EP1902492A2 - Network antenna with conformable reflector(s) highly reconfigurable in orbit - Google Patents

Network antenna with conformable reflector(s) highly reconfigurable in orbit

Info

Publication number
EP1902492A2
EP1902492A2 EP06779044A EP06779044A EP1902492A2 EP 1902492 A2 EP1902492 A2 EP 1902492A2 EP 06779044 A EP06779044 A EP 06779044A EP 06779044 A EP06779044 A EP 06779044A EP 1902492 A2 EP1902492 A2 EP 1902492A2
Authority
EP
European Patent Office
Prior art keywords
reflector
sources
source
array antenna
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06779044A
Other languages
German (de)
French (fr)
Other versions
EP1902492B1 (en
Inventor
Michel Leveque
Eric Vourch
Jacques Maurel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP1902492A2 publication Critical patent/EP1902492A2/en
Application granted granted Critical
Publication of EP1902492B1 publication Critical patent/EP1902492B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart

Definitions

  • the invention relates to reflector (s) network antennas, embedded on satellites and intended to transmit and / or receive beams of electromagnetic waves.
  • reflector array antenna means an antenna composed of a set of sources (or radiating elements), defining a network, and one or more reflectors.
  • the aforementioned reflector network antennas are particularly interesting because they make it possible to form and position one or more radiating beams to one or more given covers. This formation of beams is done by amplitude and / or phase control at the source level.
  • a first solution is to use a direct radiation active array antenna (or DRA), that is to say without reflector.
  • DRA direct radiation active array antenna
  • This type of network antenna offers a very good ability to double reconfigurability, but requires a large number of controls that often prohibits its cost and weight.
  • the low efficiency of the amplifiers that are associated with each of the controls of the DRA induces a dissipation often crippling.
  • a second solution consists in using a source network in the focal plane or in the vicinity of the focal plane of a non-parabolic reflector. consistent (or FAFR).
  • FAFR non-parabolic reflector. consistent
  • This solution is described in particular in US Pat. No. 4,965,587.
  • the source network is sized so that each of its sources contributes to a portion of the total coverage.
  • the position of the sources is directly related to the area to be covered. It is determined geometrically by applying the reflection principle on the reflector.
  • the amplitude / phase laws of the different controls must be optimized so that the beams delivered by the sources combine by giving a radiation pattern adapted to each area to be covered. If one wishes to cover only one of the zones, initially planned, one uses only the part of the corresponding network.
  • the amplitude dynamics applied to the radiating elements is important, which often makes it necessary, on transmission, to use a device for balancing the power between the amplifiers (called MPA).
  • each of the sources is directly linked to a part of the coverage, on the one hand, imposes redundancy at the level of the amplifiers to avoid the loss of this zone in the event of partial failure, and secondly, induced a number of sources (and often controls) directly related to the size of the coverage.
  • the beam formation architecture is therefore particularly complex, induces additional losses related to the presence of the MPA, and causes fairly high volume and mass.
  • a third solution, variant of the second, has been proposed in document US 2004/0222932. It consists in placing an array of sources in the focal plane of a reflector whose reflective surface is shaped so as to widen the area covered by each beam having a "flat" radiation pattern in the main lobe delivered by an elementary source. The principle remains the same as that described above, each source only contributing to part of the coverage. Because of the broadening of the elementary beams introduced by the conformation of the reflector, the number of sources necessary for the sampling of the coverage can thus be reduced, which makes it possible to reduce the number of the controls of the antenna.
  • a reflector array antenna comprising i) an array of at least two sources, including a so-called central source, arranged and positioned to emit (or receive) electromagnetic wave beams in selected directions, ii) beam forming means for controlling the amplitude and phase of each of the sources by means of amplitude / phase laws applied to their accesses and to provide an appropriate amplification level, so that each source emits a chosen radiation pattern (constituting a beam and comprising a main lobe) intended to cover a chosen zone, and iii) one or more reflectors responsible for reflecting the beams delivered by the sources (or towards these sources).
  • This reflector array antenna (s) is characterized by the fact that:
  • the surface of at least one of its reflectors is three-dimensionally (3D) shaped so as to reflect the beam that is delivered by each source by spreading its energy so that it covers the chosen associated zone, that the main lobe of the radiation pattern associated with the central source defines a so-called primary coverage completely encompassing each active coverage area of the antenna, of selected shape and size, and that the main lobe of the radiation pattern associated with each non-central source covers at least partially the primary coverage, and
  • its beam-forming means are responsible for applying to the accesses of the source network a law of amplitude and / or phase chosen so that the combination of the beams delivered by the sources of the network defines each of the active coverage areas of the network. the antenna.
  • the array antenna with reflector (s) according to the invention may comprise other characteristics that can be taken separately or in combination, and in particular:
  • its sources may be positioned either in the focal plane of the reflector or outside thereof, in any way in front of the reflector; its sources may consist of a radiating element of any type (for example circular or rectangular horn, printed element (or "patch”), slot, or propeller) operating in transmission and / or reception and in n any polarization;
  • a radiating element of any type for example circular or rectangular horn, printed element (or "patch"), slot, or propeller
  • the surface of one of its reflectors preferably has a general shape of paraboloidal type shaped in a three-dimensional manner
  • At least one of its reflectors may comprise a pointing mechanism responsible for modifying the position of the main lobe associated with the central source of the network.
  • FIG. 1 very schematically and functionally illustrates an exemplary embodiment of a grating array antenna according to the invention
