EP1861526B1 - Method and entanglement nozzle for producing knotted yarn - Google Patents

Method and entanglement nozzle for producing knotted yarn Download PDF

Info

Publication number
EP1861526B1
EP1861526B1 EP06705395A EP06705395A EP1861526B1 EP 1861526 B1 EP1861526 B1 EP 1861526B1 EP 06705395 A EP06705395 A EP 06705395A EP 06705395 A EP06705395 A EP 06705395A EP 1861526 B1 EP1861526 B1 EP 1861526B1
Authority
EP
European Patent Office
Prior art keywords
yarn
channel
air
blast
swirl chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06705395A
Other languages
German (de)
French (fr)
Other versions
EP1861526A1 (en
Inventor
Christian Simmen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heberlein AG
Original Assignee
Oerlikon Heberlein Temco Wattwil AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36295535&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1861526(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Oerlikon Heberlein Temco Wattwil AG filed Critical Oerlikon Heberlein Temco Wattwil AG
Publication of EP1861526A1 publication Critical patent/EP1861526A1/en
Application granted granted Critical
Publication of EP1861526B1 publication Critical patent/EP1861526B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/08Interlacing constituent filaments without breakage thereof, e.g. by use of turbulent air streams
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/16Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/16Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam
    • D02G1/162Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam with provision for imparting irregular effects to the yarn

Definitions

  • the invention relates to a method for the production of knotted yarn or twist yarn of DTY (Draw Twist Yarn) and / or smooth yarns with high regularity of knots by means of air nozzles with a Gam aspectskanal and blowing air, which is injected transversely to the Gam aspectskanal, the blast air in Garn practicecardi and against the Garn practicecardi ever a double vortex for generating the node forms.
  • the invention further relates to a Verwirbelungsdüse for the production of knot yarn with high regularity of the nodes with a continuous Gam aspectskanal and a Blasluftzuzuzenkanal, wherein the Blas povertyzuchtkanal is directed to the longitudinal center axis of the Garn analogskanales.
  • microfilaments In the recent past, increasingly finer filaments have been produced. These are called microfilaments when the denier per filament (dpf) is between 0.5 and about 1.2.
  • the game made of it is called Microfilamentgame.
  • supermicrofilaments are included unless otherwise noted.
  • Already yarns with a dpf over 1.2 require gentle processing, so that neither single filaments nor the whole yarn breaks. To an even greater extent, this applies to the microfilament games.
  • DTY-Game means "Draw Twist Yam", in English: false twist texture yarns.
  • the DE 197 00 817 shows a special form of a Verwirbelungsdüse for carpet yarn, so for very rough BCF game. It was assumed that a process for the continuous production of spun-textured filament yarns in a continuous yarn channel or vortex channel of a vortex nozzle.
  • the filament yarn is directed through a transversely directed into the vortex nozzle and forward and backward from the Whirled yarn channel outflow blowing air flow and discharged the exhaust air of the backward vortex approximately in the opposite direction to the Blas Kunststoffzu entry from the Garneinlomi Scheme.
  • the forward swirl is designed to be more effective than the backward swirl.
  • the DE 37 11 759 Starting from finer to medium yarns and trying to improve the processability of the game in subsequent processing, such as weaving, knitting, knitting and tufting machines.
  • the inventor started out from a swirling device for swirling multifilament yarns which has at least one yarn channel, wherein yarn guides are arranged at intervals from the inlet and outlet mouth of the yarn channel and the filaments of a respective multifilament yarn can be swirled in the yarn channel by means of a blowing nozzle.
  • the yarn undergoes a change in direction of less than 90 ° when entering and leaving the yarn channel, and the blowing angle of the blowing nozzle is less than 90 °.
  • the yarn guides are arranged so that the yarn is applied to the Gamkanal with the compressed air supply off so that it extends in the yarn channel parallel to its longitudinal direction and thereby rests against the outlet mouth of the at least one tuyere.
  • the distance of the Gamterrorism is from the Gamkanalmünditch adjacent to them a maximum of 30 mm.
  • the length of the yarn channel is a maximum of 40 mm for uncrimped multfilament yarns and a maximum of 30 mm for crimped multifilament yarns.
  • a yarn channel length is proposed for textured or crimped yarns of 10-28 mm. In particular, the range of 10 mm yarn channel length is understood to be short.
  • the method according to the invention is characterized in that the blown air in the entry region into the yarn treatment channel in an air swirl chamber is displaced into two strong stationary air swirl flows, which are almost undisturbed by filament bundles.
  • the swirling nozzle according to the invention is characterized in that a blown air duct extension is formed in the mouth region of the blown air supply duct in the yarn treatment duct to form an air swirl chamber for two counter-rotating stationary air swirl flows, whereby the blown air duct extension exceeds less than 22% but more than 5% of the yarn duct width.
  • Vortex chamber As Vortexchamber is understood a relatively large extension of the yarn channel before and after the area of the Lucaseinblasstelle. The goal was to give the yarn or individual filaments the opportunity to oscillate within the vortex chamber.
  • the new invention seeks an improvement on the air side. It is proposed an air-twist-chamber or Microwirbelhunt for the air. It is true that the node stability could be increased with the vortex chamber. However, this is at the expense of the number of nodes. There are fewer knots per meter of yarn produced. The individual nodes are longer.
  • an air swirl chamber is mounted in the inlet region of the blowing air in the yarn treatment channel, so that the air flow is placed at the relevant point in two strong undisturbed swirling flows.
  • the air swirl chamber is a miniature blast air duct extension and forms a transition between a completely stable swirl flow in the area of the air injection and the subsequent just as completely unstable vortex zone to the exit from the yarn channel.
  • the air swirl chamber is designed miniaturized such that the yarn bundle can not completely penetrate into the lateral extension of the air swirl chamber.
  • the air swirl chamber protrudes only a fraction of a millimeter, the Garnkanalwand. For example, for a 1.6 mm wide yarn channel a maximum width of the air chamber of 2.2 mm proposed. It was initially completely surprising to all those involved that such a small measure could be used to achieve correspondingly large effects. However, the explanation lies in the targeted design of the supersonic air flow.
  • the new invention could be examined with large series of tests with DTY yarns (false twist yarns). The results were good for fine, medium and coarse yarns. The results were most surprising in fine yarns, especially microfilament yarns. First attempts with plain yarns were positive, although the result was less pronounced in relation to DTY-Gamen. At least on the basis of theoretical considerations, the new invention can also be used in BCF yarns, in the BCF-Gamen due to the much larger yarn channel widths of up to 8 mm, the air swirl chamber is to survive at most 22%, at least 5% of Gamkanalbreite.
  • the new invention also allows for a number of advantageous embodiments of the yarn swirling nozzle. It is proposed to form the Gam harmonysquerrough half round or U-shaped and with a flat baffle.
  • the air swirl chamber is laterally shaped as a miniaturized dome with respect to the Gam oppositionskanat cross section, wherein the air swirl chamber on both sides of the Gam oppositionskanales protrudes less than 0.5 mm.
  • the Studentsstehmass of smaller 0.5 mm could be confirmed with yarns up to 500 denier, so with Gamkanalbreiten up to 3 mm.
  • the Process for larger yarn channel widths over 3 mm an overfeed pass of less than 22% and more than 5% of the yarn channel width is required.
  • the Sprinthmass is between 10% and 20% of the yarn channel width.
  • the air swirl chamber further preferably has an approximately circularly symmetrical outer contour and forms a continuation of the center axis of the Blas Kunststoffzuzenkanales.
  • the width of the Gamkanalqueriteses is greater than the Garnkanalianae formed in the direction of Blas Kunststoffzussel to intensify the lateral vortex formation.
  • the treatment channel can be formed as a wide channel with a width of preferably 0.6 to 3 mm, particularly preferably with a ratio of yarn channel width (B) to yarn channel depth (T) of 1.2 to 2.5.
  • the length of the air swirl chamber was preferably smaller than 1.3 of the yarn channel width.
  • the length of the air swirl chamber is about 0.7 to 1.6, preferably 0.8 to 1.2 with respect to the width of the Gamkanales, which is substantially below the L / B ratio of about 1.75 of the prior art Technology is.
  • the blown air supply channel is round or oval or oval with a triangular character or Y-shaped, wherein the side dimension of the Blas Kunststoffzuchtkanales is at most equal to or less than the corresponding Gamkanalbreite.
  • the yarn channel width (B) is made larger than the Heilzuchtkanalbrefte d, preferably in a ratio B / d of 1.1 to 3.
  • the yarn channel is formed by a plane displaceable baffle plate and a nozzle plate with the blown air supply.
  • the yarn channel is preferably formed by a nozzle plate and a slidable slab (as a so-called SlideJet) with an open position of the yarn channel for threading the game and a closed position of the yarn channel for the production of a Knotengames.
  • the nozzle plate is formed as a plate-like ceramic disc, such that the ceramic disc together with a sliding part in the Verwirbelungsdüse and / or that the ceramic disc in the sliding part as removable disc and is removable.
  • FIGS. -1a to 1f show the classical model for the production of a knotted yarn 2 'by means of a swirl nozzle 1.
  • knots K are formed from an untwisted smooth yarn 2 in a yarn treatment channel 3 by the action of blown air BL with the individual filaments Understanding of a double vortex formation of the blown air, both in Garntransport therapies 7 as well as against the Gamtransportides within the Gam aspectskanales 3 are generated.
  • the blowing air BL enters via a blast air duct 4 in the direction of arrow 5 and generates, as from the Figures 1b and 1d can be seen, the typical double vortex 6.
  • the Gam advocacyskanal 3 has FIGS.
  • FIGS. 2a to 2d show a solution according to the invention.
  • the Gam harmonyskanal 3 additionally an air swirl chamber 11, which represents an immediate continuation of the Blvess Kunststoffzuchtkanales 4 in the Gam oppositionkanal 3.
  • the Gam harmonyskanal 3 is dome-like widened at the location of the Blas Kunststoffzuschreibkanales 4, as from a corresponding dome 12 in FIG. 2b is recognizable. It arises in a section II, II of the FIG. 4 an additional swirl flow, corresponding to the two arrows 13, 13 'in FIG. 2a ,
  • the dome-like expansion allows a locally stationary swirl flow without a negative influence of unsteady vortex movement in the subsequent part of the Gam advocacyskanales 3.
  • FIG. 2b shows a nozzle plate 9 designed according to the invention.
  • the same reference numerals have been used for the same features as for the same features FIGS. 1 and 2 selected.
  • Clearly visible is the miniature training of the air swirl chamber, which is only so large that the filament bundle can not move in it.
  • FIGS. 3a to 3c show three different cross-sectional shapes for the Blas Kunststoffzuchtkanal; the FIG. 3a with circular shape 4 ', FIG. 3b with a half oval 4 "as well as the Figure 3c with an oval shape 4 "'.
  • FIGS. 4a and 4b each show the result of a CFD flow calculation.
  • the upper level is denoted by E and represents the impact surface of the blast air flow BL on the baffle plate 10.
  • the air swirl chamber 11 results from the two small Kalottenaus traditions 12. It can be seen in the FIG. 4a clearly the two swirling flows 14, which give a very stable flow in the longitudinal direction in a range of less than 1 to 2 mm.
  • the two double swirls 6 Die Figure 4c is a drawing which schematically illustrates the two flow forms.
  • FIGS. 5a to 5e show the inventive solution of FIGS. 2 to 4 mounted in a concrete nozzle plate 9 for a SlideJet nozzle.
  • the Figures 6a and 6b show a whole swirling nozzle 1, which is designed as a SlideJet.
  • the FIG. 6b shows the open or threading position
  • the FIG. 6a the closed operating position.
  • a nozzle plate 9 is installed in the swirling nozzle 1, wherein a sliding part 23 on the lower leg of a yoke 25 back and forth can slide.
  • the sliding movement is effected by a sliding lever 26, which converts the rotational movement in the linear movement via a corresponding mechanism.
  • the rotational movement of the shift lever 26 is thereby converted into a pure sliding movement according to arrow 27.
  • Very important for the turbulence is a baffle plate 10, which under spring pressure permanently on the upper flat surface of the nozzle plate. 9 is pressed.
  • the flat, flat surface with high surface fineness allows the movement with simultaneous sealing function, for which purpose the baffle plate 10 in ceramic and a nozzle plate 9 in ceramic are particularly well suited.
  • the Gamkanal 3 and an air supply duct are mounted in the nozzle plate 9.
  • the yarn channel 3 is in the operating position by the in FIG. 6a visible part and the lower planar surface of the baffle plate 10 is determined.
  • the FIG. 6c shows a nozzle plate 9.
  • the FIG. 6d shows a whole sliding part 23 with inserted nozzle plate 9. With the FIG. 6d should also be shown that the attachment of the nozzle plate 9 in the sliding part 23 leaves many possible solutions.
  • the nozzle plate 9 can be poured, for example by an injection molding, directly into the sliding part 23, so that ceramic disc and sliding part 23 form an inseparable component. Furthermore, it would be possible to glue the ceramic disk in the sliding part.
  • the Figure 7a shows the closed operating position.
  • the sliding lever 26 is in the lowered position of the yarn channel 3 for the passage of the game for an air treatment, for which compressed air via a port or a compressed air hole can be fed.
  • the sliding part 23 is pushed forward ( FIG. 7c ) and simultaneously shut off the air supply, which is accomplished by the displacement of the two Druck Kunststoffzu Industriesbohrept to the dimension G.
  • the spring pressure force on the baffle plate 10 is released and released the engagement of a sliding axis in an engagement groove, so that the sliding part 23 can be pushed forward freely ( FIG. 7b ).
  • the sliding part 23 can now be removed from the device ( Figure 7f ) and the ceramic disk are removed in the opposite direction to the sliding part 23.
  • the replacement takes place in the opposite direction to the FIGS. 7a to 7f ,
  • FIG. 8a shows the first step for the installation of the nozzle plate 9.
  • the nozzle plate 9 is placed transversely to the sliding direction according to arrow 41 on the sliding part 23.
  • a negative and a positive part 42, 43 help to set the nozzle plate 9 by hand precisely as with FIG. 8b is shown in perspective view.
  • the nozzle plate 9 is completely deposited on the sliding part 23, wherein the rotational movement of the nozzle plate 9 is already recognizable according to the arrow.
  • the nozzle plate 9 has a cam on both sides and the sliding part 23 has a matching round sliding guide.
  • the nozzle plate 9 has on both sides with respect to a center of rotation Circular segments which fit into the corresponding circular guides of the sliding part 23 with little play. After completing the rotation accordingly FIG. 8d there is a latching point, which engages on light spring pressure from below and fixed the nozzle plate 9 in the operating position.
  • the FIG. 9a shows untwisted yarn 2. However, this can be both smooth and FZ textured. With the straight lines the individual filaments 45 are indicated.
  • the FIG. 9b shows a soft swirled yarn. Typical are the rather shorter nodes K, where the nodes are symbolized by thin straight lines.
  • the FIG. 9c shows hard, relatively long knots K between the swirled open spots. The hard knots are symbolized by thicker lines.
  • the FIG. 9d shows a typical knot yarn of the prior art with very irregular knots.
  • FIGS. 10a to 10c show some examples with irregular knotting.
  • the FIG. 11 is a juxtaposition of hard and soft knots that are producible with the new invention.
  • the FIG. 11 shows a typical associated area of using compressed air of 1.5 to 3 bar or 0.5 to 1.5 bar. Depending on the market and especially the type of processing hard knots or soft knots are required.
  • FIG. 12a and 12b show the possibility of using a Y-shaped blast air duct cross-section with corresponding main air duct H and secondary air duct N.
  • Die FIG. 12c shows a further example of the embodiment of an inventive air swirl chamber 11 '.
  • FIGS. 13a to 13c show a solution of the prior art, as it has already been produced by the applicant for over 20 years.
  • Here is typical a long Garnverwirbelungshunt with relatively large width and length. Behind this solution stuck the model that the yarn can swing as far as possible in the yarn vortex chamber.
  • the Figure 14a shows a solution according to the invention and as a comparison ( FIGS. 14b, 14c ) Two solutions of the prior art. All previous investigations have shown that there is a critical measure for the survival of the air swirl chamber. This is about 0.5 mm. In all chamber configurations, where the chamber laterally protrudes by more than 0.5 mm, a noticeable reduction in quality is found. The Previous experiments have shown that the lateral protrusion of the chamber on the Gam harmonyskanal 3 is to be judged as critical. It has been found that the chamber in the GamkanallNicolsraum is advantageously less than 1.3 x yarn channel width (B) long.
  • the Figures 15a, 15b and 15c show a juxtaposition of knot formation:
  • the FIG. 15a according to a solution according to FIGS. 13a to 13c the FIG. 15b according to a solution without swirl chamber according to Figures 1 and 1a and the FIG. 15c the inventive solution.
  • yarns of eg 80 f 72, 80 f 108, 72 f 72 and 80 f 34 are used.
  • soft or hard knots are created.
  • FIGS. 16a and 16b show results with comparative experiments that FIG. 16a with coarse and the FIG. 16b with fine yarn.
  • the left figure shows the number of knots per meter, the middle figure the scatter of the knots and the right figure the stability or the loss of knots under tension.
  • There were consistently used nozzles with no chamber or roundish chambers with dome widths K of 2.2, 2.4, 2.6, 2.8 mm).
  • the chamber was designed in a dome-like shape. It can be clearly seen that the best result was achieved with the inventive calotte width K of 2.2 mm with a true air swirl chamber according to the invention.
  • the yarn channel width was 1.6 mm in all tests, the yarn channel depth was 1.0 mm and the air injection hole was 1.1 mm.
  • the inventive advantages are also visible when in addition Elasthan Game are embedded in the nozzle and combined with the filament yarns mentioned above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

