EP1871525A2 - Filtre catalytique pour la filtration d'un gaz comprenant un revetement et/ou un joint de porosite controlee - Google Patents

Filtre catalytique pour la filtration d'un gaz comprenant un revetement et/ou un joint de porosite controlee

Info

Publication number
EP1871525A2
EP1871525A2 EP06726320A EP06726320A EP1871525A2 EP 1871525 A2 EP1871525 A2 EP 1871525A2 EP 06726320 A EP06726320 A EP 06726320A EP 06726320 A EP06726320 A EP 06726320A EP 1871525 A2 EP1871525 A2 EP 1871525A2
Authority
EP
European Patent Office
Prior art keywords
cement
porosity
coating
plugs
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06726320A
Other languages
German (de)
English (en)
Inventor
Patricia Chez Mme Biancotti ANDY
Sébastian BARDON
Anthony Briot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Original Assignee
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0551594A external-priority patent/FR2886868B1/fr
Application filed by Saint Gobain Centre de Recherche et dEtudes Europeen SAS filed Critical Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Publication of EP1871525A2 publication Critical patent/EP1871525A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0012Honeycomb structures characterised by the material used for sealing or plugging (some of) the channels of the honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/06By-pass systems

Definitions

  • the invention relates to the field of particulate filters used in an exhaust line of an engine for the removal of soot typically produced by combustion of a diesel fuel in an internal combustion engine. More specifically, the invention relates to a particulate filter, said filter further comprising a material conferring catalytic properties, and a method of preparing it.
  • Filtration structures for soot contained in the exhaust gas of an internal combustion engine are well known in the prior art. These structures most often have a honeycomb structure, one of the faces of the structure for the admission of the exhaust gases to be filtered and the other side the exhaust of the filtered exhaust gases.
  • the structure comprises, between the intake and discharge faces, a set of adjacent ducts or channels of axes parallel to each other separated by porous filtration walls, which ducts are closed to one or the other of their ends for delimiting input chambers s 'opening according to the inlet face and outlet chambers s' opening according to the discharge face.
  • the peripheral part of the structure is surrounded by a cement, called coating cement in the following description.
  • the channels are alternately closed in an order such that the exhaust gases, during the crossing of the honeycomb body, are forced to cross the walls side of the input channels to join the output channels. In this way, the particles or soot are deposited and accumulate on the porous walls of the filter body.
  • the filter bodies are porous ceramic material, for example cordierite or silicon carbide.
  • the particulate filter is subjected to a succession of filtration phases (accumulation of soot) and regeneration (removal of soot).
  • filtration phases the soot particles emitted by the engine are retained and are deposited inside the filter.
  • regeneration phases the soot particles are burned inside the filter, in order to restore its filtration properties.
  • the porous structure is then subjected to intense thermal and mechanical stresses, which can cause micro-cracking likely over time to cause a severe loss of filtration capacity of the unit, or even its complete deactivation. This phenomenon is particularly observed on monolithic filters of large diameter.
  • said parts are synthesized on the basis of the same material, most often silicon carbide SiC or cordierite. This choice also makes it possible to homogenize the distribution of heat during the regeneration of the filter.
  • the expression "at the base of the same material” is meant in the sense of the present description that the material consists of at least 25% by weight, preferably at least 45% by weight and very preferably at least 70% by weight of said material.
  • the filters or porous soot filtration structures as previously described are mainly used on a large scale in the exhaust gas pollution control devices of a diesel engine.
  • the exhaust line of the internal combustion engine comprises, in series, a catalytic purification member and a particulate filter.
  • the catalytic purification unit generally of open honeycomb structure, is adapted for treatment of pollutants in the gas phase, while the particulate filter is adapted to remove soot particles emitted by the engine.
  • the succession of filter elements on the exhaust line is however responsible for a significant loss of load on said line, which may affect the engine performance .
  • the honeycomb structure is impregnated with a solution comprising the catalyst or a precursor of the catalyst.
  • Such methods generally include an immersion step in either a solution containing a catalyst precursor or a catalyst solubilized in water (or other solvent), or a suspension in water of catalytic particles.
  • a solution containing a catalyst precursor or a catalyst solubilized in water (or other solvent), or a suspension in water of catalytic particles An example of such a process is described in US Pat. No. 5,866,210.
  • the application at the other end of the filter of a vacuum allows in a second time the rise of the solution in the structure and consequently the coating of the internal walls of the honeycomb structure.
  • said impregnations can be obtained by pumping, by applying a vacuum or under the pressure of the liquid comprising the impregnation solution, on at least one end of the monolith.
  • the processes described are characterized by a combination of these different techniques, in successive steps, the final step allowing the removal of the excess solution in the filter by introduction of air under pressure or by suction.
  • One of the essential goals sought by the implementation of these methods is to obtain a uniform coating of the catalyst on or even inside at least a portion of the porous walls of the channels constituting the internal part of the structure and traversed by the gases exhaust.
  • the catalyst is deposited uniformly on the walls of the filter channels, but also that a minimum portion thereof is deposited on the parts of the honeycomb structure which do not come into direct contact with the gases to be filtered or the soot.
  • Said parts are essentially the coating cement for a monolithic structure, added with the joint cement in the case of a filter block as previously described, that is to say combining several monolithic elements in honeycomb and in to a lesser extent the cement used for plugs alternately obstructing the channels.
  • the present invention relates to a process for obtaining a filter for the filtration of a gas loaded with soot particles and gas phase pollutants such as carbon monoxide CO, oxides nitrogen NOx, SOx sulfur oxides, HC hydrocarbons, said process comprising the steps of: a) manufacturing a first structure comprising:
  • a central part comprising a plurality of honeycomb filter elements interconnected by a joint cement, the one or more elements comprising a set of adjacent ducts or channels with axes parallel to one another separated by porous walls, which conduits being closed by plugs at one or the other of their ends to define inlet chambers opening on a gas inlet face and outlet chambers opening on a discharge face of gas, such that the gas passes through the porous walls and a peripheral portion constituted by a coating cement protecting the said element or elements, the porosity of the joint cement and / or the coating cement and / or the cement constituting the plugs being less than the porosity of the material constituting said walls, b) impregnating said structure with a solution containing a precursor of the catalyst or the solubilized catalyst in a solvent such as water, a suspension in a solvent such as water of catalytic particles.
