EP1894259A1 - Piezoactionneur a capacite de levage amelioree - Google Patents

Piezoactionneur a capacite de levage amelioree

Info

Publication number
EP1894259A1
EP1894259A1 EP06763555A EP06763555A EP1894259A1 EP 1894259 A1 EP1894259 A1 EP 1894259A1 EP 06763555 A EP06763555 A EP 06763555A EP 06763555 A EP06763555 A EP 06763555A EP 1894259 A1 EP1894259 A1 EP 1894259A1
Authority
EP
European Patent Office
Prior art keywords
piezoelectric
film
piezoelectric actuator
piezoelectric layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06763555A
Other languages
German (de)
English (en)
Inventor
Stefan Lampenscherf
Andreas Wolff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1894259A1 publication Critical patent/EP1894259A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • H10N30/2048Membrane type having non-planar shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the present invention relates to piezoelectric actuators, which exhibit a certain elongation behavior as a function of this electrical voltage when an electrical voltage is applied.
  • Piezo actuators are used in various fields of technology. They are produced for example in multilayer construction. These multilayer piezoelectric actuators are used to control injection valves in internal combustion engines, positioning tables or in precision engineering, just to name a few examples.
  • US 6,274,967 discloses a piezoelectric actuator in multilayer construction, which is equipped with a biasing device for introducing force into the piezoelectric layers. With the help of the biasing device, the piezoelectric layers are subjected to a uniaxial compressive stress along the stacking direction of the piezoelectric actuator.
  • WO 2004/015789 A2 discloses a piezoelectric actuator with at least one stacked piezoelectric element.
  • the piezoelectric element enclosed by electrodes is held in a pretensioning device in such a way that a force is introduced into a partial volume of the piezoelectric layer.
  • the mechanical bias introduced into the piezoelectric layer generates, in combination with one in the piezoelectric layer
  • the piezoactuator according to the invention comprises the following features: At least one piezoelectric layer with at least one bulge, which is arranged between two opposite electrode layers for generating an electric field in the piezoelectric layer, and a pretensioning device, by means of which a mechanical stressing via the at least one bulge is adjustable in the piezoelectric layer, so that when generating an electric field in the prestressed piezoelectric layer, the mechanical stress supports a strain behavior of the piezoelectric actuator.
  • a stroke magnification of piezoelectric actuators is achieved by utilizing the deformation properties of specially structured or profiled piezoceramic layers.
  • the piezoelectric layer is provided with at least one bulge. After the piezoelectric layer has been poled, it is mechanically biased by means of a pretensioning device via the at least one bulge. If the polarized and mechanically prestressed piezoelectric layer is now loaded with an electric field, piezoelectric and ferroelectric expansion components are superimposed within the piezoelectric layer, which lead to their deformation and to a stroke increase of the piezoactuator in comparison with known actuators of the prior art.
  • the piezoelectric layer of the piezoelectric actuator comprises a plurality of regularly and / or irregularly arranged bulges. It is further preferred that the piezoelectric layer of the piezoelectric actuator has a plurality of equal and / or unevenly shaped bulges.
  • the lifting capacity of the piezoelectric actuator is increased to different degrees.
  • domes or truncated cone-like bulges are impressed in a regular arrangement in the piezoelectric layer. It is also preferred to impress sinusoidal waveforms extending over the entire width of the piezoelectric layer into the piezoelectric layer in order to improve the lifting capacity of the piezoactuator with this periodic structure.
  • the piezoelectric layer then has a shape similar to a corrugated metal sheet.
  • the present invention also discloses a method of manufacturing a piezoelectric actuator, comprising the steps of: casting and drying a film of piezoelectric material on a carrier film, laying the film of piezoelectric material on a surface having at least one unevenness to form at least one bulge in the Impregnate film, sintering the film on the surface with the at least one unevenness and applying electrodes to the opposite sides of the film and clamping the film in a biasing device.
