EP1850513B1 - Molekulares Kommunikationssystem und zugehöriges Verfahren - Google Patents

Molekulares Kommunikationssystem und zugehöriges Verfahren Download PDF

Info

Publication number
EP1850513B1
EP1850513B1 EP07251746A EP07251746A EP1850513B1 EP 1850513 B1 EP1850513 B1 EP 1850513B1 EP 07251746 A EP07251746 A EP 07251746A EP 07251746 A EP07251746 A EP 07251746A EP 1850513 B1 EP1850513 B1 EP 1850513B1
Authority
EP
European Patent Office
Prior art keywords
molecular
capsule
receiver
transmitter
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP07251746A
Other languages
English (en)
French (fr)
Other versions
EP1850513A1 (de
Inventor
Yuki Moritani
Satoshi Hiyama
Tatsuya Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of EP1850513A1 publication Critical patent/EP1850513A1/de
Application granted granted Critical
Publication of EP1850513B1 publication Critical patent/EP1850513B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/702Integrated with dissimilar structures on a common substrate having biological material component

Definitions

  • the present invention generally relates to molecular communication, and more particularly, to a molecular communication system and method in which information encoded molecules are encapsulated in a molecular capsule and transmitted from a molecular transmitter to a molecular receiver.
  • molecular communication uses biochemical signals which cause slow speed communication and small energy consumption.
  • Molecular communication has high potentiality for applications of a communication between nano-scale devices that cannot use electromagnetic waves by capability reasons or environmental reasons and an operational control of nanomachines that are not composed by electronic components and cannot be driven by electronic signals.
  • a molecular transmitter In molecular communication, a molecular transmitter generates molecules for encoding information (referred to simply as "information molecules"), encodes information onto the information molecules, and emits the information molecules to the environment. The emitted information molecules are carried to a molecular receiver through a molecule propagation channel. The molecular receiver uptakes the propagated information molecules, decodes the information, and expresses biochemical redaction.
  • information molecules referred to simply as “information molecules”
  • Information molecules in molecular communication are likely to be denaturalized due to the interaction with resolving enzyme (or degradative enzyme) existing in the propagation environment or due to environmental factors such as temperature, pH, or light, and the encoded information may be lost during the propagation.
  • resolving enzyme or degradative enzyme
  • a molecular communication system comprising:
  • a molecular communication method comprising the steps of:
  • the embodiments of the present invention aim to provide a technique for encapsulating information molecules in a molecular capsule so as to be suitable for propagation between a molecular transmitter and a molecular receiver, and a technique for taking the information molecules out of the molecular capsule and introducing them into the molecular receiver.
  • a first chemical substance is applied to a molecular transmitter and a molecular capsule, to encapsulate one or more information molecules in the molecular capsule.
  • a second chemical substance is applied to the molecular capsules and a molecular receiver to take the information molecules out of the molecular capsule and take them into the molecular receiver.
  • a molecular communication system includes:
  • one or more information molecules are encapsulated in a molecular capsule on the transmission side, and the information molecules are taken out of the molecular capsule and introduced into the molecular receiver on the receiving side.
  • a molecular capsule is placed near the molecular transmitter in advance and the first chemical substance is applied to the molecular transmitter and the molecular capsule by the encapsulation means to temporarily form pores in the surfaces of the molecular transmitter and the molecular capsule so as to allow the information molecules to escape from the molecular transmitter and get into the molecular capsule.
  • the first chemical substance may be a solution containing antimicrobial peptide.
  • the encapsulation means applies the first chemical substance to the molecular transmitter that has the information molecules inside to cause a part of the molecular transmitter to split as the molecular capsule containing a part of the information molecules inside.
  • the first chemical substance may be a solution containing lysophosphatidylcholine.
  • the encapsulation means applies the first chemical substance to the molecular transmitter having the information molecules to produce the molecular capsule that encapsulates the information molecules inside of the molecular transmitter, and to allow the produced molecular capsule to be emitted to the molecular propagation channel.
  • the first chemical substance may be a phospholipid micellar solution.