  • said elements, the coating cement, the joint cement and the plugs are based on the same ceramic material, preferably based on silicon carbide SiC.
  • the porosity of the cement used for the coating and / or for the seal and / or for the plugs is less than 5%, preferably at least 10%, and very preferably at least 10%. 15% or even 20%, to the porosity of the filter elements.
  • this difference of 5, 10, 15 or 20% is calculated on the basis of the percentage difference in porosity between the filter element (s) and the coating or joint cement, based on the percentage of porosity of the filter element (s) in question.
  • the porosity of the honeycomb filter elements is between 30% and 70%, preferably between 35% and 60%.
  • the porosity of the cement used for the coating and / or for the seal and / or for the plugs is between 20% and 60%, preferably between 25% and 45%.
  • the impregnation of the structure can be carried out by any method known in the art and in particular by pumping the solution through the structure, by applying a vacuum or a vacuum or under pressure liquid comprising the impregnating solution on at least one end of the structure.
  • a vacuum or a vacuum or under pressure liquid comprising the impregnating solution on at least one end of the structure.
  • Better impregnation is generally achieved by a combination of these different techniques, in successive steps, usually a final step allowing the removal of the excess solution in the filter by suction or by introduction of pressurized air .
  • the impregnation step may be implemented according to the methods and / or devices known from the prior art and in particular according to one of the methods or devices described in the patents or patent applications mentioned above.
  • the porosity of the cement used for the coating and / or for the seal and / or for the plugs can be adjusted according to several methods of preparation:
  • the cement composition and / or the particle size distribution of the grains entering into the cement composition and / or the quantity of cement are adjusted. water mixed with grains as well as that of the other liquid ingredients, to obtain the desired porosity.
  • the porosity of the coating cements and / or seal and / or plugs is adjusted by the introduction, during the preparation step, of a charge or filler according to the English term, whose size is adjusted to that of the pores of the cement.
  • the filler by occupying at least part of the pores of the cement, thus prevents catalyst precursors or the catalyst from infiltrating the porosity.
  • the charges are, for example, organic or inorganic molecules, the size of which is substantially identical to or smaller than that of said precursors or said catalysts.
  • the invention relates to a catalytic filter that can be obtained by the process ⁇
  • the manufacturing method as just described and characterized by a lower porosity of the cement constituting the coating and / or the joints and / or plugs relative to the porosity of the filter element or elements, as well as by the presence of a minimal amount of catalyst on said cement.
  • a minor amount is understood to mean a smaller amount of catalyst relative to the theoretical amount of the catalyst contained in a cement of the same porosity as that of the filtering elements.
  • the catalytic filter is characterized in that the porosity of the cement constituting the coating and / or the joints and / or plugs is less than 5%, preferably at least 10%, and very preferably at least 15% to the porosity of the filter element or elements.
  • a filtering structure comprising an assembly of silicon carbide filter elements bonded with a joint cement was synthesized according to the techniques described in patent EP 1 142 619.
  • a quantity of water corresponding to 10% of the weight of this mixture is added to obtain a cement of adequate viscosity.
  • the assembly is annealed at a temperature sufficient to ensure satisfactory cohesion of the filter and its elements.
  • This crude structure is then immersed in a bath of an aqueous solution containing the appropriate proportions of a platinum precursor in the form of H 2 PtClO, and a precursor of cerium oxide CeO 2 (in the nitrate form of cerium) and a precursor of zirconium oxide ZrO 2 (in the form of zirconyl nitrate) according to the principles described in publication EP 1 338 322 A1.
  • the filter is impregnated with the solution according to an implementation method. similar to that described in US Patent 5,866,210.
  • the filter is then dried at about 150 ° C. and then heated to a temperature of about 600 ° C.
  • Table 2 The main characteristics of the catalytic filter thus obtained are summarized in Table 2.
  • 0.25% weight of platinum in the monolithic elements ie 4.0 grams, of which 3.8 grams in the porosity of the walls of the honeycomb elements and 0.2 grams in the plugs.
  • 0.13% weight of platinum in the coating cement ie 0.25 gram, over a thickness of a few tens of ⁇ m from the external surface of the cement, 0.08% weight of platinum in the cement joint, ie 0.25 gram, the platinum being homogeneously distributed throughout the thickness of the cement.
  • a catalytic filter was manufactured by repeating the same steps as those of Example 1, except that the cement used for the coating and the seal was prepared from the following proportions of the various constituents:
  • the porosity of the joint and coating cements in the raw structure is 36.5%, which corresponds to a difference in porosity between the porosity of the filter elements and the porosity of the cement of 22.3%.
  • the porosity of the seal and coating cements in the filter (after impregnation) is this time 35%, which corresponds to a difference in porosity between the porosity of the filter elements and the porosity of the cement of 18.6%.
  • the chemical analysis shows a total concentration of Pt of 48 g / ft 3 (1.68 kg / m 3 ), ie 4.2 grams distributed over the different parts of the filter.
  • a catalytic filter was manufactured by repeating the same steps as those of Example 2, with the difference that the material used to make the caps is not identical to the extrusion paste used for the synthesis of the elements but is a specific mixture leading after cooking to a lower porosity.
  • the proportions of the various constituents of the mixture used are as follows:
  • the characteristics of the raw structure and the filter obtained after impregnation according to this example are substantially the same as those obtained for Example 1 and listed in Tables 1 and 2.
  • the chemical analysis shows a total Pt concentration of 47 g / ft 3 , ie 4.1 grams, distributed over the different parts of the filter.
  • the present invention is not limited to this simple embodiment and that any known means of acting on the porosities of the cement and / or filter elements and / or their plugs, such as the introduction of fillers or sintering additives, should be considered as part of the present invention. Without departing from the scope thereof, it is also possible to use a combination of such means to exert even better control of said porosity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Filtering Materials (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

