EP0512487B1 - Antenna with shaped lobe and high gain - Google Patents

Antenna with shaped lobe and high gain Download PDF

Info

Publication number
EP0512487B1
EP0512487B1 EP19920107598 EP92107598A EP0512487B1 EP 0512487 B1 EP0512487 B1 EP 0512487B1 EP 19920107598 EP19920107598 EP 19920107598 EP 92107598 A EP92107598 A EP 92107598A EP 0512487 B1 EP0512487 B1 EP 0512487B1
Authority
EP
European Patent Office
Prior art keywords
generator
antenna
axis
shaped
radiating elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19920107598
Other languages
German (de)
French (fr)
Other versions
EP0512487A1 (en
Inventor
Frédéric Magnin
Gérard Raguenet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Espace Industries SA
Original Assignee
Alcatel Espace Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Espace Industries SA filed Critical Alcatel Espace Industries SA
Publication of EP0512487A1 publication Critical patent/EP0512487A1/en
Application granted granted Critical
Publication of EP0512487B1 publication Critical patent/EP0512487B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Definitions

  • the invention relates to a high-gain shaped lobe antenna.
  • the scrolling and low-orbiting satellites have a very open cone of visibility of the earth: at an altitude of 800 km, the half-angle at the top of the cone is 63 °.
  • the distance of such a satellite to a station inside this cone varies from 800 km (at Nadir) to 2300 km on the edge of the cone.
  • the antennas used for such missions must therefore present a diagram such that the size of PIRE has a maximum at the edge of the cone and is decreasing to Nadir; The dynamics then being of the order of 12 dB.
  • Such templates can include, in addition, either a provision for low levels (at Nadir, the dynamic falling to around 10 dB) or on the contrary a compensation for atmospheric attenuation (proportional to the distance), the dynamic becoming greater than 13 dB.
  • These templates are of revolution in azimuth and have the shape of bowl. They therefore require the use of formed lobe antennas.
  • the object of the invention is to provide an antenna which makes it possible to overcome these drawbacks: that is to say to reduce the number of control points of said antenna, while effectively ensuring the mission considered.
  • an antenna according to claim 1 proposes an antenna according to claim 1.
  • the elevation diagram of said antenna is adjusted by controlling said phase shifters, the azimuth scanning being ensured by switching the generators.
  • the profile can be optimized to determine the shape of the radiation pattern of a generator.
  • the normal to the generator in a plane passing through the axis of symmetry will have a variable orientation depending on the position on the generator.
  • the radiating elements on the generator will have different orientations.
  • the inclination of a radiating element relative to the axis of symmetry is optimized to obtain the desired shape of the radiation diagram of a generator.
  • Such an antenna has the great advantage of allowing two-plane scanning using a single unidirectional control which is distributed in the azimuth plane. It also makes it possible to reduce the number of controls required (one per generator) compared to a conventional antenna which requires control by radiating element.
  • the shape of the radiation lobe can be optimized.
  • a third degree of freedom is thus released in the process of a column of radiating elements located on the same generator.
  • This allows efficient use of the radiating elements in the directions where they must work, and this is all the more interesting as the scanning range is large, with a large deflection, for example greater than +/- 60 °. .
  • This capacity of the invention makes it possible to ensure large deflections and is a decisive advantage compared to planar solutions which suffer from a loss of efficiency in the directions at high site.
  • the antenna of the invention comprises a shaped array 10 arranged on a shaped surface 11 having an axis of symmetry and having any profile (conical, spherical, elliptical, parabolic, hyperbolic, etc.).
  • This network consists of generators 12 composed of several sources or radiating elements 13.
  • Each generator 12 is at the intersection of the shaped surface 11 and a plane passing through the axis of symmetry ⁇ (for example the axis of Nadir ).
  • the surface 11 is a conical surface and the generators 12 each have three radiating elements 13.
  • phase shifter 14 In the antenna according to the example of FIG. 1, only one phase shifter 14 is considered per generator 12; a passive distributor 15, dividing the signal in amplitude and in phase between each of the sources, being arranged between the output of this phase shifter 14 and the input of each source 13.
  • This distributor 15 is the same for each generator, so that the geometry of the antenna of the example of FIG. 1 is completely of revolution.
  • This distributor 15 is calculated to obtain a certain diagram of the radiation emitted by the sources 13 of each generator 12 and produce a certain resulting diagram from all the sources 13 of the antenna.
  • phase shifters The role of phase shifters is to compensate for these effects. But as there is only one phase shifter per generator and since the compensation for this propagation delay must be the same for all the sources, it is necessary to calculate the average of the delays. These propagation delays depend on the aiming direction in elevation; that is to say of the inclination of the reference plane P.
  • 0 °
  • the phase shifters must only compensate for the rotation of the azimuth polarization plane.
  • phase shifters it is also possible to play on the phase shifters to distort the diagram and adapt it to the elevation of the target station.
  • the azimuth scanning is ensured by a simple switching of the generators since the geometry is of revolution.
  • the number of phase shifters is restricted as far as there are sources on a generator, compared to a conventional shaped structure.
  • the phase shifters of the generators 12 being activated simultaneously, it is possible to carry out scanning in azimuth and in elevation of the antenna.
  • One thus obtains a conformed solution where one wishes to obtain a diagram formed in elevation respecting a gauge, which one simply switches in azimuth, with generators of weak directivity, and of small dimensions.
  • Each of these sources 22 is produced in printed technology; a copper block being etched on a shaped dielectric substrate which produces the pseudo-conical surface, the profile of which is not linear but has an ⁇ -break of approximately 10 ° on the first source from the top.
  • the distributor is etched in the form of copper tracks; itself being connected to a phase shifter. Of the 36 generators, only 9 are active simultaneously. All radiation is therefore controlled by 9 phase shifters at the same time.
  • Figure 6 shows the minimum template 25 and the diagram obtained 26 by compensating for propagation delays in a direction of 62 °.
  • FIG. 7 which shows the same minimum gauge 27 and the diagram obtained 28, we have only modified the value of the 9 phase shifters to compensate for the delays in an elevation direction of 5 ° (these FIGS. 6 and 7 corresponding to directivities Di in dBi).
  • the shaped surface can be of any profile, as long as it has any axis of symmetry.
  • the surface has an axis of symmetry of revolution, but the surface may as well have a symmetry of order 2 (reflection in a plane), such as an ellipse, a parabola or a hyperbola, for example, or it can have a higher order symmetry giving more complex surfaces, without departing from the scope of the invention.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Description