  • the decapsulation means places the transmitted molecular capsule near the molecular receiver and applies the second chemical substances to the molecular capsule and the molecular receiver to temporarily form pores in the surfaces of the molecular receiver and the molecular capsule so as to allow the information molecules to escape from the molecular capsule and get into the molecular receiver.
  • the second chemical substance may be a solution containing antimicrobial peptide.
  • the decapsulation means applies the second chemical substance to the molecular receiver and the molecule capsule placed near the molecular receiver to fuse the molecular capsule to the molecular receiver.
  • the second chemical substance may be a solution containing lanthanum ion.
  • This system is advantageous because undesirable information loss can be avoided.
  • Such information loss is caused by denaturalization of the information molecules due to the interaction between the transmitted information molecules and other molecules existing in the propagation environment, or by denaturalization of the information molecules due to environmental factors such as temperature or pH.
  • the information molecules are encapsulated, the biochemical or physical characteristics of the information molecules can be hidden from the propagation channel, and accordingly, a uniform interface can be provided.
  • Information can be encoded not only onto a single information molecule, but also onto the concentration or the composition of a set of information molecules in the molecular capsule.
  • FIG. 1A and FIG. 1B are schematic diagrams illustrating a molecular communication system according to an embodiment of the invention.
  • the molecular communication system 1 includes a molecular transmitter 20, a molecular receiver 30, a molecular capsule 10 encapsulating an information molecule 15, and a molecule propagation channel 40 through which the molecular capsule 10 is transmitted from the molecular transmitter 20 to the molecular receiver 30.
  • the information molecule 15 serves as an information carrier.
  • the information molecule 15 transmitted from the molecular transmitter 20 is encapsulated into the molecular capsule 10 (indicated by the dashed arrow (1)).
  • the information molecule 15 encapsulated in the molecular capsule 10 can be produced by applying a chemical substance to the molecular transmitter 20, or to the molecular transmitter 20 and the molecular capsule 10, the detailed operations of which will be described below.
  • the molecular capsule 10 encapsulating the information molecule 15 is propagated to the molecular receiver 30 through the molecular propagation channel 40 (indicated by the dashed arrow (2)).
  • the information molecule 15 is taken out of the molecular capsule 10 and introduced into the molecular receiver 30 (indicated by the dashed arrow (3)) by applying a chemical substance to the molecular capsule 10 and the molecular receiver 30.
  • the surfaces of the molecular transmitter 20, the molecular receiver 30, and the molecular capsule 10 have the lipid bilayer membrane structure 51.
  • the lipid bilayer membrane structure 51 is composed of lipid molecules assembled each other, each lipid molecule having a hydrophilic head 52a and a hydrophobic tail 52b. Accordingly, the lipid bilayer membrane structure 51 has a hydrophilic part 51a and a hydrophobic part 51b.
  • This bilayer membrane structure guarantees the encapsulation, and can prevent leakage of the information molecule 15 from the molecular capsule 10.
  • the environment in which the molecular transmitter 20, the molecular receiver 30, and the molecular capsule 10 exist is in an aqueous solution.
  • the molecular transmitter 20, the molecular receiver 30, and the molecular capsule 10 are, for example, liposomes composed of phosphatide (such as phosphatidylcholine).
  • the liposome is produced by dispersing phosphatide, which becomes the major component of the membrane, in water, followed by agitation or ultrasonic treatment.
  • the molecules used to compose the lipid bilayer membrane structure of the molecular transmitter 20, the molecular receiver 30 and the molecular capsule 10 are not limited to phosphatides, and any suitable molecules including glycolipids may be used as long as a lipid bilayer membrane structure that can prevent leakage of the information molecule 15 is acquired.
  • the information molecular 15 is, for example, a DNA. In ordinary conditions, DNAs do not escape from the molecular transmitter 20, the molecular receiver 30, or the molecular capsule 10.
  • the information is encoded onto a specific base sequence or a specific structure (such as hairpin structure or bulge structure) of the information molecule 15.
  • the information molecule 15 may be an ion or peptide.
  • the information code is not limited to base sequences or structures.
  • ions information can be encoded based upon types of the information molecules.
  • peptides the information can be encoded in amino acid sequences.
  • the molecule propagation channel 40 is constructed by motor molecules 46 and rail molecules 47 arranged so as to transport the molecular capsule 10 having the information molecule 15 inside from the molecular transmitter 20 to the molecular receiver 30.