L'invention se rapporte à un filtre catalytique pour la dépollution d'un gaz chargé en particules de suies et de polluants en phase gazeuse, obtenu par imprégnation dans une solution catalytique d'une structure de filtration constituée par un ensemble d'éléments monolithiques du type nid d'abeille, dans laquelle la porosité du ciment utilisé comme revêtement et/ou comme joint et/ou comme bouchon est inférieure à la porosité du matériau constituant le ou lesdits éléments.

Description

FILTRE CATALYTIQUE POUR LA FILTRATION D'UN GAZ COMPRENANT UN REVETEMENT ET/OU UN JOINT DE POROSITE CONTROLEE
L'invention se rapporte au domaine des filtres à particules utilisés dans une ligne d'échappement d'un moteur pour l'élimination des suies typiquement produites par une combustion d'un carburant diesel dans un moteur à combustion interne. Plus précisément, l'invention porte sur un filtre à particules, ledit filtre comprenant en outre un matériau lui conférant des propriétés catalytiques, ainsi qu'un procédé de préparation de celui-ci. Les structures de filtration pour les suies contenues dans les gaz d'échappement de moteur à combustion interne sont bien connues de l'art antérieur. Ces structures présentent le plus souvent une structure en nid d'abeille, une des faces de la structure permettant l'admission des gaz d'échappement à filtrer et l'autre face l'évacuation des gaz d'échappement filtrés. La structure comporte, entre les faces d'admission et d'évacuation, un ensemble de conduits ou canaux adjacents d'axes parallèles entre eux séparés par des parois poreuses de filtration, lesquels conduits sont obturés à l'une ou l'autre de leurs extrémités pour délimiter des chambres d'entrée s ' ouvrant suivant la face d'admission et des chambres de sortie s ' ouvrant suivant la face d'évacuation. Pour une bonne étanchéité, la partie périphérique de la structure est entourée d'un ciment, appelé ciment de revêtement dans la suite de la description. Les canaux sont alternativement obturés dans un ordre tel que les gaz d'échappement, au cours de la traversée du corps en nid d'abeille, sont contraints de traverser les parois latérales des canaux d'entrée pour rejoindre les canaux de sortie. De cette manière, les particules ou suies se déposent et s'accumulent sur les parois poreuses du corps filtrant. Avantageusement, les corps filtrants sont en matière céramique poreuse, par exemple en cordiérite ou en carbure de silicium.
De façon connue, durant sa mise en œuvre, le filtre à particules est soumis à une succession de phases de filtration (accumulation des suies) et de régénération (élimination des suies) . Lors des phases de filtration, les particules de suies émises par le moteur sont retenues et se déposent à l'intérieur du filtre. Lors des phases de régénération, les particules de suie sont brûlées à l'intérieur du filtre, afin de lui restituer ses propriétés de filtration. La structure poreuse est alors soumise à des contraintes thermiques et mécaniques intenses, qui peuvent entraîner des micro-fissurations susceptibles sur la durée d'entraîner une perte sévère des capacités de filtration de l'unité, voire sa désactivation complète. Ce phénomène est particulièrement observé sur des filtres monolithiques de grand diamètre.
Pour résoudre ces problèmes et augmenter la durée de vie des filtres, il a été proposé plus récemment des structures de filtration plus complexes, associant en un bloc filtrant plusieurs éléments monolithiques en nid d'abeille. Les éléments sont le plus souvent assemblés entre eux par collage au moyen d'un ciment de nature céramique, appelé dans la suite de la description ciment de joint. Des exemples de telles structures filtrantes sont par exemple décrits dans les demandes de brevets EP 816 065, EP 1 142 619, EP 1 455 923 ou encore WO 2004/090294. II est connu que dans ce type de structure, afin d'assurer une meilleure relaxation des contraintes, les coefficients de dilatation thermique des différentes parties de la structure (éléments de filtration, ciment de revêtement, ciment de joint) doivent être sensiblement du même ordre. De ce fait, lesdites parties sont synthétisées sur la base d'un même matériau, le plus souvent le carbure de silicium SiC ou la cordiérite . Ce choix permet en outre d'homogénéiser la répartition de la chaleur lors de la régénération du filtre. Par l'expression « à la base d'un même matériau », on entend au sens de la présente description que le matériau est constitué d'au moins 25% poids, de préférence d'au moins 45% poids et de manière très préférée d'au moins 70% poids dudit matériau. Les filtres ou structures de filtration poreuses des suies tels que précédemment décrits sont principalement utilisés à grande échelle dans les dispositifs de dépollution des gaz d'échappement d'un moteur thermique diesel . En plus du problème de traitement des suies, la transformation des émissions polluantes en phase gazeuse (c'est à dire principalement les oxydes d'azote (NOx) ou de soufre (SOx) et le monoxyde de carbone (CO) , voire les hydrocarbures imbrûlés) en des gaz moins nocifs (tels que l'azote gazeux (N2) ou le dioxyde de carbone (CO2)) nécessite un traitement catalytique supplémentaire.
Selon une première technologie, pour éliminer tous les polluants, la ligne d'échappement du moteur à combustion interne comprend, en série, un organe de purification catalytique et un filtre à particules .
L'organe de purification catalytique, généralement de structure en nid d'abeille ouverte, est adapté pour le traitement des polluants en phase gazeuse, alors que le filtre à particules est adapté pour éliminer les particules de suies émises par le moteur. Outre la complexité de la mise en œuvre de cette solution et son coût, la succession des éléments filtrants sur la ligne d'échappement est cependant responsable d'une perte de charge non négligeable sur ladite ligne, susceptible d'influer sur les performances du moteur.
