 erfolgt im Leitstand 8. Zwischen der Scanvorrichtung 5 und dem im Leitstand 8 angeordneten Steuerrechner 9 sind Steuer- und Stromleitungen ausgebildet.The 3D Saneinrichtung 5 is arranged in a not further apparent protective housing which is mounted in the region of the front platform of the tunnel boring machine 2 in the height of the parting lines 11 between ridge and Ulm segments 7a, 7b. The control computer 9 in the control station 8 can be equipped with a touchscreen for operation and for graphical presentation of results. The power connection of the 3D scanner 5 takes place in the control station 8. Control and power lines are formed between the scanning device 5 and the control computer 9 arranged in the control station 8.

Die Messung erfolgt zu einem festen Zeitpunkt innerhalb des Arbeitszyklus beispielsweise vor jedem Hub und nach Einbau des Tübbingringes 7. Andere Messzeitpunkte sind grundsätzlich möglich und können manuell gestartet werden. Mit jeder Messung werden mehrere Ringe beispielsweise n0 bis n-3 erfasst, wobei n0 der zuletzt eingesetzte Tübbingring 7 ist. Sollten die Ringe n-2 und n-3 durch Sichtbehinderungen und sonstige Störungen schwer erfassbar sein, so bietet sich die optionale Installation einer zweiten Scanvorrichtung an einer geeigneten Stelle im Bereich des Nachläufers 10 an. An dieser Stelle könnte gegebenenfalls auch generell das Verhalten der Sehnenänderungen in einem längeren räumlichen und zeitlichen Abstand erfasst werden. Nach Abschluss der Messung kann unmittelbar der Start des nächstes Hubes der Tunnelbohrmaschine 2 erfolgen.The measurement takes place at a fixed time within the work cycle, for example before each stroke and after installation of the tubbing ring 7. Other measuring times are basically possible and can be started manually. With each measurement, a plurality of rings, for example n0 to n-3, are detected, where n0 is the last inserted tubbing ring 7. Should the rings n-2 and n-3 be difficult to detect due to visual obstructions and other disturbances, then the optional installation of a second scanning device at a suitable location in the region of the post-rotor 10 offers itself. At this point, the behavior of the tendon changes in a longer spatial and temporal distance could possibly also be detected in general. After completion of the measurement, the start of the next stroke of the tunnel boring machine 2 can take place immediately.

Die Ringnummer des aktuellen Ringes n0 wird einmal bei Systemstart eingegeben und bei jedem Messdurchgang automatisch um eins erhöht. Manuell gestartete Messungen erfordern auch die manuelle Eingabe der jeweiligen Ringnummer.The ring number of the current ring n0 is entered once at system startup and automatically increased by one each time the measurement passes. Manually started measurements also require manual entry of the respective ring number.

Die Berechnung der Sehnenlängen s1, s2, ... etc. erfolgt durch eine automatische Erkennung der jeweiligen Messzonen 13 auf der Tübbingoberfläche ober- und unterhalb der Trennfuge 11 getrennt für jeden Ring 7 und nach folgender Berechnung der 3D-Koordination des Schwerpunktes jeder Zone. Die Ergebnisdaten werden für eine langfristige und nachhaltige Verwendbarkeit strukturiert gespeichert.The calculation of the chord lengths s1, s2, etc. takes place by an automatic detection of the respective measuring zones 13 on the tubbing surface above and below the parting line 11 separately for each ring 7 and following calculation of the 3D coordination of the center of gravity of each zone. The result data are stored structured for a long-term and sustainable usability.

In Fig. 2 sind schematisch die Sehnenlängen s1 zwischen zwei Ulm-Tübbingsegmenten 7b und die Sehnenlänge s2 für die First-Tübbingssehne eingezeichnet.FIG. 2 schematically shows the chord lengths s1 between two segmental segmental segments 7b and the chordal length s2 for the first segmentation chord.

Zu jedem Zeitpunkt kann am Steuerrechner 9 der aktuelle Status der Verformung jedes einzelnen Tübbingringes 7 dargestellt werden. Dies erfolgt durch eine einfache Zeit-Verformungsgrafik und auch durch eine stationsbezogene Darstellung der jeweiligen Maximalverformungen.At any point in time, the current status of the deformation of each individual segmental ring 7 can be displayed on the control computer 9. This is done by a simple time-deformation graph and also by a station-related representation of the respective maximum deformations.

