EP1903583B1 - High current bushing for transformer - Google Patents

High current bushing for transformer Download PDF

Info

Publication number
EP1903583B1
EP1903583B1 EP20060020049 EP06020049A EP1903583B1 EP 1903583 B1 EP1903583 B1 EP 1903583B1 EP 20060020049 EP20060020049 EP 20060020049 EP 06020049 A EP06020049 A EP 06020049A EP 1903583 B1 EP1903583 B1 EP 1903583B1
Authority
EP
European Patent Office
Prior art keywords
conductor
conductors
transformer
sub
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20060020049
Other languages
German (de)
French (fr)
Other versions
EP1903583A1 (en
Inventor
Winfried Feuerstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP20060020049 priority Critical patent/EP1903583B1/en
Priority to ES06020049.0T priority patent/ES2524451T3/en
Priority to CN2007101612749A priority patent/CN101162642B/en
Publication of EP1903583A1 publication Critical patent/EP1903583A1/en
Application granted granted Critical
Publication of EP1903583B1 publication Critical patent/EP1903583B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/04Leading of conductors or axles through casings, e.g. for tap-changing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields

Definitions

  • the invention relates to a high-current transformer bushing with a fastening means for attachment to a power plant transformer, an electrical conductor for passing through a transformer boiler housing and a guided around the conductor electrical insulator.
  • An electrical supply line to a power plant transformer is a high-current supply line, which is designed for the passage of very high currents in conjunction with high voltages. For example, if a generator of a steam power plant supplies a capacity of 600 MW to 900 MW with an output voltage of 21 kV to 27 kV, the result is a current of 18 kA to 25 kA, for which the supply line to the transformer must be designed.
  • the skin effect describes the fact that an alternating current flowing through a conductor generates eddy currents in the interior of the conductor, which are directed counter to the generator current. Since the AC-induced magnetic field inside the conductor induces stronger eddy currents than at the edge, the counter-voltage generated thereby inside the conductor is greatest and weakens towards its edge. Due to the large reactance inside the conductor, the current flows essentially at the edge. For a copper conductor, the skin depth at which the current density has dropped below the factor 1 / e is about 9 mm at 50 Hz. Therefore, conduction areas that are below about 20 mm below the radially outer line surface, hardly contribute to the power line.
  • a power plant transformer known to perform the supply line as a tubular conductor whose wall thickness is a maximum of 20 mm.
  • a pipe conductor can have a diameter of up to 1 m.
  • the implementation of three such pipes for the three phases of a three-phase supply through the housing of the power plant transformer is complex in the voltage insulation and unfavorable in terms of space, which is why the implementation is built by the transformer housing with a slimmer pipe.
  • the resulting higher current density in the conductor and the associated higher heat development is at least partially compensated by more expensive conductor materials and a cooling of the conductor with transformer oil to the required maximum temperature of 90 ° C for the conductor, maximum to 115 ° C at hot spots.
  • the US 4 132 853 A discloses an electrically insulated feedthrough having a multichannel cooling system to solve the problem of heating.
  • an insulating bushing is formed with a first channel between a conductor and an insulating layer surrounding the conductor, and a second channel formed by a tubular element arranged concentrically within the conductor and spaced from the conductor.
  • An insulating housing is spaced from the outer surface of the layer to form a third longitudinal channel having its ends communicating with the ends of the first channel.
  • Circumferentially arranged openings at both ends of the electrical conductor connect the second to the third channel, so that coolant in the first and second channels can rise into an upper part of the passage and can be discharged down again via the third channel.
  • US 4 132 853 A discloses the preamble of claim 1.
  • the EP 1 411 619 A (Feuerstein Winfried, Schreiner, Franz ) discloses an electrically isolated generator lead having a cylindrical inner conductor and a cylindrical cladding tube connection region disposed concentric with the inner conductor.
  • the inner conductor is made of an inner Guide tube and an outer guide tube constructed, and designed so that the current paths in the longitudinal direction of the inner conductor at least once between the outer guide tube and the inner guide tube change. Due to the uniform distribution of the flow of current through the inner guide tube and the outer guide tube of the inner conductor, the current heat losses are divided equally between the two guide tubes.
  • a high-current transformer feedthrough of the type mentioned in which the electrical conductor comprises two nested tubular sub-conductors.
  • the current to the transformer can be passed through both sub-conductors and a current density in each sub-conductor can be maintained so that heating of the sub-conductors remains to a desired extent.
  • the internal resistances of both sub-conductors are the same by appropriate measures, so that a uniform distribution of the total current takes place on both sub-conductors without a corresponding control.
  • the two sub-conductors are advantageously connected to one another at their ends, so that the total current can be supplied jointly to both sub-conductors and can be dissipated jointly by the two sub-conductors, and in that the intersection in the axial direction has mutually rotated connecting conductor pairs between inner and outer sections.
  • the invention features on the one hand that both sub-conductors along a current path by means of a radial cross-over both an inner portion within the other sub-conductor and an outer portion outside the other sub-conductor have.
  • the subconductor arranged in each case in the interior of the other subconductor has a higher internal resistance than the outer subconductor. Since both sub-conductors run both inside and outside, this increased internal resistance is distributed to both sub-conductors, since both sub-conductors are provided with an inner route with increased resistance. This can be done in a simple manner, a uniform current distribution to both sub-conductors.
  • a current path is a path along a voltage gradient upon application of an operational voltage to the conductor.
  • the invention also features the feature that the intersection in the axial direction has twisted pairs of connecting conductors between inner and outer sections.
  • the blindly ending sections can be dispensed with, with the exception of small insulating distances between the connecting conductors, and a large, continuous line cross section can be achieved.
  • a uniform distribution of the current flowing through both sub-conductors total current can be particularly easily done when the two sub-conductors are arranged concentrically.
  • a radial current displacement through the skin effect can be distributed uniformly in the radial direction on both sub-conductors.
  • the two sub-conductors are guided into each other over an axial distance, and the intersection is arranged in the middle of the axial distance.
  • the internal resistance of the two sub-conductors can be distributed particularly reliably and independently of operating conditions symmetrically and thus evenly. It is sufficient in this case if a region of the intersection is arranged in the middle of the axial distance.
  • the intersection is arranged outside the transformer housing.
  • a crossover of the sub-conductors can be associated with a reduction of the cross-section of the conductor and thus with an increased resistance and increased heat development.
  • the cooling oil is suitably transformer oil.
  • a crossover may be made by an array of interconnecting conductors connecting an inner portion to an outer portion of a subconductor. These connecting conductors may point in the radial direction or be guided at an angle to the axial direction X-shaped.
  • a simple production of a mechanically stable and compact crossover can be achieved if the crossover S-shaped curved connecting conductor between an inner and an outer portion.
  • an axial distance between inner sections of the sub-conductors is smaller than an axial distance between outer sections of the sub-conductors. It can be made a cross-over in a small space, so that conductor lines with a small cross-section can be kept short and the resistance small.