Pour résoudre ces problèmes, on a cherché à transférer la fonction catalytique sur un filtre à particules du type monolithe. Selon les procédés classiquement utilisés, la structure en nid d'abeille est imprégnée par une solution comprenant le catalyseur ou un précurseur du catalyseur.
De tels procédés comportent en général une étape d'immersion soit dans une solution contenant un précurseur du catalyseur ou le catalyseur solubilisé dans l'eau (ou un autre solvant), soit une suspension dans l'eau de particules catalytiques . Un exemple d'un tel procédé est décrit par le brevet US 5,866,210. Selon ce procédé, l'application à l'autre extrémité du filtre d'une dépression permet dans un deuxième temps la montée de la solution dans la structure et par suite le revêtement des parois internes de la structure en nid d'abeille.
Selon d'autres réalisations du procédé d'imprégnation des filtres en nid d'abeille, lesdites imprégnations peuvent être obtenues par pompage, par application d'un vide ou sous la pression du liquide comprenant la solution d'imprégnation, sur au moins une extrémité du monolithe. Le plus souvent les procédés décrits se caractérisent par une combinaison de ces différentes techniques, au cours d'étapes successives, l'étape finale permettant l'élimination de la solution en excès dans le filtre par introduction d'air sous pression ou par aspiration. Un des buts essentiels recherché par la mise en œuvre de ces procédés est l'obtention d'un revêtement uniforme du catalyseur sur, voire à l'intérieur d'au moins une partie des parois poreuses des canaux composant la partie interne de la structure et traversées par les gaz d'échappement.
De tels procédés, ainsi que les dispositifs pour leur mise en œuvre, sont par exemple décrits dans les demandes de brevets ou brevets US 2003/044520, WO 2004/091786, US 6,149,973, US 6,627,257, US 6,478,874, US 4,609,563, US 4,550,034, US 6,599,570, US 4,208,454 ou encore US 5,422,138. Quelle que soit la méthode utilisée, le coût des catalyseurs déposés, qui contiennent le plus souvent des métaux précieux du groupe du Platine (Pt, Pd, Rh) sur un support oxyde représente une part non négligeable du coût global du procédé d'imprégnation. Il est donc important selon l'invention non seulement que le catalyseur soit déposé de manière uniforme sur les parois des canaux de filtration, mais également qu'une partie minimale de celui- ci se dépose sur les parties de la structure en nid d'abeille qui n'entrent pas en contact direct avec les gaz à filtrer ou les suies. Lesdites parties sont pour l'essentiel le ciment de revêtement pour une structure monolithique, additionné du ciment de joint dans le cas d'un bloc filtrant tel que précédemment décrit, c'est à dire associant plusieurs éléments monolithiques en nid d'abeille et dans une moindre mesure le ciment utilisé pour les bouchons obstruant alternativement les canaux.
L'objet de la présente invention est ainsi de limiter la quantité de catalyseur présente sur les parties de la structure qui n'entrent pas en contact direct avec le gaz à filtrer ou les suies, lors d'un procédé d'imprégnation d'un filtre à particules présentant une structure en nid d' abeille . Plus précisément, selon un premier aspect, la présente invention concerne un procédé d'obtention d'un filtre pour la filtration d'un gaz chargé en particules de suies et de polluants en phase gazeuse tel que l'oxyde de carbone CO, les oxydes d'azote NOx, les oxydes de soufre SOx, les hydrocarbures HC, ledit procédé comprenant les étapes : a) de fabrication d'une première structure comprenant :
- une partie centrale comprenant une pluralité d'éléments filtrants en nid d'abeille reliés entre eux par un ciment de joint, le ou lesdits éléments comprenant un ensemble de conduits ou canaux adjacents d'axes parallèles entre eux séparés par des parois poreuses, lesquels conduits étant obturés par des bouchons à l'une ou l'autre de leurs extrémités pour délimiter des chambres d'entrée s ' ouvrant suivant une face d'admission des gaz et des chambres de sortie s 'ouvrant suivant une face d'évacuation des gaz, de telle façon que le gaz traverse les parois poreuses et une partie périphérique constituée par un ciment de revêtement protégeant le ou lesdits éléments, la porosité du ciment de joint et/ou du ciment de revêtement et/ou du ciment constituant les bouchons étant inférieure à la porosité du matériau constituant lesdites parois, b) d'imprégnation de ladite structure par une solution contenant un précurseur du catalyseur ou le catalyseur solubilisé dans un solvant tel que l'eau, soit une suspension dans un solvant tel que l'eau de particules catalytiques .
De préférence, lesdits éléments, le ciment de revêtement, le ciment de joint et les bouchons sont à base d'un même matériau céramique, préférentiellement à base de carbure de silicium SiC. De manière avantageuse, la porosité du ciment utilisé pour le revêtement et/ou pour le joint et/ou pour les bouchons est inférieure d'au moins 5%, de préférence d'au moins 10% et de manière très préférée d'au moins 15% ou même 20%, à la porosité des éléments filtrants. Au sens de la présente description, cette différence de 5, 10, 15 ou 20% est calculée sur la base de l'écart de pourcentage de porosité entre le ou les éléments filtrants et le ciment de revêtement ou de joint, rapporté au pourcentage de porosité du ou des éléments filtrant en cause.
En général, la porosité des éléments filtrants en nid d'abeille est comprise entre 30% et 70%, de préférence entre 35% et 60%. Typiquement, la porosité du ciment utilisé pour le revêtement et/ou pour le joint et/ou pour les bouchons est comprise entre 20% et 60%, de préférence entre 25% et 45%.
Selon l'invention, l'imprégnation de la structure peut être effectuée par toute méthode connue de l'art et notamment par pompage de la solution au travers de la structure, par application d'un vide ou d'une dépression ou sous la pression du liquide comprenant la solution d'imprégnation sur au moins une extrémité de la structure. Une meilleure imprégnation est en général obtenue par une combinaison de ces différentes techniques, au cours d'étapes successives, le plus souvent une étape finale permettant l'élimination de la solution en excès dans le filtre par aspiration ou par introduction d'air sous pression.