  • motor molecules 46 can be used as the motor molecule 46
  • microtubules can be used as the rail molecule 47.
  • the moving direction of the kinesine (motor molecule) 46 is determined by the polarity of the microtubule 47.
  • rail molecules 47 are fixed to the substrate 41, while in FIG. 2B motor molecules 46 are fixed on the substrate 41, in a solution containing adenosine triphosphate (ATP).
  • ATP adenosine triphosphate
  • the moving speed of the molecular capsule 10 carried by the free (non-fixed) molecules is controllable by adjusting the ATP concentration, magnesium ion concentration, temperature, and/or the viscosity resistance of the solution.
  • the molecule propagation channel 40 is not limited to the above-described example constructed by motor molecules and rail molecules, and any suitable channel can be used as long as the molecular capsule 10 for encapsulating the information molecule 15 can be transmitted from the molecular transmitter 20 to the molecular receiver 30.
  • the molecule propagation channel 40 may be a liquid flow channel.
  • FIG. 3 through FIG. 5 illustrate examples of encapsulation of the information molecules 15 from the molecular transmitter 20 into the molecular capsule 15.
  • the inside of the molecular transmitter 20 is filled with a solution 21, and information molecules are dispersed homogeneously through diffusion.
  • the information molecule 15 encapsulated into the molecular capsule 10 can be produced at or near the molecular transmitter 20.
  • a solution 60A containing lysophosphatidylcholine is applied to the molecular transmitter 20 to cause a portion of the molecular transmitter 20 to split from the molecular transmitter 20.
  • a molecular capsule 10 having one or more information molecules 15 inside is produced and separated from the molecular transmitter 20.
  • the divided part of the molecular transmitter 20 becomes the molecular capsule 10 containing information molecules 15, and therefore, the concentration of the information molecules 15 encapsulated in the molecular capsule 10 are same of that in the molecular transmitter 20.
  • the solution 60A containing lysophosphatidylchoine may be applied to the molecular transmitter 20 using a micropipette at constant intervals or in response to instructions.
  • a solution 60B containing phospholipid micelle may be applied to the molecular transmitter 20.
  • a molecular capsule 10 encapsulating information molecules 15 is produced inside of the molecular transmitter 20.
  • the produced molecular capsule 10 is autonomously emitted outside of the molecular transmitter 20.
  • the information molecules 15 are encapsulated into the molecular capsule 10 when the molecular capsule 10 is produced in molecular transmitter 20 at the same concentration as in the molecular transmitter 20.
  • a molecular capsule 10 is placed near the molecular transmitter 20 in advance, and a solution 60C containing antimicrobial peptide is applied to the molecular transmitter 20 and the molecular capsule 10.
  • pores 20a and 10a are formed in the surface of the molecular transmitter 20 and the molecular capsule 10, respectively, and the information molecules 15 leaked out of the molecular transmitter 20 are encapsulated into the molecular capsule 10.
  • the applied antimicrobial peptide solution 60C spreads in the environment and the concentration of the antimicrobial peptide decreases as time passes. Consequently, the pores 20a and 10a formed in the surface of the molecular transmitter 20 and the molecular capsule 10 are naturally closed after a certain time. Leakage of the information molecules 15 from the molecular transmitter 20 occurs naturally according to the concentration gradient; however, encapsulation of the information molecules 15 in the molecular capsule 10 occurs stochastically through diffusion. Accordingly, the concentration of the information molecules 15 encapsulated in the molecular capsule 10 may vary depending on the distance between the molecular transmitter 20 and the molecular capsule 10 or the concentration of the antimicrobial peptide solution 60C. Details of the formation of pores in a membrane are described in Y.
  • the molecular capsule 10 encapsulating the information molecules 15 propagates through the molecule propagation channel 40 to the molecular receiver 30.
  • the information molecules 15 can be taken out of the molecular capsule 10 and introduced into the molecular receiver 30 by applying a chemical substance to the molecular receiver 30 and the molecular capsule 10.
  • FIG. 6 and FIG. 7 illustrate examples of the reception process of the information molecule 15.
  • a solution 60D containing lanthanum ion is applied to the molecular capsule 10 and the molecular receiver 30 to cause the molecular capsule 10 to fuse to the molecular receiver 30.
  • the information molecule 15 is taken out of the molecular capsule 10 and introduced into the molecular receiver 30. Because the molecular capsule 10 becomes a part of the molecular receiver 30, all the information molecules encapsulated in the molecular capsule 10 are taken into the molecular receiver 30. Details of membrane fusion are described in T.