  • a part conductor is passed through the other. This can be carried out particularly easily in the production, if a sub-conductor has tangential sections which terminate blind and where connecting conductors of the other sub-conductor can be passed.
  • connecting conductors of the other sub-conductor can be passed.
  • connection conductors are easier to manufacture than wider connection conductors. To compensate for a current displacement in the connecting conductor this can be made thicker in its central region than at its axial ends.
  • FIG. 1 shows a generator lead 2, which is one of three phases of a three-phase lead of a power plant generator.
  • the three-phase dissipation serves to forward the output from the power generator three-phase current to a in FIG. 1 only indicated Kraftwerkstrafo 4.
  • the power plant generator has a capacity of 900 MW and the generator lead 2 and 4 Kraftwerkstrafo are designed accordingly.
  • the generator lead 2 comprises a tubular conductor 6 made of pure aluminum with a diameter of 0.92 m and a wall thickness of 20 mm, which is surrounded by a cladding tube 8 for encapsulation.
  • the conductor 6 terminates at a flange 10, which is connected via flexible copper bands 12 electrically connected to a transformer terminal 14.
  • the transformer terminal 14 is connected via a flange contact 16 with a high current transformer feedthrough 18, which is connected to a flange 20 of a transformer box 22 of the power plant transformer 4 and passed through this and the transformer boiler housing 22.
  • the cladding tube 8 comprises a flexible compensating piece 24, which, like the copper bands 12, is provided to compensate for oscillations between the power plant transformer 4 and the generator outlet 2.
  • the high-current transformer bushing 18 is shown in a longitudinal section. It comprises an outer insulator 26, designed as a porcelain tube with ripples 28 for rollover protection, and separating an electrical conductor 30 from the earthed flange terminal 20 of the boiler ceiling.
  • the conductor 30 begins at the top of the flange contact 16 and terminates within the transformer boiler housing 22 on a current carrying fastening means 32 designed as a double conductor flange for indirect attachment to the power station transformer 4.
  • the double conductor flange is connected by a screw connection to a busbar 34 of a switching line which electrically connects the conductor 30 a low-voltage winding of the power plant transformer 4 connects.
  • a lower insulating plate 36 seals an oil space 38 filled with transformer oil against the transformer interior, wherein the oil space 38 fills most of the interior of the insulator 26 and surrounds most of the conductor 30 and is sealed to the outside by a seal 40.
  • the conductor 30 comprises two mutually guided tubular sub-conductors 42, 44 made of copper, of which the sub-conductor 42 has an outer portion 46 and an inner portion 48 and the sub-conductor 44 has an inner portion 50 and an outer portion 52.
  • the sections 46 and 50 and the sections 48 and 52 are tubular and each arranged concentrically about a central axis 54 into each other.
  • the outer sections 46, 52 have a diameter of 340 mm and the inner sections 48, 50 a diameter of 280 mm, wherein the sections 46, 48, 50, 52 with a wall thickness of 16 mm and a radial distance between them of 14 mm are executed.
  • the sections 46, 48, 50, 52 are completely surrounded by the transformer oil serving as cooling oil in the oil chamber 38 and from its radial outer side, the sections 48, 50 are completely and the sections 46, 52 largely completely surrounded by transformer oil.
  • a plurality of openings 56 are respectively introduced into the sections 46, 48, 50, 52.
  • the transformer oil also flows around a radial intersection 58 of the sub-conductors 42, 44 which electrically connects the outer portion 46 to the inner portion 48 of the sub-conductor 42 and the inner portion 50 to the outer portion 52 of the sub-conductor 44.
  • the crossover 58 is disposed in the middle of an axial path 60 between the flange contact 16 and the flange of the fastener 32 so that the inner portions 48, 50 and the outer portions 46, 52 are at least substantially equal in dimension.
  • the intersection 58 is shown in FIGS. 3 and 4 in various cross sections.
  • Four connecting conductors 62 connect the outer portion 46 to the inner portion 48
  • four connecting conductors 64 connect the inner portion 50 to the outer portion 52 so that a current path along the conductor 30 is always through an outer portion 46, 52, a connecting conductor 62, 64th and an inner portion 48, 50 extends.
  • Between the connecting conductors 62, 64 is always a small tangential distance 66, which prevents a short circuit of the sub-conductors 42, 44.
  • connection conductors 62, 64 are provided with upper and lower axially guided segments 68, 70 for connection to each of the sections 46, 48, 50, 52 and to a radially aligned intermediate segment 72 for connecting the segments 68, 70 Connecting conductors 62, 64 are welded to the sections 46, 48, 50, 52, respectively.
  • the internal resistances or alternating current resistances of the outer sections 46, 52 caused by the skin effect are the same and the inner sections 48, 50 equal.
  • the same material and the same geometric dimensions of each of the outer portions 46, 52 and the inner portions 48, 50 and the ohmic resistances of the same sections 46, 48, 50, 52 and the connecting conductors 62, 64 are equal.
  • each of the sub-conductors 42, 44 has an outer portion 46, 52 and an inner portion 48, 50 and four connection conductors 62, 64, the total resistances of the sub-conductors 42, 44 are equal and they are in operation of the high-current transformer feedthrough 18 of electricity flowing through with the same current.
  • FIG. 5 Another embodiment of a conductor 74 for a high current transformer feedthrough is shown in FIG. 5 shown in a perspective view.
  • the following description is essentially limited to the differences from the exemplary embodiment in FIGS. 1 to 4, to which reference is made with regard to features and functions that remain the same.
  • Substantially identical components are basically numbered with the same reference numerals.
  • the conductor 74 is constructed analogously to the conductor 30.
  • the sections 46 and 48 and the sections 50 and 52, of which in FIG. 5 However, only the outer portions 46, 52 are visible, are interconnected by connecting conductors 76, 78, which are each guided diagonally and together form an X-shaped cross-over 80.
  • This embodiment is particularly easy to manufacture.
  • other crosses are also conceivable, such as by S-shaped or more generally: curved connection conductor.
  • FIGS. 2-4 the embodiment of FIGS. 2-4 permits a compact construction of the cross-over 58 in the axial direction, which allows an axial distance 82 between inner sections 48, 50 of the sub-conductors 42, 44 to be smaller than one axial distance 84 between outer portions 46, 52 of the sub-conductors 42, 44.
  • the distance 82 between the inner portions 48, 50 is only 70 mm and the distance 84 between the outer portions 46, 52 is 100 mm.
  • each four connecting conductors 62, 64, 76, 78 is only about 40% of the line cross section of the sections 46, 48, 50, 52. This results in the connecting conductors 62, 64, 76, 78, a slightly higher current density connected to a something Higher heat development than in the sections 46, 48, 50, 52. Due to the small line lengths of the connecting conductors 62, 64, 76, 78, this increased heat can be dissipated by the oil bath with transformer oil, the connecting conductors 62, 64, 76, 78th surrounds. For this purpose, the convection of the transformer oil favored by the openings 56 is advantageous.
  • FIG. 6 An embodiment in which the generation of increased heat by a small cross-section of the conductor conductors 62, 64, 76, 78 is kept low, is in FIG. 6 shown in a schematic side view.
  • the connecting conductors 90, 92 are at most three times as wide as a radial tube wall thickness of 16 mm of the sections 46, 48, 50, 52nd

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulators (AREA)
  • Transformers For Measuring Instruments (AREA)

Description

Die Erfindung betrifft eine Hochstrom-Trafodurchführung mit einem Befestigungsmittel zur Befestigung an einem Kraftwerkstrafo, einem elektrischen Leiter zur Durchführung durch ein Trafokesselgehäuse und einem um den Leiter geführten elektrischen Isolator.The invention relates to a high-current transformer bushing with a fastening means for attachment to a power plant transformer, an electrical conductor for passing through a transformer boiler housing and a guided around the conductor electrical insulator.