L'invention concerne une antenne à lobe formé et à grand gain.The invention relates to a high-gain shaped lobe antenna.

Des antennes de ce type sont très utiles dans le domaine spatial. Ainsi les satellites à défilement et à orbite basse ont un cône de visibilité de la terre très ouvert : à une altitude de 800 Km, le demi-angle au sommet du cône est de 63°. La distance d'un tel satellite à une station à l'intérieur de ce cône varie de 800 km (au Nadir) à 2300 km en bord du cône. Dans le cas d'une mission de télémesure ou de télécommande entre ce satellite et cette station, on cherche à assurer une liaison isoflux, quelle que soit la position relative de cette station dans le cône. Les antennes utilisées pour de telles missions doivent donc présenter un diagramme tel que le gabarit de PIRE ait un maximum en bord du cône et soit décroissant jusqu'au Nadir; La dynamique étant alors de l'ordre de 12 dB. De tels gabarits peuvent inclure, de plus, soit une provision pour les niveaux faibles (au Nadir, la dynamique tombant à environ 10 dB) soit au contraire une compensation de l'atténuation atmosphérique (proportionnelle à la distance), la dynamique devenant supérieure à 13 dB. Ces gabarits sont de révolution en azimut et ont la forme de cuvette. Ils nécessitent donc l'utilisation d'antennes à lobe formé.Antennas of this type are very useful in the space field. Thus the scrolling and low-orbiting satellites have a very open cone of visibility of the earth: at an altitude of 800 km, the half-angle at the top of the cone is 63 °. The distance of such a satellite to a station inside this cone varies from 800 km (at Nadir) to 2300 km on the edge of the cone. In the case of a telemetry or remote control mission between this satellite and this station, an attempt is made to provide an isoflux link, whatever the relative position of this station in the cone. The antennas used for such missions must therefore present a diagram such that the size of PIRE has a maximum at the edge of the cone and is decreasing to Nadir; The dynamics then being of the order of 12 dB. Such templates can include, in addition, either a provision for low levels (at Nadir, the dynamic falling to around 10 dB) or on the contrary a compensation for atmospheric attenuation (proportional to the distance), the dynamic becoming greater than 13 dB. These templates are of revolution in azimuth and have the shape of bowl. They therefore require the use of formed lobe antennas.

Parmi les quelques techniques connues pour obtenir de tels gabarits on distingue deux grandes familles.