The invention relates to an entanglement nozzle and to a method for producing fine knotted yarn with highly regular knots by means of air jets comprising a yarn treatment channel. According to said method, air is blown transversally to the yarn treatment channel. Said blown air forms a respective double swirl both in the yarn transport direction and against the yarn transport direction for creating the knots. According to the invention, upon entry into the yarn treatment channel, the blown air is converted into two intense, stationary eddy currents that are not disrupted by filament bundles, in an air swirling chamber that only extends for a short distance in the longitudinal direction of the yarn channel. The regularity of the knots can be significantly improved, despite the tiny dimensions of the air swirling chamber, which projects beyond the longitudinal wall of the yarn channel for a maximum 0.5 mm or for 5% to 22% of the width (B) of said channel. It is also possible to create hard or soft knots that can be subsequently undone.

Description

Technisches GebietTechnical area

Die Erfindung betrifft ein Verfahren zur Herstellung von Knotengarn bzw. verwirbeltem Garn von DTY- (Draw Twist Yarn) und/oder Glattgarnen mit hoher Regelmässigkeit der Knoten mittels Luftdüsen mit einem Gambehandlungskanal sowie Blasluft, welche quer zu dem Gambehandlungskanal eingeblasen wird, wobei die Blasluft in Garnförderrichtung sowie gegen die Garnförderrichtung je einen Doppelwirbel zur Erzeugung der Knoten bildet. Die Erfindung betrifft ferner eine Verwirbelungsdüse für die Herstellung von Knotengarn mit hoher Regelmässigkeit der Knoten mit einem durchgehenden Gambehandlungskanal sowie einem Blasluftzufuhrkanal, wobei der Blasluftzufuhrkanal auf die Längsmittenachse des Garnbehandlungskanales gerichtet ist.The invention relates to a method for the production of knotted yarn or twist yarn of DTY (Draw Twist Yarn) and / or smooth yarns with high regularity of knots by means of air nozzles with a Gambehandlungskanal and blowing air, which is injected transversely to the Gambehandlungskanal, the blast air in Garnförderrichtung and against the Garnförderrichtung ever a double vortex for generating the node forms. The invention further relates to a Verwirbelungsdüse for the production of knot yarn with high regularity of the nodes with a continuous Gambehandlungskanal and a Blasluftzufuhrkanal, wherein the Blasluftzufuhrkanal is directed to the longitudinal center axis of the Garnbehandlungskanales.

Stand der TechnikState of the art

In der jüngeren Vergangenheit wurden zunehmend feinere Filamente hergestellt. Diese werden als Microfilamente bezeichnet, wenn der Denier per Filament (dpf) zwischen 0.5 und ca. 1.2 liegt. Die daraus hergestellten Game nennt man Microfilamentgame. Man spricht von Supermikrofilamentgamen, wenn der dpf < 0.5 liegt. Wenn in der Folge von Microfilamenten gesprochen wird, sind auch Supermicrofilamente eingeschlossen, wenn nicht anders vermerkt. Bereits Garne mit einem dpf über 1.2 bedingen eine schonende Verarbeitung, damit weder einzelne Filamente noch das ganze Garn bricht. In noch gesteigertem Masse gilt dies bei den Microfilamentgamen. Bei Microfilamentgarnen hat der Verbund aller Filamente eine wichtige Bedeutung. Es muss dafür gesorgt werden, dass nicht einzelne Filamente abstehen und so eine Bruchgefahr ergeben. DTY-Game bedeutet "Draw-Twist-Yam", auf deutsch: falschzwirntexturiete Garne.In the recent past, increasingly finer filaments have been produced. These are called microfilaments when the denier per filament (dpf) is between 0.5 and about 1.2. The game made of it is called Microfilamentgame. One speaks of Supermikrofilamentgamen, if the dpf <0.5 lies. When microfilaments are subsequently referred to, supermicrofilaments are included unless otherwise noted. Already yarns with a dpf over 1.2 require gentle processing, so that neither single filaments nor the whole yarn breaks. To an even greater extent, this applies to the microfilament games. In the case of microfilament yarns, the combination of all filaments has an important meaning. It must be ensured that do not stand out individual filaments and thus give a risk of breakage. DTY-Game means "Draw Twist Yam", in English: false twist texture yarns.

Es werden im Markt in verhältnismässig grossem Rahmen verwirbelte Garne mit der sogenannten Luftverwirbelung angewendet. Im Markt zeigen sich zwei Tendenzen ab. Bei vielen Anwendungsfällen werden in allen Filamentfeinheiten durch die Luftverwirbelung gut ausgebildete, starke und stabile Knoten gefordert. Die Luftdüse muss in Bezug auf alle Parameter dafür ausgebildet werden. Anders ist die Situation bei feinen, insbesondere bei Microfilamentgamen. Mit diesen Garnen werden feine Stoffe hergestellt, welche beim Anfühlen sehr geschmeidig und seidenartig sein müssen. Hier zeigt sich, dass die Bildung von sehr stabilen und beinahe unauflösbaren Knoten nachteilig sein kann, indem sich die Knoten unerwünschterweise als eine Art Rasterung, besonders auf feinstem, unigefärbtem Gewebe, abzeichnen. Innerhalb der Garnverarbeitung werden zwar Knoten gewünscht; diese sollen aber später bei der Verarbeitung der feinen Game zu Geweben oder anderen Stoffen vollständig verschwinden. Das sogenannte Knotengarn wird mit der Verwirbelung in Verwirbelungsdüsen hergestellt. Die Knoten stellen die örtliche Einbindung aller Filamente und kurzen Knotenfolgen über den ganzen Garnlauf sicher. Ziel der Verwirbelung ist eine hohe Knotenzahl pro Meter mit regelmässigem Abstand zwischen den Knoten. Die vorrichtungsgemässen Bedingungen werden mit einem Garnbe-handlungskanal mit einer Blasluftzufuhr quer zu dem Gamkanal gegeben. Dabei strömt die Blasluft auf beiden Seiten des Garnkanales ab und bildet durch das etwa mittige Einblasen in der Gamtransportrichtung und gegen die Gamtransportrichtung je einen sogenannten Doppelwirbel. Mit dem Durchführen des Games durch die entsprechende Wirbelzone ergibt sich eine Art alternierende Luftbewegung, welche letztlich mitverantwortlich ist für eine repetitive Bildung von Knoten mit kurzen Unterbrüchen zwischen den Knoten. Die Kunst liegt nun darin, mit gezielter Ausgestaltung aller Dimensionen des Garnkanales einer Verwirbelungsdüse sowie der Art der Luftzuführung, des Luftdruckes, der Überlieferung und der Gamtransportgeschwindigkeit ein Optimum zwischen den drei Gamqualitätskriterien,

  • Knotenstabilität,
  • Knotenzahl pro Meter,
  • Regelmässigkeit der Knotenbildung
für den jeweiligen Anwendungsfall zu finden. Bei gröberen Filamenten dpf 1.2- 4 wird eine Knotenzahl von bis zu 110 und bei Microfilamentgarnen bis zu 200 pro Meter Garn gewünscht. Der Luftdruck liegt für Microfilamente etwa bei 0,5 bis 1,5 bar. Die Voreilung liegt bei 3 % - 6 %. Bei feinen Filamenten werden im Stand der Technik 140 Punkte bzw. Knoten pro Meter Garnlänge erzeugt. Erwünscht ist dabei eine höchstmögliche Regelmässigkeit der Knotenfolge. Es soll verhindert werden, dass knotenfreie Garnstrücke entstehen, in denen ein oder mehrere Knoten hintereinander fehlen. Das Mass der Stabilität sagt aus, unter welchen Zugkräften sich die Knoten wieder auflösen. Bei der einfachsten Art, dies zu prüfen, wird das Garn zwischen zwei Händen gehalten und langsam oder ruckartig gespannt.There are used in the market in relatively large amounts swirled yarns with the so-called air turbulence. There are two trends in the market. In many applications, well trained, strong and stable knots are required in all filament finenesses due to air turbulence. The air nozzle must be designed with respect to all parameters. The situation is different with fine, in particular with Microfilamentgamen. These yarns are used to produce fine fabrics that have to be very supple and silky when touched. This shows that the formation of very stable and almost indissoluble nodes are disadvantageous can, undesirably, be seen as a kind of rastering, especially on the finest, uncolored tissue. Within the yarn processing knots are desired; but these should later disappear completely when processing the fine game into fabrics or other fabrics. The so-called knotted yarn is produced with the swirling in swirling nozzles. The knots ensure the local integration of all filaments and short knot sequences over the whole yarn run. The aim of the turbulence is a high number of knots per meter with regular spacing between the nodes. The device conditions are given with a Garnbe-treatment channel with a Blasluftzufuhr transverse to the Gamkanal. The blowing air flows on both sides of the yarn channel and forms by the approximately central blowing in the Gamtransportrichtung and against the Gamtransportrichtung ever a so-called double vortex. By performing the game through the corresponding vortex zone, a kind of alternating air movement results, which is ultimately responsible for a repetitive formation of nodes with short breaks between the nodes. The art is now, with targeted design of all dimensions of the yarn channel of a Verwirbelungsdüse and the type of air supply, the air pressure, the tradition and the Gamtransportgeschwindigkeit an optimum between the three Gamqualitätskriterien,
  • Node stability,
  • Number of knots per meter,
  • Regularity of knot formation
to find for the respective application. For coarser filaments dpf 1.2- 4 a number of knots of up to 110 and for microfilament yarns up to 200 per meter of yarn is desired. The air pressure for microfilaments is approximately 0.5 to 1.5 bar. The lead is 3% - 6%. With fine filaments 140 points or knots per meter of yarn length are produced in the prior art. Desirable is a highest possible regularity of the node sequence. It is to be prevented that node-free yarn pieces arise in which one or more nodes are missing in succession. The measure of stability states under what tensile forces the nodes dissolve again. In the simplest way to test this, the yarn is held between two hands and stretched slowly or jerkily.