  • a solution 60C containing antimicrobial peptide is applied to the molecular capsule 10 and the molecular receiver 30.
  • pores 10a and 30a are formed in the molecular capsule 10 and the molecular receiver 30, respectively.
  • the information molecules 15 escape from the molecular capsule 10 through the pore 10a, and are introduced into the molecular receiver 30 through the pore 30a.
  • the solution 60C containing antimicrobial peptide spreads in the environment and the concentration of the antimicrobial peptide decreases as time passes; consequently, the pores 10a and 30a formed in the molecular capsule 10 and the molecular receiver 30 close naturally as time passes.
  • the leakage of the information molecules 15 from the molecular capsule 10 through the pore 10a occurs naturally according to the concentration gradient, and the introduction of the information molecules 15 into the molecular receiver 30 through the pore 30a occurs stochastically through diffusion.
  • concentration of the information molecules 15 taken into the molecular receiver 30 may vary depending on the distance between the molecular capsule 10 and the molecular receiver 30, or the concentration of the solution 60C containing antimicrobial peptide.
  • the information molecules 15 can be taken out of the molecular capsule 10 and introduced into the molecular receiver 30.
  • a molecular communication system for transmitting the information molecules 15 from the molecular transmitter 20 to the molecular receiver 30 using a molecular capsule 10 can be realized.
  • FIGs. 8A, 8B , 9A and 9B a modification of the embodiment is described in conjunction with FIGs. 8A, 8B , 9A and 9B .
  • the specific binding phenomenon between signle-stranded nucleotides may be used to bind the molecular capsule 10 to the gliding microtubule (rail molecule) 47.
  • a method for loading a non-encapsulated information molecules on a microtubule using a specific double-stranding reaction (hybridization) between single-stranded nucleotides and for unloading the non-encapsulated information molecule from the microtubule at a prescribed location using specific dehybridization and hybridization between single-stranded nucleotides is described in S. Hiyama, et al., "A Design of an Autonomous Molecule Loading/Transporting/Unloading System Using DNA Hybridization and Biomolecular Linear Motors," Proceedings on European Nano Systems 2005, pp. 75-80, Dec. 2005 .
  • a microtubule 47 is moving on kinesins 46 fixed to a substrate 41 used as a part of the molecule propagation channel 40. Although only a few kinesins 46 corresponding to the current position of the microtubule 47 are depicted in the figure for simplification purpose, kinesins 46 are fixed to the entire range of the molecule propagation channel 40 along a groove extending from the molecular transmitter 20 to the molecular receiver 30.
  • a short single-stranded nucleotide 45 is attached to the microtubule 47. The short single-stranded nucleotide 45 is designed so as to be complementary with respect to a part of the long single-stranded nucleotide 25 bound to the molecular capsule 10.
  • the short single-stranded nucleotide 45 attached to the microtubule 47 which moves along the propagation path, and the long single-stranded nucleotide 25 attached to the molecular capsule 10 which are transmitted from the molecular transmitter 20 are bound to each other using a specific double stranding reaction (hybridization). Then, the molecular capsule 10 is towed by the microtubule (rail molecule) 47 to the molecular receiver 30 (not shown in FIG. 8B ).
  • lysophosphatidylcholine solution 60A is used as the chemical substance for encapsulating the information molecule 15 existing in the molecular transmitter 20 into the molecular capsule 10 as illustrated in FIG. 3 , it is necessary for the molecular capsule 10 to be split from the molecular transmitter 20 with a single-stranded nucleotide 25. Accordingly, single-stranded nucleotides 25 are attached to the outer surface of the molecular transmitter 20 in advance.
  • the molecular capsule 10 with a single-stranded nucleotide 25 and containing the information molecule 15 inside can be emitted from the molecular transmitter 20.
  • solution 60B containing phospholipid micelle is used as the chemical substance for encapsulating the information molecules 15 existing in the molecular transmitter 20 into the molecular capsule 10 as illustrated in FIG. 4 , it is necessary for the molecular capsule 10 to be emitted from the molecular transmitter 20 with a single-stranded nucleotide 25. Accordingly, single-stranded nucleotides 25 are dispersed in the molecular transmitter 20 in advance.
  • a molecular capsule 10 encapsulating an information molecule 15 is produced and emitted from the molecular transmitter 20 under the application of the solution 60B, a single-stranded nucleotide 25 may be attached to the surface of the molecular capsule 10. Consequently, the molecular capsule 10 with a single-stranded nucleotide 25 is emitted from the molecular transmitter 20, as illustrated in FIG. 8A .