Das Ergebnis der Messung kann beispielsweise die ringbezogene oder die zeitbezogene Verformung der Tübbingringe 7 sein.The result of the measurement can be, for example, the ring-related or the time-related deformation of the tubbing rings 7.

In Fig. 3 ist die ringbezogene Verformung V über den Ringnummern n für eine 0-Messung T1, sowie für Folgemessungen T2, T3 und T4 dargestellt.FIG. 3 shows the ring-related deformation V over the ring numbers n for a zero measurement T1 and for follow-up measurements T2, T3 and T4.

Fig. 4 zeigt die Verformung V in Millimeter über der Zeit T für die Tübbingringe n1 bis n7 aufgetragen.FIG. 4 shows the deformation V in millimeters over the time T for the tubbing rings n 1 to n 7 .

Über die mit dem Schild 4 mitfahrende als Laserscanner ausgebildete Scaneinrichtung 5 werden die Messzonen 13 der Tübbingringe 7 in einem dichten Raster dreidimensional berührungslos erfasst. Die dabei gewonnenen Messdaten sind einerseits dreidimensionale Koordinaten, andererseits die Reflexionsintensität der Oberfläche, wodurch zusätzlich eine Bildinformation vorliegt.The measuring zones 13 of the tubbing rings 7 are detected in a three-dimensional contactless manner in a three-dimensional manner via the scanning device 5 which moves along with the plate 4 and is designed as a laser scanner. On the one hand, the measured data obtained are three-dimensional coordinates, on the other hand the reflection intensity of the surface, which additionally provides image information.

Anhand der Bildinformation werden unter Anwendung von Methoden der digitalen Bildverarbeitung die Trennfugen 11 zwischen den einzelnen Tübbingsegmenten 7a, 7b erkannt. Die Begrenzungslinien dienen in weiterer Folge für die Berechnung der exakten 3D-Position von verschiedenen signifikanten Punkten auf den Tübbingflächen, zwischen denen dann Strecken berechnet werden können. Messungen verschiedener Aufnahmezeitpunkte können somit durch die Erkennung der Kanten und daraus abgeleiteten signifikanten Punkten eindeutig verglichen werden. Der Vergleich dieser Messergebnisse liefert dadurch die gewünschten Veränderungen der Tübbingsehne und Tübbinglage.Based on the image information, the separation joints 11 between the individual tubbing segments 7a, 7b are detected using methods of digital image processing. The boundary lines are then used to calculate the exact 3D position of various significant points on the tubbing surfaces, between which distances can then be calculated. Measurements of different recording times can thus be clearly compared by detecting the edges and the significant points derived therefrom. The comparison of these measurement results thus provides the desired changes in the segmental tendon and Tübbinglage.

Um die Verformung der Tübbingringe 7 kontinuierlich überwachen zu können, wird somit eine berührungslose Erfassung zumindest einer Sehnenlänge S1; S2 zumindest eines Tübbingringes 7 zu einem ersten Zeitpunkt mittels einer Scannerabtastung durchgeführt. Weiters wird nach Zurückziehen des Schildes 4 der Tunnelbohrmaschine 2 eine weitere berührungslose Erfassung dieser Sehnenlänge s1; s2 des Tübbingringes 7 durchgeführt und die ermittelten Sehnenlängen s1; s2 miteinander verglichen. Die Verformung des Tübbingringes 7 wird aus der Differenz der ermittelten Sehnenlängen s1; s2 berechnet.In order to continuously monitor the deformation of the tubbing rings 7, a non-contact detection of at least one chord length S 1 ; S 2 performed at least one tubbing ring 7 at a first time by means of a scanner scan. Furthermore, after retraction of the shield 4 of the tunnel boring machine 2, a further non-contact detection of this chord length s 1 ; s 2 of the tubbing ring 7 and the determined chord lengths s 1 ; s 2 compared with each other. The deformation of the tubbing ring 7 is calculated from the difference between the determined chord lengths s 1 ; s 2 is calculated.