Die DE 197 00 817 zeigt eine Sonderform einer Verwirbelungsdüse für Teppichgarn, also für sehr grobe BCF-Game. Es wurde ausgegangen von einem Verfahren zur kontinuierlichen Herstellung von spinntexturierten Filamentgarnen in einem durchgehenden Garnkanal bzw. Verwirbelungskanal einer Wirbeldüse. Das Filamentgarn wird durch einen quer in die Wirbeldüse gerichteten und vorwärts sowie rückwärts aus dem Garnkanal abströmenden Blasluftstrom verwirbelt und die Abluft des Rückwärtswirbels etwa in Gegenrichtung zur Blasluftzuführung aus dem Garneinführbereich abgelassen. Als Lösung wird vorgeschlagen, dass in dem Verwirbelungskanal zwei ungleich stark wirkende Wirbel erzeugt werden, wobei der Vorwärtswirbel stärker wirkend ausgebildet ist als der Rückwärtswirbel.The DE 197 00 817 shows a special form of a Verwirbelungsdüse for carpet yarn, so for very rough BCF game. It was assumed that a process for the continuous production of spun-textured filament yarns in a continuous yarn channel or vortex channel of a vortex nozzle. The filament yarn is directed through a transversely directed into the vortex nozzle and forward and backward from the Whirled yarn channel outflow blowing air flow and discharged the exhaust air of the backward vortex approximately in the opposite direction to the Blasluftzuführung from the Garneinführbereich. As a solution, it is proposed that two unevenly acting vortices be produced in the swirling channel, wherein the forward swirl is designed to be more effective than the backward swirl.

Die DE 37 11 759 geht aus von feineren bis zu mittleren Garnen und versucht, die Verarbeitbarkeit des Games in der nachfolgenden Verarbeitung, beispielsweise auf Web-, Wirk-, Strick- und Tuftingmaschinen, zu verbessern. Der Erfinder ging aus von einer Verwirbelungsvorrichtung zum Verwirbeln von Multifilamentgarnen, die mindestens einen Garnkanal aufweist, wobei in Abständen von der Ein- und Austrittsmündung des Garnkanales Gamführer angeordnet sind und die Filamente jeweils eines Multifilamentgarnes im Gamkanal mittels einer Blasdüse in ihn einblasbare Druckluft verwirbelbar sind. Das Garn erfährt beim Einlaufen und Auslaufen aus dem Garnkanal jeweils eine Richtungsänderung von weniger als 90°, und der Blaswinkel der Blasdüse ist kleiner als 90°. Als neue Lösung wird vorgeschlagen, dass die Garnführer so angeordnet sind, dass durch sie das Garn bei abgestellter Druckluftzufuhr so an den Gamkanal angelegt wird, dass es sich im Garnkanal parallel zu dessen Längsrichtung erstreckt und dabei an der Austrittsmündung der mindestens einen Blasdüse anliegt. Der Abstand der Gamführer beträgt von den ihnen benachbarten Gamkanalmündungen maximal 30 mm. Die Länge des Garnkanals beträgt bei ungekräuselten Multfilamentgamen maximal 40 mm und bei gekräuselten Multifilamentgarnen maximal 30 mm. Der DE 37 11 759 kommt zumindest das Verdienst zu, die Erkenntnis des positiven Effektes eines kurzen Garnkanls für die Erzeugung von Knotengam in eine breitere Fachwelt getragen zu haben. Konkret wird eine Garnkanallänge bei texturierten bzw. gekräuselten Garnen von 10 - 28 mm vorgeschlagen. Insbesondere der Bereich von 10 mm Garnkanallänge wird als kurz verstanden.The DE 37 11 759 Starting from finer to medium yarns and trying to improve the processability of the game in subsequent processing, such as weaving, knitting, knitting and tufting machines. The inventor started out from a swirling device for swirling multifilament yarns which has at least one yarn channel, wherein yarn guides are arranged at intervals from the inlet and outlet mouth of the yarn channel and the filaments of a respective multifilament yarn can be swirled in the yarn channel by means of a blowing nozzle. The yarn undergoes a change in direction of less than 90 ° when entering and leaving the yarn channel, and the blowing angle of the blowing nozzle is less than 90 °. As a new solution, it is proposed that the yarn guides are arranged so that the yarn is applied to the Gamkanal with the compressed air supply off so that it extends in the yarn channel parallel to its longitudinal direction and thereby rests against the outlet mouth of the at least one tuyere. The distance of the Gamführer is from the Gamkanalmündungen adjacent to them a maximum of 30 mm. The length of the yarn channel is a maximum of 40 mm for uncrimped multfilament yarns and a maximum of 30 mm for crimped multifilament yarns. Of the DE 37 11 759 At least the merit of having carried the knowledge of the positive effect of a short yarn can for the production of Knotengam in a broader professional world. Specifically, a yarn channel length is proposed for textured or crimped yarns of 10-28 mm. In particular, the range of 10 mm yarn channel length is understood to be short.

Die jüngste Erfahrung zeigt, dass die an sich sehr verbreitete Anwendung von Luftdüse für die Herstellung von Knotengam bei sehr feinen, insbesondere bei Mikrofilamenten, nicht befriedigt. Im Hinblick auf feine Garne, insbesondere bei Mikrofilamentgarnen, wird in jedem Fall eine höchste Regelmässigkeit der Knotenfolge, jedoch in gewissen Anwendungsfällen mit nur schwachen, temporär konstanten jedoch reversiblen, d.h. sich bei der Garnverarbeitung wieder auflösenden Knoten verlangt. Die Knoten dürfen sich im fertigen Gewebe nicht abzeichnen. Es wurde vielfach versucht, Düsen des Standes der Technik, z.B. mit tieferen Drücken der Speiseluft, zu betreiben. Es ist bekannt, dass bei tieferen Luftdrücken schwächere Knoten entstehen, allerdings mit dem Nachteil einer vielfach nicht akzeptablen Unregelmässigkeit, sowohl der Knotenstärke bzw. Knotenstabilität wie auch der Abstände zwischen den Knoten.
Im Markt ist in allerjüngster Zeit eine sehr starke Tendenz hin zum Einsatz von sogenannten Microfilamentgamen. Der Frage der Regelmässigkeit der Knoten sowie zumindest einer genügenden Stabilität der Knoten für die Weiterverarbeitung wird dabei in vielen Anwendungsfällen eine zentrale Bedeutung beigemessen. Es wird in den meisten Fällen gefordert, dass die Anzahl Knoten nicht merklich unter die zurzeit erreichbaren 140 Knoten / m fallen darf, ferner dass der benötigte Druck für die Blasluft im Hinblick auf den Energiebedarf gesenkt werden kann.
Recent experience shows that the very widespread use of air nozzle for the production of Knotengam in very fine, especially microfilaments, not satisfied. With regard to fine yarns, especially in the case of microfilament yarns, the highest regularity of the knot sequence is required in each case, but in some cases only weak, temporarily constant, but reversible knots, that is to say, knit yarn loops again. The knots must not be visible in the finished fabric. It has been tried many times to operate nozzles of the prior art, for example, with lower pressures of the feed air. It is known that at lower atmospheric pressures weaker nodes arise, but with the disadvantage of a Often unacceptable irregularity, both the node strength and node stability as well as the distances between the nodes.
Most recently, the market has a very strong tendency towards the use of so-called microfilament yarns. The question of the regularity of the nodes as well as at least sufficient stability of the nodes for further processing is of central importance in many applications. It is required in most cases that the number of nodes may not fall noticeably below the currently achievable 140 knots / m, and that the required pressure for the blown air can be reduced with regard to the energy requirement.

Der Erfindung wurde nun die Aufgabe gestellt, ein Verfahren sowie eine Verwirbelungsdüse zu finden, mit denen auch bei hohen Garntransportgeschwindigkeiten die zuvor erwähnten Qualitätskriterien bei der Herstellung von feinen, insbesondere von Microfilamentgamen, erreichbar sind, mit den vier Zielforderungen:

  • Druckreduktion für die Blasluft,
  • Knotenzahl pro Meter > 140/m für dpf < 1.2,
  • einstellbare Knoten- Stabilität,
  • hohe Regelmässigkeit der Knotenfolge.
The invention has now the object of finding a method and a Verwirbelungsdüse with which even at high yarn transport speeds the aforementioned quality criteria in the production of fine, especially microfilament yarns, can be achieved, with the four goal:
  • Pressure reduction for the blown air,
  • Number of knots per meter> 140 / m for dpf <1.2,
  • adjustable knot stability,
  • high regularity of the node sequence.

Darstellung der ErfindungPresentation of the invention

Das erfindungsgemässe Verfahren ist dadurch gekennzeichnet, dass die Blasluft in dem Eintrittsbereich in den Garnbehandlungskanal in einer Luftdrallkammer in zwei starke stationäre, von Filamentbündeln nahezu ungestörte Luft-Drallströmungen versetzt wird.The method according to the invention is characterized in that the blown air in the entry region into the yarn treatment channel in an air swirl chamber is displaced into two strong stationary air swirl flows, which are almost undisturbed by filament bundles.

Die erfindungsgemässe Verwirbelungdüse ist dadurch gekennzeichnet, dass im Mündungsbereich des Blasluftzufuhrkanales in dem Garnbehandlungskanal eine Blasluftkanaterweiterung gebildet ist zur Bildung einer Luftdrallkammer für zwei gegenläufige stationäre Luft-Drallströmungenwobei die Blasluftkanalerweiterung um weniger als 22 % jedoch mehr als 5 % der Garnkanalbreite übersteht.The swirling nozzle according to the invention is characterized in that a blown air duct extension is formed in the mouth region of the blown air supply duct in the yarn treatment duct to form an air swirl chamber for two counter-rotating stationary air swirl flows, whereby the blown air duct extension exceeds less than 22% but more than 5% of the yarn duct width.

Im Stand der Technik sind in Bezug auf die neue Erfindung zwei Verwirbelungsdüsen bekannt:

  • Erstens sind es Verwirbelungsdüsen mit durchgehenden Gamkanälen, wie z.B. in der einleitend erwähnten DE 37 11 759 beschrieben wird. Das typische ist dabei ein gleichmässiger durchgehender Garnkanal.
  • Zweitens sind es Verwirbelungsdüsen mit einer Gam-Verwirbelungskammer in dem Bereich der Blasluftzufuhr in den Garnkanal. Man ging dabei von dem Modell aus, dass die geöffneten Einzelfilamente des Games gleichsam eine zusätzliche Kammer brauchen, um auf die Seite auszuschwingen, und so verbesserte Knotenstabilität erzeugt werden.
In the prior art, with respect to the new invention, two swirl nozzles are known:
  • First, there are swirl nozzles with continuous Gamkanälen, such as in the introductory mentioned DE 37 11 759 is described. The typical is a uniform continuous yarn channel.
  • Second, there are swirl nozzles with a Gam swirling chamber in the area of the blast air feed into the yarn channel. It was based on the model that the open individual filaments of the game as an additional Chamber need to swing out to the side, and so improved node stability can be generated.

Interessant ist dabei, dass im ersteren Falle eine hohe Knotenzahl erreicht wird. Nachteilig ist jedoch, dass die Stabilität der Knoten und die Regelmässigkeit der Knotenfolge selbst bei geringer Reduktion des Druckes der Blasluft spürbar verschlechtert wird. Im zweiten Fall ist zwar die Knotenstabilität genügend, jedoch genügt die Knotenzahl für viele Anwendungen nicht.It is interesting that in the former case a high number of nodes is achieved. The disadvantage, however, is that the stability of the nodes and the regularity of the node sequence is noticeably deteriorated even with a slight reduction of the pressure of the blowing air. In the second case, although the node stability is sufficient, but the number of nodes for many applications is not enough.

Die neue Erfindung hat sich gelöst von der sogenannten "Vortex-Chamber". Als Vortexchamber wird eine relativ grosse Erweiterung des Garnkanales vor und nach dem Bereich der Lufteinblasstelle verstanden. Das Ziel dabei war, dem Garn bzw. den einzelnen Filamenten die Möglichkeit zu geben, innerhalb der Vortex-Chamber hin- und her zu pendeln. Die neue Erfindung sucht dagegen eine Verbesserung auf der Luftseite. Es wird eine Air-twist-chamber oder Microwirbelkammer für die Luft vorgeschlagen. Es trifft zu, dass mit der Vortex-Chamber die Knotenstabilität gesteigert werden konnte. Dies geht jedoch zu Lasten der Anzahl Knoten. Es werden weniger Knoten pro Meter Garn erzeugt. Die einzelnen Knoten sind jedoch länger. Völlig überraschend konnte in Laborversuchen mit der neuen efindungsgemässen Lösung eine bisher nicht erreichte Knotenstabilität mit gleichmässigen Knoten nahezu ohne Einbusse in Bezug auf die Knotenzahl erreicht werden. Der Microwirbel für die Luft allein ist möglich, da die örtliche Luftströmung im Schall- und Überschall bereich liegt und die Phänomene der Überschallströmung genutzt werden, in dem örtlich beschränkt zwei starke stationäre Luftdrallströmungen erzwungen werden.The new invention has been solved by the so-called "vortex chamber". As Vortexchamber is understood a relatively large extension of the yarn channel before and after the area of the Lufteinblasstelle. The goal was to give the yarn or individual filaments the opportunity to oscillate within the vortex chamber. The new invention, however, seeks an improvement on the air side. It is proposed an air-twist-chamber or Microwirbelkammer for the air. It is true that the node stability could be increased with the vortex chamber. However, this is at the expense of the number of nodes. There are fewer knots per meter of yarn produced. The individual nodes are longer. Quite surprisingly, in laboratory experiments with the new solution according to the invention, a hitherto unattained nodal stability with uniform nodules could be achieved with almost no loss in terms of the number of nodules. The micro-vortex for the air alone is possible because the local air flow is in the sonic and supersonic range and the phenomena of supersonic flow are used in the locally constrained two strong stationary air swirling currents are enforced.