  • les réflecteurs conformés :
    Ce sont des réflecteurs de révolution dont le profil est optimisé pour suivre le gabarit formé en élévation. Le problème de ces réflecteurs est qu'ils ont un diagramme de révolution, parce qu'ils doivent assurer la liaison dans tout le cône. Il est donc difficile d'obtenir un gain élevé, tout en ayant des dimensions raisonnables de réflecteur. Un réflecteur de ce type est analysé dans un article intitulé "Method of moment analysis of a cavity-fed shaped beam reflector antenna" de Bridges; Shafaï, et Kishk (Antenn'90 conference proceedings; August 15, 17-1990; Winniped; Canada).
  • les antennes réseau :
    A partir de la constatation précédente, on a eu l'idée d'utiliser des antennes réseau à balayage électronique qui présentent un lobe d'antenne directif, de gain élevé, que l'on déplace par commande électronique. De telles antennes sont décrites dans l'ouvrage intitulé "Antenna Engineering handbook" (de R.C.Johnson et H. Jasik; McGraw-Hill; chapitre 20 "Phased Arrays" de R.Tang et R.W. Burns; pages 20-1 à 20-5). La liaison n'est alors plus assurée sur tout le cône simultanément mais uniquement dans la direction de la station visée. On distingue ici deux familles de réseaux : les réseaux plans et les réseaux conformés.
  • . Les réseaux plans :
    Si l'on s'affranchit des lobes de réseaux par des techniques classiques de dimensionnement de réseaux jouant sur le pas, c'est-à-dire sur la distance entre deux sources adjacentes, on peut obtenir, pour des dimensions semblables une directivité bien supérieure à celle obtenue avec un réflecteur formé. La phase d'alimentation de chaque source étant commandée par un déphaseur, on déplace le diagramme en modifiant ces phases. Cette solution présente deux inconvénients majeurs :
    • il faut dépointer le lobe en élévation de ± 60° environ, voire plus, à plus basse altitude. Ceci nécessite de rapprocher beaucoup les sources.
    • Il est très difficile d'obtenir un maximum de rayonnement vers 60° et un creux dans l'axe; ce qui nécessite d'avoir des sources dont la directivité est élevée à 60°, même si leur diagramme présente l'allure du gabarit, c'est-à-dire avec un maximum de rayonnement à 60° (hélices par exemple). Par conséquent, si l'on veut obtenir un gain élevé (>20 dBi par exemple), il faut des dimensions relativement importantes et donc un grand nombre de sources et de déphaseurs (entre 50 et 100 selon la directivité élémentaire à 60°). Ce type d'antenne nécessite donc un grand nombre de points de commandes.
  • . Les réseaux conformés :
    Pour obtenir un maximum de rayonnement sur un cône à 60°, on peut disposer les sources sur une surface conformée (hémisphère par exemple). En commandant chaque source par un déphaseur on balaye le lobe en élévation et en azimut. Mais avec de tels réseaux :
    • on ne peut plus utiliser toutes les sources à la fois.
    • on peut utiliser des éléments rayonnants dont le maximum de directivité est à 0° mais il faut, de plus, pouvoir dépointer à 60°.
Among the few known techniques for obtaining such templates, there are two main families.
  • conformed reflectors:
    These are revolution reflectors whose profile is optimized to follow the shape formed in elevation. The problem with these reflectors is that they have a revolution diagram, because they have to bond across the cone. It is therefore difficult to obtain a high gain, while having reasonable reflector dimensions. A reflector of this type is analyzed in an article entitled "Method of moment analysis of a cavity-fed shaped beam reflector antenna" by Bridges; Shafaï, and Kishk (Antenn'90 conference proceedings; August 15, 17-1990; Winniped; Canada).
  • network antennas:
    From the previous observation, we had the idea of using electronic scanning array antennas which have a directional antenna lobe, of high gain, which is moved by electronic control. Such antennas are described in the work "Antenna Engineering handbook" (by RCJohnson and H. Jasik; McGraw-Hill; chapter 20 "Phased Arrays" by R.Tang and RW Burns; pages 20-1 to 20-5) . The connection is then no longer provided over the entire cone simultaneously but only in the direction of the target station. Two families of networks are distinguished here: flat networks and conformed networks.
  • . Plan networks:
    If one lifts the lobes of networks by conventional techniques of dimensioning of networks playing on the step, that is to say on the distance between two adjacent sources, one can obtain, for similar dimensions a directivity well greater than that obtained with a formed reflector. The supply phase of each source being controlled by a phase shifter, the diagram is moved by modifying these phases. This solution has two major drawbacks:
    • it is necessary to spot the lobe in elevation of ± 60 ° approximately, or even more, at lower altitude. This requires bringing the sources very close.
    • It is very difficult to obtain maximum radiation around 60 ° and a trough in the axis; which requires having sources whose directivity is high at 60 °, even if their diagram presents the shape of the template, that is to say with a maximum radiation at 60 ° (propellers for example). Consequently, if one wants to obtain a high gain (> 20 dBi for example), relatively large dimensions are required and therefore a large number of sources and phase shifters (between 50 and 100 depending on the elementary directivity at 60 °). This type of antenna therefore requires a large number of control points.
  • . The conformed networks:
    To obtain maximum radiation on a 60 ° cone, the sources can be placed on a shaped surface (hemisphere for example). By controlling each source by a phase shifter, the lobe is scanned in elevation and in azimuth. But with such networks:
    • we can no longer use all sources at once.
    • it is possible to use radiating elements whose maximum directivity is at 0 ° but it is also necessary to be able to spot at 60 °.

L'invention a pour objet de réaliser une antenne permettant de pallier ces inconvénients : c'est-à-dire de diminuer le nombre de points de commande de ladite antenne, tout en assurant efficacement la mission considérée.The object of the invention is to provide an antenna which makes it possible to overcome these drawbacks: that is to say to reduce the number of control points of said antenna, while effectively ensuring the mission considered.