Eine elektrische Zuleitung zu einem Kraftwerkstransformator ist eine Hochstrom-Zuleitung, die zur Durchleitung sehr hoher Ströme in Verbindung mit hohen Spannungen ausgelegt ist. Liefert beispielsweise ein Generator eines Dampfkraftwerks eine Leistung von 600 MW bis 900 MW bei einer Ausgangsspannung von 21 kV bis 27 kV, so ergibt sich eine Stromstärke von 18 kA bis 25 kA, für die die Zuleitung zum Transformator ausgelegt sein muss.An electrical supply line to a power plant transformer is a high-current supply line, which is designed for the passage of very high currents in conjunction with high voltages. For example, if a generator of a steam power plant supplies a capacity of 600 MW to 900 MW with an output voltage of 21 kV to 27 kV, the result is a current of 18 kA to 25 kA, for which the supply line to the transformer must be designed.

Erschwerend kommt hinzu, dass der Strom durch eine solche Zuleitung durch den Skin-Effekt an den Außenbereich des Leiters drängt, so dass dort sehr hohe Querschnittsströme auftreten, die erhebliche Stromwärmeverluste bewirken. Der Skin-Effekt beschreibt den Umstand, dass ein durch einen Leiter fließender Wechselstrom im Inneren des Leiters Wirbelströme erzeugt, die dem Erzeugerstrom entgegengerichtet sind. Da das vom Wechselstrom induzierte Magnetfeld im Inneren des Leiters stärkere Wirbelströme induziert als am Rand, ist die hierdurch im Inneren des Leiters erzeugte Gegenspannung am größten und schwächt sich zu dessen Rand hin ab. Durch den großen Blindwiderstand im Inneren des Leiters fließt der Strom im Wesentlichen am Rand. Bei einem Kupferleiter ist die Skin-Tiefe, bei der die Stromdichte unter den Faktor 1/e abgesunken ist, bei 50 Hz etwa 9 mm. Daher tragen Leitungsbereiche, die unterhalb von etwa 20 mm unter der radial äußeren Leitungsoberfläche liegen, kaum zur Stromleitung bei.To make matters worse, that the current through such a lead through the skin effect on the outer region of the conductor urges, so that there very high cross-sectional currents occur, causing significant power heat losses. The skin effect describes the fact that an alternating current flowing through a conductor generates eddy currents in the interior of the conductor, which are directed counter to the generator current. Since the AC-induced magnetic field inside the conductor induces stronger eddy currents than at the edge, the counter-voltage generated thereby inside the conductor is greatest and weakens towards its edge. Due to the large reactance inside the conductor, the current flows essentially at the edge. For a copper conductor, the skin depth at which the current density has dropped below the factor 1 / e is about 9 mm at 50 Hz. Therefore, conduction areas that are below about 20 mm below the radially outer line surface, hardly contribute to the power line.

Zur Zuleitung hoher Ströme zu einem Kraftwerkstrafo ist es bekannt, die Zuleitung als einen rohrförmigen Leiter auszuführen, dessen Wandstärke maximal 20 mm beträgt. Ein solcher Rohrleiter kann einen Durchmesser von bis zu 1 m aufweisen. Die Durchführung von drei solchen Rohrleitern für die drei Phasen einer Drehstromzuführung durch das Gehäuse des Kraftwerkstrafos ist allerdings aufwendig in der Spannungsisolierung und ungünstig im Raumbedarf, weshalb die Durchführung durch das Trafogehäuse mit einem schlankeren Rohrleiter gebaut wird. Die hieraus resultierende höhere Stromdichte im Leiter und die damit verbundene höhere Wärmeentwicklung wird durch teurere Leitermaterialien und eine Kühlung des Leiters mit Trafoöl zumindest teilweise kompensiert, um die nach den Normen IEC und ANSI geforderte maximal zulässige Temperatur von 90°C für den Leiter, maximal bis 115°C an heißen Einzelstellen, einzuhalten.It is for supplying high currents to a power plant transformer known to perform the supply line as a tubular conductor whose wall thickness is a maximum of 20 mm. Such a pipe conductor can have a diameter of up to 1 m. However, the implementation of three such pipes for the three phases of a three-phase supply through the housing of the power plant transformer is complex in the voltage insulation and unfavorable in terms of space, which is why the implementation is built by the transformer housing with a slimmer pipe. The resulting higher current density in the conductor and the associated higher heat development is at least partially compensated by more expensive conductor materials and a cooling of the conductor with transformer oil to the required maximum temperature of 90 ° C for the conductor, maximum to 115 ° C at hot spots.

Die US 4 132 853 A (Wagenaar, Loren B .) offenbart eine elektrisch isolierte Durchführung, die zur Lösung des Problems der Erwärmung, ein aus mehreren Kanälen bestehendes Kühlsystem aufweist. Dabei wird eine isolierende Durchführung mit einem ersten Kanal zwischen einem Leiter und einer isolierenden, den Leiter umgebenden Schicht, und einem zweiten Kanal der durch ein konzentrisch innerhalb des Leiters angeordnetes und vom Leiter beabstandetes röhrenförmiges Element gebildet. Ein isolierendes Gehäuse ist von der äußeren Oberfläche der Schicht so beabstandet, dass ein dritter längs verlaufender Kanal gebildet wird, dessen Enden mit den Enden des ersten Kanals in Verbindung stehen. Ringsum angeordnete Öffnungen an beiden Enden des elektrischen Leiters verbinden den zweiten mit dem dritten Kanal, so dass Kühlmittel im ersten und zweiten Kanal in einen oberen Teil der Durchführung steigen und über den dritten Kanal wieder nach unten abgegeben werden kann. US 4 132 853 A offenbart dem Oberbegriff des Anspruchs 1.The US 4 132 853 A (Wagenaar, Loren B .) discloses an electrically insulated feedthrough having a multichannel cooling system to solve the problem of heating. In this case, an insulating bushing is formed with a first channel between a conductor and an insulating layer surrounding the conductor, and a second channel formed by a tubular element arranged concentrically within the conductor and spaced from the conductor. An insulating housing is spaced from the outer surface of the layer to form a third longitudinal channel having its ends communicating with the ends of the first channel. Circumferentially arranged openings at both ends of the electrical conductor connect the second to the third channel, so that coolant in the first and second channels can rise into an upper part of the passage and can be discharged down again via the third channel. US 4 132 853 A discloses the preamble of claim 1.

Die EP 1 411 619 A (Feuerstein Winfried; Schreiner, Franz ) offenbart eine elektrisch isolierte Generatorableitung, die einen zylindrischen Innenleiter und einen konzentrisch zu dem Innenleiter angeordnetes zylindrisches Hüllrohr-Anschlussbereich aufweist. Der Innenleiter ist aus einem inneren Leitrohr und einem äußeren Leitrohr aufgebaut, und so ausgebildet, dass die Strombahnen in Längsrichtung des Innenleiters wenigstens einmal zwischen dem äußeren Leitrohr und dem inneren Leitrohr wechseln. Durch die gleichmäßige Aufteilung des Stromflusses durch das innere Leitrohr und das äußere Leitrohr des Innenleiters werden die Stromwärmeverluste gleichmäßig auf beide Leitrohre aufgeteilt.The EP 1 411 619 A (Feuerstein Winfried, Schreiner, Franz ) discloses an electrically isolated generator lead having a cylindrical inner conductor and a cylindrical cladding tube connection region disposed concentric with the inner conductor. The inner conductor is made of an inner Guide tube and an outer guide tube constructed, and designed so that the current paths in the longitudinal direction of the inner conductor at least once between the outer guide tube and the inner guide tube change. Due to the uniform distribution of the flow of current through the inner guide tube and the outer guide tube of the inner conductor, the current heat losses are divided equally between the two guide tubes.