Vom Erfinder ist ferner erkannt worden, dass in den bisherigen Verfahren von einem ungenügenden Modell der Knotenbildung ausgegangen wurde. Die gegenläufigen Wirbel in jeder Abströmrichtung sind so lange stabil, als kein Garn im Garnkanal vorhanden ist. Die Gegenwart des Games bewirkt ein Hin- und Herpendeln des Wirbels. Untersuchungen der Anmelderin zeigten, dass im Zentrum der Knotenbildung das sehr kurzfristige Hin- und Herpendeln der beiden gegenläufigen Wirbel steht. Eine Kombination zwischen den beiden Grosswirbeln sowie einer unbestimmbaren Anzahl Kleinstwirbel bewirken das Hin- und Herreissen und Verknoten der Einzelfilamente. Tatsache ist dabei die völlige Instabilität der gegenläufigen Wirbel, wenn Garn durch den Gaskanal transportiert wird. Demgegenüber beschränkte man sich nach dem Modell des Standes der Technik auf die Doppelwirbelbildung. Es wurde dabei der sich ergebende Widerspruch übersehen. Vom Erfinder ist nun erkannt worden, dass die Situation bei der Behandlung von feinen Garnen spürbar verbessert werden kann, wenn anstelle eines durchgehenden, gleichmässigen Garnkanals oder einer Garnwirbelkammer eine Luftdrallkammer in den Eintrittsbereich der Blasluft in dem Garnbehandlungskanal angebracht wird, so dass der Luftstrom an der betreffenden Stelle in zwei starke ungestörte Drallströmungen versetzt wird. Die Luftdrallkammer stellt eine Miniatur-Blasluftkanalerweiterung dar und bildet einen Übergang zwischen einer völlig stabilen Drallströmung in dem Bereich der Lufteinblasung sowie der anschliessenden ebenso völlig instabilen Wirbelzone bis zum Austritt aus dem Garnkanal. Damit wird ein scharfer Wirbelansatz sowohl in Garntransportrichtung wie auch gegen die Gamtransportrichtung vorgegeben. Die Luftströmungen finden in Schall- und Überschallgeschwindigkeit statt, so dass die entsprechenden Phänomene zusätzlich genutzt werden können.It has also been recognized by the inventor that in the previous methods an insufficient model of knot formation was assumed. The counter-rotating vortices in each outflow direction are stable as long as there is no yarn in the yarn channel. The presence of the game causes a back and forth of the vortex. Investigations by the applicant showed that the very short-term oscillation of the two opposing vertebrae is at the center of knot formation. A combination between the two large vertebrae and an indeterminable number of small vertebrae causes the tearing and knotting of the individual filaments. The fact is, the complete instability of the opposing vortices, when yarn is transported through the gas channel. In contrast, they limited themselves to the model of the prior art on the double vortex formation. It overlooked the resulting contradiction. It has now been recognized by the inventor that the situation in the treatment of fine yarns can be noticeably improved if instead of a continuous, uniform yarn channel or a yarn vortex chamber an air swirl chamber is mounted in the inlet region of the blowing air in the yarn treatment channel, so that the air flow is placed at the relevant point in two strong undisturbed swirling flows. The air swirl chamber is a miniature blast air duct extension and forms a transition between a completely stable swirl flow in the area of the air injection and the subsequent just as completely unstable vortex zone to the exit from the yarn channel. Thus, a sharp whirling approach in both Garntransportrichtung as well as against the Gamtransportrichtung is specified. The air currents take place at sound and supersonic speeds, so that the corresponding phenomena can be used additionally.

Die Erfindung gestattet eine ganze Anzahl vorteilhafter Ausgestaltungen. Es wird dabei von dem Modell ausgegangen, dass in der Luftdrallkammer ein kurzer Bereich mit einer stabilen Drallströmung erzeugt wird, an welche anschliessend sowohl in Gamtransportrichtung wie auch gegen die Garntransportrichtung einer Wechselwirbelzone gefolgt wird. Nachfolgend wird eine tabellarische Übersicht über die verschiedenen Gamtypen mit der entsprechenden Filamentfeinheit gezeigt: Endlosfilamentgame: Unterteilung gebräuchlicher Garn- und Filamentfeinheiten Denier per filament (dpf) Garntyp DTY-Game (Falschzwim) Glattgame BCF-Game (Bulk Continous Filament) Garnfeinheit Fein Mittel Grob Fein Mittel Grob Fein Mittel Grob Titer (Denier) 20 -75 75 -150 > 150 40 -300 300 -1000 > 1000 500 -1000 1000 -3000 3000 - 7000 Filament feinheit Supermicro 0.2 -0.5 0.2 - 0.5 0.2 - 0.5 S - M S - M Micro 0.5 - 1.2 0.5 - 1.2 0.5 - 1.2 0.5 - 1.2 S-HD S-HD M - HD Fein 1.2-2 1.2-2 1.2-2 1-2 5-10 5-10 5-10 M-HD M-HD Mittel 2-4 2-4 2-5 2-5 10-20 10-20 HD HD Grob 2-6 2 - 6 5-10 5-20 20-30 20-30 HD HD       Interlace Stability : S=soft M=medium HD=hard The invention allows a number of advantageous embodiments. It is assumed that the model that in the air swirl chamber, a short region is generated with a stable swirl flow, which is then followed in both Gamtransportrichtung as well as against the Garntransportrichtung a swirl zone. Below is a tabular overview of the different types of yarn with the corresponding filament fineness: Endless Filament Game: subdivision of common yarn and filament fineness Denier per filament (dpf) yarn type DTY-Game (false twist) Straight game BCF Game (Bulk Continuous Filament) yarn count Fine medium Rough Fine medium Rough Fine medium Rough Titre (denier) 20-75 75 -150 > 150 40 -300 300 -1000 > 1000 500 -1000 1000-3000 3000 - 7000 Filament fineness Supermicro 0.2-0.5 0.2 - 0.5 0.2 - 0.5 S - M S - M Micro 0.5 - 1.2 0.5 - 1.2 0.5 - 1.2 0.5 - 1.2 S-HD S-HD M - HD Fine 1.2-2 1.2-2 1.2-2 1-2 5-10 5-10 5-10 M-HD M-HD medium 2-4 2-4 2-5 2-5 10-20 10-20 HD HD Rough 2-6 2 - 6 5-10 5-20 20-30 20-30 HD HD Interlace Stability: S = soft M = medium HD = hard

Grössere Versuchsreihen mit der erfindungsgemässen Lösung haben gezeigt, dass für die Blasluft Druckluft von mehr als 0,5 bar, jedoch von weniger als 3 bar verwendet und ein Knotengam mit hoher Stabilität der Knoten hergestellt werden kann. Es wurden dabei Garne kleiner als 2 bis 5 dpf, vor allem kleiner als 1 dpf, behandelt. Der Garnkanalquerschnitt ist bevorzugt halbrund oder U-förmig ausgebildet, wobei die Garnkanalbreite (B) grösser ist als die Garnkanaltiefe (T). Die Luftdrallkrammer stellt eine kalottenartige Luftkanalerweiterung im Garnkanal dar. Die Luftdrallkammer wird zumindest angenähert symmetrisch ausgebildet und übersteht beidseits weniger als 0,5 mm über die seitlichen Garnkanalwandungen. Ein sehr wichtiger Punkt der neuen Lösung liegt darin, dass die Luftdrallkammer derart miniaturisiert ausgebildet ist, dass das Garnbündel nicht vollständig in die seitliche Erweiterung der Luftdrallkammer eindringen kann. Die Luftdrallkammer übersteht nur um den Bruchteil eines Millimeters die Garnkanalwand. So wird z.B. für einen 1,6 mm breiten Garnkanal eine grösste Breite der Luftkammer von 2,2 mm vorgeschlagen. Es war für alle Beteiligten anfänglich völlig überraschend, dass mit einer derart geringen Massnahme entsprechend grosse Effekte erzielt werden konnten. Die Erklärung liegt jedoch in der gezielten Ausgestaltung der Überschallluftströmung.Larger test series with the solution according to the invention have shown that compressed air of more than 0.5 bar, but less than 3 bar, can be used for the blowing air and a knot yarn with high stability of the knots can be produced. Yarns smaller than 2 to 5 dpf, especially smaller than 1 dpf, were treated. The Garnkanalquerschnitt is preferably formed semicircular or U-shaped, wherein the yarn channel width (B) is greater than the Garnkanaltiefe (T). The Luftdrallkrammer represents a dome-like air duct extension in the yarn duct. The air swirl chamber is formed at least approximately symmetrical and protrudes on both sides less than 0.5 mm on the side Garnkanalwandungen. A very important point of the new solution is that the air swirl chamber is designed miniaturized such that the yarn bundle can not completely penetrate into the lateral extension of the air swirl chamber. The air swirl chamber protrudes only a fraction of a millimeter, the Garnkanalwand. For example, for a 1.6 mm wide yarn channel a maximum width of the air chamber of 2.2 mm proposed. It was initially completely surprising to all those involved that such a small measure could be used to achieve correspondingly large effects. However, the explanation lies in the targeted design of the supersonic air flow.

Die neue Erfindung konnte mit grossen Versuchsreihen mit DTY-Garnen (Falschzwirngarne) untersucht werden. Die Resultate waren bei feinen, mittleren und groben Garnen gut. Am meisten überraschten die Ergebnisse bei feinen Garnen, insbesondere bei Microfilamentgarnen. Erste Versuche mit Glattgarnen waren positiv, wenn auch das Ergebnis weniger deutlich ausfiel im Verhältnis zu DTY-Gamen. Zumindest auf Grund theoretischer Überlegungen kann die neue Erfindung auch bei BCF-Garnen eingesetzt werden, wobei bei den BCF-Gamen auf Grund der viel grösseren Garnkanalbreiten von bis zu 8 mm die Luftdrallkammer höchstens 22%, mindestens 5% der Gamkanalbreite überstehen soll.The new invention could be examined with large series of tests with DTY yarns (false twist yarns). The results were good for fine, medium and coarse yarns. The results were most surprising in fine yarns, especially microfilament yarns. First attempts with plain yarns were positive, although the result was less pronounced in relation to DTY-Gamen. At least on the basis of theoretical considerations, the new invention can also be used in BCF yarns, in the BCF-Gamen due to the much larger yarn channel widths of up to 8 mm, the air swirl chamber is to survive at most 22%, at least 5% of Gamkanalbreite.

Die neue Erfindung erlaubt auch eine ganze Anzahl vorteilhafter Ausgestaltungen der Gamverwirbelungsdüse. So wird vorgeschlagen, den Gambehandlungsquerschnitt halbrund oder U-förmig und mit einer ebenen Pralldecke auszubilden.The new invention also allows for a number of advantageous embodiments of the yarn swirling nozzle. It is proposed to form the Gambehandlungsquerschnitt half round or U-shaped and with a flat baffle.