  • solution 60C containing antimicrobial peptide is used as the chemical substance for encapsulating the information molecules 15 existing in the molecular transmitter 20 into the molecular capsule 10 as illustrated in FIG. 5 , it is necessary for the molecular capsule 10 placed in advance near the molecular transmitter 20 with a single-stranded nucleotide 25. Accordingly, a single-stranded nucleotide 25 is attached to the molecular capsule 10 in advance. In this case, the molecular capsule 10 into which the information molecule 15 is introduced through an pore is loaded on and carried by the microtubule 47 as illustrated FIG. 8B .
  • the molecular capsule 10 has to be unloaded from the microtubule 47. Accordingly, long single-stranded nucleotides 35 which are complementary with respect to the single-stranded nucleotide 25 attached to the molecular capsule 10 are attached to the outer surface of the molecular receiver 30, as illustrated in FIG. 9A . It is more stable for the single-stranded nucleotide 25 attached to the molecular capsule 10 in its energy state to hybridize with the complementary single-stranded nucleotide 35 attached to the molecular receiver 30, rather than to hybridize with the short single-stranded nucleotide 45 attached to the microtubule 47.
  • solution 60D containing lanthanum ion is used as the chemical substance for taking the information molecules 15 into the molecular receiver 30 through fusion of the molecular capsule 10, as illustrated in FIG. 6 , it is necessary to cut off the double-stranded nucleotides between the single-stranded nucleotide 25 attached to the molecular capsule 10 and the complementary single-stranded nucleotide 35 attached to the outer surface of the molecular receiver 30 to facilitate the fusion. Accordingly, a solution containing a restriction enzyme capable of cutting off the specific double-stranded nucleotides is applied after hybridization has occurred between the single-stranded nucleotide 25 and 35.
  • the solution containing restriction enzyme may be applied before the solution 60D containing lanthanum ion is applied, or alternatively, the restriction enzyme may be mixed into the solution 60D containing lanthanum ion in advance and the mixed solution may be applied to the molecular capsule 10 and the molecular receiver 30.
  • solution 60C containing antimicrobial peptide is used as the chemical substance for decapsulating the information molecules 15 from the molecular capsule 10 and introducing it into the molecular receiver 30 through the pores 10a and 30a, as illustrated in FIG. 7 , the hybridized double strand does not affect the receiving process of information molecule 15. Consequently, the cut off process of double-stranded nucleotides described above is not required.
  • the complementary single-stranded nucleotides are attached to the surface of the molecular receiver 30, they may be fixed to the substrate surface near the molecular receiver 30.
  • the single-stranded nucleotide 25 attached to the molecular capsule 10, which have propagated to the vicinity of the molecular receiver 30, is hybridized with one of the complementary single-stranded nucleotides 35 fixed to the substrate.
  • the solution 60D containing lanthanum ion is applied to cause the molecular capsule 10 to fuse into the molecular receiver 30.
  • the solution 60C containing antimicrobial peptide may be applied to the molecule capsule 10 unloaded to the substrate and the molecular receiver 30 to form the pores 10a and 30a, respectively, for allowing the information molecule 15 to escape from the molecular capsule 10 and get into the molecular receiver 30.
  • a molecular communication system in which information molecules existing in the molecular transmitter are encapsulated into a molecular capsule, propagate to the molecular receiver, and are introduced into the molecular receiver is realized.
  • This molecular communication system is advantageous because undesirable information loss caused by denaturalization of the information molecules due to the interaction with other molecules existing in the propagation environment or due to environmental factors such as temperature or pH can be avoided. As a result, the reliability in information communication can be improved.
  • This molecular communication system can be applied to a communication between nano-scale devices that cannot use electromagnetic waves by capability or environmental reasons unlike in the conventional communication systems, as well as to an operational control of nanomachines that are not composed by electronic devices or equipments and cannot be driven by electronic signals.
  • the molecular communication system is driven and operated by chemical or biochemical energy, and information is encoded in nano-scale molecules, high-density information transmission can be achieved with less energy consumption compared with the conventional communication systems.
  • biochemical reaction or status occurring at the transmitter represented by the biochemical molecules or the concentration of biochemical molecules can be transmitted as it is to the receiver under protection by the molecular capsule.
  • a novel communication system based on biochemical reactions can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)