Elle propose à cet effet une antenne conforme à la revendication 1. On règle le diagramme élévation de ladite antenne en commandant lesdits déphaseurs, le balayage en azimut étant assuré par une commutation des génératrices.To this end, it proposes an antenna according to claim 1. The elevation diagram of said antenna is adjusted by controlling said phase shifters, the azimuth scanning being ensured by switching the generators.

De fait que le réseau conformé selon l'invention se trouve sur une surface conformée de profil quelconque ayant un axe de symétrie, avantageusement, le profil peut être optimisé pour déterminer la forme du diagramme de rayonnement d'une génératrice. Pour ce faire, la normale à la génératrice dans un plan passant par l'axe de symétrie aura une orientation variable selon la position sur la génératrice. Il en résulte que les éléments rayonnants se trouvant sur la génératrice auront des orientations différentes. Autrement dit, l'inclinaison d'un élément rayonnant par rapport à l'axe de symétrie est optimisé pour obtenir la forme souhaitée du diagramme de rayonnement d'une génératrice.In fact that the shaped network according to the invention is on a shaped surface of any profile having an axis of symmetry, advantageously, the profile can be optimized to determine the shape of the radiation pattern of a generator. To do this, the normal to the generator in a plane passing through the axis of symmetry will have a variable orientation depending on the position on the generator. As a result, the radiating elements on the generator will have different orientations. In other words, the inclination of a radiating element relative to the axis of symmetry is optimized to obtain the desired shape of the radiation diagram of a generator.

Une telle antenne possède le grand avantage de permettre un balayage deux plans en utilisant une seule commande monodirectionnelle qui est répartie dans le plan azimut. Elle permet, de plus, de diminuer le nombre de contrôles nécessaires (un par génératrice) par rapport à une antenne classique qui nécessite un contrôle par élément rayonnant.Such an antenna has the great advantage of allowing two-plane scanning using a single unidirectional control which is distributed in the azimuth plane. It also makes it possible to reduce the number of controls required (one per generator) compared to a conventional antenna which requires control by radiating element.

De plus, en jouant sur le répartiteur passif et l'inclinaison variable des éléments rayonnants par rapport à l'axe de symétrie, la forme du lobe de rayonnement peut être optimisé.In addition, by playing on the passive distributor and the variable inclination of the radiating elements relative to the axis of symmetry, the shape of the radiation lobe can be optimized.

On dégage ainsi un troisième degré de liberté dans le processus d'une colonne d'éléments rayonnants se trouvant sur une même génératrice. Ceci permet d'utiliser efficacement les éléments rayonnants dans les directions où ceux-ci doivent travailler, et ceci est d'autant plus intéressant que le domaine de balayage est important, avec un dépointage important, par exemple plus grand que +/-60°. Cette capacité de l'invention permet d'assurer les grands débattements et est un avantage décisif par rapport à des solutions planaires qui souffrent d'une perte d'efficacité dans les directions à site élevé.A third degree of freedom is thus released in the process of a column of radiating elements located on the same generator. This allows efficient use of the radiating elements in the directions where they must work, and this is all the more interesting as the scanning range is large, with a large deflection, for example greater than +/- 60 °. . This capacity of the invention makes it possible to ensure large deflections and is a decisive advantage compared to planar solutions which suffer from a loss of efficiency in the directions at high site.

Les caractéristiques et avantages de l'invention ressortiront d'ailleurs de la description qui va suivre, à titre d'exemple non limitatif, en référence aux figures annexées sur lesquelles :

  • la figure 1 illustre un exemple d'une antenne selon l'invention ;
  • les figures 2 et 3 illustrent plusieurs caractéristiques de l'exemple d'antenne de la figure 1 ;
  • les figures 4 à 7 illustrent d'autres exemples de réalisation de l'antenne selon l'invention.
The characteristics and advantages of the invention will become apparent from the description which follows, by way of nonlimiting example, with reference to the appended figures in which:
  • FIG. 1 illustrates an example of an antenna according to the invention;
  • Figures 2 and 3 illustrate several features of the example antenna of Figure 1;
  • Figures 4 to 7 illustrate other embodiments of the antenna according to the invention.

L'antenne de l'invention comprend un réseau conformé 10 disposé sur une surface conformée 11 ayant un axe de symétrie et ayant un profil quelconque (conique, sphérique, elliptique, parabolique, hyperbolique, etc...). Ce réseau est constitué de génératrices 12 composées de plusieurs sources ou éléments rayonnants 13. Chaque génératrice 12 est à l'intersection de la surface conformée 11 et d'un plan passant par l'axe de symétrie Δ (par exemple l'axe du Nadir). Sur la figure 1 la surface 11 est une surface conique et les génératrices 12 comportent, chacune, trois éléments rayonnants 13.The antenna of the invention comprises a shaped array 10 arranged on a shaped surface 11 having an axis of symmetry and having any profile (conical, spherical, elliptical, parabolic, hyperbolic, etc.). This network consists of generators 12 composed of several sources or radiating elements 13. Each generator 12 is at the intersection of the shaped surface 11 and a plane passing through the axis of symmetry Δ (for example the axis of Nadir ). In FIG. 1, the surface 11 is a conical surface and the generators 12 each have three radiating elements 13.