Es ist die Aufgabe der vorliegenden Erfindung, eine kleinbauende Hochstrom-Trafodurchführung mit den Merkmalen des Anspruchs 1 anzugeben, mit der eine Erwärmung des durch ein Trafokesselgehäuse geführten elektrischen Leiters gering gehalten werden kann.It is the object of the present invention to provide a small-sized high-current transformer bushing with the features of claim 1, with a heating of the guided by a transformer box electrical conductor can be kept low.

Diese Aufgabe wird durch eine Hochstrom-Trafodurchführung der Eingangs genannten Art gelöst, bei der der elektrische Leiter zwei ineinander geführte rohrförmige Teilleiter aufweist. Der Strom zum Trafo kann durch beide Teilleiter geführt und eine Stromdichte in jedem Teilleiter so gehalten werden, dass eine Erwärmung der Teilleiter in einem erwünschten Umfang bleibt. Zweckmäßigerweise sind die inneren Widerstände beider Teilleiter durch geeignete Maßnahmen gleich, so dass eine gleichmäßige Verteilung des Gesamtstroms auf beide Teilleiter ohne eine entsprechende Steuerung erfolgt. Die beiden Teilleiter sind an ihren Enden vorteilhafterweise miteinander verbunden, so dass der Gesamtstrom beiden Teilleitern gemeinsam zugeführt und von beiden Teilleitern gemeinsam abgeführt werden kann, und dass die Durchkreuzung in Axialrichtung umeinander gedrehte Verbindungsleiterpaare zwischen inneren und äußeren Abschnitten aufweist.This object is achieved by a high-current transformer feedthrough of the type mentioned, in which the electrical conductor comprises two nested tubular sub-conductors. The current to the transformer can be passed through both sub-conductors and a current density in each sub-conductor can be maintained so that heating of the sub-conductors remains to a desired extent. Conveniently, the internal resistances of both sub-conductors are the same by appropriate measures, so that a uniform distribution of the total current takes place on both sub-conductors without a corresponding control. The two sub-conductors are advantageously connected to one another at their ends, so that the total current can be supplied jointly to both sub-conductors and can be dissipated jointly by the two sub-conductors, and in that the intersection in the axial direction has mutually rotated connecting conductor pairs between inner and outer sections.

Die Erfindung kennzeichnet dabei einerseits, dass beide Teilleiter entlang einer Strombahn mittels einer radialen Durchkreuzung sowohl einen inneren Abschnitt innerhalb des anderen Teilleiters als auch einen äußeren Abschnitt außerhalb des anderen Teilleiters aufweisen. Dadurch, hat der jeweils im Inneren des anderen Teilleiters angeordnete Teilleiter einen höheren inneren Widerstand als der äußere Teilleiter. Da beide Teilleiter sowohl innen als auch außen verlaufen, verteilt sich dieser erhöhte innere Widerstand auf beide Teilleiter, da beide Teilleiter mit einer inneren Strecke mit erhöhtem Widerstand versehen sind. Hierdurch kann auf einfache Weise eine gleichmäßige Stromverteilung auf beide Teilleiter erfolgen. Eine Strombahn ist eine Bahn entlang eines Spannungsgradienten bei Anlegen einer betriebsgemäßen Spannung an den Leiter.The invention features on the one hand that both sub-conductors along a current path by means of a radial cross-over both an inner portion within the other sub-conductor and an outer portion outside the other sub-conductor have. As a result, the subconductor arranged in each case in the interior of the other subconductor has a higher internal resistance than the outer subconductor. Since both sub-conductors run both inside and outside, this increased internal resistance is distributed to both sub-conductors, since both sub-conductors are provided with an inner route with increased resistance. This can be done in a simple manner, a uniform current distribution to both sub-conductors. A current path is a path along a voltage gradient upon application of an operational voltage to the conductor.

Die Erfindung kennzeichnet zudem das Merkmal, dass die Durchkreuzung in Axialrichtung umeinander gedrehte Verbindungsleiterpaare zwischen inneren und äußeren Abschnitten aufweist. Dadurch kann auf die blind endenden Abschnitte - bis auf kleine Isolierabstände zwischen den Verbindungsleitern - verzichtet werden und ein großer durchgehender Leitungsquerschnitt erreicht werden.The invention also features the feature that the intersection in the axial direction has twisted pairs of connecting conductors between inner and outer sections. As a result, the blindly ending sections can be dispensed with, with the exception of small insulating distances between the connecting conductors, and a large, continuous line cross section can be achieved.

Eine gleichmäßige Aufteilung des durch beide Teilleiter fließenden Gesamtstroms kann besonders einfach erfolgen, wenn die beiden Teilleiter konzentrisch angeordnet sind. Eine radiale Stromverdrängung durch den Skin-Effekt kann in radialer Richtung gleichmäßig auf beide Teilleiter verteilt werden.A uniform distribution of the current flowing through both sub-conductors total current can be particularly easily done when the two sub-conductors are arranged concentrically. A radial current displacement through the skin effect can be distributed uniformly in the radial direction on both sub-conductors.

Vorteilhafterweise sind die beiden Teilleiter über eine axiale Strecke ineinander geführt, und die Durchkreuzung ist in der Mitte der axialen Strecke angeordnet. Auf diese Weise kann der innere Widerstand der beiden Teilleiter besonders zuverlässig und unabhängig von Betriebsbedingungen symmetrisch und somit gleichmäßig verteilt werden. Es ist hierbei ausreichend, wenn ein Bereich der Durchkreuzung in der Mitte der axialen Strecke angeordnet ist. Zweckmäßigerweise ist die Durchkreuzung außerhalb des Trafogehäuses angeordnet.Advantageously, the two sub-conductors are guided into each other over an axial distance, and the intersection is arranged in the middle of the axial distance. In this way, the internal resistance of the two sub-conductors can be distributed particularly reliably and independently of operating conditions symmetrically and thus evenly. It is sufficient in this case if a region of the intersection is arranged in the middle of the axial distance. Appropriately, the intersection is arranged outside the transformer housing.

Eine Durchkreuzung der Teilleiter kann mit einer Verringerung des Leitungsquerschnitts der Teilleiter verbunden sein und damit mit einem erhöhten Widerstand und einer erhöhten Wärmeentwicklung. Um einer an dieser Stelle auftretenden gegenüber der Umgebung erhöhten Wärmeentwicklung entgegenzuwirken und die erzeugte Wärme effektiv in die Umgebung zu verteilen, ist es vorteilhaft, wenn die Durchkreuzung zur Umspülung mit Kühlöl vorgesehen ist. Das Kühlöl ist zweckmäßigerweise Trafoöl.A crossover of the sub-conductors can be associated with a reduction of the cross-section of the conductor and thus with an increased resistance and increased heat development. To counteract an occurring at this point relative to the environment increased heat generation and effectively distribute the heat generated in the environment, it is advantageous if the intersection of the rinsing with Cooling oil is provided. The cooling oil is suitably transformer oil.