Selon l'invention, l'étape d'imprégnation peut être mise en œuvre selon les procédés et/ou dispositifs connus de l'art antérieur et notamment selon un des procédés ou dispositifs décrits dans les brevets ou demandes de brevet précédemment cités . La porosité du ciment servant pour le revêtement et/ou pour le joint et/ou pour les bouchons peut être ajustée selon plusieurs modes de préparation :
Selon un premier mode, lors de l'étape de préparation du ciment et avant son application sur la partie filtrante, on ajuste la composition du ciment et/ou la distribution granulométrique des grains entrant dans la composition du ciment et/ou la quantité d'eau en mélange avec des grains ainsi que celle des autres ingrédients liquides, pour obtenir la porosité désirée. A titre d'exemple, il est possible selon l'invention d'utiliser des modèles de compaction dynamique permettant d'obtenir une compacité maximale du ciment en jouant notamment sur les proportions relatives des classes granulométriques des différentes poudres utilisées.
Selon un autre mode possible, la porosité des ciments de revêtement et/ou de joint et/ou des bouchons est ajustée par l'introduction, lors de l'étape de préparation, d'une charge ou filler selon le terme anglais, dont la taille est ajustée à celle des pores du ciment. La charge, en occupant au moins pour partie les pores du ciment, empêche ainsi les précurseurs du catalyseur ou le catalyseur de s'infiltrer dans la porosité.
Typiquement, les charges sont par exemple des molécules organiques ou inorganiques, dont la taille est sensiblement identique ou inférieure à celle desdits précurseurs ou desdits catalyseurs .
Pour améliorer encore l'efficacité du procédé, il est bien entendu possible, sans sortir du cadre de l'invention, d'utiliser une combinaison des deux modes qui précédent.
L'invention se rapporte selon un deuxième aspect à un filtre catalytique susceptible d'être obtenu par le procédé θ
de fabrication tel qu'il vient d'être décrit et se caractérisant par une porosité inférieure du ciment constituant le revêtement et/ou les joints et/ou les bouchons par rapport à la porosité du ou des éléments filtrants, ainsi que par la présence d'une quantité minime de catalyseur sur ledit ciment. Par quantité minime, il est entendu au sens de la présente description une quantité inférieure de catalyseur par rapport à la quantité théorique du catalyseur contenue dans un ciment de même porosité que celle des éléments filtrants. De préférence, le filtre catalytique se caractérise en ce que la porosité du ciment constituant le revêtement et/ou les joint et/ou les bouchons est inférieure d'au moins 5%, de préférence d'au moins 10% et de manière très préférée d'au moins 15% à la porosité du ou des éléments filtrants.
L'invention et ses avantages seront mieux compris à la lecture des exemples qui suivent. Il est bien entendu que ces exemples ne doivent être considérés, sous aucun des aspects décrits, comme limitatifs de la présente invention.
Exemple 1 :
Une structure filtrante comprenant un assemblage d'éléments filtrants en carbure de silicium liés par un ciment joint a été synthétisée selon les techniques décrites dans le brevet EP 1 142 619.
Seize éléments filtrants monolithiques de section carrée sont d'abord extrudés, séchés puis cuits selon des techniques bien connues, par exemple décrites dans EP 1 142 619. Sur le modèle décrit dans la demande EP 1 142 619, les canaux des éléments sont alternativement bouchés par des bouchons confectionnés avec la même pâte que celle utilisée pour l'étape d'extrusion des éléments monolithiques. Un ciment pour le joint et le revêtement est ensuite préparé en mélangeant :
15% poids d'une poudre de SiC dont la taille des grains est inférieure à 10 μm, - 20% poids d'une poudre de SiC dont la taille des grains est inférieure à 50 μm,
50% poids d'une poudre de SiC dont la taille des grains est inférieure à 200 μm,
4% poids d'une poudre d'alumine calcinée commercialisée par la société Almatis,
10% poids d'une poudre d'alumine réactive commercialisée par la société Almatis, 0,9% poids d'un liant temporaire et plastifiant du type Cellulose, - 0,1% poids d'un défloculant du type TPPNa
(Tripolyphosphate de sodium) .
On additionne une quantité d'eau correspondant à 10% du poids de ce mélange pour obtenir un ciment de viscosité adéquate . Après assemblage des monolithes au moyen dudit ciment puis usinage de la surface extérieure de la structure ainsi obtenue, celle-ci est ensuite recouverte du même ciment pour son revêtement. L'ensemble est recuit à une température suffisante pour assurer une cohésion satisfaisante du filtre et de ses éléments .
Les caractéristiques de la structure de filtration brute ainsi synthétisée sont reportées dans le tableau 1.
Tableau 1 : caractéristiques de la structure brute
(avant imprégnation)
Cette structure brute est ensuite plongée dans un bain d'une solution aqueuse contenant les proportions appropriées d'un précurseur du Platine sous la forme H2PtCIo, et d'un précurseur de l'oxyde de cérium CeO2 (sous la forme nitrate de cérium) et d'un précurseur de l'oxyde de zirconium ZrO2 (sous la forme nitrate de zirconyle) selon les principes décrits dans la publication EP 1 338 322 Al. Le filtre est imprégné par la solution selon un mode de mise en œuvre similaire à celui décrit dans le brevet US 5,866,210. Le filtre est ensuite séché à environ 15O0C puis chauffé à une température d'environ 6000C. Les principales caractéristiques du filtre catalytique ainsi obtenu sont regroupées dans le tableau 2.
Tableau 2 : caractéristiques du filtre catalytique
L'analyse chimique montre une concentration en Pt totale de 52 g/ft3 (1 g/ft3 = 0,035 kg/m3) soit une concentration de 1,82 kg/m3, soit 4,5 grammes répartis de façon non homogène sur les différentes parties du filtre.