  • piezoelectric green sheets are produced based on known methods. Subsequently, these films of piezoelectric material are laid out on a surface whose unevennesses impress certain deformations in this film. These irregularities are formed for example by spheres, truncated cones or over the entire width of the surface extending rods or protrusions. According to the desired shape and arrangement of the bulges in the piezoelectric film, the unevenness on the surface is arranged in an irregular and / or a regular pattern. Furthermore, it is preferable to use a plurality of equal and / or unevenly shaped bumps on the surface.
  • FIG. 1 shows the schematic representation of the surface of a sintered substrate with unevenness on which the film of piezoelectric material is laid out
  • Figure 2 shows a preferred embodiment of the piezoelectric actuator under mechanical bias
  • Figure 3 shows a preferred embodiment of the piezoelectric actuator of the present invention under the action of an electric field.
  • the piezoactuator 1 has at least one piezoelectric layer 10 into which at least one bulge 20 is embossed (compare FIGS. 2 and 3).
  • electrode layers 30 for generating an electric field in the piezoelectric layer 10 are arranged on their opposite sides.
  • the uneven or structured due to the bulges 20 piezoelectric layer 10 is mechanically clamped by means of a biasing device 40.
  • the biasing device 40 applies pressure to the at least one protrusion 20 of the piezoelectric layer 10, whereby the stresses of the piezoelectric layer 10 are achieved.
  • the piezoelectric actuator 1 is manufactured.
  • a film or green sheet of piezoelectric material is prepared by casting and drying on a carrier sheet. This piezoelectric material sheet formed the piezoelectric layer 10 after completion of the manufacturing process.
  • the sheet of piezoelectric material is laid out on a surface 50 with at least one unevenness 60 (see Fig. 1).
  • the surface 50 is preferably formed by the sintered substrate, on which at least one or a plurality of irregularities 60 is specifically arranged.
  • the film of piezoelectric material is pressed by gravity on the surface 50 and the irregularities 60 arranged there, so that the unevenness in each case impress a bulge 20 in the film.
  • the unevennesses 60 are arranged regularly and / or irregularly on the surface 50 according to different embodiments.
  • the bumps 60 have the same or different shapes. These bumps 60 have, for example, the shape of a ball, a hemisphere, a pin, a truncated cone, an angular elevation, a bead-like elevation or an elongated finger-like elevation.
  • the unevennesses 60 emboss complementary or similarly shaped and arranged bulges 20 in the film.
  • this film is on the surface 50 with the at least one
  • electrode layers 30 are applied to the two opposite large-area sides of the piezoceramic layer by means of known methods. These electrode layers 30 serve to polarize the piezoelectric layer 10, which is now taking place. An electrical voltage is connected to the electrode layers 30, thereby generating an electric field in the piezoelectric layer 10.
  • the patterned piezoelectric layer 10 is clamped in the pretensioner 40 to create certain biases in the piezoceramic layer 10.
  • the biasing device 40 consists of a first plate 42, which is disposed above the piezoceramic layer 10, and a second plate 44, which is arranged below the piezoceramic layer 10 (see Figures 2 and 3). By moving the two plates 42 and 44 towards each other, mechanical stresses are introduced via the bulges 20 into the piezoceramic layer 10. The piezoceramic layer 10 is compressed by the biasing device 40.
  • the piezoactuator 10 is produced which exhibits the desired increase in the stroke of piezoactuators 1 by utilizing the deformation properties of specially structured piezoceramic layers.
  • the structuring of the piezoelectric layer 1 consists in the impression of one or more bulges 20 according to FIG. 1, so that they are raised on at least one side over the surface of the piezoceramic layer 10.
  • the mechanical pretensioning of the pretensioning device 40 leads to the partial impressions of the bulges 20, which are comparable with disc springs.
  • the introduced mechanical bias is in equilibrium with the elastic strain distribution in the piezoceramic layer 10. After applying the electrical voltage across the electrode layers 30 to the piezoceramic layer 10, additional piezoelectric and ferroelectric expansion components are formed. According to the external mechanical
  • the advantage thus lies in the targeted combination of piezoelectric, ferroelectric and ferroelastic effects with the deformation properties of layer bulges to produce piezo actuators 1 with a significantly larger stroke than conventional stack actuators.
  • Multilayer technology, microstructuring and micromechanics can be combined with low-cost new mass applications in the field of biotechnology and medical technology (micropumps, microvalves), industrial electronics (pneumatic valves) and microactuators and motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