  • FIG. 2 schematically illustrates the principle of formation of active coverage areas by means of a reflector network antenna (s) according to the inventor.
  • FIG. 1 a network antenna with reflector (s) AR according to the invention.
  • the invention is not limited to this application.
  • the reflector array antenna (s) according to the invention can operate in transmission, or in reception, or in transmission and reception, and / or may comprise several reflectors, and / or may comprise a network composed of any number of sources, and / or may offer more than two active coverage areas.
  • Such an antenna is primarily intended to be embedded on a satellite of telecommunication.
  • An antenna (reflector array (s)) AR firstly comprises a network RS consisting of at least two sources Si arranged and positioned to deliver electromagnetic wave beams Fi (including signals). in selected directions.
  • the number N of sources Si of the network RS, the positioning of the sources If compared to each other, the type of the sources Si and the respective orientations of the sources Si are chosen according to the mission which is attributed to the antenna AR.
  • one (here S1) is called central, for example because it is placed substantially in the middle of the network RS.
  • Each source Si of the network RS may consist of a radiating element of any type, and for example a circular or rectangular horn, a "patch” (printed element), a "slot", or a propeller, which can operate in transmission and / or reception and in any polarization.
  • the antenna AR also comprises an MFF beam forming module responsible for applying amplitude and / or phase laws and for amplifying the signals of each of the N sources Si of the network RS, so that each source If emits a selected radiation pattern (constituting a beam Fi and comprising a main lobe) for covering a selected area Zi.
  • MFF beam forming module responsible for applying amplitude and / or phase laws and for amplifying the signals of each of the N sources Si of the network RS, so that each source If emits a selected radiation pattern (constituting a beam Fi and comprising a main lobe) for covering a selected area Zi. Any amplification / phase law application and amplification techniques known to man can be implemented for this purpose.
  • the AR antenna also includes an RC reflector with a three-dimensional (3D) shaped SU surface.
  • This 3D conformation which is in the form of depressions and bumps placed in selected locations of the SU surface, is intended to reflect the beam Fi which is delivered by each source Si while spreading its energy so, a first part, that it covers the associated zone chosen Zi, of a second part, that the lobe of the radiation pattern associated with the central source S1 defines a so-called primary coverage CP completely encompassing each active coverage area ZCj of the antenna AR, of selected shape and dimensions, and a third part, that the main lobe of the diagram of radiation associated with each non-central source Si (i ⁇ 1), and therefore each zone Zi (i ⁇ 1), at least partially covers the primary coverage CP at a zone of intersection ZICi.
  • active coverage area refers to a zone in which the electromagnetic waves transmitted by the antenna AR must be able to be received by means of a suitable receiver.
  • the zone Z1 (defined by the main lobe of the radiation pattern from the central source S1 of the network RS) therefore defines a so-called primary coverage CP.
  • Each point of this primary coverage CP is therefore located in at least one intersection zone ZICi, and preferably in several intersection zones ZICi.
  • each point of the primary coverage CP is covered by the main lobe of the beam F1 of the central source S1 and by one or more main lobes of the beams Fi (i ⁇ 1) associated with other sources Si ( i ⁇ 1) of the RS network.
  • the behavior of the antenna inside the CP primary coverage is thus very similar to that of a direct radiation network (DRA).
  • DPA direct radiation network
  • the active coverage areas ZCj of the antenna AR can be defined by means of the laws and amplifications applied by the MFF beam forming module.
  • the AR antenna could be designed to provide more than two active coverage areas ZCj, or just one.
  • the conformation of the reflector RC which makes it possible to widen the beams Fi is calculated according to the mission, since it is this which will define the envelope of the primary cover CP which must contain the different zones of active coverage ZCj of the AR antenna.
  • the 3D conformation can be determined by means of polynomial functions (for example of the type Spline or Zernike) applied to an initial reflection surface paraboloid type, using appropriate software (eg POS4 type).
  • the sources Si are placed either in the focal plane of the reflector RC, or outside this focal plane.
  • the reflector RC may comprise a pointing mechanism (not shown in the figures) for modifying the position of the main lobe which is associated with the central source S1 of the network AR.
  • the antenna AR according to the invention is particularly well suited, although in a non-limiting way:
  • the arrangement of the source network is strongly decorrelated from the coverage of the antenna because it is the 3D conformation of the surface of the reflector that defines the primary coverage CP inside which can be defined any number of spots (or areas of active coverage ZCj) of any shape. This considerably limits the size of the network and the number of sources and therefore significantly reduces the weight and complexity of the controls compared to a conventional parabolic reflector solution or a DRA solution.
  • reducing the size of the source array reduces defocus aberrations, naturally inducing lower lobe levels (and therefore better C / I ratios) compared to those obtained with a conventional parabolic reflector solution.
  • the use of small ratios between the focal length of the reflector system and the diameter of the main reflector is then facilitated (especially at the implantation on a satellite).
  • the invention thus combines the advantages of a DRA (direct radiation network) type antenna, namely a strong reconfigurability and a natural redundancy, and the advantages of a FAFR type antenna, ie a high directivity obtained thanks to the conformal surface of the reflector, while avoiding the disadvantages of these two types of antennas, namely the very large number of controls which contributes significantly to the weight and the cost, the loss of efficiency related to the lobes of networks in the case of a DRA antenna, the loss of coverage in the event of faults and the size of the source network depending on the coverage envisaged in the case of a FAFR antenna.
  • DRA direct radiation network