Alle Versuche haben deutlich gezeigt, dass die eigentlichen kritischen Masse der Luftdrallkammer das seitliche Überstehen und die Längsabmessungen sind. Die Luftdrallkammer wird als miniaturisierte Kalotte in Bezug auf den Gambehandlungskanat-Querschnitt seitlich formähnlich ausgebildet, wobei die Luftdrallkammer beidseits des Gambehandlungskanales weniger als 0,5 mm übersteht. Das Überstehmass von kleiner 0,5 mm konnte mit Garnen bis zu 500 Denier bestätigt werden, also mit Gamkanalbreiten bis zu 3 mm. Vergleichsversuche: Einfluss der Wirbelkammertänae Kanalbreite B (mm) Wirbelkammertiefe ( % von B) Wirbelkammerlänge (mm) Versuchsergebnis 2.4 25% 4.21 Stand der Technik 2.35 17.0% 2.17 gut *** gemäss Erfindung 1.6 0% 0 Stand der Technik 1.6 18.8% 1.51 gut***, Referenz gemäss Erfindung 1.6 18.8% 1.81 gut ** 1.6 18.8% 2.11 schlecht * 1.6 18.8% 2.51 schlecht * 1.6 18.8% 3.01 schlecht * * = Verlust an Knoten, Stabilität und Gleichmässigkeit
** = Leicher Verlust an Knoten, leichter Gewinn an Stabilität
*** = optimales Ergebnis mit erfindungsgemässer Lösung
All experiments have clearly shown that the actual critical mass of the air swirl chamber is the lateral protrusion and the longitudinal dimensions. The air swirl chamber is laterally shaped as a miniaturized dome with respect to the Gambehandlungskanat cross section, wherein the air swirl chamber on both sides of the Gambehandlungskanales protrudes less than 0.5 mm. The Überstehmass of smaller 0.5 mm could be confirmed with yarns up to 500 denier, so with Gamkanalbreiten up to 3 mm. Comparative experiments: Influence of the vortex chamber Channel width B (mm) Whirl chamber depth (% of B) Swirl chamber length (mm) test result 2.4 25% 4.21 State of the art 2:35 17.0% 2.17 good *** according to the invention 1.6 0% 0 State of the art 1.6 08.18% 1:51 good ***, reference according to invention 1.6 08.18% 1.81 Well ** 1.6 08.18% 2.11 bad * 1.6 08.18% 2:51 bad * 1.6 08.18% 3:01 bad * * = Loss of knots, stability and regularity
** = Slight loss of knots, easier gain in stability
*** = optimum result with solution according to the invention

Bei grösseren Garnkanalbreiten über 3 mm wird ein Überstehmass kleiner 22% und grösser als 5% der Garnkanalbreite vorgeschrieben. Vorzugsweise liegt das Überstehmass zwischen 10% und 20% der Garnkanalbreite. Die Luftdrallkammer weist ferner vorzugsweise eine angenähert kreissymmetrische Aussenkontur auf und bildet eine Fortsetzung der Mittenachse des Blasluftzufuhrkanales. Ganz besonders bevorzugt wird zur Intensivierung der seitlichen Luftwirbelbildung die Breite des Gamkanalquerschnittes grösser als die Garnkanaltiefe in Richtung der Blasluftzufuhr ausgebildet. Dabei kann der Behandlungskanal als breiter Kanal mit einer Breite von vorzugsweise 0,6 bis 3 mm, besonders vorzugsweise mit einem Verhältnis Garnkanalbreite (B) zu Garnkanaltiefe (T) von 1,2 bis 2,5, ausgebildet werden. Gemäss Versuchen lag die Länge der Luftdrallkammer bevorzugt bei kleiner 1,3 der Garnkanalbreite. Vorteilhafterweise liegt die Länge der Luftdrallkammer bei etwa 0,7 bis 1,6, bevorzugt bei 0,8 bis 1,2 in Bezug auf die Breite des Gamkanales, was wesentlich unter dem L/B-Verhältnis von etwa 1,75 des Standes der Technik ist.For larger yarn channel widths over 3 mm, an overfeed pass of less than 22% and more than 5% of the yarn channel width is required. Preferably, the Überstehmass is between 10% and 20% of the yarn channel width. The air swirl chamber further preferably has an approximately circularly symmetrical outer contour and forms a continuation of the center axis of the Blasluftzufuhrkanales. Most preferably, the width of the Gamkanalquerschnittes is greater than the Garnkanaltiefe formed in the direction of Blasluftzufuhr to intensify the lateral vortex formation. In this case, the treatment channel can be formed as a wide channel with a width of preferably 0.6 to 3 mm, particularly preferably with a ratio of yarn channel width (B) to yarn channel depth (T) of 1.2 to 2.5. According to tests, the length of the air swirl chamber was preferably smaller than 1.3 of the yarn channel width. Advantageously, the length of the air swirl chamber is about 0.7 to 1.6, preferably 0.8 to 1.2 with respect to the width of the Gamkanales, which is substantially below the L / B ratio of about 1.75 of the prior art Technology is.

Gemäss einem weiteren bevorzugten Ausgestaltungsgedanken wird der Blasluftzufuhrkanal rund oder oval oder oval mit Dreieckcharakter oder Y-förmig ausgebildet, wobei die Seitenabmessung des Blasluftzufuhrkanales höchstens gleich oder kleiner als die entsprechende Gamkanalbreite ist. Die Garnkanalbreite (B) wird grösser als die Luftzufuhrkanalbrefte d ausgestaltet, vorzugsweise in einem Verhältnis B/d von 1,1 bis 3.According to a further preferred embodiment, the blown air supply channel is round or oval or oval with a triangular character or Y-shaped, wherein the side dimension of the Blasluftzufuhrkanales is at most equal to or less than the corresponding Gamkanalbreite. The yarn channel width (B) is made larger than the Luftzufuhrkanalbrefte d, preferably in a ratio B / d of 1.1 to 3.

Gemäss einem weiteren sehr vorteilhaften Lösungsweg wird vorgeschlagen, dass der Garnkanal durch eine ebene verschiebbare Prallplatte sowie eine Düsenplatte mit der Blasluftzufuhr gebildet ist. Dabei wird bevorzugt der Garnkanal durch eine Düsenplatte sowie eine dazu verschiebbare Prallplatte (als sogenannter SlideJet) ausgebildet mit einer Offenstellung des Garnkanales für das Einfädeln des Games sowie einer geschlossenen Stellung des Garnkanales für die Herstellung eines Knotengames. Die Düsenplatte wird als plattenartige Keramikscheibe ausgebildet, derart, dass die Keramikscheibe zusammen mit einem Schiebeteil in der Verwirbelungsdüse und / oder dass die Keramikscheibe in dem Schiebeteil als Wechselplatte ein- und ausbaubar ist.According to a further very advantageous solution, it is proposed that the yarn channel is formed by a plane displaceable baffle plate and a nozzle plate with the blown air supply. In this case, the yarn channel is preferably formed by a nozzle plate and a slidable slab (as a so-called SlideJet) with an open position of the yarn channel for threading the game and a closed position of the yarn channel for the production of a Knotengames. The nozzle plate is formed as a plate-like ceramic disc, such that the ceramic disc together with a sliding part in the Verwirbelungsdüse and / or that the ceramic disc in the sliding part as removable disc and is removable.

Kurze Beschreibung der ErfindungBrief description of the invention

Die Erfindung wird nun an Hand einiger Ausführungsbeispiele mit weiteren Einzelheiten erläutert. Es zeigen:

die Figuren 1a - 1f
die Ausgestaltung des Gambehandlungskanals des Standes der Technik mit den neuen Erkenntnissen der gegenläufigen Wirbel auf beiden Abströmseiten;
die Figuren 2a - 2d
die erfindungsgemässe Lösung mit einer Luftdrallkammer;
die Figuren 3a - 3c
verschiedene Querschnittsformen des Blasluftzufuhrkanales;
die Figur 4a
das Ergebnis eines Berechnungsmodelles für die starken stationären Drallströmungen im Bereich der Luftdrallkammer,
die Figur 4b
die instationären Wirbel, welche im Berechnungsmodell ohne die Präsenz des Games stationär sind;
die Figur 4c
ein schematisches Modell für die stationären Drallströmungen im Bereich der Luftdrallkammer sowie der instationären Wirbel in beiden Abströmrichtungen der Behandlungsluft;
die Figuren 5a bis 5e
verschiedene Details einer Düsenplatten mit daran angebrachten Luftkrallkammern;
die Figuren 6a bis 6d
eine komplette Verwirbelungsdüse vom Typus SlideJet in offener und geschlossener Stellung sowie mit ausgebauter Düsenplatte (Figur 6c bzw. 6d);
die Figuren 7a bis 7f
die wichtigsten Folgeschritte für den Ausbau der Schiebeplatte bzw. der Düsenplatte;
die Figuren 8a bis 8d
den Ein- bzw. Ausbau einer Düsenplatte in ein Schiebeteil der Verwirbelungsdüse;
die Figur 9a
schematisch ein unbehandeltes Glattgarn;
die Figur 9b
ein Knotengam mit weichen Knoten;
die Figur 9c
ein Knotengam mit harten Knoten (dunkle Striche);
die Figur 9d
ein Knotengarn des Standes der Technik mit sehr unregelmässiger Knotenbildung;
die Figuren 10a bis 10c
zeigen im Unterschied zu den Figuren 9c bis 9d Unregelmässigkeiten der Knotenfolge, zum Teil mit unterschiedlichen Abständen, zum Teil mit fehlenden Knoten;
die Figur 11
zeigt eine Gegenüberstellung von harten, beinahe nicht mehr auflösbaren Knoten, welche mit Druckluft von 1,5 bis 3 bar erzeugt werden. Rechts im Bild sind weiche Knoten, welche mit Druckluft von 0,5 bis 1,5 bar erzeugt werden und sich im Laufe der Garnverarbeitung meistens wieder auflösen;
die Figuren 12a und 12b
zeigen eine Sonderform des Blasluftzufuhrkanals mit einem Y-förmigen Querschnitt;
die Figur 12c
zeigt ein weiteres Beispiel für die Ausgestaltung einer erfindungsgemässen Luftdrallkammer 11';
die Figuren 13a bis 13d
zeigen eine Lösung der Anmelderin des Standes der Technik mit übergrossem Gamverwirbelungskanal;
die Figur 14a
zeigt eine erfindungsgemässe Lösung und
die Figuren 14b und 14c
Lösungen des Standes der Technik als Vergleich zu Figur 14a;
die Figuren 15a bis 15c
einen Vergleich der Ergebnisse mit Lösungen des Standes der Technik (Figuren 15a und 15b) sowie der neuen Lösung (Figur 15c);
die Figuren 16a und 16b
wichtige Qualitätsunterschiede aus Laborvergleichsuntersuchungen mit Lösungen des Standes der Technik sowie mit der neuen Erfindung;
die Figur 17
die Versuchsergebnisse mit einem Vergleich mit und ohne Air Twist Chamber mit Glattgarn (flat yam, "fully drawn") bei unterschiedlichen Luftdrücken der Speiseluft.
The invention will now be explained with reference to some embodiments with further details. Show it:
Figures 1a - 1f
the design of the Gambehandlungskanals of the prior art with the new knowledge of the opposite vortex on both downstream sides;
Figures 2a - 2d
the inventive solution with an air swirl chamber;
Figures 3a - 3c
various cross-sectional shapes of the Blasluftzufuhrkanales;
the figure 4a
the result of a calculation model for the strong stationary swirl flows in the area of the air swirl chamber,
Figure 4b
the unsteady vortices that are stationary in the calculation model without the presence of the game;
Figure 4c
a schematic model of the stationary swirl flows in the area of the air swirl chamber and the transient vortex in both outflow directions of the treatment air;
Figures 5a to 5e
various details of a nozzle plate with attached Luftkrallkammern;
FIGS. 6a to 6d
a complete swirl nozzle of the type SlideJet in open and closed position as well as with dismantled nozzle plate ( FIG. 6c or 6d);
FIGS. 7a to 7f
the most important subsequent steps for the removal of the sliding plate or the nozzle plate;
FIGS. 8a to 8d
the installation or removal of a nozzle plate in a sliding part of the Verwirbelungsdüse;
Figure 9a
schematically an untreated plain yarn;
Figure 9b
a Knotengam with soft knots;
Figure 9c
a Knotengam with hard knots (dark lines);
Figure 9d
Knotted yarn of the prior art with very irregular knotting;
FIGS. 10a to 10c
show in contrast to the FIGS. 9c to 9d Irregularities of the node sequence, in part with different distances, partly with missing nodes;
the figure 11
shows a comparison of hard, almost indissoluble nodes, which are generated with compressed air from 1.5 to 3 bar. On the right in the picture are soft knots, which are produced with compressed air of 0.5 to 1.5 bar and usually dissolve again in the course of yarn processing;
Figures 12a and 12b
show a special form of Blasluftzufuhrkanals with a Y-shaped cross section;
the figure 12c
shows a further example of the embodiment of an inventive air swirl chamber 11 ';
FIGS. 13a to 13d
show a solution of the Applicant of the prior art with oversized Gamverwirbelungskanal;
Figure 14a
shows a solution according to the invention and
Figures 14b and 14c
Solutions of the prior art as a comparison to Figure 14a ;
FIGS. 15a to 15c
a comparison of the results with solutions of the prior art ( FIGS. 15a and 15b ) and the new solution ( FIG. 15c );
Figures 16a and 16b
important quality differences from laboratory comparative studies with solutions of the prior art as well as with the new invention;
the figure 17
the test results with a comparison with and without Air Twist Chamber with plain yarn (flat yam, "fully drawn") at different air pressures of the feed air.

Wege und Ausführung der ErfindungWays and execution of the invention

Die Figuren -1a bis 1f zeigen das klassische Modell für die Erzeugung eines Knotengarnes 2' mittels einer Verwirbelungsdüse 1. Dabei werden aus einem unverwirbelten glatten Garn 2 in einem Garnbehandlungskanal 3 durch Einwirkung von Blasluft BL mit den Einzelfilamenten Knoten K gebildet, welche nach dem klassischen Verständnis aus einer Doppelwirbelbildung der Blasluft, sowohl in Garntransportrichtung 7 wie auch entgegen der Gamtransportrichtung innerhalb des Gambehandlungskanales 3 erzeugt werden. Die Blasluft BL tritt über einen Blasluftkanal 4 in Richtung des Pfeiles 5 ein und erzeugt, wie aus den Figuren 1b und 1d erkennbar ist, die typischen Doppelwirbel 6. Das Knotengarn 2' verlässt entsprechend Pfeil 8 die Verwirbelungsdüse 1. Der Gambehandlungskanal 3 hat gemäss Figuren 1a und 1b einen runden Querschnitt. Dasselbe gilt für den Blasluftkanal 4. Die Lösung gemäss den Figuren 1c und 1d entspricht ebenfalls dem bekannten Stand der Technik und stellt insofern eine verbesserte Lösung dar, als der Garnkanal 3 durch eine halbrunde Form in einer Düsenplatte 9 sowie einer flachen Deckplatte 10 ausgebildet ist. Durch diese spezifische Formgebung entstehen wesentlich ausgeprägtere Doppelwirbel 6, wie dies mit der Figur 1d zum Ausdruck gebracht wird.Figures -1a to 1f show the classical model for the production of a knotted yarn 2 'by means of a swirl nozzle 1. In this case, knots K are formed from an untwisted smooth yarn 2 in a yarn treatment channel 3 by the action of blown air BL with the individual filaments Understanding of a double vortex formation of the blown air, both in Garntransportrichtung 7 as well as against the Gamtransportrichtung within the Gambehandlungskanales 3 are generated. The blowing air BL enters via a blast air duct 4 in the direction of arrow 5 and generates, as from the Figures 1b and 1d can be seen, the typical double vortex 6. The knot yarn 2 'leaves according to arrow 8, the swirl nozzle 1. The Gambehandlungskanal 3 has FIGS. 1a and 1b a round cross section. The same applies to the blast air duct 4. The solution according to the Figures 1c and 1d also corresponds to the known prior art and thus represents an improved solution in that the yarn channel 3 is formed by a semicircular shape in a nozzle plate 9 and a flat cover plate 10. Due to this specific shape significantly more pronounced double vortex 6, as with the Figure 1d is expressed.