Claims (14)

  1. Molekulare Koinmunikationssystem (1), welches umfasst:
    einen molekularen Übertrager (20), der konfiguriert ist, ein Informationsmolekül (15) zu übertragen, auf welchem vorgeschriebene Information codiert ist;
    einen molekularen Empfänger (30), der konfiguriert ist, das Informationsmolekül zu empfangen;
    einen Molekular-Ausbreitungskanal (40), der sich vom molekularen Übertrager zum molekularen Empfänger erstreckt; und
    eine molekulare Kapsel (10), die konfiguriert ist, die Informationsmoleküle, welche vom molekularen Übertrager zum molekularen Empfänger zu übertragen sind, einzukapseln;
    wobei die Flächen des molekularen Übertragers, des molekularen Empfängers und der molekularen Kapsel eine Lipid-Zweischicht-Membranstruktur (51) haben,
    dadurch gekennzeichnet, dass das System außerdem aufweist:
    eine Entkapselungseinrichtung zum Aufbringen einer ersten chemischen Substanz (60A, 60B, 60C) auf den molekularen Übertrager und die molekulare Kapsel, wobei die molekulare Kapsel außerhalb des molekularen Übertragers mit einem vorher festgelegten Abstand dazwischen angeordnet ist, um die Informationsmoleküle in der molekularen Kapsel einzukapseln, und
    eine Einkapselungseinrichtung zum Aufbringen einer zweiten chemischen Substanz (60C, 60D) auf die molekulare Kapsel und auf den molekularen Empfänger, um die Informationsmoleküle aus der molekularen Kapsel zu nehmen und um sie in den molekularen Empfänger zu nehmen.
  2. Molekulares Kommunikationssystem nach Anspruch 1, wobei die Einkapselungseinrichtung eingerichtet ist, die molekulare Kapsel vorher in der Nähe des molekularen Übertragers zu platzieren, und welche eingerichtet ist, die erste chemische Substanz auf den molekularen Übertrager und die molekulare Kapsel aufzubringen, um vorübergehend Poren (10a, 20a) in den Flächen des molekularen Übertragers und der molekularen Kapsel zu bilden, um zuzulassen, dass die Informationsmoleküle vom molekularen Übertrager entweichen und in die molekulare Kapsel gelangen.
  3. Molekulare Kommunikationssystem nach Anspruch 2, wobei eine Lösung (60C), welche antimikrobielles Peptid enthält, welches als die erste chemische Substanz aufgebracht wird, eingerichtet ist, die Poren in den Flächen des molekularen Übertragers und der molekularen Kapsel zu bilden.
  4. Molekulares Kommunikationssystem nach Anspruch 1, wobei die Entkapselungseinrichtung eingerichtet ist, die molekulare Kapsel, welche über den Molekular-Ausbreitungskanal ausgebreitet wurde, in der Nähe des molekularen Empfängers anzuordnen, und welche eingerichtet ist, die zweite chemische Substanz auf die molekulare Kapsel und den molekularen Empfänger aufzubringen, um vorübergehend Poren in den Flächen der molekularen Kapsel und dem molekularen Empfänger zu bilden, um zuzulassen, dass die Informationsmoleküle von der molekularen Kapsel entweichen und in den molekularen Empfänger gelangen.
  5. Molekulares Kommunikationssystem nach Anspruch 4, wobei eine Lösung (60C), welche antimikrobielles Peptid enthält, welches als die zweite chemische Substanz aufgebracht wird, eingerichtet ist, die Poren in den Flächen der molekularen Kapsel und des molekularen Empfängers zu bilden.
  6. Molekulares Kommunikationssystem nach Anspruch 1, wobei die Entkapselungseinrichtung eingerichtet ist, die molekulare Kapsel, welche über den Molekutar-Ausbreitungskanal verbreitet wurde, in der Nähe des molekularen Empfängers anzuordnen, und welche eingerichtet ist, die zweite chemische Substanz auf die molekulare Kapsel und den molekularen Empfänger aufzubringen, um zu bewirkten, dass die molekulare Kapsel in den molekularen Empfänger dringt und um die Informationsmoleküle in den molekularen Empfänger hereinzunehmen.
  7. Molekulares Kommunikationssystem nach Anspruch 6, wobei eine Lösung (60D), welche Lanthan-Ionen enthält, welche als die zweite chemische Substanz aufgebracht wird, eingerichtet ist, die Verschmelzung der molekularen Kapsel mit dem molekularen Empfänger zu bewirken.