Piézoactionneur (1) à capacité de levage améliorée en raison de l'utilisation des propriétés de déformation de couches en piézo-céramiques (10) spécialement structurées se trouvant sous l'influence simultanée d'une précontrainte mécanique et d'un champ électrique. La présente invention concerne en outre un procédé de fabrication de ces piézoactionneurs (1) qui sont adaptés pour le fonctionnement en basse tension, par exemple dans le domaine de la technique biologique et médicale (micropompes, microsoupapes), de l'électronique industrielle (soupapes pneumatiques) et du microactionnement et de la micromotorisation.
EP06763555A 2005-06-22 2006-06-07 Piezoactionneur a capacite de levage amelioree Withdrawn EP1894259A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005028970A DE102005028970A1 (de) 2005-06-22 2005-06-22 Piezoakter mit gesteigertem Hubvermögen
PCT/EP2006/062961 WO2006136492A1 (fr) 2005-06-22 2006-06-07 Piezoactionneur a capacite de levage amelioree

Publications (1)

Publication Number Publication Date
EP1894259A1 true EP1894259A1 (fr) 2008-03-05

Family

ID=36822332

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06763555A Withdrawn EP1894259A1 (fr) 2005-06-22 2006-06-07 Piezoactionneur a capacite de levage amelioree

Country Status (5)

Country Link
US (1) US20100079039A1 (fr)
EP (1) EP1894259A1 (fr)
CN (1) CN101203967B (fr)
DE (1) DE102005028970A1 (fr)
WO (1) WO2006136492A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007041079A1 (de) * 2007-08-30 2009-03-05 Epcos Ag Piezoelektrisches Vielschichtbauelement
DE102008000816A1 (de) * 2008-03-26 2009-10-01 Robert Bosch Gmbh Vorrichtung und Verfahren zur Anregung und/oder Dämpfung und/oder Erfassung struktureller Schwingungen einer plattenförmigen Einrichtung mittels einer piezoelektrischen Streifeneinrichtung
TWI477276B (zh) * 2008-04-28 2015-03-21 Repros Therapeutics Inc 抗黃體素給藥方案
US8023218B2 (en) * 2008-11-25 2011-09-20 Headway Technologies, Inc. Electric field assisted magnetic recording
DE102010060736B4 (de) 2010-11-23 2015-04-02 Gottfried Wilhelm Leibniz Universität Hannover Verfahren zur Herstellung eines Piezoaktors
KR101569231B1 (ko) * 2011-06-30 2015-11-16 삼성전기주식회사 압전진동모듈
KR101913341B1 (ko) * 2012-05-08 2018-10-30 주식회사 엠플러스 압전진동모듈
CN104867634B (zh) * 2015-05-28 2017-03-01 江苏联能电子技术有限公司 一种双体交替工作压电电扇的绝缘结构及其电扇
CN107346802B (zh) * 2016-05-06 2020-08-07 上海锐尔发数码科技有限公司 压电膜及其制备方法
CN107574566A (zh) * 2016-07-04 2018-01-12 长春上缘科技发展有限公司 一种预应力可调式压电振子贾卡导纱针