Erst grössere Untersuchungen in jüngster Zeit haben ergeben, dass die Kenntnis der Knotenbildung sehr unvollständig war. Tatsächlich entsteht die Knotenbildung nicht einfach aus den beiden stabilen Doppelwirbeln 6. Eine Grundvoraussetzung für die Knotenbildung ist die folgende Tatsache:

  1. a) Es trifft zu, dass mit dem Blasluftstrahl BL in dem Garnbehandlungskanal ein Doppelwirbel erzeugt wird (Figuren 1b und 1d).
  2. b) Der Doppelwirbel wird jedoch gemäss Figuren 1c und 1f völlig gestört, wenn ein Filamentgarn 2 in den Gambehandlungskanal 3 eintritt. Innert Millisekunden werden die stabilen Doppelwirbel bei Eintritt des Games zerstört. Es baut sich in der einen Gambehandlungskanalhälfte ein einseitiger Wirbel 6* auf, während der Wirbel 6** zusammenbricht. Die Folge ist die, dass alle Filamente in dem Gambehandlungskanal 3 auf die rechte Seite schwingen. Die Sammlung aller Filamente auf der rechten Seite zerstört jedoch sofort diesen Doppelwirbel, so dass sich nahezu ohne Verzug ein entsprechend grosser Wirbel 6*** auf der linken Seite einstellt (Figur 1b). Diese Pendelbewegung ist bei Vorhandensein der Blasluft sowie des Filamentgames ein völlig unsteter Dauerzustand und letztlich die Ursache der Knotenbildung.
Only recent studies have shown that knowledge of knot formation was very incomplete. In fact, knot formation does not simply arise from the two stable double whirls 6. A basic requirement for knot formation is the following fact:
  1. a) It is true that with the blown air jet BL in the Garnbehandlungskanal a double vortex is generated ( Figures 1b and 1d ).
  2. b) The double vortex is, however, according to Figures 1c and 1f completely disturbed when a filament yarn 2 enters the Gambehandlungskanal 3. Within a few milliseconds, the stable double whirlwinds are destroyed when the game starts. It builds up in one Gambehandlungskanalhälfte a one-sided vortex 6 *, while the vortex 6 ** collapses. The result is that all the filaments in the Gambehandlungskanal 3 swing to the right side. However, the collection of all filaments on the right-hand side immediately destroys this double-whirl, so that a correspondingly large swirl on the left side occurs almost without delay ( FIG. 1b ). This pendulum movement is in the presence of blown air and the filament game a completely unsteady steady state and ultimately the cause of node formation.

Die Figuren 2a bis 2d zeigen eine erfindungsgemässe Lösung. Im Unterschied zu den Figuren 1c bis 1f weist der Gambehandlungskanal 3 zusätzlich eine Luftdrallkammer 11 auf, welche eine unmittelbare Fortsetzung des Bläsluftzufuhrkanales 4 in den Gambehandlungkanal 3 darstellt. Der Gambehandlungskanal 3 ist an der Stelle des Blasluftzufuhrkanales 4 kalottenartig erweitert, wie aus einer entsprechenden Kalotte 12 in Figur 2b erkennbar ist. Es entsteht dadurch in einem Schnitt II, II der Figur 4 eine zusätzliche Drallströmung, entsprechend den beiden Pfeilen 13, 13' in Figur 2a. Die kalottenartige Erweiterung gestattet eine örtlich stationäre Drallströmung ohne einen negativen Einfluss der instationären Wirbelbewegung im anschliessenden Teil des Gambehandlungskanales 3. Die örtlich stationäre Drallströmung geht vielmehr unmittelbar über in die instationäre Wirbelströmung, entsprechend den beiden Figuren 2c und 2d. Die Figur 2b zeigt eine erfindungsgemäss ausgestaltete Düsenplatte 9. Dabei wurden für die selben Merkmale die gleichen Bezugszeichen wie für die Figuren 1 und 2 gewählt. Deutlich erkennbar ist die Miniaturausbildung der Luftdrallkammer, welche nur so gross ausgebildet wird, dass sich das Filamentbündel nicht darin bewegen kann.The FIGS. 2a to 2d show a solution according to the invention. Unlike the FIGS. 1c to 1f the Gambehandlungskanal 3 additionally an air swirl chamber 11, which represents an immediate continuation of the Bläsluftzufuhrkanales 4 in the Gambehandlungkanal 3. The Gambehandlungskanal 3 is dome-like widened at the location of the Blasluftzufuhrkanales 4, as from a corresponding dome 12 in FIG. 2b is recognizable. It arises in a section II, II of the FIG. 4 an additional swirl flow, corresponding to the two arrows 13, 13 'in FIG. 2a , The dome-like expansion allows a locally stationary swirl flow without a negative influence of unsteady vortex movement in the subsequent part of the Gambehandlungskanales 3. The locally stationary swirl flow is rather directly into the transient turbulent flow, corresponding to the two Figures 2c and 2d , The FIG. 2b shows a nozzle plate 9 designed according to the invention. The same reference numerals have been used for the same features as for the same features FIGS. 1 and 2 selected. Clearly visible is the miniature training of the air swirl chamber, which is only so large that the filament bundle can not move in it.

Die Figuren 3a bis 3c zeigen drei unterschiedliche Querschnittsformen für den Blasluftzufuhrkanal; die Figur 3a mit kreisrunder Form 4', Figur 3b mit einem halben Oval 4" sowie die Figur 3c mit einer ovalen Form 4"'.The FIGS. 3a to 3c show three different cross-sectional shapes for the Blasluftzufuhrkanal; the FIG. 3a with circular shape 4 ', FIG. 3b with a half oval 4 "as well as the Figure 3c with an oval shape 4 "'.

Die Figuren 4a und 4b zeigen je das Ergebnis einer CFD-Strömungsberechnung. In der Figur 4a erkennt man sehr deutlich die Blasluftzuführung BL von unten nach oben. Die obere Ebene ist mit E bezeichnet und stellt die Aufprallfläche des Blasluftstromes BL auf die Prallplatte 10 dar. Die Luftdrallkammer 11 ergibt sich aus den beiden kleinen Kalottenausnehmungen 12. Man erkennt in der Figur 4a deutlich die beiden Drallströmungen 14, welche in einem Bereich von weniger als 1 bis 2 mm in Längsrichtung eine sehr stabile Strömungsform ergeben. In der Figur 4a erkennt man aufgrund desselben Rechnungsmodelles (ohne das Vorhandensein von Garn) in der Mitte die stationäre Drallströmung 14 und oben im Bild die beiden Doppelwirbel 6. Die Figur 4c ist eine Zeichnung, welche schematisch die beiden Strömungsformen darstellt.The FIGS. 4a and 4b each show the result of a CFD flow calculation. In the FIG. 4a You can see very clearly the Blasluftzuführung BL from bottom to top. The upper level is denoted by E and represents the impact surface of the blast air flow BL on the baffle plate 10. The air swirl chamber 11 results from the two small Kalottenausnehmungen 12. It can be seen in the FIG. 4a clearly the two swirling flows 14, which give a very stable flow in the longitudinal direction in a range of less than 1 to 2 mm. In the FIG. 4a can be seen on the basis of the same invoice model (without the presence of yarn) in the middle of the stationary swirl flow 14 and the top of the picture, the two double swirls 6. Die Figure 4c is a drawing which schematically illustrates the two flow forms.

Die Figuren 5a bis 5e zeigen die erfindungsgemässe Lösung der Figuren 2 bis 4, angebracht in einer konkreten Düsenplatte 9 für eine SlideJet-Düse.The FIGS. 5a to 5e show the inventive solution of FIGS. 2 to 4 mounted in a concrete nozzle plate 9 for a SlideJet nozzle.

Die Figuren 6a und 6b zeigen eine ganze Verwirbelungsdüse 1, welche als SlideJet ausgebildet ist. Die Figur 6b zeigt die offene bzw. die Einfädelstellung, die Figur 6a die geschlossene Betriebsstellung. Eine Düsenplatte 9 ist in die Verwirbelungsdüse 1 eingebaut, wobei ein Schiebeteil 23 auf dem unteren Schenkel eines Joches 25 hin- und hergleiten kann. Die Gleitbewegung erfolgt durch einen Schiebehebel 26, welcher über eine entsprechende Mechanik die Drehbewegung in die Linearbewegung umsetzt. Die Drehbewegung des Schiebehebels 26 wird dabei in eine reine Schiebebewegung entsprechend Pfeil 27 umgesetzt. Sehr wichtig für die Verwirbelung ist eine Prallplatte 10, welche unter Federdruck dauernd auf die obere plane Fläche der Düsenplatte 9 angedrückt wird. Die ebene, plane Fläche mit hoher Oberflächenfeinheit erlaubt die Bewegung bei gleichzeitiger Dichtfunktion, wozu sich die Prallplatte 10 in Keramik und eine Düsenplatte 9 in Keramik besonders gut eignen. Der Gamkanal 3 sowie ein Luftzuführkanal sind in der Düsenplatte 9 angebracht. Für die Betriebsstellung ist der Luftzuführkanal mit einer Druckluftquelle 22 verbindbar. Der Garnkanal 3 wird in der Betriebsstellung durch den in Figur 6a sichtbaren Teil sowie die untere plane Fläche der Prallplatte 10 bestimmt. Die Figur 6c zeigt eine Düsenplatte 9. Die Figur 6d zeigt ein ganzes Schiebeteil 23 mit eingesetzter Düsenplatte 9. Mit der Figur 6d soll auch dargestellt werden, dass die Befestigung der Düsenplatte 9 in dem Schiebeteil 23 viele Lösungsmöglichkeiten offen lässt. Die Düsenplatte 9 kann, z.B. durch einen Spritzgiessvorgang, direkt in das Schiebeteil 23 eingegossen werden, so dass Keramikscheibe und Schiebeteil 23 ein untrennbares Bauteil bilden. Ferner wäre es möglich, die Keramikscheibe in das Schiebeteil einzukleben.The Figures 6a and 6b show a whole swirling nozzle 1, which is designed as a SlideJet. The FIG. 6b shows the open or threading position, the FIG. 6a the closed operating position. A nozzle plate 9 is installed in the swirling nozzle 1, wherein a sliding part 23 on the lower leg of a yoke 25 back and forth can slide. The sliding movement is effected by a sliding lever 26, which converts the rotational movement in the linear movement via a corresponding mechanism. The rotational movement of the shift lever 26 is thereby converted into a pure sliding movement according to arrow 27. Very important for the turbulence is a baffle plate 10, which under spring pressure permanently on the upper flat surface of the nozzle plate. 9 is pressed. The flat, flat surface with high surface fineness allows the movement with simultaneous sealing function, for which purpose the baffle plate 10 in ceramic and a nozzle plate 9 in ceramic are particularly well suited. The Gamkanal 3 and an air supply duct are mounted in the nozzle plate 9. For the operating position of the air supply channel with a compressed air source 22 is connectable. The yarn channel 3 is in the operating position by the in FIG. 6a visible part and the lower planar surface of the baffle plate 10 is determined. The FIG. 6c shows a nozzle plate 9. The FIG. 6d shows a whole sliding part 23 with inserted nozzle plate 9. With the FIG. 6d should also be shown that the attachment of the nozzle plate 9 in the sliding part 23 leaves many possible solutions. The nozzle plate 9 can be poured, for example by an injection molding, directly into the sliding part 23, so that ceramic disc and sliding part 23 form an inseparable component. Furthermore, it would be possible to glue the ceramic disk in the sliding part.