  8. Molekulares Kommunikationsverfahren, welches folgende Schritte umfasst:
    Zubereiten eines molekularen Übertragers, eines molekularen Empfängers und einer molekularen Kapsel zum Übertragen eines Informationsmoleküls von dem molekularen Übertrager zum molekularen Empfänger, so dass der molekulare Übertrager, der molekulare Empfänger und die molekulare Kapsel Flächen einer Lipid-Zweischicht-Membranstruktur haben;
    gekennzeichnet durch Aufbringen einer ersten chemischen Substanz auf den molekularen Übertrager und die molekulare Kapsel, wo die molekulare Kapsel außerhalb des molekularen Übertragers mit einer vorher bestimmten Entfernung zwischen diesen angeordnet ist, um die Informationsmoleküle in die molekulare Kapsel einzukapseln;
    Transportieren der molekularen Kapsel zum molekularen Empfänger; und
    Aufbringen einer zweiten chemischen Substanz auf die molekulare Kapsel und den molekularen Empfänger, um die Informationsmoleküle aus der molekularen Kapsel herauszunehmen und um diese in den molekularen Empfänger hereinzunehmen.
  9. Molekulares Kommunikationsverfahren nach Anspruch 8, wobei der erste chemische Substanzaufbringungsschritt umfasst:
    vorheriges Anordnen der molekularen Kapsel in der Nähe des molekularen Empfängers; und
    Aufbringen der ersten chemischen Substanz auf den molekularen Übertrager und die molekulare Kapsel, um vorübergehend Poren in den Flächen des molekularen Übertragers und der molekularen Kapsel zu bilden, um zuzulassen, dass die Informationsmoleküle von dem molekularen Übertrager entweichen und in die molekulare Kapsel, gelangen.
  10. Molekulares Kommunikationsverfahren nach Anspruch 9, wobei eine Lösung, welche antimikrobielles Peptid enthält, als erste chemische Substanz aufgebracht wird, um die Poren in den Flächen des molekularen Übertragers und der molekularen. Kapsel zu bilden.
  11. Molekulares Kommunikationsverfahren nach Anspruch 8, wobei der zweite chemische Substanzaufbringungsschritt umfasst:
    Anordnen der molekularen Kapsel, welche sich über den molekularen Ausbreitungskanal ausgebreitet hat, in der Nähe des molekularen Empfängers; und
    Aufbringen der zweiten chemischen Substanz auf die molekulare Kapsel und den molekularen Empfänger, um vorübergehend Poren in den Flächen der molekularen Kapsel und des molekularen Empfängers zu bilden, um zuzulassen, dass die Informationsmoleküle von der molekularen Kapsel entweichen und in den molekularen Empfänger gelangen.
  12. Molekulares Kommunikationsverfahren nach Anspruch 11, wobei eine Lösung, welche antimikrobielles Peptid enthält, als eine zweite chemische Substanz aufgebracht wird, um die Poren in den Flächen der molekularen Kapsel und des molekularen Empfängers zu bilden.
  13. Molekulares Kommunikationsverfahren nach Anspruch 8, wobei der zweite chemische Substanzaufbringungsschritt umfasst:
    Anordnen der molekularen Kapsel, welche sich über den molekularen Ausbreitungskanal ausgebreitet hat, in der Nähe des molekularen Empfängers; und
    Aufbringen der zweiten chemischen Substanz auf die molekulare Kapsel und den molekularen Empfänger, um zu bewirken, dass die molekulare Kapsel in den molekularen Empfänger dringt und um die Informationsmoleküle in den molekularen Empfänger zu nehmen.
  14. Molekulares Kommunikationssystem nach Anspruch 13, wobei eine Lösung, welche Lanthan-Ionen enthält, als zweite chemische Substanz aufgebracht wird, um die Verschmelzung der molekularen Kapsel mit dem molekularen Empfänger zu bewirken.
EP07251746A 2006-04-28 2007-04-25 Molekulares Kommunikationssystem und zugehöriges Verfahren Expired - Fee Related EP1850513B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006126699A JP5197926B2 (ja) 2006-04-28 2006-04-28 分子通信システムおよび分子通信方法