Eine Durchkreuzung kann durch eine Anordnung von Verbindungsleitern hergestellt werden, die einen inneren Abschnitt mit einem äußeren Abschnitt eines Teilleiters miteinander verbinden. Diese Verbindungsleiter können in Radialrichtung weisen oder schräg zur Axialrichtung X-förmig geführt sein. Eine einfache Herstellung einer mechanisch stabilen und kompakten Durchkreuzung kann erreicht werden, wenn die Durchkreuzung S-förmig geschwungene Verbindungsleiter zwischen einem inneren und einem äußeren Abschnitt aufweist.A crossover may be made by an array of interconnecting conductors connecting an inner portion to an outer portion of a subconductor. These connecting conductors may point in the radial direction or be guided at an angle to the axial direction X-shaped. A simple production of a mechanically stable and compact crossover can be achieved if the crossover S-shaped curved connecting conductor between an inner and an outer portion.

In einer weiteren vorteilhaften Ausführungsform der Erfindung ist ein axialer Abstand zwischen inneren Abschnitten der Teilleiter kleiner als ein axialer Abstand zwischen äußeren Abschnitten der Teilleiter. Es kann eine Durchkreuzung auf engem Raum hergestellt werden, so dass Leiterstrecken mit geringem Leitungsquerschnitt kurz und der Widerstand klein gehalten werden kann.In a further advantageous embodiment of the invention, an axial distance between inner sections of the sub-conductors is smaller than an axial distance between outer sections of the sub-conductors. It can be made a cross-over in a small space, so that conductor lines with a small cross-section can be kept short and the resistance small.

Bei der Durchkreuzung wird ein Teileiter durch den anderen hindurchgeführt. Dies kann in der Herstellung besonders einfach ausgeführt werden, wenn ein Teilleiter tangentiale Abschnitte aufweist, die blind enden und an denen Verbindungsleiter des anderen Teilleiters hindurchgeführt werden können. Um bei einer solchen Durchkreuzung eine möglichst geringe Stromverdrängung in den Verbindungsleitern zu erzielen, ist es vorteilhaft, wenn in Axialrichtung umeinander gedrehte Verbindungsleiterpaare maximal dreimal so breit sind wie eine radiale Rohrwanddicke der Teilleiter. Zusätzlich sind solche Verbindungsleiter leichter zu fertigen als breitere Verbindungsleiter. Zum Ausgleich einer Stromverdrängung im Verbindungsleiter kann dieser in seinem mittleren Bereich dicker ausgeführt sein als an seinen axialen Enden.At the crossover, a part conductor is passed through the other. This can be carried out particularly easily in the production, if a sub-conductor has tangential sections which terminate blind and where connecting conductors of the other sub-conductor can be passed. In order to achieve the lowest possible current displacement in the connecting conductors in such a cross-over, it is advantageous if in the axial direction around each other twisted pairs of connecting conductors are at most three times as wide as a radial pipe wall thickness of the sub-conductors. In addition, such connection conductors are easier to manufacture than wider connection conductors. To compensate for a current displacement in the connecting conductor this can be made thicker in its central region than at its axial ends.

Die Erfindung wird anhand von Ausführungsbeispielen näher erläutert, die in den Zeichnungen dargestellt sind.The invention will be explained in more detail with reference to exemplary embodiments, which are illustrated in the drawings.

Es zeigen:

FIG 1
einen Anschluss einer gekapselten Generatorableitung an einen Kraftwerkstrafo mit einer Hochstrom-Trafodurchführung,
FIG 2
die Hochstrom-Trafodurchführung aus FIG 1 in einer Schnittdarstellung,
FIG 3
einen ersten Querschnitt durch einen Leiter der Hochstrom-Trafodurchführung,
FIG 4
einen weiteren Querschnitt durch den Leiter,
FIG 5
einen anderen Leiter mit einer Durchkreuzung von zwei Teilleitern in einer perspektivischen Ansicht und
FIG 6
eine Durchkreuzung mit in Axialrichtung umeinander gedrehten Verbindungsleiterpaaren.
Show it:
FIG. 1
a connection of an encapsulated generator lead to a power plant transformer with a high current transformer feed-through,
FIG. 2
the high current transformer feedthrough FIG. 1 in a sectional view,
FIG. 3
a first cross section through a conductor of the high-current transformer feed-through,
FIG. 4
another cross-section through the ladder,
FIG. 5
another conductor with a crossing of two sub-conductors in a perspective view and
FIG. 6
a cross-over with twisted in the axial direction connecting conductor pairs.

FIG 1 zeigt eine Generatorableitung 2, die eine von drei Phasen einer Drehstromableitung eines Kraftwerksgenerators ist. Die Drehstromableitung dient zur Weiterleitung des vom Kraftwerksgenerator abgegebenen Drehstroms an einen in FIG 1 nur angedeuteten Kraftwerkstrafo 4. Der Kraftwerksgenerator hat eine Leistung von 900 MW und die Generatorableitung 2 und der Kraftwerkstrafo 4 sind dementsprechend ausgelegt. Die Generatorableitung 2 umfasst einen rohrförmigen Leiter 6 aus Reinaluminium mit einem Durchmesser von 0,92 m und einer Wandstärke von 20 mm, der zur Kapselung von einem Hüllrohr 8 umgeben ist. Der Leiter 6 endet an einem Flansch 10, der über flexible Kupferbänder 12 elektrisch mit einer Trafoklemme 14 verbunden ist. Die Trafoklemme 14 ist über einen Flanschkontakt 16 mit einer Hochstrom-Trafodurchführung 18 verbunden, die mit einem Flanschanschluss 20 eines Trafokesselgehäuses 22 des Kraftwerkstrafos 4 verbunden und durch diesen und das Trafokesselgehäuse 22 hindurchgeführt ist. Das Hüllrohr 8 umfasst ein flexibles Ausgleichsstück 24, das, wie die Kupferbänder 12, zum Ausgleich von Schwingungen zwischen dem Kraftwerkstrafo 4 und der Generatorableitung 2 vorgesehen ist. FIG. 1 shows a generator lead 2, which is one of three phases of a three-phase lead of a power plant generator. The three-phase dissipation serves to forward the output from the power generator three-phase current to a in FIG. 1 only indicated Kraftwerkstrafo 4. The power plant generator has a capacity of 900 MW and the generator lead 2 and 4 Kraftwerkstrafo are designed accordingly. The generator lead 2 comprises a tubular conductor 6 made of pure aluminum with a diameter of 0.92 m and a wall thickness of 20 mm, which is surrounded by a cladding tube 8 for encapsulation. The conductor 6 terminates at a flange 10, which is connected via flexible copper bands 12 electrically connected to a transformer terminal 14. The transformer terminal 14 is connected via a flange contact 16 with a high current transformer feedthrough 18, which is connected to a flange 20 of a transformer box 22 of the power plant transformer 4 and passed through this and the transformer boiler housing 22. The cladding tube 8 comprises a flexible compensating piece 24, which, like the copper bands 12, is provided to compensate for oscillations between the power plant transformer 4 and the generator outlet 2.