Dans l'antenne selon l'exemple de la figure 1, on ne considère qu'un seul déphaseur 14 par génératrice 12 ; un répartiteur passif 15, divisant le signal en amplitude et en phase entre chacune des sources, étant disposé entre la sortie de ce déphaseur 14 et l'entrée de chaque source 13. Ce répartiteur 15 est le même pour chaque génératrice, de sorte que la géométrie de l'antenne de l'exemple de la figure 1 est complètement de révolution. Ce répartiteur 15 est calculé pour obtenir un certain diagramme des rayonnements émis par les sources 13 de chaque génératrice 12 et réaliser un certain diagramme résultant à partir de toutes les sources 13 de l'antenne.In the antenna according to the example of FIG. 1, only one phase shifter 14 is considered per generator 12; a passive distributor 15, dividing the signal in amplitude and in phase between each of the sources, being arranged between the output of this phase shifter 14 and the input of each source 13. This distributor 15 is the same for each generator, so that the geometry of the antenna of the example of FIG. 1 is completely of revolution. This distributor 15 is calculated to obtain a certain diagram of the radiation emitted by the sources 13 of each generator 12 and produce a certain resulting diagram from all the sources 13 of the antenna.

Afin d'obtenir une directivité suffisante on fait rayonner simultanément une ou plusieurs génératrices adjacentes. La rotation des génératrices a deux effets sur la phase du rayonnement:

  • le premier effet est une rotation ϕ du plan de polarisation autour de l'axe de révolution Δ. Cette rotation est constante ; Elle est liée à la géométrie du réseau, comme représenté sur la figure 2 ;
  • le deuxième effet est un retard de propagation proportionnel à la distance relative d'une source par rapport à un plan de référence P orthogonal à la direction de visée. Pour un plan de référence P donné, les distances à ce plan des sources d'une même génératrice peuvent varier.
In order to obtain sufficient directivity, one or more adjacent generators are made to radiate simultaneously. The rotation of the generators has two effects on the radiation phase:
  • the first effect is a rotation ϕ of the plane of polarization around the axis of revolution Δ. This rotation is constant; It is related to the geometry of the network, as shown in Figure 2;
  • the second effect is a propagation delay proportional to the relative distance of a source with respect to a reference plane P orthogonal to the direction of sight. For a given reference plane P, the distances to this plane from the sources of the same generator can vary.

Les déphaseurs ont pour rôle de compenser ces effets. Mais comme il n'y a qu'un déphaseur par génératrice et que la compensation de ce retard de propagation doit être le même pour toutes les sources, on est amené à calculer la moyenne des retards. Ces retards de propagation dépendent de la direction de visée en élévation; c'est-à-dire de l'inclinaison du plan de référence P. Sur la figure 3, on remarque que dans une direction correspondant à l'axe Δ , par exemple au Nadir, toutes les génératrices sont en phase (θ = 0°) : Les déphaseurs ne doivent compenser que la rotation du plan de polarisation en azimut. Par contre il y a de grosses variations lorsque l'axe de visée est à 60° (θ = 60°). Il est donc impossible de sommer en phase plusieurs génératrices adjacentes simultanément sur tout le domaine en élévation; ce qui se traduit par une dégradation du diagramme en dehors de la direction visée.The role of phase shifters is to compensate for these effects. But as there is only one phase shifter per generator and since the compensation for this propagation delay must be the same for all the sources, it is necessary to calculate the average of the delays. These propagation delays depend on the aiming direction in elevation; that is to say of the inclination of the reference plane P. In FIG. 3, we note that in a direction corresponding to the axis Δ, for example at Nadir, all the generators are in phase (θ = 0 °): The phase shifters must only compensate for the rotation of the azimuth polarization plane. On the other hand there are big variations when the line of sight is at 60 ° (θ = 60 °). It is therefore impossible to add several adjacent generators in phase simultaneously over the entire elevation area; which results in a deterioration of the diagram outside the intended direction.

Ainsi, même si le diagramme d'une génératrice 12 respecte tout le gabarit, lorsque l'on compense les retards de propagation, dans une direction de 60°, par exemple, cela reste vrai pour θ = 60° mais plus du tout ailleurs, surtout pour θ = 0° où le diagramme obtenu est situé nettement en-dessous du gabarit.Thus, even if the diagram of a generator 12 respects all the template, when the propagation delays are compensated, in a direction of 60 °, for example, this remains true for θ = 60 ° but no more elsewhere, especially for θ = 0 ° where the diagram obtained is located clearly below the template.

Il est possible de surdimensionner la génératrice pour compenser cette dégradation : c'est-à-dire d'augmenter l'énergie fournie aux sources de cette génératrice pour obtenir un diagramme situé nettement au-dessus du gabarit prévu.It is possible to oversize the generator to compensate for this degradation: that is to say to increase the energy supplied to the sources of this generator to obtain a diagram located clearly above the planned template.