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

The invention concerns a network antenna with reflector(s) (AR) comprising i) a network (RS) of at least two sources (S1-S5), including a central source (S1), arranged and positioned so as to transmit and/or receive beams (F1-F5) in selected directions; ii) beam-forming means for controlling the amplitude and the phase of each of the sources using amplitude/phase laws applied upon their inputs and for providing an appropriate amplifying level, so that each source (S1-S5) transmits a selected radiated pattern (forming a beam and including a main lobe) designed to cover a selected zone (Z1-Z5), and iii) at least one reflector (RC) provided with a surface (SU) capable of reflecting the beams output by the sources and/or transmitted thereto, and shaped in three dimensions so as to reflect the beam output by each source (S1-S5) by spreading its energy so that it covers the selected associated zone, and the main lobe of the radiation pattern associated with the central source (S1) defines a primary coverage (CP) including in its entirety each active coverage zone (ZC1, ZC2) of the antenna, of selected shape and dimensions, and the main lobe of the radiation pattern associated with each non-central source (S2-S5) at least party overlaps the primary coverage (CP).

Description

ANTENNE RESEAU A REFLECTEU R(S) CONFORME(S), A FORTE RECONFIGURABILITE EN ORBITENETWORK ANTENNA REFLECTED R (S) CONFORMING (S), HAVING HIGH RECONFIGURABILITY IN ORBIT
L'invention concerne les antennes réseaux à réflecteur(s), embarquées sur des satellites et destinées à transmettre et/ou recevoir des faisceaux d'ondes électromagnétiques.The invention relates to reflector (s) network antennas, embedded on satellites and intended to transmit and / or receive beams of electromagnetic waves.
On entend ici par « antenne réseau à réflecteur(s) » une antenne composée d'un ensemble de sources (ou éléments rayonnants), définissant un réseau, et d'un ou plusieurs réflecteurs.Here, the term "reflector array antenna (s)" means an antenna composed of a set of sources (or radiating elements), defining a network, and one or more reflectors.
Les antennes réseaux à réflecteur(s) précitées sont particulièrement intéressantes du fait qu'elles permettent de former et de positionner un ou plusieurs faisceaux rayonnants vers une ou plusieurs couvertures données. Cette formation de faisceaux se fait par contrôle d'amplitude et/ou de phase au niveau des sources.The aforementioned reflector network antennas are particularly interesting because they make it possible to form and position one or more radiating beams to one or more given covers. This formation of beams is done by amplitude and / or phase control at the source level.
La capacité de modifier la position et la forme des couvertures en orbite (double reconfigurabilité) est particulièrement intéressante notamment pour tenir compte de l'évolution du trafic, pour prendre le relais d'un satellite en panne, ou en cas de changement de position sur l'arc orbital avec conservation du bilan de liaison sur une zone donnée. Afin de permettre une double reconfigurabilité, les trois solutions présentées ci-dessous sont le plus souvent utilisées.The ability to modify the position and shape of orbit covers (double reconfigurability) is particularly interesting, especially in view of the evolution of traffic, to take over from a broken satellite, or in case of a change of position on the orbital arc with retention of the link budget over a given area. In order to allow a double reconfigurability, the three solutions presented below are most often used.
Une première solution consiste à utiliser une antenne réseau active à rayonnement direct (ou DRA), c'est-à-dire dépourvue de réflecteur. Ce type d'antenne réseau offre une très bonne capacité de double reconfigurabilité, mais nécessite un grand nombre de contrôles qui rend souvent prohibitif son coût et son poids. De plus, à l'émission, le faible rendement des amplificateurs qui sont associés à chacun des contrôles du DRA induit une dissipation souvent rédhibitoire.A first solution is to use a direct radiation active array antenna (or DRA), that is to say without reflector. This type of network antenna offers a very good ability to double reconfigurability, but requires a large number of controls that often prohibits its cost and weight. In addition, at the emission, the low efficiency of the amplifiers that are associated with each of the controls of the DRA induces a dissipation often crippling.
Une deuxième solution consiste à utiliser un réseau de sources dans le plan focal ou au voisinage du plan focal d'un réflecteur parabolique non conformé (ou FAFR). Cette solution est notamment décrite dans le document brevet US 4,965,587. Afin de couvrir une zone donnée, le réseau de sources est dimensionné de sorte que chacune de ses sources contribue à une partie de la couverture totale. La position des sources est directement liée à la zone à couvrir. Elle est déterminée de façon géométrique en appliquant le principe de réflexion sur le réflecteur. Les lois d'amplitude/phase des différents contrôles doivent être optimisées pour que les faisceaux délivrés par les sources se combinent en donnant un diagramme de rayonnement adapté à chaque zone à couvrir. Si l'on ne souhaite couvrir que l'une des zones, prévues initialement, on n'utilise que la partie du réseau correspondante. La dynamique d'amplitude appliquée aux éléments rayonnants est importante, ce qui rend souvent nécessaire, à l'émission, l'utilisation d'un dispositif d'équilibrage de la puissance entre les amplificateurs (appelé MPA).A second solution consists in using a source network in the focal plane or in the vicinity of the focal plane of a non-parabolic reflector. consistent (or FAFR). This solution is described in particular in US Pat. No. 4,965,587. In order to cover a given area, the source network is sized so that each of its sources contributes to a portion of the total coverage. The position of the sources is directly related to the area to be covered. It is determined geometrically by applying the reflection principle on the reflector. The amplitude / phase laws of the different controls must be optimized so that the beams delivered by the sources combine by giving a radiation pattern adapted to each area to be covered. If one wishes to cover only one of the zones, initially planned, one uses only the part of the corresponding network. The amplitude dynamics applied to the radiating elements is important, which often makes it necessary, on transmission, to use a device for balancing the power between the amplifiers (called MPA).
Le fait que chacune des sources soit directement liée à une partie de la couverture, d'une part, impose une redondance au niveau des amplificateurs afin d'éviter la perte de cette zone en cas de panne partielle, et d'autre part, induit un nombre de sources (et souvent de contrôles) directement lié à la taille de la couverture. L'architecture de formation des faisceaux s'avère donc particulièrement complexe, induit des pertes supplémentaires liées à la présence du MPA, et entraîne des volume et masse assez élevés.The fact that each of the sources is directly linked to a part of the coverage, on the one hand, imposes redundancy at the level of the amplifiers to avoid the loss of this zone in the event of partial failure, and secondly, induced a number of sources (and often controls) directly related to the size of the coverage. The beam formation architecture is therefore particularly complex, induces additional losses related to the presence of the MPA, and causes fairly high volume and mass.