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2409654B1 (fr) * 1977-11-17 1985-10-04 Thomson Csf Dispositif transducteur piezoelectrique et son procede de fabrication
DD140946A1 (de) * 1978-12-21 1980-04-02 Manfred Rauch Anordnung zur feinpositionierung
DE3833158A1 (de) * 1988-09-29 1990-04-12 Siemens Ag Bistabiler biegewandler
DE3926512A1 (de) * 1989-08-10 1991-02-14 Schmid Hans Armin Motor
US5471721A (en) * 1993-02-23 1995-12-05 Research Corporation Technologies, Inc. Method for making monolithic prestressed ceramic devices
US6217158B1 (en) * 1996-04-11 2001-04-17 Seiko Epson Corporation Layered type ink jet recording head with improved piezoelectric actuator unit
JP4388603B2 (ja) * 1997-02-07 2009-12-24 エス アール アイ・インターナショナル 弾性誘電体ポリマフィルム音波アクチュエータ
US5849125A (en) * 1997-02-07 1998-12-15 Clark; Stephen E. Method of manufacturing flextensional transducer using pre-curved piezoelectric ceramic layer
DE19755490C2 (de) * 1997-12-13 2000-07-06 Bosch Gmbh Robert Piezoelektrischer Antrieb
DE19818068A1 (de) * 1998-04-22 1999-10-28 Siemens Ag Piezoelektronischer Aktor für einen Stellantrieb
US6958567B2 (en) * 1998-04-22 2005-10-25 Virginia Tech Intellectual Properties, Inc. Active/passive distributed absorber for vibration and sound radiation control
GB0123294D0 (en) * 2001-09-27 2001-11-21 1 Ltd Piezoelectric structures
CN100431185C (zh) * 2002-07-31 2008-11-05 西门子公司 压电执行器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006136492A1 *

Also Published As

Publication number Publication date
DE102005028970A1 (de) 2006-12-28
CN101203967B (zh) 2011-04-06
WO2006136492A1 (fr) 2006-12-28
US20100079039A1 (en) 2010-04-01
CN101203967A (zh) 2008-06-18

Similar Documents

Publication Publication Date Title
EP1894259A1 (fr) Piezoactionneur a capacite de levage amelioree
DE69629283T2 (de) Ferroelektrischer dünnlagiger monomorpher verbundsensor und verfahren zu seiner herstellung
EP2057697B1 (fr) Actionneur piézocéramique plan et procédé pour la fabrication de ce dernier
WO2007012654A1 (fr) Actionneur piezo-electrique monolithe a rotation du sens de polarisation dans la zone de transition et utilisation dudit actionneur piezo-electrique
EP0947002A1 (fr) Element d'entrainement ou de reglage piezo-electrique
EP1019972B1 (fr) Element piezo-electrique
DE102006035470A1 (de) Verfahren zur Herstellung eines piezoelektrischen Schichtelements
DE102014116120A1 (de) Membranaktor sowie Verfahren zur Herstellung eines Membranaktors
WO2010149385A1 (fr) Actionneur élastomère électroactif et son procédé de fabrication
WO2001035468A2 (fr) Procede de fabrication d'un transducteur piezo-electrique
WO2008122557A1 (fr) Procédé et système pour séparer un bloc de composants en plusieurs composants céramiques
EP1021843A1 (fr) Transducteur electromecanique et son procede de production
DE10254450A1 (de) Piezoelektrische Vorrichtung der Stapelart, Verfahren zum Herstellen derselben und Einspritzeinrichtung
EP1527485B1 (fr) Actionneur piezoelectrique et procede de fabrication de cet actionneur piezoelectrique
DE10021919A1 (de) Verfahren zur Herstellung monolithischer piezokeramischer Vielschichtaktoren sowie monolithischer piezokeramischer Vielschichtaktor
EP1402583B1 (fr) Transducteur piezoelectrique de flexion
WO2009156202A1 (fr) Procédé de fabrication d’un actionneur piézoélectrique empilé et actionneur piézoélectrique
DE102006046217B3 (de) Verfahren und Vorrichtung zur Herstellung von Keramikstapeln mit vieleckigem Querschnitt
DE19735649C2 (de) Anordnung zur Dämpfung
EP2943988A1 (fr) Procédé et dispositif de fabrication d'un système d'électrode multicouche
WO2006136504A1 (fr) Actionneur piezo-electrique a pouvoir de levee augmente
EP1235284B1 (fr) Plaque piézocéramique et sa méthode de fabrication
DE10150126B4 (de) Haltevorrichtung für einen Gegenstand sowie Haltesystem
DE102010030643A1 (de) Verfahren zur Reduzierung der Materialspannungen in einem Piezoaktor
DE102008001859A1 (de) Aktor sowie Herstellungsverfahren für einen Aktor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100225

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120103