Mais il est également possible de jouer sur les déphaseurs pour déformer le diagramme et l'adapter à l'élévation de la station visée. Lorsque celle-ci se trouve à θ = 60°, on compense les retards de propagation dans cette direction. Lorsque l'élévation décroît, on déforme le diagramme en jouant sur les déphaseurs : En effet, par exemple, lorsque la station se situe aux environs de θ = 30°, à 30° le diagramme remonte au-dessus du gabarit alors qu'il chute au-dessous à 60° et ainsi de suite jusqu'à 0° où le diagramme ne correspond plus du tout au gabarit à 60°.But it is also possible to play on the phase shifters to distort the diagram and adapt it to the elevation of the target station. When the latter is at θ = 60 °, the propagation delays in this direction are compensated for. When the elevation decreases, the diagram is distorted by playing on the phase shifters: Indeed, for example, when the station is located around θ = 30 °, at 30 ° the diagram rises above the gauge while it drops below at 60 ° and so on until 0 ° where the diagram no longer corresponds at all to the 60 ° template.

Le balayage en azimut est assuré par une simple commutation des génératrices puisque la géométrie est de révolution.The azimuth scanning is ensured by a simple switching of the generators since the geometry is of revolution.

Dans une telle réalisation on restreint le nombre de déphaseurs d'autant qu'il y a de sources sur une génératrice, par rapport à une structure conformée classique. Avec un nombre beaucoup plus faible de points de commandes, les déphaseurs des génératrices 12 étant activés simultanément, on peut réaliser du balayage en azimut et en élévation de l'antenne. On obtient donc une solution conformée où l'on désire obtenir un diagramme formé en élévation respectant un gabarit, que l'on commute simplement en azimut, avec des génératrices de directivité faible, et des dimensions petites.In such an embodiment, the number of phase shifters is restricted as far as there are sources on a generator, compared to a conventional shaped structure. With a much lower number of control points, the phase shifters of the generators 12 being activated simultaneously, it is possible to carry out scanning in azimuth and in elevation of the antenna. One thus obtains a conformed solution where one wishes to obtain a diagram formed in elevation respecting a gauge, which one simply switches in azimuth, with generators of weak directivity, and of small dimensions.

Ainsi dans un exemple d'application, pour réaliser une mission de télémesure suivant le gabarit de PIRE (Puissance Isotrope Rayonnée Equivalente) de la figure 4 (avec une courbe des maxima 16 et une courbe des minima 17) qui est un gabarit TMCU (Télémesure charge utile pour un satellite d'observation optique ou radar) haut débit bande X (8 à 12GHz). L'objectif est de respecter le gabarit de PIRE avec le minimum de puissance rayonnée. Par exemple avec 10 W rayonnés il faudra un gain maximum de 21 dBi. La directivité sera de 22 dBi tenant compte d'une perte de 1 dB. On dimensionne une antenne 20 de forme pseudo-cônique, comme représenté sur la figure 5. Cette antenne comprend 36 génératrices 21 de 4 sources 22. Chacune de ces sources 22 est réalisée en technologie imprimée; un pavé de cuivre étant gravé sur un substrat diélectrique conformé qui réalise la surface pseudo-cônique dont le profil n'est pas linéaire mais présente une brisure α de 10° environ sur la première source à partir du haut. Entre les 4 sources 22 d'une même génératrice 21, et sur le même substrat que celles-ci, est gravé le répartiteur sous forme de pistes de cuivre; lui-même étant relié à un déphaseur. Sur les 36 génératrices 9 seulement sont actives simultanément.Tout le rayonnement est donc commandé par 9 déphaseurs à la fois.Thus in an example of application, to carry out a telemetry mission according to the template of PIRE (Equivalent Isotropic Radiated Power) of figure 4 (with a curve of maxima 16 and a curve of minima 17) which is a template TMCU (Telemetry payload for an optical or radar observation satellite) high bandwidth X band (8 to 12GHz). The objective is to comply with the EIRP gauge with the minimum of radiated power. For example with 10 W radiated there will be a maximum gain of 21 dBi. The directivity will be 22 dBi taking into account a loss of 1 dB. An antenna 20 of pseudo-conical shape is dimensioned, as shown in FIG. 5. This antenna comprises 36 generators 21 from 4 sources 22. Each of these sources 22 is produced in printed technology; a copper block being etched on a shaped dielectric substrate which produces the pseudo-conical surface, the profile of which is not linear but has an α-break of approximately 10 ° on the first source from the top. Between the 4 sources 22 of the same generator 21, and on the same substrate as these, the distributor is etched in the form of copper tracks; itself being connected to a phase shifter. Of the 36 generators, only 9 are active simultaneously. All radiation is therefore controlled by 9 phase shifters at the same time.