Die Figur 7a zeigt die geschlossene Betriebsstellung. Der Schiebehebel 26 befindet sich in abgesenkter Position des Garnkanals 3 für den Durchlauf des Games für eine Luftbehandlung, wofür Druckluft über einen Anschluss bzw. eine Druckluftbohrung zuführbar ist. Durch das nach oben Klappen des Schiebehebels 26 wird das Schiebeteil 23 nach vorne geschoben (Figur 7c) und gleichzeitig die Luftzufuhr abgeschaltet, was mit der Versetzung der beiden Druckluftzuführbohrungen um das Mass G bewerkstelligt wird. Durch Andrückern eines Lösehebels entsprechend Pfeil K wird die Federdruckkraft über die Prallplatte 10 aufgehoben und der Eingriff einer Schiebeachse in eine Eingriffsnut freigegeben, so dass das Schiebeteil 23 frei nach vorne geschoben werden kann (Figur 7b). Das Schiebeteil 23 kann nun der Vorrichtung entnommen werden (Figur 7f) und die Keramikscheibe im umgekehrten Sinne zu dem Schiebeteil 23 entnommen werden. Der Wiedereinbau erfolgt im umgekehrten Sinne zu den Figuren 7a bis 7f.The Figure 7a shows the closed operating position. The sliding lever 26 is in the lowered position of the yarn channel 3 for the passage of the game for an air treatment, for which compressed air via a port or a compressed air hole can be fed. By the upward flaps of the shift lever 26, the sliding part 23 is pushed forward ( FIG. 7c ) and simultaneously shut off the air supply, which is accomplished by the displacement of the two Druckluftzuführbohrungen to the dimension G. By pressing a release lever according to arrow K, the spring pressure force on the baffle plate 10 is released and released the engagement of a sliding axis in an engagement groove, so that the sliding part 23 can be pushed forward freely ( FIG. 7b ). The sliding part 23 can now be removed from the device ( Figure 7f ) and the ceramic disk are removed in the opposite direction to the sliding part 23. The replacement takes place in the opposite direction to the FIGS. 7a to 7f ,

Mit den Figuren 8a bis 8c ist eine ganz besonders vorteilhafte Verbindung dargestellt. Die Figur 8a zeigt den ersten Schritt für den Einbau der Düsenplatte 9. Die Düsenplatte 9 wird quer zur Schieberichtung entsprechend Pfeil 41 auf das Schiebeteil 23 aufgesetzt. Dabei helfen ein Negativ- sowie ein Positivteil 42, 43, die Düsenplatte 9 von Hand präzise aufzusetzen, wie mit Figur 8b in perspektivischer Darstellung gezeigt ist. In der Figur 8d ist die Düsenplatte 9 vollständig auf das Schiebeteil 23 abgesetzt, wobei bereits die Drehbewegung der Düsenplatte 9 entsprechend Pfeil erkennbar ist. Die Düsenplatte 9 weist beidseits eine Nocke und das Schiebeteil 23 eine dazu passende runde Gleitführung auf. Die Düsenplatte 9 weist in Bezug auf ein Drehzentrum beidseits Kreissegmente auf, welche in die entsprechenden Kreisführungen des Schiebeteiles 23 mit wenig Spiel passen. Nach Abschluss der Drehbewegung entsprechend Figur 8d besteht eine Raststelle, welche über leichten Federdruck von unten einrastet und die Düsenplatte 9 in der Betriebsstellung fixiert.With the FIGS. 8a to 8c is shown a very particularly advantageous connection. The FIG. 8a shows the first step for the installation of the nozzle plate 9. The nozzle plate 9 is placed transversely to the sliding direction according to arrow 41 on the sliding part 23. In this case, a negative and a positive part 42, 43 help to set the nozzle plate 9 by hand precisely as with FIG. 8b is shown in perspective view. In the FIG. 8d the nozzle plate 9 is completely deposited on the sliding part 23, wherein the rotational movement of the nozzle plate 9 is already recognizable according to the arrow. The nozzle plate 9 has a cam on both sides and the sliding part 23 has a matching round sliding guide. The nozzle plate 9 has on both sides with respect to a center of rotation Circular segments which fit into the corresponding circular guides of the sliding part 23 with little play. After completing the rotation accordingly FIG. 8d there is a latching point, which engages on light spring pressure from below and fixed the nozzle plate 9 in the operating position.

Die Figur 9a zeigt unverwirbeltes Garn 2. Dies kann jedoch sowohl glatt wie auch FZtexturiert sein. Mit den geraden Strichen sind die Einzelfilamente 45 angedeutet. Die Figur 9b zeigt ein weich verwirbeltes Garn. Typisch sind dabei die eher kürzeren Knoten K, wobei die Knoten mit dünnen geraden Strichen symbolisiert sind. Die Figur 9c zeigt harte, relativ lange Knoten K zwischen den verwirbelten offenen Stellen. Die harten Knoten sind mit dickeren Strichen symbolisiert. Die Figur 9d zeigt ein typisches Knotengarn des Standes der Technik mit sehr unregelmässigen Knoten.The FIG. 9a shows untwisted yarn 2. However, this can be both smooth and FZ textured. With the straight lines the individual filaments 45 are indicated. The FIG. 9b shows a soft swirled yarn. Typical are the rather shorter nodes K, where the nodes are symbolized by thin straight lines. The FIG. 9c shows hard, relatively long knots K between the swirled open spots. The hard knots are symbolized by thicker lines. The FIG. 9d shows a typical knot yarn of the prior art with very irregular knots.

Die Figuren 10a bis 10c zeigen einige Beispiele mit unregelmässiger Knotenbildung.The FIGS. 10a to 10c show some examples with irregular knotting.

Die Figur 11 ist eine Gegenüberstellung für harte und weiche Knoten, welche mit der neuen Erfindung erzeugbar sind. Die Figur 11 zeigt einen typischen zugehörigen Bereich der Verwendung von Druckluft von 1,5 bis 3 bar bzw. 0,5 bis 1,5 bar. Je nach Markt und vor allem Art der Weiterverarbeitung werden harte Knoten oder weiche Knoten verlangt.The FIG. 11 is a juxtaposition of hard and soft knots that are producible with the new invention. The FIG. 11 shows a typical associated area of using compressed air of 1.5 to 3 bar or 0.5 to 1.5 bar. Depending on the market and especially the type of processing hard knots or soft knots are required.

Die Figuren 12a und 12b zeigen die Möglichkeit der Verwendung eines Y-förmigen Blasluftkanal-Querschnittes mit entsprechendem Hauptluftkanal H sowie Nebenluftkanal N. Die Figur 12c zeigt ein weiteres Beispiel für die Ausgestaltung einer erfindungsgemäsen Luftdrallkammer 11'.The Figures 12a and 12b show the possibility of using a Y-shaped blast air duct cross-section with corresponding main air duct H and secondary air duct N. Die FIG. 12c shows a further example of the embodiment of an inventive air swirl chamber 11 '.

Die Figuren 13a bis 13c zeigen eine Lösung des Standes der Technik, wie sie von der Anmelderin nunmehr schon über 20 Jahre hergestellt wird. Hier ist typisch eine lange Garnverwirbelungskammer mit relativ grosser Breite und Länge. Hinter dieser Lösung steckte das Modell, dass das Garn möglichst weit in der Garnwirbelkammer ausschwingen kann.The FIGS. 13a to 13c show a solution of the prior art, as it has already been produced by the applicant for over 20 years. Here is typical a long Garnverwirbelungskammer with relatively large width and length. Behind this solution stuck the model that the yarn can swing as far as possible in the yarn vortex chamber.

Die Figur 14a zeigt eine erfindungsgemässe Lösung und als Gegenüberstellung (Figuren 14b, 14c) zwei Lösungen des Standes der Technik. Alle bisherigen Untersuchungen haben ergeben, dass es ein kritisches Mass für das Überstehen der Luftdrallkammer gibt. Dieses liegt bei etwa 0,5 mm. Bei allen Kammerausgestaltungen, wo die Kammer seitlich um mehr als 0,5 mm übersteht, wird eine spürbare Qualitätsminderung festgestellt. Die bisherigen Versuche haben gezeigt, dass das seitliche Überstehen der Kammer über den Gambehandlungskanal 3 als kritisch zu beurteilen ist. Es wurde festgestellt, dass die Kammer auf die Gamkanallängsrichtung mit Vorteil weniger als 1,3 x Garnkanalbreite (B) lang ist.The Figure 14a shows a solution according to the invention and as a comparison ( FIGS. 14b, 14c ) Two solutions of the prior art. All previous investigations have shown that there is a critical measure for the survival of the air swirl chamber. This is about 0.5 mm. In all chamber configurations, where the chamber laterally protrudes by more than 0.5 mm, a noticeable reduction in quality is found. The Previous experiments have shown that the lateral protrusion of the chamber on the Gambehandlungskanal 3 is to be judged as critical. It has been found that the chamber in the Gamkanallängsrichtung is advantageously less than 1.3 x yarn channel width (B) long.

Die Figuren 15a, 15b und 15c zeigen eine Gegenüberstellung der Knotenbildung: Die Figur 15a gemäss einer Lösung nach den Figuren 13a bis 13c, die Figur 15b gemäss einer Lösung ohne Drallkammer gemäss Figuren 1 und 1a und die Figur 15c die erfindungsgemässe Lösung. Bei allen drei Lösungen kommen Garne, z.B. von 80 f 72, 80 f 108, 72 f 72 und 80 f 34 zum Einsatz. Je nach Betriebsweise bzw. dem Druck der Blasluft entstehen weiche oder harte Knoten.The Figures 15a, 15b and 15c show a juxtaposition of knot formation: The FIG. 15a according to a solution according to FIGS. 13a to 13c , the FIG. 15b according to a solution without swirl chamber according to Figures 1 and 1a and the FIG. 15c the inventive solution. For all three solutions, yarns of eg 80 f 72, 80 f 108, 72 f 72 and 80 f 34 are used. Depending on the mode of operation or the pressure of the blast air, soft or hard knots are created.

Die beiden Figuren 16a und 16b zeigen Ergebnisse mit Vergleichsversuchen, die Figur 16a mit grobem und die Figur 16b mit feinem Garn. Die linke Figur zeigt jeweils die Knotenzahl pro Meter, die mittlere Figur die Streuung der Knoten und die rechte Figur die Stabilität bzw. den Knotenverlust unter Zugspannung. Es wurden durchwegs Düsen mit keiner Kammer bzw. mit rundlichen Kammern eingesetzt (mit Kalotten-Breiten K von 2,2; 2,4; 2,6; 2,8 mm). Die Kammer wurde in kalottenartiger Form ausgestaltet. Man erkennt deutlich, dass mit der erfindungsgemässen Kalottenbreite K von 2,2 mm mit einer echten erfindungsgemässen Luft-Drallkammer die besten Resultat erzielt wurden. Die Garnkanalbreite war in allen Versuchen 1,6 mm, die Garnkanaltiefe 1,0 mm und die Lufteinblasbohrung 1,1 mm. Die erfindungsmässigen Vorteile sind auch sichtbar, wenn zusätzlich Elasthan Game mit in die Düse eingelassen und mit den eingangs erwähnten Filamentgarnen kombiniert werden.The two FIGS. 16a and 16b show results with comparative experiments that FIG. 16a with coarse and the FIG. 16b with fine yarn. The left figure shows the number of knots per meter, the middle figure the scatter of the knots and the right figure the stability or the loss of knots under tension. There were consistently used nozzles with no chamber or roundish chambers (with dome widths K of 2.2, 2.4, 2.6, 2.8 mm). The chamber was designed in a dome-like shape. It can be clearly seen that the best result was achieved with the inventive calotte width K of 2.2 mm with a true air swirl chamber according to the invention. The yarn channel width was 1.6 mm in all tests, the yarn channel depth was 1.0 mm and the air injection hole was 1.1 mm. The inventive advantages are also visible when in addition Elasthan Game are embedded in the nozzle and combined with the filament yarns mentioned above.

Claims (24)