In FIG 2 ist die Hochstrom-Trafodurchführung 18 in einem Längsschnitt dargestellt. Sie umfasst einen äußeren Isolator 26, der als Porzellanröhre mit Rippen 28 zum Überschlagsschutz ausgestaltet ist, und einen elektrischen Leiter 30 von dem auf Erdpotential gelegenen Flanschanschluss 20 der Kesseldecke trennt. Der Leiter 30 beginnt oben am Flanschkontakt 16 und endet innerhalb des Trafokesselgehäuses 22 an einem als Doppelleiterflansch ausgeführten stromtragenden Befestigungsmittel 32 zur mittelbaren Befestigung am Kraftwerkstrafo 4. Der Doppelleiterflansch ist durch eine Schraubverbindung mit einer Stromschiene 34 einer Schaltleitung verbunden ist, die den Leiter 30 elektrisch mit einer Unterspannungswicklung des Kraftwerkstrafos 4 verbindet. Eine untere Isolierplatte 36 dichtet einen mit Trafoöl gefüllten Ölraum 38 gegen das Trafoinnere ab, wobei der Ölraum 38 den größten Teil des Inneren des Isolators 26 ausfüllt und den größten Teil des Leiters 30 umgibt und durch eine Dichtung 40 nach außen abgedichtet ist.In FIG. 2 the high-current transformer bushing 18 is shown in a longitudinal section. It comprises an outer insulator 26, designed as a porcelain tube with ripples 28 for rollover protection, and separating an electrical conductor 30 from the earthed flange terminal 20 of the boiler ceiling. The conductor 30 begins at the top of the flange contact 16 and terminates within the transformer boiler housing 22 on a current carrying fastening means 32 designed as a double conductor flange for indirect attachment to the power station transformer 4. The double conductor flange is connected by a screw connection to a busbar 34 of a switching line which electrically connects the conductor 30 a low-voltage winding of the power plant transformer 4 connects. A lower insulating plate 36 seals an oil space 38 filled with transformer oil against the transformer interior, wherein the oil space 38 fills most of the interior of the insulator 26 and surrounds most of the conductor 30 and is sealed to the outside by a seal 40.

Der Leiter 30 umfasst zwei ineinander geführte rohrförmige Teilleiter 42, 44 aus Kupfer, von denen der Teilleiter 42 einen äußeren Abschnitt 46 und einen inneren Abschnitt 48 und der Teilleiter 44 einen inneren Abschnitt 50 und einen äußeren Abschnitt 52 aufweist. Die Abschnitte 46 und 50 und die Abschnitte 48 und 52 sind rohrförmig und jeweils konzentrisch um eine Mittelachse 54 ineinander angeordnet. Die äußeren Abschnitte 46, 52 weisen einen Durchmesser von 340 mm und die inneren Abschnitte 48, 50 einen Durchmesser von 280 mm auf, wobei die Abschnitte 46, 48, 50, 52 mit einer Wandstärke von 16 mm und einem radialen Abstand zwischen sich von 14 mm ausgeführt sind. In ihrem Inneren sind die Abschnitte 46, 48, 50, 52 vollständig von dem als Kühlöl dienenden Trafoöl im Ölraum 38 umgeben und von ihrer radialen Außenseite sind die Abschnitte 48, 50 vollständig und die Abschnitte 46, 52 weitgehend vollständig vom Trafoöl umgeben. Um eine Zirkulation des Trafoöls zu erlauben, sind in die Abschnitte 46, 48, 50, 52 jeweils mehrere Öffnungen 56 eingebracht.The conductor 30 comprises two mutually guided tubular sub-conductors 42, 44 made of copper, of which the sub-conductor 42 has an outer portion 46 and an inner portion 48 and the sub-conductor 44 has an inner portion 50 and an outer portion 52. The sections 46 and 50 and the sections 48 and 52 are tubular and each arranged concentrically about a central axis 54 into each other. The outer sections 46, 52 have a diameter of 340 mm and the inner sections 48, 50 a diameter of 280 mm, wherein the sections 46, 48, 50, 52 with a wall thickness of 16 mm and a radial distance between them of 14 mm are executed. In their interior, the sections 46, 48, 50, 52 are completely surrounded by the transformer oil serving as cooling oil in the oil chamber 38 and from its radial outer side, the sections 48, 50 are completely and the sections 46, 52 largely completely surrounded by transformer oil. In order to allow a circulation of the transformer oil, a plurality of openings 56 are respectively introduced into the sections 46, 48, 50, 52.

Das Trafoöl umspült auch eine radiale Durchkreuzung 58 der Teilleiter 42, 44, die den äußeren Abschnitt 46 mit dem inneren Abschnitt 48 des Teilleiters 42 und den inneren Abschnitt 50 mit dem äußeren Abschnitt 52 des Teilleiters 44 elektrisch verbindet. Die Durchkreuzung 58 ist in der Mitte einer axialen Strecke 60 zwischen dem Flanschkontakt 16 und dem Flansch des Befestigungsmittels 32 angeordnet, so dass die inneren Abschnitte 48, 50 und die äußeren Abschnitte 46, 52 in ihren Abmessungen zumindest im Wesentlichen gleich ausgeführt sind.The transformer oil also flows around a radial intersection 58 of the sub-conductors 42, 44 which electrically connects the outer portion 46 to the inner portion 48 of the sub-conductor 42 and the inner portion 50 to the outer portion 52 of the sub-conductor 44. The crossover 58 is disposed in the middle of an axial path 60 between the flange contact 16 and the flange of the fastener 32 so that the inner portions 48, 50 and the outer portions 46, 52 are at least substantially equal in dimension.

Die Durchkreuzung 58 ist in den FIGen 3 und 4 in verschiedenen Querschnitten gezeigt. Vier Verbindungsleiter 62 verbinden den äußeren Abschnitt 46 mit dem inneren Abschnitt 48 und vier Verbindungsleiter 64 verbinden den inneren Abschnitt 50 mit dem äußeren Abschnitt 52, so dass eine Strombahn entlang des Leiters 30 stets durch einen äußeren Abschnitt 46, 52, einen Verbindungsleiter 62, 64 und einen inneren Abschnitt 48, 50 verläuft. Zwischen den Verbindungsleitern 62, 64 ist stets ein kleiner tangentialer Abstand 66, der einen Kurzschluss der Teilleiter 42, 44 verhindert. Die Verbindungsleiter 62, 64 sind mit einem oberen und unteren in Axialrichtung geführten Segment 68, 70 versehen zur Verbindung mit jeweils einem der Abschnitte 46, 48, 50, 52 und mit einem in Radialrichtung ausgerichteten Zwischensegment 72 zur Verbindung der Segmente 68, 70. Die Verbindungsleiter 62, 64 sind an die Abschnitte 46, 48, 50, 52 jeweils angeschweißt.The intersection 58 is shown in FIGS. 3 and 4 in various cross sections. Four connecting conductors 62 connect the outer portion 46 to the inner portion 48, and four connecting conductors 64 connect the inner portion 50 to the outer portion 52 so that a current path along the conductor 30 is always through an outer portion 46, 52, a connecting conductor 62, 64th and an inner portion 48, 50 extends. Between the connecting conductors 62, 64 is always a small tangential distance 66, which prevents a short circuit of the sub-conductors 42, 44. The connection conductors 62, 64 are provided with upper and lower axially guided segments 68, 70 for connection to each of the sections 46, 48, 50, 52 and to a radially aligned intermediate segment 72 for connecting the segments 68, 70 Connecting conductors 62, 64 are welded to the sections 46, 48, 50, 52, respectively.