La figure 6 montre le gabarit minimum 25 et le diagramme obtenu 26 en compensant les retards de propagation dans une direction de 62°. Sur la figure 7, qui montre le même gabarit minimum 27 et le diagramme obtenu 28, on a seulement modifié la valeur des 9 déphaseurs pour compenser les retards dans une direction d'élévation de 5° (ces figures 6 et 7 correspondant à des directivités Di en dBi).Figure 6 shows the minimum template 25 and the diagram obtained 26 by compensating for propagation delays in a direction of 62 °. In FIG. 7, which shows the same minimum gauge 27 and the diagram obtained 28, we have only modified the value of the 9 phase shifters to compensate for the delays in an elevation direction of 5 ° (these FIGS. 6 and 7 corresponding to directivities Di in dBi).

Il est bien entendu que la présente invention n'a été décrite et représentée qu'à titre d'exemple préférentiel et que l'on pourra remplacer ses éléments constitutifs par des éléments équivalents sans, pour autant, sortir du cadre de l'invention.It is understood that the present invention has only been described and shown as a preferred example and that its constituent elements can be replaced by equivalent elements without, however, departing from the scope of the invention.

Notamment, la surface conformée peut être de profil quelconque, du moment qu'elle comporte un axe de symétrie quelconque. Dans les exemples décrits, la surface comporte un axe de symétrie de révolution, mais la surface peut aussi bien avoir une symétrie d'ordre 2 (réflection dans un plan), comme une ellipse, une parabole ou une hyperbole, par exemple, ou encore elle peut avoir une symétrie d'ordre plus élevé donnant des surfaces plus complexes, sans sortir du cadre de l'invention.In particular, the shaped surface can be of any profile, as long as it has any axis of symmetry. In the examples described, the surface has an axis of symmetry of revolution, but the surface may as well have a symmetry of order 2 (reflection in a plane), such as an ellipse, a parabola or a hyperbola, for example, or it can have a higher order symmetry giving more complex surfaces, without departing from the scope of the invention.

Claims (4)

  1. An antenna comprising a shaped array of radiating elements on a shaped surface (11) of arbitrary profile, said surface having at least one axis of symmetry (Δ); said shaped surface (11) comprising at least a plurality of generator lines (12) defined by the intersection of said shaped surface (11) and a plane, said plane containing said axis of symmetry (Δ) and being normal to said shaped surface (11) at its intersection with said shaped surface (11); each of said generator lines (12) including a plurality of radiating elements (13), said radiating elements (13) being aligned on each of said generator lines (12); all of the radiating elements (13) in the same generator line (12) being connected to a single switching and phase control point of said generator line (12); elevation scanning and azimuth scanning in a plane perpendicular to said axis of symmetry (Δ) being obtained solely by controlling the phases of said generator lines (12) by means of said single control points per generator line (12), the antenna being characterized in that it is a high-gain shaped-beam antenna and includes a passive distributor (15) for each generator line (12), said radiating elements (13) in each generator line (12) being connected to said single control point via said passive distributor (15), the phase and amplitude laws between said radiating elements (13) of said generator line (12) being fixed by the radio characteristics of said passive distributor (15).
  2. An antenna according to claim 1, characterized in that said generator lines present a break.
  3. An antenna according to claim 1 or 2, characterized in that said shaped surface (11) is a surface of revolution about an axis (Δ), said axis being parallel to said mean direction of said shaped beam.
  4. An antenna according to any one of claims 1 to 3, characterized in that said shaped surface (11) is a portion only of a surface of revolution about an axis (Δ), said axis being parallel to said mean direction of said shaped beam.
EP19920107598 1991-05-06 1992-05-06 Antenna with shaped lobe and high gain Expired - Lifetime EP0512487B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9105510 1991-05-06
FR9105510A FR2676310B1 (en) 1991-05-06 1991-05-06 LOBE SHAPED AND LARGE GAIN ANTENNA.

Publications (2)

Publication Number Publication Date
EP0512487A1 EP0512487A1 (en) 1992-11-11
EP0512487B1 true EP0512487B1 (en) 1996-07-24

Family

ID=9412540

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920107598 Expired - Lifetime EP0512487B1 (en) 1991-05-06 1992-05-06 Antenna with shaped lobe and high gain

Country Status (5)

Country Link
EP (1) EP0512487B1 (en)
JP (1) JPH05129822A (en)
CA (1) CA2067932A1 (en)
DE (1) DE69212378T2 (en)
FR (1) FR2676310B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3136601A1 (en) * 2022-06-14 2023-12-15 Thales Active antenna whose radiating elements are mounted on a conical surface