Une troisième solution, variante de la deuxième, a été proposée dans le document brevet US 2004/0222932. Elle consiste à placer un réseau de sources dans le plan focal d'un réflecteur dont la surface réfléchissante est conformée de manière à élargir la zone couverte par chaque faisceau présentant un diagramme de rayonnement « plat » dans le lobe principal délivré par une source élémentaire. Le principe demeure le même que celui décrit ci-dessus, chaque source ne faisant que contribuer à une partie de la couverture. Du fait de l'élargissement des faisceaux élémentaires introduit par la conformation du réflecteur, le nombre de sources nécessaires à l'échantillonnage de la couverture peut donc être réduit, ce qui permet de diminuer le nombre des contrôles de l'antenne.A third solution, variant of the second, has been proposed in document US 2004/0222932. It consists in placing an array of sources in the focal plane of a reflector whose reflective surface is shaped so as to widen the area covered by each beam having a "flat" radiation pattern in the main lobe delivered by an elementary source. The principle remains the same as that described above, each source only contributing to part of the coverage. Because of the broadening of the elementary beams introduced by the conformation of the reflector, the number of sources necessary for the sampling of the coverage can thus be reduced, which makes it possible to reduce the number of the controls of the antenna.
Aucune solution connue n'apportant une entière satisfaction en termes de coût et/ou de poids et/ou de simplicité des contrôles et/ou de capacité de reconfigurabilité en orbite, l'invention a donc pour but d'améliorer la situation.No known solution providing complete satisfaction in terms cost and / or weight and / or simplicity of control and / or reconfigurability capacity in orbit, the invention therefore aims to improve the situation.
Elle propose à cet effet une antenne réseau à réflecteur(s) comprenant i) un réseau d'au moins deux sources, dont une source dite centrale, agencées et positionnées de manière à émettre (ou recevoir) des faisceaux d'ondes électromagnétiques dans des directions choisies, ii) des moyens de formation de faisceaux permettant de contrôler l'amplitude et la phase de chacune des sources au moyen de lois d'amplitude/phase appliquées sur leurs accès et d'assurer un niveau d'amplification approprié, afin que chaque source émette un diagramme de rayonnement choisi (constituant un faisceau et comprenant un lobe principal) destiné à couvrir une zone choisie, et iii) un ou plusieurs réflecteurs chargés de réfléchir les faisceaux délivrés par les sources (ou en direction de ces sources).It proposes for this purpose a reflector array antenna (s) comprising i) an array of at least two sources, including a so-called central source, arranged and positioned to emit (or receive) electromagnetic wave beams in selected directions, ii) beam forming means for controlling the amplitude and phase of each of the sources by means of amplitude / phase laws applied to their accesses and to provide an appropriate amplification level, so that each source emits a chosen radiation pattern (constituting a beam and comprising a main lobe) intended to cover a chosen zone, and iii) one or more reflectors responsible for reflecting the beams delivered by the sources (or towards these sources).
Cette antenne réseau à réflecteur(s) se caractérise par le fait que :This reflector array antenna (s) is characterized by the fact that:
- la surface de l'un au moins de ses réflecteurs est conformée de façon tridimensionnelle (3D) de manière à réfléchir le faisceau qui est délivré par chaque source en étalant son énergie afin qu'il couvre la zone associée choisie, que le lobe principal du diagramme de rayonnement associé à la source centrale définisse une couverture dite primaire englobant intégralement chaque zone de couverture active de l'antenne, de forme et dimensions choisies, et que le lobe principal du diagramme de rayonnement associé à chaque source non centrale recouvre au moins partiellement la couverture primaire, etthe surface of at least one of its reflectors is three-dimensionally (3D) shaped so as to reflect the beam that is delivered by each source by spreading its energy so that it covers the chosen associated zone, that the main lobe of the radiation pattern associated with the central source defines a so-called primary coverage completely encompassing each active coverage area of the antenna, of selected shape and size, and that the main lobe of the radiation pattern associated with each non-central source covers at least partially the primary coverage, and
- ses moyens de formation de faisceaux sont chargés d'appliquer aux accès du réseau de sources une loi d'amplitude et/ou de phase choisie de sorte que la combinaison des faisceaux délivrés par les sources du réseau définisse chacune des zones de couverture active de l'antenne.its beam-forming means are responsible for applying to the accesses of the source network a law of amplitude and / or phase chosen so that the combination of the beams delivered by the sources of the network defines each of the active coverage areas of the network. the antenna.
L'antenne réseau à réflecteur(s) selon l'invention peut comporter d'autres caractéristiques qui peuvent être prises séparément ou en combinaison, et notamment :The array antenna with reflector (s) according to the invention may comprise other characteristics that can be taken separately or in combination, and in particular:
- ses sources peuvent être positionnées soit dans le plan focal du réflecteur, soit en dehors de celui-ci, de façon quelconque devant le réflecteur ; - ses sources peuvent être constituées d'un élément rayonnant de n'importe quel type (par exemple cornet circulaire ou rectangulaire, élément imprimé (ou « patch »), fente, ou hélice) fonctionnant en émission et/ou en réception et dans n'importe quelle polarisation ;its sources may be positioned either in the focal plane of the reflector or outside thereof, in any way in front of the reflector; its sources may consist of a radiating element of any type (for example circular or rectangular horn, printed element (or "patch"), slot, or propeller) operating in transmission and / or reception and in n any polarization;
- la surface de l'un de ses réflecteurs présente de préférence une forme générale de type paraboloïdal conformée de façon tridimensionnelle ;the surface of one of its reflectors preferably has a general shape of paraboloidal type shaped in a three-dimensional manner;
- l'un au moins de ses réflecteurs peut comprendre un mécanisme de pointage chargé de modifier la position du lobe principal associé à la source centrale du réseau.at least one of its reflectors may comprise a pointing mechanism responsible for modifying the position of the main lobe associated with the central source of the network.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés, sur lesquels :Other features and advantages of the invention will appear on examining the detailed description below, and the attached drawings, in which:
- la figure 1 illustre de façon très schématique et fonctionnelle un exemple de réalisation d'une antenne réseau à réflecteur(s) selon l'invention, etFIG. 1 very schematically and functionally illustrates an exemplary embodiment of a grating array antenna according to the invention, and
- la figure 2 illustre de façon schématique le principe de formation de zones de couverture active au moyen d'une antenne réseau à réflecteur(s) selon l'inventeur.- Figure 2 schematically illustrates the principle of formation of active coverage areas by means of a reflector network antenna (s) according to the inventor.
Les dessins annexés pourront non seulement servir à compléter l'invention, mais aussi contribuer à sa définition, le cas échéant.The attached drawings may not only serve to complete the invention, but also contribute to its definition, if any.
On se réfère tout d'abord à la figure 1 pour décrire une antenne réseau à réflecteur(s) AR selon l'invention.Reference is first made to FIG. 1 to describe a network antenna with reflector (s) AR according to the invention.