Claims (12)

Verfahren zur Bestimmung der Veränderung der Lage von Tübbingringen (7) in einem Tunnelquerschnitt während des Tunnelvortriebs mit einer Tunnelbohrmaschine (2), unter Verwendung einer optischen Messeinrichtung, gekennzeichnet durch folgende Schritte: - Bereitstellen zumindest einer Scannereinrichtung (5) als optische Messeinrichtung, vorzugsweise eines Laserscanners, zum berührungslosen Abtasten zumindest einer definierten Messzone (13) am Innenmantel benachbarter Tübbingringe (7); - Berührungsloses dreidimensionales Abtasten der Messzone (13) und Ermittlung einer Sehnenlänge (s1; s2) zumindest einer Tübbingringsehne zumindest eines Tübbingringes (7) zu einem ersten Zeitpunkt; - Berührungslose dreidimensionales Abtasten der Messzone (13) und Ermittlung der Sehnenlänge (s1; s2) dieser Tübbingringsehne zu einem zweiten Zeitpunkt; - Ermittlung der Veränderung aus der Differenz der zu den beiden Zeitpunkten erfassten Sehnenlängen (s1; s2). Method for determining the change in the position of segmental rings (7) in a tunnel cross-section during tunneling with a tunnel boring machine (2), using an optical measuring device, characterized by the following steps: - Providing at least one scanner device (5) as an optical measuring device, preferably a laser scanner, for non-contact scanning at least one defined measuring zone (13) on the inner shell of adjacent tubbing rings (7); - Contactless three-dimensional scanning of the measuring zone (13) and determination of a chord length (s 1 ; s 2 ) of at least one tubule ring chord of at least one tubbing ring (7) at a first time; - Non-contact three-dimensional scanning of the measuring zone (13) and determination of the chord length (s 1 ; s 2 ) of this tubbing ring tendon at a second time; Determining the change from the difference between the chord lengths (s 1 , s 2 ) acquired at the two times. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Erfassung der Sehnenlänge (s1; s2) unmittelbar vor jedem Hub nach Einbau des Tübbingringes (7) erfolgt, wobei vorzugsweise ein erstes Abtasten der Messzone (13) vor und ein zweites Abtasten der Messzone (13) nach Zurückziehen des Schildes (4) durchgeführt wird.A method according to claim 1, characterized in that the detection of the chord length (s 1 ; s 2 ) takes place immediately before each stroke after installation of the tubbing ring (7), preferably a first scanning of the measuring zone (13) before and a second scanning of the measuring zone (13) after retraction of the shield (4) is performed. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mit jeder berührungslosen Scannerabtastung mehrere Tübbingringe (7) erfasst werden.A method according to claim 1 or 2, characterized in that with each non-contact scanner scanning a plurality of segmental rings (7) are detected. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Messzonen (13) auf der inneren Mantelfläche der Tübbingringsegmente (7a, 7b) beidseits einer Trennfuge (11) zwischen einem First-Tübbingsegment (7a) und einem Ulm-Tübbingsegment (7b) definiert werden.Method according to one of claims 1 to 3, characterized in that the measuring zones (13) on the inner circumferential surface of the tubbing ring segments (7a, 7b) on both sides of a parting line (11) between a First-Tübbingsegment (7a) and a Ulm-Tübbingsegment (7b ) To be defined. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Messzonen (13) automatisch erkannt werden.Method according to one of claims 1 to 4, characterized in that the measuring zones (13) are detected automatically. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass idente Flächen für die Folgemessungen anhand der den Tübbingsegmenten (7a, 7b) eigenen Geometrie und Oberflächenbeschaffenheit identifiziert werden.Method according to one of claims 1 to 5, characterized in that identical surfaces for the subsequent measurements based on the tubbing segments (7a, 7b) own geometry and surface condition are identified. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass durch die dreidimensionale berührungslose Abtastung dreidimensionale Koordinaten der Messzone (13) und/oder die Reflexionsintensität der Oberfläche der Messzone (13) erfasst werden.Method according to one of claims 1 to 6, characterized in that three-dimensional coordinates of the measuring zone (13) and / or the reflection intensity of the surface of the measuring zone (13) are detected by the three-dimensional non-contact scanning. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass unter Anwendung von Methoden digitaler Bildverarbeitung die Begrenzungslinien und/oder Trennfugen (11) zwischen den einzelnen Tübbingringsegmenten (7a, 7b) ermittelt werden.Method according to one of claims 1 to 7, characterized in that the boundary lines and / or parting lines (11) between the individual tubbing ring segments (7a, 7b) are determined using methods of digital image processing. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass aufgrund der Begrenzungslinien die exakte dreidimensionale Position von verschiedenen signifikanten Punkten auf den Tübbingflächen innerhalb der Messzone (13) ermittelt werden, wobei zumindest zwischen zwei eine Tübbingsehne definierenden Punkte die Sehnenlänge (s1; s2) berechnet wird.A method according to claim 8, characterized in that due to the boundary lines, the exact three-dimensional position of various significant points on the Tübbingflächen within the measuring zone (13) are determined, wherein at least between two a Tübbingsehne defining points the chord length (s 1 ; s 2 ) calculated becomes. Vorrichtung zur Durchführung des Verfahrens zur Bestimmung der Veränderung der Lage von Tübbingringen (7) in einem Tunnelquerschnitt während des Tunnelvortriebs mit einer Tunnelbohrmaschine (2) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass eine erste Scaneinrichtung (5), vorzugsweise eine Laserscanner zum berührungslosen dreidimensionalen Abtasten einer definierten Messzone (13) im Bereich eines Schildes (4) der Tunnelbohrmaschine (2) in der Höhe einer Trennfuge (11) zwischen First- und Ulm-Tübbingsegmenten (7a, 7b) angeordnet ist, wobei die Scaneinrichtung entgegen der Vortriebsrichtung auf zumindest eine definierte Messzone (13) auf der inneren Mantelfläche der Tübbingringe (7) gerichtet ist.Device for carrying out the method for determining the change in the position of tubbing rings (7) in a tunnel cross-section during tunneling with a tunnel boring machine (2) according to one of claims 1 to 9, characterized in that a first scanning device (5), preferably a laser scanner for non-contact three-dimensional scanning of a defined measuring zone (13) in the region of a shield (4) of the tunnel boring machine (2) at the height of a parting line (11) between ridge and Ulm Tübbingsegmenten (7a, 7b) is arranged, wherein the scanning device opposite Driving direction is directed to at least one defined measuring zone (13) on the inner circumferential surface of the tubbing rings (7). Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Scaneinrichtung (5) über einen Steuerrechner (9) am Leitstand (8) der Tunnelbohrmaschine (2) gesteuert wird.Apparatus according to claim 10, characterized in that the scanning device (5) via a control computer (9) at the control station (8) of the tunnel boring machine (2) is controlled. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass eine zweite Scaneinrichtung im Bereich eines Nachläufers (10) der Tunnelbohrmaschine (2) angeordnet ist, wobei die zweite Scaneinrichtung in Vortriebsrichtung auf zumindest eine definierte Messzone (13) an der inneren Mantelfläche der Tübbingringe (7) gerichtet ist.Apparatus according to claim 10 or 11, characterized in that a second scanning device in the region of a Nachläufers (10) of the tunnel boring machine (2) is arranged, wherein the second scanning device in the drive direction on at least one defined measuring zone (13) on the inner circumferential surface of the tubbing rings ( 7) is directed.
EP07117857A 2006-10-11 2007-10-04 Method for determining changes in the position of tubbing rings Withdrawn EP1911929A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT16952006A AT504280A1 (en) 2006-10-11 2006-10-11 METHOD FOR DETERMINING THE CHANGE OF THE POSITION OF TÜBBING RINGS