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2121675A1 (en) * 1991-11-08 1993-05-13 Asu Ram Jha Terrestrial antennas for satellite communication system
FR2698212B1 (en) * 1992-11-16 1994-12-30 Alcatel Espace Radiant elementary source for array antenna and radiating sub-assembly comprising such sources.
JP2508596B2 (en) * 1993-06-30 1996-06-19 日本電気株式会社 Array antenna
US6049305A (en) * 1998-09-30 2000-04-11 Qualcomm Incorporated Compact antenna for low and medium earth orbit satellite communication systems
FR2788171A1 (en) 1998-12-31 2000-07-07 Thomson Multimedia Sa ELECTRONIC SCAN NETWORK SIGNAL RECEPTION DEVICE IN A SCROLLING SATELLITE COMMUNICATION SYSTEM
FR2989843B1 (en) 2012-04-20 2015-02-27 Thales Sa LOW-DIMENSIONAL ANTENNA BEAM FORMATION NETWORK FOR CIRCULAR OR TRUNCONIC ANTENNA ARRAY
WO2014099079A1 (en) * 2012-09-27 2014-06-26 Raytheon Company Methods and apparatus for fragmented phased array radar
EP2954594B1 (en) 2013-02-08 2022-01-12 Honeywell International Inc. Integrated stripline feed network for linear antenna array
EP2827448B1 (en) * 2013-07-16 2019-04-03 TE Connectivity Germany GmbH Antenna element for wireless communication
US9728855B2 (en) 2014-01-14 2017-08-08 Honeywell International Inc. Broadband GNSS reference antenna
CN111916912B (en) * 2020-06-30 2021-07-27 电子科技大学 Low-profile three-dimensional distributed conformal large-range scanning array antenna

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2490024B1 (en) * 1980-09-05 1985-06-07 Thomson Csf MISSILE AND MISSILE ANTENNA COMPRISING SUCH ANTENNA
US4816836A (en) * 1986-01-29 1989-03-28 Ball Corporation Conformal antenna and method
US4980692A (en) * 1989-11-29 1990-12-25 Ail Systems, Inc. Frequency independent circular array

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3136601A1 (en) * 2022-06-14 2023-12-15 Thales Active antenna whose radiating elements are mounted on a conical surface
EP4293823A1 (en) 2022-06-14 2023-12-20 Thales Active antenna with radiating elements mounted on a conical surface

Also Published As

Publication number Publication date
CA2067932A1 (en) 1992-11-07
DE69212378T2 (en) 1996-11-28
JPH05129822A (en) 1993-05-25
FR2676310B1 (en) 1993-11-05
EP0512487A1 (en) 1992-11-11
DE69212378D1 (en) 1996-08-29
FR2676310A1 (en) 1992-11-13

Similar Documents

Publication Publication Date Title
CA2037841C (en) High efficiency active printed antenna system for an agile space radar
EP2532046B1 (en) Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle
EP0512487B1 (en) Antenna with shaped lobe and high gain
EP2532050B1 (en) On-board directional flat-plate antenna, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle
FR2640821A1 (en) THREE-DIMENSIONAL COVER ANTENNA AND ELECTRONIC SCANNING, OF THE RAREFIE RANDOM VOLUMIC NETWORK TYPE
Huang Capabilities of printed reflectarray antennas
FR2832868A1 (en) Power generation satellite in space photovoltaic generation system, uses array antenna for emitting microwave generated from electrical energy and reflecting mirror antenna for reflecting emitted microwave
FR2517626A1 (en) ORBITAL SPACE ENGINE, IN PARTICULAR SATELLITE, WITH MULTIPLE MISSIONS
EP0239069B1 (en) Printed-circuit antenna array
EP0682383A1 (en) Multi beam antenna for microwave reception from multiple satellites
FR2832867A1 (en) Space photovoltaic generation system has power generation satellite group forming array antenna with transmitting antennas mounted on power generation satellites as element antennas
EP1902492B1 (en) Network antenna with conformable reflector(s) highly reconfigurable in orbit
EP1016161A1 (en) Telecommunication system antenna and method for transmitting and receiving using said antenna
FR2806214A1 (en) REFLECTOR ANTENNA COMPRISING A PLURALITY OF PANELS
EP0548876B1 (en) An active offset antenna having two reflectors
FR2778043A1 (en) Orbitting satellite transmitter/receiver tracker
FR2764753A1 (en) ANTENNA SYSTEM FOR A DIGITAL SATELLITE AUDIO BROADCASTING SERVICE
EP0131512A1 (en) Dual reflector antenna with quasitoroidal coverage
EP0638956A1 (en) Active antenna with electronic scanning in azimuth and elevation, particularly for microwave imaging by satellite
FR2678438A1 (en) LINEAR NETWORK ANTENNA.
CA2327371C (en) Radiating source for transmitting and receiving antenna designed for installation on board a satellite
EP4293823A1 (en) Active antenna with radiating elements mounted on a conical surface
FR3130393A1 (en) TTC antenna arrangement for flat satellite
WO2023218008A1 (en) Low-profile antenna with two-dimensional electronic scanning
Wong MBA versus phased array for electronic beamsteering

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19921228

17Q First examination report despatched

Effective date: 19941021

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 69212378

Country of ref document: DE

Date of ref document: 19960829

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960823

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961024

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090516

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100506

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110512 AND 20110518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110504

Year of fee payment: 20

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110505

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69212378

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69212378

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120505