  1. Method for production of fine, in particular of microfilament knotted yarn or twisted yarn of DTY yarns and/or flat yarns with a high regularity of the knots by means of air nozzles, with a yarn treatment channel and with blast air which is blown in transversely to the yarn treatment channel, the blast air forming in the yarn-conveying direction and opposite to the yarn-conveying direction in each case a double vortex for generating the knots, characterized in that, in the inlet region into the yarn treatment channel, the blast air is set, in an air swirl chamber, into two strong contradirectional stationary swirl flows virtually undisturbed by the filament bundle, the air swirl chamber being formed as a blast-air supply channel widening of less than 22% but more than 5% of the yarn-channel width, or in the case of yarn-channel widths of up to 3 mm, the widening projecting beyond the yarn-channel width on both sides to a maximum of 0.5 mm.
  2. Method according to Claim 1, characterized in that a short region with a stable swirl flow is generated in the air swirl chamber and is subsequently followed both in the yarn transport direction and opposite to the yarn transport direction by a reciprocal vortex zone.
  3. Method according to Claim 1 or 2, characterized in that a pressure of 0.5 to 1.5 bar is used for the blast air, in order to produce soft knots which come loose again during further processing.
  4. Method according to Claim 1 or 2, characterized in that compressed air of more than 1.5 bar is used for the blast air in order to produce hard knots which do not come loose during further processing.
  5. Method according to one of Claims 1 to 4, characterized in that yarns of less than 10 to 15 dpf, preferably of less than 2 dpf, are treated.
  6. Method according to one of Claims 1 to 5, characterized in that the yarn-channel cross section is of semi-circular or U-shaped design, the yarn-channel width (B) being greater than the yarn-channel depth (T) .
  7. Method according to one of Claims 1 to 6, characterized in that the air swirl chamber constitutes a cap-like air-channel widening in the yarn channel, and the flow runs in a similar form through the yarn channel with respect to a cross section.
  8. Method according to one of Claims 1 to 6, characterized in that the air swirl chamber is designed to be at least approximately symmetrical to the yarn channel centre axis and projects beyond the lateral yarn-channel walls on both sides for the production of DTY yarn by less than 0.5 mm or between 5% and 22% of the yarn-channel width.
  9. Method according to Claims 1 to 8, characterized in that the length of the air swirl chamber is about 0.7 to 1.6 with respect to the width of the yarn treatment channel.
  10. Method according to one of Claims 1 to 8, characterized in that the air swirl chamber is designed to be miniaturized in such a way that the filament bundle cannot penetrate into the lateral widening of the air swirl chamber.
  11. Twisting nozzle for the production of fine, in particular of microfilament knotted yarn with a high regularity of the knots, with a continuous yarn treatment channel and with a blast-air supply channel, the blast-air supply channel being directed on to the longitudinal centre axis of the yarn treatment channel, characterized in that a blast-air channel widening is formed in the mouth region of the blast-air supply channel in the yarn treatment channel, in order to form an air swirl chamber for two contradirectional stationary swirl flows, the blast-air supply channel widening projecting to less than 22% but more than 5% of the yarn-channel width, or in the case of yarn-channel widths of up to 3 mm, the widening projecting beyond the yarn-channel width on both sides to a maximum of 0.5 mm.
  12. Twisting nozzle according to Claim 11, characterized in that the yarn treatment cross section is designed so as to be semi-circular or U-shaped and with a plane baffle ceiling.
  13. Twisting nozzle according to Claim 11 or 12, characterized in that the air swirl chamber is designed laterally in a similar form to a miniaturized cap with respect to the yarn treatment channel cross section.
  14. Twisting nozzle according to one of Claims 11 to 13, characterized in that the air swirl chamber projects by less than 0.5 mm on both sides of the yarn treatment channel.
  15. Twisting nozzle according to one of Claims 11 to 14, characterized in that the air swirl chamber is less than 1.3 x the yarn-channel width (B) long in the yarn-channel longitudinal direction.
  16. Twisting nozzle according to one of Claims 11 to 15, characterized in that the air swirl chamber has an at least approximately circular-symmetrical outer contour and preferably forms a continuation of the centre axis of the blast-air supply channel.
  17. Twisting nozzle according to one of Claims 11 to 16, characterized in that, to intensify the lateral air vortex formation, the width of the yarn-channel cross section is greater than the yarn-channel depth in the direction of the blast-air supply.
  18. Twisting nozzle according to Claim 17, characterized in that the treatment channel is designed as a wide channel with a width of preferably 0.6 to 3 mm, particularly preferably with a ratio of yarn-channel width (B) to yarn-channel depth (T) of 1.1 to 2.5.
  19. Twisting nozzle according to one of Claims 11 to 18, characterized in that the blast-air supply channel is designed to be round or oval or oval with a triangular character or Y-shaped, the lateral dimension of the blast-air supply channel being at most equal to or less than the corresponding yarn-channel width.
  20. Twisting nozzle according to Claim 17 or 19, characterized in that the yarn-channel width (B) is greater than the air supply channel width d, preferably in a ratio B/d of 1.2 to 3.
  21. Twisting nozzle according to one of Claims 11 to 20, characterized in that the yarn channel is formed by a plane displaceable baffle plate and a nozzle plate with the blast-air supply.
  22. Twisting nozzle according to one of Claims 11 to 21, characterized in that the yarn channel is formed by a nozzle plate and by a baffle plate displaceable with respect to the latter and as what is known as a SlideJet, with an open position of the yarn channel for threading in the yarn and with a closed position of the yarn channel for producing a knotted yarn.
  23. Twisting nozzle according to one of Claims 11 to 22, characterized in that the nozzle plate is designed as a plate-like ceramic disc, and the ceramic disc can be mounted and demounted together with a sliding part in the twisting nozzle, and/or in that the ceramic disc can be mounted and demounted as an interchangeable plate in the sliding part.
  24. Use of the twisting nozzle according o one of Claims 11 to 23 for producing knotted yarn of BCF yarns.
EP06705395A 2005-03-20 2006-03-16 Method and entanglement nozzle for producing knotted yarn Active EP1861526B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH4822005 2005-03-20
CH16082005 2005-10-04
PCT/CH2006/000155 WO2006099763A1 (en) 2005-03-20 2006-03-16 Method and entanglement nozzle for producing knotted yarn

Publications (2)

Publication Number Publication Date
EP1861526A1 EP1861526A1 (en) 2007-12-05
EP1861526B1 true EP1861526B1 (en) 2011-10-19

Family

ID=36295535

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06705395A Active EP1861526B1 (en) 2005-03-20 2006-03-16 Method and entanglement nozzle for producing knotted yarn

Country Status (8)

Country Link
US (1) US7568266B2 (en)
EP (1) EP1861526B1 (en)
JP (1) JP4255984B2 (en)
KR (1) KR100912747B1 (en)
CN (2) CN103603114B (en)
AT (1) ATE529549T1 (en)
TW (1) TWI313310B (en)
WO (1) WO2006099763A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBI20040004A1 (en) * 2004-10-12 2005-01-12 Sinterama S P A High performance device for the air interlacing of a wire, and relative method
CH699327B1 (en) 2007-02-14 2010-03-15 Oerlikon Heberlein Temco Wattw Apparatus for simultaneously treating several multifilament yarns.
JP4673355B2 (en) * 2007-10-30 2011-04-20 Tmtマシナリー株式会社 Confounding device
IT1393810B1 (en) * 2009-04-29 2012-05-11 Technores S R L C O Studio Minicucci Pidatella & A DEVICE FOR THE TREATMENT OF A YARN, A YARN TREATMENT SYSTEM AND A YARN TREATMENT METHOD
US8474115B2 (en) * 2009-08-28 2013-07-02 Ocv Intellectual Capital, Llc Apparatus and method for making low tangle texturized roving
TWI448593B (en) * 2011-12-28 2014-08-11 Taiwan Textile Res Inst Method for manufacturing knotted yarn
CN102534983B (en) * 2011-12-30 2014-07-16 浙江宝娜斯袜业有限公司 Silk stocking and organization structure thereof
DE102012003410A1 (en) 2012-02-23 2013-08-29 Rpe Technologies Gmbh Yarn handling device for swirling of multi-filament yarns, has nozzle body with yarn channels and blowing hole, where the yarn channel is formed from wider yarn channel area and narrower yarn channel area
EP2886690B1 (en) * 2013-12-19 2019-07-24 Heberlein AG Nozzle and method for producing a slubbed yarn
CN103757776B (en) * 2014-01-17 2016-02-03 黄萍 Knitting wool stock, the knitting wool be twisted into by knitting wool stock and knitting wool preparation method
US9672409B2 (en) * 2015-07-03 2017-06-06 Fingerprint Cards Ab Apparatus and computer-implemented method for fingerprint based authentication
DK201770706A1 (en) * 2016-09-21 2018-04-03 Tymphany Hk Ltd Audio and video projection system
WO2019076429A1 (en) 2017-10-16 2019-04-25 Heberlein Ag Interlacing nozzle or texturing nozzle and device for treating a yarn
CN111155214B (en) * 2020-01-19 2022-06-10 绍兴国周纺织整理有限公司 Multicomponent vortex spinning bulk blended yarn and production process thereof
EP3954814A1 (en) 2020-08-10 2022-02-16 Heberlein AG Entangling nozzle for producing yarns with knots and method of entangling yarn

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3262179A (en) * 1964-12-01 1966-07-26 Du Pont Apparatus for interlacing multifilament yarn
FR1492945A (en) * 1966-05-16 1967-08-25 Rhodiaceta Method and device for the manufacture of a yarn with interlaced strands and products obtained
CH471917A (en) * 1966-11-17 1969-04-30 Torsellini Renato Procedimento e dispositivo per la produzione di fili artificiali e sintetici a bave intrecciate, e prodotto relativo
US3730413A (en) * 1971-05-10 1973-05-01 Ici Ltd Interlacing jet
US4069565A (en) * 1974-11-28 1978-01-24 Toray Industries, Inc. Process and apparatus for producing textured multifilament yarn
US4064686A (en) * 1975-02-27 1977-12-27 Whitted Robert L Intermittently bulked yarn
CA1051184A (en) * 1975-02-27 1979-03-27 James E. Simmons Bulk yarn and method for making same
JPS60215833A (en) * 1984-04-10 1985-10-29 帝人株式会社 Production of feather yarn
DE3711759C2 (en) 1986-04-08 1994-02-17 Inst Textil & Faserforschung Yarn interlacing device
CH676559A5 (en) * 1989-02-15 1991-02-15 Heberlein & Co Ag
CH681633A5 (en) * 1990-07-02 1993-04-30 Heberlein & Co Ag
KR960001818B1 (en) * 1992-06-24 1996-02-05 Korea Inst Sci & Tech Method for producing hirudin
EP0579082B1 (en) * 1992-07-10 1998-08-26 Hoechst Aktiengesellschaft Method for thermally processing moving yarns and apparatus for carrying out this process
CN2237054Y (en) * 1995-04-18 1996-10-09 南通工学院 Rotary flow false twister
TW328097B (en) * 1995-09-20 1998-03-11 Heberlein & Co Ag Process and apparatus for guiding and spinning at least one yarn in the moving direction and all yarn channels
DE19700817C2 (en) 1996-01-12 1999-02-11 Heberlein Fasertech Ag Process and intermingling nozzle for the production of spin-textured filament yarns
US6134759A (en) * 1998-03-27 2000-10-24 Toray Industries, Inc. Apparatus for fluid treatment of yarn and a yarn composed of entangled multifilament
AU2790600A (en) * 1999-03-03 2000-09-21 Heberlein Fibertechnology, Inc. Method and device for processing filament yarn, and use of said device
US5964015A (en) * 1999-05-21 1999-10-12 International Machinery Sales, Inc. Textile jet nozzle with smooth yarn channel
TW584680B (en) * 1999-05-28 2004-04-21 Inventa Fischer Ag Device for intermingling, relaxing, and/or thermosetting of filament yarn in a melt spinning process, as well as associated processes and the filament yarn manufactured therewith
TW503272B (en) * 1999-10-06 2002-09-21 Heberlein Fibertechnology Inc Apparatus for intermingling multifilament yarns
ATE389045T1 (en) * 2001-09-29 2008-03-15 Oerlikon Heberlein Temco Wattw METHOD AND DEVICE FOR PRODUCING ACCOUNT YARN
ITBI20040004A1 (en) * 2004-10-12 2005-01-12 Sinterama S P A High performance device for the air interlacing of a wire, and relative method

Also Published As

Publication number Publication date
JP4255984B2 (en) 2009-04-22
US7568266B2 (en) 2009-08-04
TW200634186A (en) 2006-10-01
KR20070115978A (en) 2007-12-06
EP1861526A1 (en) 2007-12-05
WO2006099763A1 (en) 2006-09-28
JP2008533324A (en) 2008-08-21
CN1865554A (en) 2006-11-22
US20090031693A1 (en) 2009-02-05
ATE529549T1 (en) 2011-11-15
CN103603114A (en) 2014-02-26
KR100912747B1 (en) 2009-08-18
CN103603114B (en) 2016-09-14
TWI313310B (en) 2009-08-11
CN1865554B (en) 2015-07-15

Similar Documents

Publication Publication Date Title
EP1861526B1 (en) Method and entanglement nozzle for producing knotted yarn
EP0880611B1 (en) Method of aerodynamical texturing, texturing nozzle, nozzle head and use thereof
EP1165868B1 (en) Method and device for processing filament yarn, and use of said device
EP1761664B1 (en) Device and method for treating filament yarn and fancy knotted, migrated, and false-twist yarn
DE1061953B (en) Voluminous loop yarn as well as process and device for its production
DD201921A5 (en) METHOD AND DEVICE FOR MANUFACTURING SYNTHETIC YARN AND YARN-LIKE STRUCTURES
EP1436451B1 (en) Method and device for producing a fancy knotted yarn
EP0625600B1 (en) Apparatus for the treatment of at least one running multifilament yarn
EP1092796A1 (en) Apparatus for interlacing multifilament yarns
EP1629143B1 (en) Nozzle core for a device used for producing loop yarn, and method for the production of a nozzle core
DE2701053A1 (en) AIR JET DEVICE FOR MANUFACTURING TWISTED YARN, AND METHOD FOR TWISTING THE FEDS OF YARN MADE FROM MULTIPLE FEDES
EP1116806B1 (en) Texturing nozzle
DE2933198C1 (en) Apparatus for texturing yarn
CH321465A (en) Bulky yarn and method for its manufacture and device for carrying out the method
EP2298973B1 (en) Texturing nozzle and method for texturing endless threads
DE19947894C1 (en) Appts to eddy and interlace texturized multifilament yarns has a structured yarn channel in sections in relation to the blower channel to give a stable bond unaffected during weaving/knitting
DE202005009444U1 (en) Compressed air jet for intermingling micro-fiber filament yarn has air inlet port placed well downstream in yarn channel
DE19745182C2 (en) Method and device for interlacing multifilament yarns
DE3527415A1 (en) Apparatus for air swirling and for the bulking of multifilament and stable-fibre yarns
EP1159473A1 (en) Method and device as well as the utilization of the device to produce a blended yarn or a composite yarn
DE19700817A1 (en) Eddy jet assembly for carpet filament yarns
AT230012B (en) Device for treating yarns
CH404072A (en) Apparatus for making puffed yarn
DE3714213A1 (en) Apparatus for pneumatic false-twist spinning
CH348232A (en) Method and device for producing a yarn with capillary thread loops from endless artificial threads

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070908

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP WENGER RYFFEL AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006010420

Country of ref document: DE

Effective date: 20120112

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111019

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120219

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120120

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120119

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

26N No opposition filed

Effective date: 20120720

BERE Be: lapsed

Owner name: OERLIKON HEBERLEIN TEMCO WATTWIL A.G.

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006010420

Country of ref document: DE

Effective date: 20120720

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120316

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060316

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: HEBERLEIN AG, CH

Free format text: FORMER OWNER: OERLIKON HEBERLEIN TEMCO WATTWIL AG, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230402

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006010420

Country of ref document: DE

Owner name: HEBERLEIN TECHNOLOGY AG, CH

Free format text: FORMER OWNER: OERLIKON HEBERLEIN TEMCO WATTWIL AG, WATTWIL, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240226

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 19