Durch die in den FIGen 2 bis 4 dargestellte Anordnung des Leiters 30 sind die durch den Skin-Effekt hervorgerufenen inneren Widerstände bzw. Wechselstromwiderstände der äußeren Abschnitte 46, 52 gleich und der inneren Abschnitte 48, 50 gleich. Durch das gleiche Material und die gleichen geometrischen Abmessungen jeweils der äußeren Abschnitte 46, 52 und der inneren Abschnitte 48, 50 sind auch die ohmschen Widerstände der jeweils gleichen Abschnitte 46, 48, 50, 52 sowie der Verbindungsleiter 62, 64 gleich. Da jeder der Teilleiter 42, 44 einen äußeren Abschnitt 46, 52 und einen inneren Abschnitt 48, 50 und vier Verbindungsleiter 62, 64 aufweist, sind auch die Gesamtwiderstände der Teilleiter 42, 44 gleich und sie werden im Betrieb der Hochstrom-Trafodurchführung 18 von Strom mit gleicher Stromstärke durchflossen.As a result of the arrangement of the conductor 30 shown in FIGS. 2 to 4, the internal resistances or alternating current resistances of the outer sections 46, 52 caused by the skin effect are the same and the inner sections 48, 50 equal. By the same material and the same geometric dimensions of each of the outer portions 46, 52 and the inner portions 48, 50 and the ohmic resistances of the same sections 46, 48, 50, 52 and the connecting conductors 62, 64 are equal. Since each of the sub-conductors 42, 44 has an outer portion 46, 52 and an inner portion 48, 50 and four connection conductors 62, 64, the total resistances of the sub-conductors 42, 44 are equal and they are in operation of the high-current transformer feedthrough 18 of electricity flowing through with the same current.

Ein weiteres Ausführungsbeispiel eines Leiters 74 für eine Hochstrom-Trafodurchführung ist in FIG 5 in einer perspektivischen Ansicht dargestellt. Die nachfolgende Beschreibung beschränkt sich im Wesentlichen auf die Unterschiede zum Ausführungsbeispiel in den FIGen 1 bis 4, auf das bezüglich gleichbleibender Merkmale und Funktionen verwiesen wird. Im Wesentlichen gleichbleibende Bauteile sind grundsätzlich mit den gleichen Bezugszeichen beziffert. Der Leiter 74 ist analog zum Leiter 30 aufgebaut. Die Abschnitte 46 und 48 sowie die Abschnitte 50 und 52, von denen in FIG 5 jedoch nur die äußeren Abschnitte 46, 52 sichtbar sind, sind durch Verbindungsleiter 76, 78 miteinander verbunden, die jeweils diagonal geführt sind und zusammen eine X-förmige Durchkreuzung 80 bilden. Diese Ausführungsform ist besonders einfach in der Herstellung. Alternativ sind jedoch auch andersförmige Durchkreuzungen denkbar, etwa durch S-förmige oder allgemeiner: geschwungene Verbindungsleiter.Another embodiment of a conductor 74 for a high current transformer feedthrough is shown in FIG FIG. 5 shown in a perspective view. The following description is essentially limited to the differences from the exemplary embodiment in FIGS. 1 to 4, to which reference is made with regard to features and functions that remain the same. Substantially identical components are basically numbered with the same reference numerals. The conductor 74 is constructed analogously to the conductor 30. The sections 46 and 48 and the sections 50 and 52, of which in FIG. 5 However, only the outer portions 46, 52 are visible, are interconnected by connecting conductors 76, 78, which are each guided diagonally and together form an X-shaped cross-over 80. This embodiment is particularly easy to manufacture. Alternatively, however, other crosses are also conceivable, such as by S-shaped or more generally: curved connection conductor.

Während das in FIG 5 gezeigte Ausführungsbeispiel einfach in der Herstellung ist, erlaubt das Ausführungsbeispiel aus den FIGen 2-4 einen in Axialrichtung kompakten Aufbau der Durchkreuzung 58, der es erlaubt, dass ein axialer Abstand 82 zwischen inneren Abschnitten 48, 50 der Teilleiter 42, 44 kleiner ist als ein axialer Abstand 84 zwischen äußeren Abschnitten 46, 52 der Teilleiter 42, 44. Der Abstand 82 zwischen den inneren Abschnitten 48, 50 beträgt nur 70 mm und der Abstand 84 zwischen den äußeren Abschnitten 46, 52 beträgt 100 mm.While that in FIG. 5 As shown in FIGS. 2-4, the embodiment of FIGS. 2-4 permits a compact construction of the cross-over 58 in the axial direction, which allows an axial distance 82 between inner sections 48, 50 of the sub-conductors 42, 44 to be smaller than one axial distance 84 between outer portions 46, 52 of the sub-conductors 42, 44. The distance 82 between the inner portions 48, 50 is only 70 mm and the distance 84 between the outer portions 46, 52 is 100 mm.

Bei den in den FIG 1 bis 5 gezeigten Leitern 30, 74 enden die äußeren Abschnitte 46, 52 zur Durchkreuzung 58, 80 hin über mehr als die Hälfte ihres Leitungsquerschnitts blind. Der Leitungsquerschnitt der jeweils vier Verbindungsleiter 62, 64, 76, 78 beträgt nur etwa 40% des Leitungsquerschnitts der Abschnitte 46, 48, 50, 52. Hierdurch tritt in den Verbindungsleitern 62, 64, 76, 78 eine etwas höhere Stromdichte verbunden mit einer etwas höheren Wärmeentwicklung auf als in den Abschnitten 46, 48, 50, 52. Durch die geringen Leitungsstrecken der Verbindungsleiter 62, 64, 76, 78 kann diese Mehrwärme jedoch durch das Ölbad mit Trafoöl abgeführt werden, das die Verbindungsleiter 62, 64, 76, 78 umgibt. Hierzu ist die durch die Öffnungen 56 begünstigte Konvektion des Trafoöls vorteilhaft.In the in the 1 to 5 shown conductors 30, 74 terminate the outer portions 46, 52 to the cross-over 58, 80 out over more than half of their line cross-section blind. The line cross section of each four connecting conductors 62, 64, 76, 78 is only about 40% of the line cross section of the sections 46, 48, 50, 52. This results in the connecting conductors 62, 64, 76, 78, a slightly higher current density connected to a something Higher heat development than in the sections 46, 48, 50, 52. Due to the small line lengths of the connecting conductors 62, 64, 76, 78, this increased heat can be dissipated by the oil bath with transformer oil, the connecting conductors 62, 64, 76, 78th surrounds. For this purpose, the convection of the transformer oil favored by the openings 56 is advantageous.

Ein Ausführungsbeispiel, bei dem die Erzeugung von Mehrwärme durch einen geringen Leitungsquerschnitt der Verbindungsleiter 62, 64, 76, 78 gering gehalten ist, ist in FIG 6 in einer schematischen Seitenansicht gezeigt. Ein Leiter 86 mit Abschnitten 46, 48, 50, 52, von denen in FIG 6 nur die äußeren Abschnitte 46, 52 sichtbar sind, umfasst eine Durchkreuzung 88 mit Verbindungsleitern 90, 92, die in Axialrichtung des Leiters 86 umeinander gedreht sind. Der Übersichtlichkeit halber sind nur zwei jeweils paarweise umeinander gedrehte Paare von Verbindungsleitern 90, 92 dargestellt. Zwischen den Verbindungsleitern 90, 92 verbleibt auch in der Verdrehung stets der gleiche Abstand wie zwischen den Abschnitten 46 und 50 sowie 48 und 52. Um die Herstellung der Verbindungsleiter 90, 92 nicht zu schwierig zu gestalten und um eine Stromverdrängung in den Verbindungsleitern 90, 92 möglichst gering zu halten, sind die Verbindungsleiter 90, 92 maximal dreimal so breit sind wie eine radiale Rohrwanddicke von 16 mm der Abschnitte 46, 48, 50, 52.An embodiment in which the generation of increased heat by a small cross-section of the conductor conductors 62, 64, 76, 78 is kept low, is in FIG. 6 shown in a schematic side view. A conductor 86 having sections 46, 48, 50, 52, of which in FIG. 6 only the outer portions 46, 52 are visible, includes a cross-over 88 with connecting conductors 90, 92, which are rotated in the axial direction of the conductor 86 around each other. For the sake of clarity, only two pairs of pairs of connecting conductors 90, 92 rotated in pairs are shown. Between the connecting conductors 90, 92 remains in the rotation always the same distance as between the sections 46 and 50 and 48 and 52. To make the preparation of the connecting conductors 90, 92 not too difficult and to a current displacement in the connecting conductors 90, 92nd To keep as small as possible, the connecting conductors 90, 92 are at most three times as wide as a radial tube wall thickness of 16 mm of the sections 46, 48, 50, 52nd