Publications (2)

Publication Number Publication Date
EP1850513A1 EP1850513A1 (de) 2007-10-31
EP1850513B1 true EP1850513B1 (de) 2010-01-13

Family

ID=38262936

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07251746A Expired - Fee Related EP1850513B1 (de) 2006-04-28 2007-04-25 Molekulares Kommunikationssystem und zugehöriges Verfahren

Country Status (5)

Country Link
US (1) US8209127B2 (de)
EP (1) EP1850513B1 (de)
JP (1) JP5197926B2 (de)
CN (1) CN101064569B (de)
DE (1) DE602007004253D1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5392707B2 (ja) 2009-03-31 2014-01-22 株式会社Nttドコモ 膜小胞***システム
JP6216251B2 (ja) 2011-11-29 2017-10-18 太陽誘電株式会社 モーター蛋白デバイス
CN104378180B (zh) * 2014-10-20 2017-09-05 浙江工业大学 基于二进制分子通信模型的多播可靠性确定方法
KR101597074B1 (ko) * 2015-04-10 2016-02-23 인하대학교 산학협력단 분자통신에서 에너지 효율적인 변조 방법 및 시스템
KR101652634B1 (ko) * 2015-04-10 2016-08-30 인하대학교 산학협력단 나노 네트워크에서 분자 통신을 위한 억제제 기반 변조 방법 및 장치
US10084551B2 (en) * 2017-02-23 2018-09-25 International Business Machines Corporation Generic network infrastructure for nano-communication
CN106972902B (zh) * 2017-05-09 2020-06-02 浙江工业大学 一种基于扩散的分子通信模型的信道容量优化方法
CN111521172A (zh) * 2020-04-30 2020-08-11 电子科技大学 一种基于协同算法的分子通信的目标检测方法
CN114641064B (zh) * 2022-03-24 2023-08-22 电子科技大学 一种分子通信中基于信标的纳米机定位方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2582064Y (zh) * 2002-12-10 2003-10-22 中国科学技术大学 高容量信息编码与解码装置
CN1460855A (zh) * 2003-06-13 2003-12-10 中国科学院生物物理研究所 一种微流体生物传感器芯片装置及应用
ES2376042T3 (es) * 2005-03-07 2012-03-08 Ntt Docomo, Inc. Sistema de comunicación molecular.
JP4767654B2 (ja) * 2005-10-21 2011-09-07 株式会社エヌ・ティ・ティ・ドコモ 分子伝送・分子配送システムおよび分子伝送・分子配送方法
JP5132906B2 (ja) * 2006-09-13 2013-01-30 株式会社エヌ・ティ・ティ・ドコモ 分子通信システムおよび分子通信方法
JP2009183159A (ja) * 2008-02-04 2009-08-20 National Institute Of Information & Communication Technology 生体物質通信方法及び生体状態生成方法
JP5392707B2 (ja) * 2009-03-31 2014-01-22 株式会社Nttドコモ 膜小胞***システム

Also Published As

Publication number Publication date
CN101064569A (zh) 2007-10-31
EP1850513A1 (de) 2007-10-31
US8209127B2 (en) 2012-06-26
JP5197926B2 (ja) 2013-05-15
US20070254020A1 (en) 2007-11-01
DE602007004253D1 (de) 2010-03-04
CN101064569B (zh) 2010-06-02
JP2007296609A (ja) 2007-11-15

Similar Documents

Publication Publication Date Title
EP1850513B1 (de) Molekulares Kommunikationssystem und zugehöriges Verfahren
EP1857408B1 (de) Molekulares kommunikationssystem
EP3384046B1 (de) Digitales mikrofluidisches system zur einzelligen isolierung und charakterisierung von analyten
Moritani et al. Molecular communication among nanomachines using vesicles
Sanchez et al. Nanorobots: the ultimate wireless self‐propelled sensing and actuating devices
JP4767654B2 (ja) 分子伝送・分子配送システムおよび分子伝送・分子配送方法
Moritani et al. Molecular communication for health care applications
Murtas Internal lipid synthesis and vesicle growth as a step toward self-reproduction of the minimal cell
WO2014106167A1 (en) Digital microfluidic gene synthesis and error correction
Credi A molecular cable car for transmembrane ion transport
Li et al. An efficient polymeric micromotor doped with Pt nanoparticle@ carbon nanotubes for complex bio-media
Li et al. Pt nanoparticles decorated with a discrete number of DNA molecules for programmable assembly of Au–Pt bimetallic superstructures
EP1901449B1 (de) System und Verfahren für molekulare Kommunikation
Moritani et al. Molecular communication a biochemically-engineered communication system
Hiyama et al. A biochemically-engineered molecular communication system
Altamura et al. Giant Vesicles as Micro-Sized Enzymatic Reactors: Perspectives and Recent Experimental Advancements.
JP4264748B2 (ja) 分子荷物の搭載降荷分子モータシステム
Gao et al. In Vitro Biosensing Using Micro-/Nanomachines
Hiyama et al. Selective capture and transport of lipid vesicles by using DNAs and biomolecular motors
Yasuhara et al. Specific delivery of transport vesicles mediated by complementary recognition of DNA signals with membrane-bound oligonucleotide lipids
JP2009183159A (ja) 生体物質通信方法及び生体状態生成方法
WO2017193038A1 (en) Apparatus and method for electrochemical reduction of biochemical compositions for bioconjugation
US20110278155A1 (en) Electrochemical control of chemical catalysis using single molecule motors and digital logic

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid

Designated state(s): DE GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SUDA, TATSUYA

Inventor name: HIYAMA, SATOSHI

Inventor name: MORITANI, YUKI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602007004253

Country of ref document: DE

Date of ref document: 20100304

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101014

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180329

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180410

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007004253

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190425

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101