Plus précisément, l'analyse révèle la répartition suivante :
0,25% poids de platine dans les éléments monolithiques, soit 4,0 grammes, dont 3,8 grammes dans la porosité des parois des éléments en nid d'abeille et 0,2 gramme dans les bouchons. 0,13% poids de platine dans le ciment de revêtement, soit 0,25 gramme, sur une épaisseur de quelques dizaines de μm à partir de la surface extérieure du ciment, 0,08% poids de platine dans le ciment joint, soit 0,25 gramme, le platine étant réparti de façon homogène dans toute l'épaisseur du ciment.
Exemple 2 :
Un filtre catalytique a été fabriqué en répétant les mêmes étapes que ceux de l'exemple 1, à la différence que le ciment servant pour le revêtement et le joint a été préparé à partir des proportions suivantes des différents constituants:
21% poids d'une poudre de SiC dont la taille des grains est inférieure à 10 μm,
9% poids d'une poudre de SiC dont la taille des grains est inférieure à 50 μm, - 55% poids d'une poudre de SiC dont la taille des grains est inférieure à 200 μm,
4% poids d'une poudre d'alumine calcinée commercialisée par la société Almatis, 10% poids d'une poudre d'alumine réactive commercialisée par la société Almatis,
0,9% poids d'un liant temporaire et plastifiant du type Cellulose,
0,1% poids d'un défloculant du type TPPNa. On additionne une quantité d'eau correspondant à 10% du poids de ce mélange pour obtenir un ciment de viscosité adéquate .
On joue dans cet exemple sur une répartition granulométrique différente des grains de SiC afin de réduire la porosité du ciment. Les caractéristiques de la structure brute et du filtre obtenu après imprégnation selon cet exemple sont sensiblement les mêmes que ceux obtenus pour l'exemple 1 et répertoriés dans les tableaux 1 et 2 avec pour principales différences : la porosité des ciments de joint et de revêtement dans la structure brute est de 36,5%, ce qui correspond à une différence de porosité entre la porosité des éléments filtrants et la porosité du ciment de 22,3%. la porosité des ciments de joint et de revêtement dans le filtre (après imprégnation) est cette fois de 35%, ce qui correspond à une différence de porosité entre la porosité des éléments filtrants et la porosité du ciment de 18,6%.
L'analyse chimique montre une concentration en Pt totale de 48 g/ft3 (1,68 kg/m3), soit 4,2 grammes répartis sur les différentes parties du filtre.
Plus précisément, l'analyse révèle la répartition suivante :
0,25% poids de platine dans les éléments en nid d'abeille, soit 4,0 grammes, dont 3,8 grammes dans la porosité des parois des éléments en nid d'abeille et 0,2 gramme dans les bouchons.
0,08% poids de platine dans le ciment de revêtement soit 0,1 gramme, - 0,05% poids de platine dans le ciment joint, soit 0,1 gramme.
On montre ainsi qu'en sélectionnant les porosités respectives des différents constituants du filtre, il est possible de réaliser une économie substantielle de Pt. La comparaison des résultats obtenus selon les exemples 1 et 2 montre que l'application du procédé selon l'invention permet d'économiser une quantité non négligeable de catalyseur et en particulier de métal précieux (0,3 gramme par filtre) , générant ainsi une économie substantielle du coût global du procédé de dépôt de catalyseur sur la structure .
Exemple 2b :
Un filtre catalytique a été fabriqué en répétant les mêmes étapes que ceux de l'exemple 2, à la différence que le matériau utilisé pour confectionner les bouchons n'est pas identique à la pâte d'extrusion utilisée pour la synthèse des éléments mais est un mélange spécifique conduisant après cuisson à une porosité moindre. Les proportions des différents constituants du mélange utilisé sont les suivants :
21% poids d'une poudre de SiC dont la taille des grains est inférieure à 10 μm,
19% poids d'une poudre de SiC dont la taille des grains est inférieure à 50 μm,
59% poids d'une poudre de SiC dont la taille des grains est inférieure à 200 μm, - 0,9% poids d'un liant temporaire et plastifiant du type Cellulose,
0,1% poids d'un défloculant du type silicate de Na. On additionne une quantité d'eau correspondant à 15% du poids de ce mélange pour obtenir un mélange qui est déposé à l'extrémité des canaux des éléments en nid d'abeille, tel que précédemment décrit.
Les caractéristiques de la structure brute et du filtre obtenu après imprégnation selon cet exemple sont sensiblement les mêmes que ceux obtenus pour l'exemple 1 et répertoriés dans les tableaux 1 et 2. L'analyse chimique montre une concentration en Pt totale de 47 g/ft3, soit 4,1 grammes, répartis sur les différentes parties du filtre.
Plus précisément, l'analyse révèle la répartition suivante :
0,24% poids de platine dans les éléments en nid d'abeille, soit 3,9 grammes, dont 3,8 grammes dans la porosité des parois des éléments en nid d'abeille et 0,1 gramme dans les bouchons. - 0,08% poids de platine dans le ciment de revêtement soit 0,1 gramme,
0,05% poids de platine dans le ciment joint, soit 0,1 gramme.
On montre ainsi qu'en sélectionnant les porosités respectives des différents constituants du filtre, il est possible de réaliser une économie substantielle de Pt.
La comparaison des résultats obtenus selon les exemples 1, 2 et 2 bis montre que le présent procédé permet d'économiser une quantité encore plus importante de catalyseur et en particulier de métal précieux (0,4 gramme par filtre) , générant ainsi une économie substantielle du coût global du procédé de dépôt de catalyseur sur la structure .
II est bien entendu que la présente invention ne se résume pas à ce simple mode de réalisation et que tout moyen connu d'agir sur les porosités du ciment et/ou des éléments filtrants et/ou de leur bouchons, tel que l'introduction de charges ou d'additifs de frittage, doit être considéré comme compris dans le cadre de la présente invention. Sans sortir du cadre de celle-ci, il est également possible d'utiliser une combinaison de tels moyens pour exercer un contrôle encore meilleur de ladite porosité.