Claims (6)

  1. Heavy-duty transformer bushing (18) comprising a fastening means (32) for fastening on a power station transformer (4), an electrical conductor (30, 74, 86) for passing through a transformer tank housing (22) and an electrical insulator (26) passed around the conductor (30, 74, 86), wherein the electrical conductor (30, 74, 86) has two tubular conductor elements (42, 44) guided inside the other, characterized in that both conductor elements (42, 44) have, along a current path by means of a radial interpenetration (58, 80, 88), both an inner section (48, 50) within the other conductor element (42, 44) and an outer section (46, 52) outside the other conductor element (42, 44), and in that the interpenetration (58, 80, 88) has connecting conductor pairs (90, 92), which are turned one around the other in the axial direction, between inner and outer sections (46, 48, 50, 52).
  2. Heavy-duty transformer bushing (18) according to Claim 1, characterized in that the two conductor elements (42, 44) are arranged concentrically.
  3. Heavy-duty transformer bushing (18) according to Claim 1 or 2, characterized in that the two conductor elements (42, 44) are guided one inside the other over an axial extent (60), and the interpenetration (58, 80, 88) is arranged in the centre of the axial extent (60).
  4. Heavy-duty transformer bushing (18) according to one of the preceding claims, characterized in that the interpenetration (58, 80, 88) is provided for circulatory flushing with cooling oil.
  5. Heavy-duty transformer bushing (18) according to one of the preceding claims, characterized in that an axial distance (82) between inner sections (48, 50) of the conductor elements (42, 44) is smaller than an axial distance (84) between outer sections (46, 52) of the conductor elements (42, 44).
  6. Heavy-duty transformer bushing (18) according to one of the preceding claims, characterized in that the connecting conductor pairs (90, 92) are at most three times as wide as a radial tube wall thickness of the conductor elements (42, 44).
EP20060020049 2006-09-25 2006-09-25 High current bushing for transformer Active EP1903583B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20060020049 EP1903583B1 (en) 2006-09-25 2006-09-25 High current bushing for transformer
ES06020049.0T ES2524451T3 (en) 2006-09-25 2006-09-25 High current transformer through isolator
CN2007101612749A CN101162642B (en) 2006-09-25 2007-09-25 High current bushing for transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20060020049 EP1903583B1 (en) 2006-09-25 2006-09-25 High current bushing for transformer

Publications (2)

Publication Number Publication Date
EP1903583A1 EP1903583A1 (en) 2008-03-26
EP1903583B1 true EP1903583B1 (en) 2014-10-29

Family

ID=37807305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060020049 Active EP1903583B1 (en) 2006-09-25 2006-09-25 High current bushing for transformer

Country Status (3)

Country Link
EP (1) EP1903583B1 (en)
CN (1) CN101162642B (en)
ES (1) ES2524451T3 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2624259B8 (en) * 2012-02-03 2019-09-11 ABB Schweiz AG A bushing for a power system and system comprising such a bushing
EP2922070A1 (en) * 2014-03-19 2015-09-23 ABB Technology Ltd Electrical insulation system and high voltage electromagnetic induction device comprising the same
DE102016209132A1 (en) * 2016-05-25 2017-11-30 Siemens Aktiengesellschaft Device for connecting a high voltage conductor to a winding of an electrical device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1047414A (en) * 1900-01-01
GB443017A (en) * 1934-07-18 1936-02-18 Harold Smethurst Improvements in lead-in conductors for transformers, switchgear and like electrical apparatus enclosed in metal casings
US4132853A (en) 1977-04-25 1979-01-02 Westinghouse Electric Corp. Electrical bushing
US4594475A (en) * 1984-08-03 1986-06-10 Westinghouse Electric Corp. Electrical bushing having a convertible central conductor
EP1411619B1 (en) 2002-10-16 2018-11-28 Siemens Aktiengesellschaft Generator interconnection, in particular having the connection area in the generator foundation
CN2805040Y (en) * 2005-05-27 2006-08-09 南京智达电气有限公司 Large current, no local discharging transformer casing

Also Published As

Publication number Publication date
ES2524451T3 (en) 2014-12-09
CN101162642B (en) 2012-11-28
EP1903583A1 (en) 2008-03-26
CN101162642A (en) 2008-04-16

Similar Documents

Publication Publication Date Title
DE19839987C2 (en) Directly cooled magnetic coil, in particular gradient coil, and method for the production of conductors therefor
CH662454A5 (en) Arrangement for connecting two layer cable in front part of a high voltage generators staenderwicklung.
EP1903583B1 (en) High current bushing for transformer
EP3179485B1 (en) High-power coaxial cable
EP2256753B1 (en) Electricity conductor for a high voltage feed
DE19653060A1 (en) Gas-cooled electrical machine
DE19603215A1 (en) Busbar system
EP1283582B1 (en) Arrangement of inside cooled electric conductors, especially for a rotor of a generator
DE1020408B (en) Device for the coolant supply in dynamo-electric machines
EP1411619B1 (en) Generator interconnection, in particular having the connection area in the generator foundation
DE3050677C1 (en) Directly cooled stator coil of a high voltage generator
EP0932168B1 (en) Coaxial transformer
EP0109024A1 (en) Three-phase power current line
DE962904C (en) Implementation for large currents, especially for electric ovens
DE19819903C2 (en) Fluid cooled electrical power line
WO2007113012A1 (en) High-current line arrangement and generator system
CH387770A (en) Liquid-cooled stator winding for electrical machines
DE2836283C2 (en) Electrical device winding
EP3685411B1 (en) Winding assembly
EP2182533B1 (en) Transformator
DE322440C (en)
EP3001433B1 (en) Pin-isolator adapted for a transformer
DE19843087A1 (en) Alternating magnetic field generating induction coil is hollow and fluid cooled having longitudinal slits or conductors in axial terminal post
WO2013092136A1 (en) Phase conductor section having a current transformer for a polyphase gas-insulated switchgear assembly
DE102019121187A1 (en) Electric machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080424

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20120807

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

INTG Intention to grant announced

Effective date: 20140512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 693919

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006014038

Country of ref document: DE

Effective date: 20141204

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2524451

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20141209

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141029

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150302

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006014038

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20151202

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150925

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150925

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150925

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150925

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160809

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060925

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 693919

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170925

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006014038

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AG, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230920

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230926

Year of fee payment: 18

Ref country code: DE

Payment date: 20230928

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231018

Year of fee payment: 18

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

Effective date: 20240409