Dans ce qui suit, on considère à titre d'exemple non limitatif que l'antenne réseau à réflecteur(s) AR est dédiée à la seule transmission de faisceaux d'ondes électromagnétiques, qu'elle ne comporte qu'un seul réflecteur AR, que son réseau RS ne comporte que cinq sources SI (i=1 à 5) et qu'elle n'offre que deux zones de couverture actives (ZC1 et ZC2). Mais, l'invention n'est pas limitée à cette application. En effet, l'antenne réseau à réflecteur(s) selon l'invention peut fonctionner en transmission, ou en réception, ou encore en transmission et en réception, et/ou peut comporter plusieurs réflecteurs, et/ou peut comporter un réseau composé d'un nombre quelconque de sources, et/ou peut offrir plus de deux zones de couverture actives. Une telle antenne a pour vocation principale d'être embarquée sur un satellite de télécommunication.In the following, it is considered by way of nonlimiting example that the array antenna AR reflector (s) is dedicated to the only transmission of electromagnetic wave beams, it has only a single reflector AR, its RS network has only five SI sources (i = 1 to 5) and only two active coverage areas (ZC1 and ZC2). But, the invention is not limited to this application. Indeed, the reflector array antenna (s) according to the invention can operate in transmission, or in reception, or in transmission and reception, and / or may comprise several reflectors, and / or may comprise a network composed of any number of sources, and / or may offer more than two active coverage areas. Such an antenna is primarily intended to be embedded on a satellite of telecommunication.
Une antenne (réseau à réflecteur(s)) AR selon l'invention comprend tout d'abord un réseau RS constitué d'au moins deux sources Si agencées et positionnées de manière à délivrer des faisceaux d'ondes électromagnétiques Fi (comportant des signaux) dans des directions choisies. Le nombre N de sources Si du réseau RS, le positionnement des sources Si les unes par rapport aux autres, le type des sources Si et les orientations respectives des sources Si sont choisis en fonction de la mission qui est attribuée à l'antenne AR. On considère dans ce qui suit, à titre d'exemple non limitatif, que le nombre N de sources Si est égal à 5 (i = 1 à 5). Mais, ce nombre N peut prendre n'importe quelle valeur supérieure ou égale à deux.An antenna (reflector array (s)) AR according to the invention firstly comprises a network RS consisting of at least two sources Si arranged and positioned to deliver electromagnetic wave beams Fi (including signals). in selected directions. The number N of sources Si of the network RS, the positioning of the sources If compared to each other, the type of the sources Si and the respective orientations of the sources Si are chosen according to the mission which is attributed to the antenna AR. In the following, by way of nonlimiting example, the number N of sources Si is considered to be equal to 5 (i = 1 to 5). But, this number N can take any value greater than or equal to two.
Parmi ces sources Si, l'une (ici S1) est dite centrale, par exemple du fait qu'elle se trouve placée sensiblement au milieu du réseau RS.Among these sources Si, one (here S1) is called central, for example because it is placed substantially in the middle of the network RS.
Chaque source Si du réseau RS peut être constituée d'un élément rayonnant de n'importe quel type, et par exemple un cornet circulaire ou rectangulaire, un « patch » (élément imprimé), une « fente », ou une hélice, pouvant fonctionner en émission et/ou en réception et dans n'importe quelle polarisation.Each source Si of the network RS may consist of a radiating element of any type, and for example a circular or rectangular horn, a "patch" (printed element), a "slot", or a propeller, which can operate in transmission and / or reception and in any polarization.
L'antenne AR comprend également un module de formation de faisceaux MFF chargé d'appliquer des lois d'amplitude et/ou de phase et d'amplifier de façon appropriée les signaux de chacune des N sources Si du réseau RS, afin que chaque source Si émette un diagramme de rayonnement choisi (constituant un faisceau Fi et comprenant un lobe principal) destiné à couvrir une zone choisie Zi. Toutes techniques d'application de loi d'amplitude/phase et d'amplification connues de l'homme peuvent être mises en œuvre à cet effet.The antenna AR also comprises an MFF beam forming module responsible for applying amplitude and / or phase laws and for amplifying the signals of each of the N sources Si of the network RS, so that each source If emits a selected radiation pattern (constituting a beam Fi and comprising a main lobe) for covering a selected area Zi. Any amplification / phase law application and amplification techniques known to man can be implemented for this purpose.
L'antenne AR comprend également un réflecteur RC muni d'une surface SU conformée de façon tridimensionnelle (3D). Cette conformation 3D, qui se présente sous la forme de creux et de bosses placés en des endroits choisis de la surface SU, est destinée à réfléchir le faisceau Fi qui est délivré par chaque source Si tout en étalant son énergie de sorte, d'une première part, qu'il couvre la zone associée choisie Zi, d'une deuxième part, que le lobe principal du diagramme de rayonnement associé à la source centrale S1 définisse une couverture dite primaire CP englobant intégralement chaque zone de couverture active ZCj de l'antenne AR, de forme et dimensions choisies, et d'une troisième part, que le lobe principal du diagramme de rayonnement associé à chaque source non centrale Si (i≠1), et donc chaque zone Zi (i≠1), recouvre au moins partiellement la couverture primaire CP au niveau d'une zone d'intersection ZICi.The AR antenna also includes an RC reflector with a three-dimensional (3D) shaped SU surface. This 3D conformation, which is in the form of depressions and bumps placed in selected locations of the SU surface, is intended to reflect the beam Fi which is delivered by each source Si while spreading its energy so, a first part, that it covers the associated zone chosen Zi, of a second part, that the lobe of the radiation pattern associated with the central source S1 defines a so-called primary coverage CP completely encompassing each active coverage area ZCj of the antenna AR, of selected shape and dimensions, and a third part, that the main lobe of the diagram of radiation associated with each non-central source Si (i ≠ 1), and therefore each zone Zi (i ≠ 1), at least partially covers the primary coverage CP at a zone of intersection ZICi.
On entend ici par « zone de couverture active » une zone dans laquelle les ondes électromagnétiques transmises par l'antenne AR doivent pouvoir être reçues au moyen d'un récepteur approprié.Here, the term "active coverage area" refers to a zone in which the electromagnetic waves transmitted by the antenna AR must be able to be received by means of a suitable receiver.
La zone Z1 (définie par le lobe principal du diagramme de rayonnement issu de la source centrale S1 du réseau RS) définit donc une couverture dite primaire CP. Chaque point de cette couverture primaire CP se situe donc dans au moins une zone d'intersection ZICi, et de préférence dans plusieurs zones d'intersection ZICi. En d'autres termes, chaque point de la couverture primaire CP est couvert par le lobe principal du faisceau F1 de la source centrale S1 et par un ou plusieurs lobes principaux des faisceaux Fi (i≠1) associés à d'autres sources Si (i≠1) du réseau RS.The zone Z1 (defined by the main lobe of the radiation pattern from the central source S1 of the network RS) therefore defines a so-called primary coverage CP. Each point of this primary coverage CP is therefore located in at least one intersection zone ZICi, and preferably in several intersection zones ZICi. In other words, each point of the primary coverage CP is covered by the main lobe of the beam F1 of the central source S1 and by one or more main lobes of the beams Fi (i ≠ 1) associated with other sources Si ( i ≠ 1) of the RS network.
Le comportement de l'antenne à l'intérieur de la couverture primaire CP s'apparente ainsi fortement à celui d'un réseau à rayonnement direct (DRA).The behavior of the antenna inside the CP primary coverage is thus very similar to that of a direct radiation network (DRA).