Claims

REVENDICATIONS
1. Procédé d'obtention d'un filtre pour la filtration d'un gaz chargé en particules de suies et de polluants en phase gazeuse tel que l'oxyde de carbone CO, les oxydes d'azote NOx, les oxydes de soufre SOx, les hydrocarbures HC, ledit procédé comprenant les étapes : a) de fabrication d'une première structure comprenant :
- une partie centrale comprenant une pluralité d' éléments filtrants en nid d'abeille reliés entre eux par un ciment de joint, le ou lesdits éléments comprenant un ensemble de conduits ou canaux adjacents d'axes parallèles entre eux séparés par des parois poreuses, lesquels conduits étant obturés par des bouchons à l'une ou l'autre de leurs extrémités pour délimiter des chambres d'entrée s ' ouvrant suivant une face d'admission des gaz et des chambres de sortie s ' ouvrant suivant une face d'évacuation des gaz, de telle façon que le gaz traverse les parois poreuses et
- une partie périphérique constituée par un ciment de revêtement protégeant le ou lesdits éléments, la porosité du ciment de joint et/ou du ciment de revêtement et/ou du ciment constituant les bouchons étant inférieure à la porosité du matériau constituant lesdites parois, b) d'imprégnation de ladite structure par une solution contenant un précurseur du catalyseur ou le catalyseur solubilisé dans un solvant tel que l'eau, soit une suspension dans un solvant tel que l'eau de particules catalytiques .
2. Procédé selon la revendication 1, dans lequel lesdits éléments, le ciment de revêtement, le ciment de joint et les bouchons sont à base d'un même matériau céramique, préférentiellement à base de carbure de silicium SiC.
3. Procédé selon l'une des revendications 1 ou 2 dans lequel la porosité du ciment utilisé pour le revêtement et/ou pour le joint et/ou pour les bouchons est inférieure d'au moins 5%, de préférence d'au moins 10% et de manière très préférée d'au moins 15% ou même 20%, à la porosité des éléments filtrants.
4. Procédé selon l'une des revendications précédentes dans lequel la porosité des éléments filtrants en nid d'abeille est comprise entre 30% et 70%, de préférence entre 35% et 60%.
5. Procédé selon l'une des revendications précédentes dans lequel la porosité du ciment utilisée pour le revêtement et/ou pour le joint et/ou pour les bouchons est comprise entre 20% et 60%, de préférence entre 25% et 45%.
6. Procédé selon l'une des revendications précédentes, dans lequel ladite imprégnation est effectuée par pompage de la solution au travers de la structure, par application d'un vide ou d'une dépression ou sous la pression du liquide comprenant la solution d' imprégnation sur au moins une extrémité de la structure ou par une combinaison de ces différentes techniques.
7. Procédé selon l'une des revendications précédentes, dans lequel la porosité des ciments de revêtement et/ou de joint et/ou des bouchons est ajustée, lors de l'étape de fabrication de la structure, en fonction de la composition du ciment et/ou de la distribution granulométrique des grains et/ou de la quantité d'eau en mélange avec des grains ainsi que de celle des autres ingrédients liquides entrant dans la composition dudit ciment, par exemple en utilisant des modèles de compaction dynamique .
8. Procédé l'une des revendications précédentes, dans lequel la porosité des ciments de revêtement et/ou de joint et/ou des bouchons est ajustée par l'introduction, lors de l'étape de fabrication de la structure, d'une charge ou filler, dont la taille est ajustée à celle des pores dudit ciment.
9. Filtre catalytique susceptible d'être obtenu par le procédé selon l'une des revendications précédente, se caractérisant par une porosité inférieure du ciment constituant le revêtement et/ou les joint et/ou les bouchons par rapport à la porosité du ou des éléments filtrants, ainsi que par la présence d'une quantité minime de catalyseur sur ledit ciment.
10. Filtre catalytique selon la revendication 9 dans lequel la porosité du ciment constituant le revêtement et/ou les joint et/ou les bouchons est inférieure d'au moins 5%, de préférence d'au moins 10% et de manière très préférée d'au moins 15% à la porosité du ou des éléments filtrants .
EP06726320A 2005-04-08 2006-04-07 Filtre catalytique pour la filtration d'un gaz comprenant un revetement et/ou un joint de porosite controlee Withdrawn EP1871525A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0550914 2005-04-08
FR0551594A FR2886868B1 (fr) 2005-06-14 2005-06-14 Structure et filtre catalytique pour la filtration d'un gaz comprenant un revetement et/ou un joint de porosite controlee
PCT/FR2006/050314 WO2006106275A2 (fr) 2005-04-08 2006-04-07 Filtre catalytique pour la filtration d'un gaz comprenant un revetement et/ou un joint de porosite controlee

Publications (1)

Publication Number Publication Date
EP1871525A2 true EP1871525A2 (fr) 2008-01-02

Family

ID=36992632

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06726320A Withdrawn EP1871525A2 (fr) 2005-04-08 2006-04-07 Filtre catalytique pour la filtration d'un gaz comprenant un revetement et/ou un joint de porosite controlee