Publications (1)

Publication Number Publication Date
EP1911929A1 true EP1911929A1 (en) 2008-04-16

Family

ID=39015828

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07117857A Withdrawn EP1911929A1 (en) 2006-10-11 2007-10-04 Method for determining changes in the position of tubbing rings

Country Status (2)

Country Link
EP (1) EP1911929A1 (en)
AT (1) AT504280A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101943577A (en) * 2010-08-16 2011-01-12 上海地铁盾构设备工程有限公司 Metro tunnel fracture surface deformation detection system
CH701566A1 (en) * 2010-02-08 2011-01-14 Prof Dr Kalman Kovari Method for early recognition of building-site subsidence during construction of underground railways in urban area, involves transferring produced and previously evaluated measured values to persons working in working face area
US11492905B2 (en) * 2018-12-13 2022-11-08 Institute Of Rock And Soil Mechanics, Chinese Academy Of Sciences Lidar-based convergence deformation monitoring system for surrounding rock around TBM shield region

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107289900A (en) * 2017-06-22 2017-10-24 首都师范大学 A kind of dynamic is without control tunnel cross-section detection means, analysis system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4237689A1 (en) * 1992-11-07 1994-05-11 Dyckerhoff & Widmann Ag Radial-clearance measuring system between tunnelling shield and tubing exterior - uses three measuring sensors on shield with rays inclined rearwards and outwards to inner surfaces of shield and tubing
EP0791725A1 (en) * 1996-02-26 1997-08-27 Neyrpic Framatome Mecanique Method and device for automatically placing tunnel lining segments
DE19918215A1 (en) * 1998-04-24 1999-10-28 Hochtief Ag Hoch Tiefbauten Method of measuring radial deformations of a tunnel construction enables reliable and very accurate measurement
JP2007147498A (en) * 2005-11-29 2007-06-14 Kajima Corp Method for measuring distortion shape of tubular ring, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4237689A1 (en) * 1992-11-07 1994-05-11 Dyckerhoff & Widmann Ag Radial-clearance measuring system between tunnelling shield and tubing exterior - uses three measuring sensors on shield with rays inclined rearwards and outwards to inner surfaces of shield and tubing
EP0791725A1 (en) * 1996-02-26 1997-08-27 Neyrpic Framatome Mecanique Method and device for automatically placing tunnel lining segments
DE19918215A1 (en) * 1998-04-24 1999-10-28 Hochtief Ag Hoch Tiefbauten Method of measuring radial deformations of a tunnel construction enables reliable and very accurate measurement
JP2007147498A (en) * 2005-11-29 2007-06-14 Kajima Corp Method for measuring distortion shape of tubular ring, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH701566A1 (en) * 2010-02-08 2011-01-14 Prof Dr Kalman Kovari Method for early recognition of building-site subsidence during construction of underground railways in urban area, involves transferring produced and previously evaluated measured values to persons working in working face area
CN101943577A (en) * 2010-08-16 2011-01-12 上海地铁盾构设备工程有限公司 Metro tunnel fracture surface deformation detection system
CN101943577B (en) * 2010-08-16 2012-07-11 上海地铁盾构设备工程有限公司 Metro tunnel fracture surface deformation detection system
US11492905B2 (en) * 2018-12-13 2022-11-08 Institute Of Rock And Soil Mechanics, Chinese Academy Of Sciences Lidar-based convergence deformation monitoring system for surrounding rock around TBM shield region

Also Published As

Publication number Publication date
AT504280A1 (en) 2008-04-15

Similar Documents

Publication Publication Date Title
DE3137194C2 (en)
DE3120010C2 (en)
EP0986732B1 (en) Measurement of grooves and long waves on rails with a longitudinal streak of light
DE3408437C2 (en) Device for determining the position of a pre-pressed hollow profile strand
DE102005012107A1 (en) Measuring system for geometric measurement of objects esp. tunnels or other linear objects using a laser scanner
EP1415885B1 (en) Method for the contactless measurement of a transverse profile or the distance between the rails of a track
EP3112812B1 (en) Device and method for measuring distance on a construction machine having a tracks drive and construction machine
WO2007045403A1 (en) Method and device for inspecting a traveling wire cable
DE4238034C1 (en) Method and device for inspecting, contactless scanning of the immediate vicinity of a track with regard to certain measurement criteria
DE102011119658A1 (en) Device for contactless, optical testing of roundness and straightness of pipeline tube, has evaluation unit in position to determine straightness of tube over whole length at circumferential position of straightness sensor
EP1911929A1 (en) Method for determining changes in the position of tubbing rings
EP2159536B1 (en) Method for contactless measurement of speed and/or the length of a string, especially a cable, moving lengthways
DE19513116A1 (en) Contactless measurement of tunnel profile or road surface e.g. motorway
DE3733553C2 (en)
EP1862593B2 (en) GPS aided continuous route survey system with multi sensors
DE69416386T2 (en) System for measuring three-dimensional displacements
DE3913159A1 (en) Measuring wave-shaped rail deformation - using vehicle with two sensors measuring height difference of two rail top points
EP0908698B1 (en) Method for measuring longitudinal products
EP3142088A1 (en) Method for configuring multiple sub-areas of a desired protection area
EP1408344A1 (en) Survey apparatus and survey method using a laserscanner
DE4237689C2 (en) Method for determining the radial distance between the inner surface of the rear part of a tunnel shield and the outer surface of a segment lining
DE19918215C2 (en) Method for measuring radial deformations of a tunnel construction and device for carrying out the method
DE102019108743B4 (en) Inspection unit that can be moved in a channel and a method for operating the inspection unit
DE69611655T2 (en) Method and device for adjusting the transverse position of a mobile construction machine
DE19507346C2 (en) Method for controlling a tunneling machine in the production of an underground cavity profile and device for carrying out the method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

AKX Designation fees paid
17P Request for examination filed

Effective date: 20081021

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17Q First examination report despatched

Effective date: 20090127

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090609