Comme indiqué ci-dessus, c'est à l'intérieur de la couverture primaire CP que peuvent être définies les zones de couverture active ZCj de l'antenne AR au moyen des lois et amplifications appliquées par le module de formation de faisceaux MFF. Dans l'exemple non limitatif illustré sur la figure 2, l'antenne AR est conçue de manière à offrir deux zones de couverture active ZC1 et ZC2 (j = 1 ou 2). Mais, l'antenne AR pourrait être conçue de manière à offrir plus de deux zones de couverture active ZCj, ou bien une seule.As indicated above, it is within the primary coverage CP that the active coverage areas ZCj of the antenna AR can be defined by means of the laws and amplifications applied by the MFF beam forming module. In the nonlimiting example illustrated in FIG. 2, the antenna AR is designed so as to offer two zones of active coverage ZC1 and ZC2 (j = 1 or 2). However, the AR antenna could be designed to provide more than two active coverage areas ZCj, or just one.
La conformation du réflecteur RC qui permet d'élargir les faisceaux Fi est calculée en fonction de la mission, puisque c'est celle-ci qui va définir l'enveloppe de la couverture primaire CP devant contenir les différentes zones de couverture active ZCj de l'antenne AR. On peut par exemple déterminer la conformation 3D au moyen de fonctions polynomiales (par exemple de type Spline ou Zernike) appliquées à une surface de réflexion initiale de type paraboloïdal, à l'aide de logiciels adaptés (par exemple de type POS4). En fonction de la mission, les sources Si sont placées soit dans le plan focal du réflecteur RC, soit en dehors de ce plan focal.The conformation of the reflector RC which makes it possible to widen the beams Fi is calculated according to the mission, since it is this which will define the envelope of the primary cover CP which must contain the different zones of active coverage ZCj of the AR antenna. For example, the 3D conformation can be determined by means of polynomial functions (for example of the type Spline or Zernike) applied to an initial reflection surface paraboloid type, using appropriate software (eg POS4 type). Depending on the mission, the sources Si are placed either in the focal plane of the reflector RC, or outside this focal plane.
Le réflecteur RC peut comprendre un mécanisme de pointage (non représenté sur les figures) destiné à modifier la position du lobe principal qui est associé à la source centrale S1 du réseau AR.The reflector RC may comprise a pointing mechanism (not shown in the figures) for modifying the position of the main lobe which is associated with the central source S1 of the network AR.
L'antenne AR selon l'invention est particulièrement bien adaptée, bien que de façon non limitative :The antenna AR according to the invention is particularly well suited, although in a non-limiting way:
- à une couverture en mode simple spot à fort besoin de reconfigurabilité, par exemple dans le cas d'un satellite reconfigurable en fonction de sa position orbitale, eta coverage in simple spot mode with a strong need for reconfigurability, for example in the case of a reconfigurable satellite as a function of its orbital position, and
- aux missions multi-spots sur de larges couvertures, par exemple dans le cas d'un échantillonnage de type CONUS au moyen de zones de couverture active (ou spots) de 0.4° de diamètre.- multi-spot missions on large covers, for example in the case of a CONUS-type sampling by means of active coverage areas (or spots) of 0.4 ° in diameter.
Grâce à l'invention, l'agencement du réseau de sources est fortement décorrélé de la couverture de l'antenne car c'est la conformation 3D de la surface du réflecteur qui définit la couverture primaire CP à l'intérieur de laquelle peut être défini n'importe quel nombre de spots (ou zones de couverture active ZCj) de n'importe quelle forme. Cela permet de limiter considérablement la taille du réseau et le nombre de sources et par conséquent cela permet de réduire notablement le poids et la complexité des contrôles par rapport à une solution conventionnelle à réflecteur parabolique ou par rapport à une solution de type DRA.Thanks to the invention, the arrangement of the source network is strongly decorrelated from the coverage of the antenna because it is the 3D conformation of the surface of the reflector that defines the primary coverage CP inside which can be defined any number of spots (or areas of active coverage ZCj) of any shape. This considerably limits the size of the network and the number of sources and therefore significantly reduces the weight and complexity of the controls compared to a conventional parabolic reflector solution or a DRA solution.
Par ailleurs, une source n'étant plus attachée à l'élaboration d'une petite partie d'une zone de couverture active, comme dans le cas d'une solution conventionnelle à réflecteur parabolique, une redondance naturelle peut être obtenue via le réseau de sources, si bien que les conséquences d'une panne partielle sont limitées.In addition, since a source is no longer attached to the development of a small part of an active coverage area, as in the case of a conventional parabolic reflector solution, a natural redundancy can be obtained via the network. sources, so that the consequences of a partial failure are limited.
En outre, en réduisant la taille du réseau de sources on réduit les aberrations de défocalisation, on induit naturellement des niveaux de lobes secondaires plus bas (et donc de meilleurs rapports C/l) comparés à ceux obtenus avec une solution conventionnelle à réflecteur parabolique. L'utilisation de faibles rapports entre la distance focale du système à réflecteur et le diamètre du réflecteur principal est alors facilitée (notamment au niveau de l'implantation sur un satellite).In addition, reducing the size of the source array reduces defocus aberrations, naturally inducing lower lobe levels (and therefore better C / I ratios) compared to those obtained with a conventional parabolic reflector solution. The use of small ratios between the focal length of the reflector system and the diameter of the main reflector is then facilitated (especially at the implantation on a satellite).
L'invention combine ainsi les avantages d'une antenne de type DRA (réseau à rayonnement direct), à savoir une forte reconfigurabilité et une redondance naturelle, et les avantages d'une antenne de type FAFR, à savoir une forte directivité obtenue grâce à la surface conformée du réflecteur, tout en évitant les inconvénients de ces deux types d'antennes, à savoir le nombre de contrôles très important qui contribue fortement au poids et au coût, la perte d'efficacité liée aux lobes de réseaux dans le cas d'une antenne DRA, la perte de couverture en cas de pannes et la taille du réseau de sources fonction de la couverture envisagée dans le cas d'une antenne FAFR.The invention thus combines the advantages of a DRA (direct radiation network) type antenna, namely a strong reconfigurability and a natural redundancy, and the advantages of a FAFR type antenna, ie a high directivity obtained thanks to the conformal surface of the reflector, while avoiding the disadvantages of these two types of antennas, namely the very large number of controls which contributes significantly to the weight and the cost, the loss of efficiency related to the lobes of networks in the case of a DRA antenna, the loss of coverage in the event of faults and the size of the source network depending on the coverage envisaged in the case of a FAFR antenna.
L'invention ne se limite pas aux modes de réalisation d'antenne réseau à réflecteur(s) décrits ci-avant, seulement à titre d'exemple, mais elle englobe toutes les variantes que pourra envisager l'homme de l'art dans le cadre des revendications ci-après.The invention is not limited to the reflector network antenna embodiments described above, only by way of example, but encompasses all the variants that the person skilled in the art can envisage in the art. the scope of the claims below.
Ainsi, dans ce qui précède on a décrit un exemple d'antenne réseau à réflecteur(s) selon l'invention, dédié à la transmission d'ondes électromagnétiques. Mais, l'invention n'est pas limitée à cet exemple. Elle s'applique en effet également aux antennes réseaux à réflecteur(s) fonctionnant en réception, ou en transmission et en réception. Thus, in the foregoing, there is described an example of a reflector array antenna (s) according to the invention, dedicated to the transmission of electromagnetic waves. But, the invention is not limited to this example. It also applies to network antenna reflector (s) operating in reception, or transmission and reception.