Country Status (4)

Country Link
US (1) US20080170973A1 (fr)
EP (1) EP1871525A2 (fr)
JP (1) JP2008537510A (fr)
WO (1) WO2006106275A2 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2902424B1 (fr) 2006-06-19 2008-10-17 Saint Gobain Ct Recherches Ciment de jointoiement a spheres creuses pour filtre a particules.
CA2701111A1 (fr) * 2007-09-28 2009-04-02 Kyocera Corporation Structure en nids d'abeilles et epurateur y faisant appel
WO2009133857A1 (fr) * 2008-04-28 2009-11-05 住友大阪セメント株式会社 Filtre de purification de gaz d'échappement
WO2009141891A1 (fr) * 2008-05-20 2009-11-26 イビデン株式会社 Structure en nid d'abeille
US20110203776A1 (en) * 2009-02-17 2011-08-25 Mcalister Technologies, Llc Thermal transfer device and associated systems and methods
WO2011040563A1 (fr) * 2009-09-30 2011-04-07 住友大阪セメント株式会社 Filtre d'épuration de gaz d'échappement
EP2484424B1 (fr) 2009-09-30 2019-03-13 Sumitomo Osaka Cement Co., Ltd. Filtre d'épuration de gaz d'échappement
KR101491209B1 (ko) 2012-08-30 2015-02-06 현대자동차주식회사 디젤 입자상 물질 제거용 필터 및 제조 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4146048B2 (ja) * 1999-09-30 2008-09-03 イビデン株式会社 ハニカムフィルタ、ハニカムフィルタ集合体、
DE20023989U1 (de) * 1999-09-29 2008-09-18 IBIDEN CO., LTD., Ogaki-shi Keramische Filteranordnung
JP3803009B2 (ja) * 1999-09-29 2006-08-02 イビデン株式会社 セラミックフィルタ集合体
JP4367683B2 (ja) * 2001-10-09 2009-11-18 日本碍子株式会社 ハニカムフィルター
JP3893049B2 (ja) * 2001-11-20 2007-03-14 日本碍子株式会社 ハニカム構造体及びその製造方法
EP1500799B1 (fr) * 2002-04-11 2007-10-24 Ibiden Co., Ltd. Filtre en nid d'abeille pour clarifier des gaz d'echappement
WO2004024293A1 (fr) * 2002-09-13 2004-03-25 Ibiden Co., Ltd. Structure en nid d'abeille
US7316722B2 (en) * 2002-09-13 2008-01-08 Ibiden Co., Ltd. Honeycomb structure
JP4516017B2 (ja) * 2003-02-28 2010-08-04 イビデン株式会社 セラミックハニカム構造体
KR20060021912A (ko) * 2003-06-23 2006-03-08 이비덴 가부시키가이샤 허니컴 구조체
FR2857695B1 (fr) * 2003-07-15 2007-04-20 Saint Gobain Ct Recherches Bloc pour la filtration de particules contenues dans les gaz d'echappement d'un moteur a combustion interne
KR100692356B1 (ko) * 2003-07-15 2007-03-12 이비덴 가부시키가이샤 벌집형 구조체
FR2864575B1 (fr) * 2003-12-24 2006-02-10 Saint Gobain Ct Recherches Bloc pour la filtration de particules contenues dans les gaz d'echappement d'un moteur a combustion interne
EP1795261A4 (fr) * 2004-09-30 2009-07-08 Ibiden Co Ltd Structure alvéolaire
JP5376805B2 (ja) * 2005-11-04 2013-12-25 日本碍子株式会社 ハニカム構造体及びハニカム触媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006106275A3 *

Also Published As

Publication number Publication date
WO2006106275A3 (fr) 2007-03-01
US20080170973A1 (en) 2008-07-17
WO2006106275A2 (fr) 2006-10-12
JP2008537510A (ja) 2008-09-18

Similar Documents

Publication Publication Date Title
EP1945356B1 (fr) Methode d'obtention d'une structure de filtration homogene pour une application catalytique
EP1871525A2 (fr) Filtre catalytique pour la filtration d'un gaz comprenant un revetement et/ou un joint de porosite controlee
EP2234693B1 (fr) Structure de filtration d'un gaz a canaux hexagonaux assymetriques
EP1917225B1 (fr) Support et filtre catalytique a base de carbure de silicium et a haute surface specifique
EP1954374B1 (fr) Structure a base de carbure de silicium de porosite de surface de paroi controlee pour filtration d'un gaz
EP2244804B1 (fr) Structure de filtration d'un gaz a canaux hexagonaux assymetriques
EP1979589A2 (fr) Filtre catalytique presentant un temps d'amorcage reduit
EP2254681A2 (fr) Structure de filtration de gaz
FR2944052A1 (fr) Structure de filtration d'un gaz et de reduction des nox.
WO2008104665A1 (fr) Structure de filtration d'un gaz a paroi ondulee
EP2091890B1 (fr) Procede d'obtention d'une structure poreuse a base de carbure de silicium et structure poreuse obtenue
EP2340099A1 (fr) Dispositifs de filtration de particules
EP2285753A1 (fr) Filtre ou support catalytique à base de carbure de silicium et de titanate d'aluminium
FR2886868A1 (fr) Structure et filtre catalytique pour la filtration d'un gaz comprenant un revetement et/ou un joint de porosite controlee
WO2006134303A2 (fr) Structure et filtre catalytique pour la filtration d'un gaz comprenant un ciment hydrophobe ou oleophobe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071108

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
111L Licence recorded

Free format text: 0101 SAINT-GOBAIN INDUSTRIEKERAMIK ROEDENTAL GMBH

Effective date: 20080707

17Q First examination report despatched

Effective date: 20080903

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101103