Claims

REVENDICATIONS
1. Antenne réseau à réflecteur(s) (AR), comprenant i) un réseau (RS) d'au moins deux sources (Si), dont une source dite centrale (S1), agencées et positionnées de manière à émettre et/ou recevoir des faisceaux d'ondes électromagnétiques (Fi) dans des directions choisies, ii) des moyens de formation de faisceaux (MFF) agencés pour contrôler l'amplitude et la phase de chacune desdites sources (Si) au moyen de lois d'amplitude/phase appliquées sur leurs accès et pour assurer un niveau d'amplification approprié, afin que chaque source (Si) émette un diagramme de rayonnement choisi, constituant un faisceau (Fi) et comprenant un lobe principal, destiné à couvrir une zone choisie (Zi), et iii) au moins un réflecteur (RC) muni d'une surface (SU) propre à réfléchir les faisceaux (Fi) délivrés par lesdites sources (Si) et/ou destinés auxdites sources (Si), caractérisée en ce que :1. An array antenna with reflector (s) (AR), comprising i) a network (RS) of at least two sources (Si), including a so-called central source (S1), arranged and positioned so as to transmit and / or receiving beams of electromagnetic waves (Fi) in selected directions, ii) beam forming means (MFF) arranged to control the amplitude and phase of each of said sources (Si) by means of amplitude laws / phase applied on their access and to ensure an appropriate level of amplification, so that each source (Si) emits a selected radiation pattern, constituting a beam (Fi) and comprising a main lobe, intended to cover a selected area (Zi) and iii) at least one reflector (RC) provided with a surface (SU) suitable for reflecting the beams (Fi) delivered by said sources (Si) and / or intended for said sources (Si), characterized in that:
- ladite surface (SU) est conformée de façon tridimensionnelle, qui se présente sous la forme de creux et de bosses placés en des endroits choisis de ladite surface (SU) de manière à réfléchir le faisceau (Fi) délivré par chaque source (Si) en étalant son énergie de sorte qu'il couvre la zone associée choisie (Zi), que le lobe principal du diagramme de rayonnement associé à ladite source centrale (S1) définisse une couverture dite primaire (CP) englobant intégralement chaque zone de couverture active (ZCj) de l'antenne (AR), de forme et dimensions choisies, et que le lobe principal du diagramme de rayonnement associé à chaque source non centrale recouvre au moins partiellement ladite couverture primaire (CP), et lesdits moyens de formation de faisceaux sont agencés pour appliquer aux accès du réseau de sources (Si) une loi d'amplitude et/ou de phase choisie de sorte que la combinaison des faisceaux (Fi) délivrés par lesdites sources (Si) définisse chacune desdites zones de couverture active (ZCj). said surface (SU) is three-dimensionally shaped, which is in the form of recesses and bumps placed at selected locations of said surface (SU) so as to reflect the beam (Fi) delivered by each source (Si) by spreading its energy so that it covers the selected associated area (Zi), that the main lobe of the radiation pattern associated with said central source (S1) defines a so-called primary coverage (CP) integrally encompassing each active coverage area ( ZCj) of the antenna (AR), of selected shape and size, and that the main lobe of the radiation pattern associated with each non-central source at least partially covers said primary cover (CP), and said beam forming means are arranged to apply to the accesses of the source network (Si) a law of amplitude and / or of phase chosen so that the combination of the beams (Fi) delivered by said sources (Si) defines each your active coverage areas (ZCj).
2. Antenne réseau à réflecteur(s) selon la revendication 1 , caractérisée en ce que ladite couverture primaire (CP) englobe intégralement au moins une zone de couverture active (ZCj).2. An array antenna with reflector (s) according to claim 1, characterized in said primary coverage (CP) comprehensively encompasses at least one active coverage area (ZCj).
3. Antenne réseau à réflecteur(s) selon l'une des revendications 1 et 2, caractérisée en ce que ladite couverture primaire (CP) englobe intégralement au moins deux zones de couverture active (ZCj).3. An array antenna with reflector (s) according to one of claims 1 and 2, characterized in that said primary cover (CP) integrally encompasses at least two active coverage areas (ZCj).
4. Antenne réseau à réflecteur(s) selon l'une des revendications 1 à 3, caractérisée en ce que lesdites sources (Si) sont positionnées dans un plan focal de l'un desdits réflecteurs (RC).4. An array antenna reflector (s) according to one of claims 1 to 3, characterized in that said sources (Si) are positioned in a focal plane of one of said reflectors (RC).
5. Antenne réseau à réflecteur(s) selon l'une des revendications 1 à 3, caractérisée en ce que lesdites sources (Si) sont positionnées en dehors d'un plan focal de l'un desdits réflecteurs (RC).5. An array antenna reflector (s) according to one of claims 1 to 3, characterized in that said sources (Si) are positioned outside a focal plane of one of said reflectors (RC).
6. Antenne réseau à réflecteur(s) selon l'une des revendications 1 à 5, caractérisée en ce que ladite surface (SU) dudit réflecteur (RC) présente une forme générale de type paraboloïdal conformée de façon tridimensionnelle.6. An array antenna reflector (s) according to one of claims 1 to 5, characterized in that said surface (SU) of said reflector (RC) has a generally paraboloidal shape shaped three-dimensionally.
7. Antenne réseau à réflecteur(s) selon l'une des revendications 1 à 6, caractérisée en ce que l'un au moins desdits réflecteurs comprend un mécanisme de pointage agencé pour modifier la position du lobe principal associé à ladite source centrale (S1) du réseau (RS).7. An array antenna with reflector (s) according to one of claims 1 to 6, characterized in that at least one of said reflectors comprises a pointing mechanism arranged to change the position of the main lobe associated with said central source (S1 ) of the network (RS).
8. Antenne réseau à réflecteur(s) selon l'une des revendications 1 à 7, caractérisée en ce que chacune desdites sources (Si) est constituée d'un élément rayonnant choisi dans un groupe comprenant au moins un cornet circulaire ou rectangulaire, un élément imprimé, une fente, ou une hélice. 8. An array antenna with reflector (s) according to one of claims 1 to 7, characterized in that each of said sources (Si) consists of a radiating element selected from a group comprising at least one circular or rectangular horn, a printed element, a slot, or a propeller.
EP06779044.4A 2005-07-13 2006-07-11 Network antenna with conformable reflector(s) highly reconfigurable in orbit Active EP1902492B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0552175A FR2888674B1 (en) 2005-07-13 2005-07-13 NETWORK ANTENNA WITH REFLECTOR (S) CONFORMING (S), HAVING HIGH RECONFIGURABILITY IN ORBIT
PCT/FR2006/050708 WO2007007011A2 (en) 2005-07-13 2006-07-11 Network antenna with shaped reflector(s) highly reconfigurable in orbit

Publications (2)

Publication Number Publication Date
EP1902492A2 true EP1902492A2 (en) 2008-03-26
EP1902492B1 EP1902492B1 (en) 2014-12-31

Family

ID=36097057

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06779044.4A Active EP1902492B1 (en) 2005-07-13 2006-07-11 Network antenna with conformable reflector(s) highly reconfigurable in orbit

Country Status (12)

Country Link
US (1) US7714792B2 (en)
EP (1) EP1902492B1 (en)
JP (1) JP2009501469A (en)
KR (1) KR20080032182A (en)
CN (1) CN101288204B (en)
BR (1) BRPI0613013A2 (en)
CA (1) CA2619403C (en)
ES (1) ES2533262T3 (en)
FR (1) FR2888674B1 (en)
PT (1) PT1902492E (en)
RU (1) RU2406192C2 (en)
WO (1) WO2007007011A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3714510B1 (en) 2018-07-12 2021-04-21 Airbus Defence and Space Limited Array-fed reflector antenna

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9035839B2 (en) * 2009-09-03 2015-05-19 Troll Systems Corporation Multi-feed diversity receive system and method
FR2952758B1 (en) * 2009-11-16 2012-02-24 Centre Nat Detudes Spatiales Cnes ANTENNA TO REFLECTOR (S) AND POWER SUPPLY NETWORK
RU2533058C2 (en) * 2012-05-15 2014-11-20 Евгений Вячеславович Комраков Versatile device for transmission of radiation from source to object
FR3026896B1 (en) * 2014-10-03 2018-07-06 Thales REFLECTING ANTENNA (S) CONFORMING (S) RECONFIGURABLE IN ORBIT
ES2843513T3 (en) * 2015-12-16 2021-07-19 Ranlos Ab Method and apparatus for testing wireless communication with vehicles
US10516216B2 (en) 2018-01-12 2019-12-24 Eagle Technology, Llc Deployable reflector antenna system
US10707552B2 (en) 2018-08-21 2020-07-07 Eagle Technology, Llc Folded rib truss structure for reflector antenna with zero over stretch
CN110233359B (en) * 2019-06-21 2020-05-05 四川大学 Reflector antenna based on 3D printing technology

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236161A (en) * 1978-09-18 1980-11-25 Bell Telephone Laboratories, Incorporated Array feed for offset satellite antenna
US4338608A (en) * 1980-09-30 1982-07-06 The United States Of America As Represented By The Secretary Of Commerce Triple-beam offset paraboloidal antenna
JPS603211A (en) * 1983-06-20 1985-01-09 Nec Corp Antenna in common use for multi-frequency band
US4792813A (en) * 1986-08-14 1988-12-20 Hughes Aircraft Company Antenna system for hybrid communications satellite
FR2628896B1 (en) * 1988-03-18 1990-11-16 Alcatel Espace ANTENNA WITH ELECTRONIC RECONFIGURATION IN EMISSION
IT1284301B1 (en) * 1996-03-13 1998-05-18 Space Engineering Spa SINGLE OR DOUBLE REFLECTOR ANTENNA, SHAPED BEAMS, LINEAR POLARIZATION.
US5945960A (en) * 1996-12-02 1999-08-31 Space Systems/Loral, Inc. Method and apparatus for reconfiguring antenna radiation patterns
US5949370A (en) * 1997-11-07 1999-09-07 Space Systems/Loral, Inc. Positionable satellite antenna with reconfigurable beam
US6219003B1 (en) * 1999-07-01 2001-04-17 Trw Inc. Resistive taper for dense packed feeds for cellular spot beam satellite coverage
DE19945062A1 (en) * 1999-09-20 2001-04-12 Daimler Chrysler Ag Reflector with a shaped surface and spatially separated foci for illuminating identical areas, antenna system and method for determining the surface
JP2001244867A (en) * 2000-02-25 2001-09-07 Nippon Hoso Kyokai <Nhk> Variable beam pattern broadcasting satellite
US6882323B2 (en) * 2003-05-09 2005-04-19 Northrop Grumman Corporation Multi-beam antenna system with shaped reflector for generating flat beams
US7161549B1 (en) * 2003-09-30 2007-01-09 Lockheed Martin Corporation Single-aperture antenna system for producing multiple beams
KR100561630B1 (en) * 2003-12-27 2006-03-20 한국전자통신연구원 Trilple-Band Hybrid Antenna using Focuser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007007011A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3714510B1 (en) 2018-07-12 2021-04-21 Airbus Defence and Space Limited Array-fed reflector antenna

Also Published As

Publication number Publication date
CA2619403A1 (en) 2007-01-18
PT1902492E (en) 2015-04-07
BRPI0613013A2 (en) 2010-12-14
CN101288204A (en) 2008-10-15
RU2406192C2 (en) 2010-12-10
KR20080032182A (en) 2008-04-14
FR2888674B1 (en) 2009-10-23
FR2888674A1 (en) 2007-01-19
WO2007007011A2 (en) 2007-01-18
EP1902492B1 (en) 2014-12-31
ES2533262T3 (en) 2015-04-08
US7714792B2 (en) 2010-05-11
WO2007007011A3 (en) 2007-07-19
JP2009501469A (en) 2009-01-15
CN101288204B (en) 2012-05-23
CA2619403C (en) 2014-11-18
RU2008105418A (en) 2009-08-20
US20080303736A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
EP1902492B1 (en) Network antenna with conformable reflector(s) highly reconfigurable in orbit
EP2194602B1 (en) Antenna with shared sources and design process for a multi-beam antenna with shared sources
EP0656671B1 (en) Orientable antenna with maintenance of the polarisations axes
EP1955405A1 (en) Array antenna with irregular mesh and possible cold redundancy
FR2674997A1 (en) CHARGE ARCHITECTURE USEFUL IN THE SPACE DOMAIN.
EP1790032A1 (en) Reflector network antenna with an area of coverage, the form of which can be reconfigured with or without a charger
FR2964800A1 (en) MULTIFUNCAL TELECOMMUNICATION ANTENNA ON HIGH CAPACITY SATELLITE AND ASSOCIATED TELECOMMUNICATION SYSTEM
EP0512487B1 (en) Antenna with shaped lobe and high gain
EP3639409B1 (en) Satellite payload comprising a dual reflective surface reflector
FR2828585A1 (en) DUAL FUNCTION SUB-REFLECTOR FOR COMMUNICATION SATELLITE ANTENNA
CA2474126C (en) Receiving antenna for multibeam coverage
CA3066126A1 (en) Multibeam antenna with adjustable aiming
CA2219730C (en) Transmission relay system
FR3108797A1 (en) WIDE BAND DIRECTIVE ANTENNA WITH LONGITUDINAL EMISSION
EP0467738A1 (en) Azimuth angle measuring device for a radar provided with a double curvature reflective-type antenna
FR3130393A1 (en) TTC antenna arrangement for flat satellite
WO2011101471A1 (en) Antenna having reflectors
FR2596208A1 (en) Two-frequency antenna with independent steerable beams
FR3119027A1 (en) Radar with active antenna with wide angular coverage
FR2952758A1 (en) Supply system and reflector integrated antenna for covering geographical area of geostationary orbit, has main reflector with reflective surface that is conformed of three-dimensional manner to reflect beam delivered by each source

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080111

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20111031

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140821

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 704870

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006044197

Country of ref document: DE

Effective date: 20150219

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SERVOPATENT GMBH, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20150323

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2533262

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141231

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 704870

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150430

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006044197

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150711

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060711

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: WANNERSTRASSE 9/1, 8045 ZUERICH (CH)

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230626

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230627

Year of fee payment: 18

Ref country code: ES

Payment date: 20230808

Year of fee payment: 18

Ref country code: CH

Payment date: 20230801

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230613

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240613

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240621

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20240625

Year of fee payment: 19