EP1847720A1 - Linearantriebsvorrichtung - Google Patents

Linearantriebsvorrichtung Download PDF

Info

Publication number
EP1847720A1
EP1847720A1 EP06008355A EP06008355A EP1847720A1 EP 1847720 A1 EP1847720 A1 EP 1847720A1 EP 06008355 A EP06008355 A EP 06008355A EP 06008355 A EP06008355 A EP 06008355A EP 1847720 A1 EP1847720 A1 EP 1847720A1
Authority
EP
European Patent Office
Prior art keywords
working chamber
linear drive
pressure
drive device
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06008355A
Other languages
English (en)
French (fr)
Other versions
EP1847720B1 (de
Inventor
Gerhard Gommel
Ralph Straub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Festo SE and Co KG
Original Assignee
Festo SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Festo SE and Co KG filed Critical Festo SE and Co KG
Priority to AT06008355T priority Critical patent/ATE411477T1/de
Priority to EP06008355A priority patent/EP1847720B1/de
Priority to DE502006001830T priority patent/DE502006001830D1/de
Priority to CN2007100966943A priority patent/CN101059140B/zh
Publication of EP1847720A1 publication Critical patent/EP1847720A1/de
Application granted granted Critical
Publication of EP1847720B1 publication Critical patent/EP1847720B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/22Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke
    • F15B15/222Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke having a piston with a piston extension or piston recess which throttles the main fluid outlet as the piston approaches its end position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41527Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/47Flow control in one direction only
    • F15B2211/473Flow control in one direction only without restriction in the reverse direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5153Pressure control characterised by the connections of the pressure control means in the circuit being connected to an output member and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/555Pressure control for assuring a minimum pressure, e.g. by using a back pressure valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/75Control of speed of the output member

Definitions

  • the invention relates to a linear drive device, comprising a pneumatic linear drive, which has a drive housing in two working chambers from each other dividing drive unit, which is linearly movable by controlled Druck Kunststoffbeaufschlagung starting from at least one starting position in at least one stroke end position, and which is equipped with damping means which during a the achievement of at least one Hubendlage previous damping phase can reduce the Ausströmrate the displaced from the currently downstream working chamber air to decelerate the drive unit.
  • One from the DE 20 2005 018 038 U1 known linear drive device of this type includes a pneumatic linear drive, which is equipped with damping means for slowing down the speed of its drive unit.
  • the damping means are operative during a short damping phase which may precede the achievement of one or both stroke end positions of the drive unit.
  • a downstream of the working chamber associated Abströmquerites is shut off, so that the compressed air only throttled, with a greatly reduced Ausströmrate, can flow to the environment.
  • the backpressure which builds up here in the outflow-side working chamber ensures a reduction in the lifting speed of the drive unit.
  • the above-described pneumatic damping system is usually designed for the specific application.
  • the lifting speed of the drive unit is taken into account.
  • strong throttling is required to effectively decelerate the drive unit, while low drag speeds require only low throttle intensity.
  • throttling intensity of the damping channel can be taken into account in the aforementioned prior art by a variation of the throttling intensity of the damping channel.
  • finding the optimum setting for the particular load case is relatively difficult and time consuming. For applications with frequently changing lifting speeds and / or load cases, such a damping system is therefore not to be fully recommended.
  • downstream working chamber of the linear drive is connected to existing in addition to the damping means and independently of these working pressure limiting valve means which cause venting of the downstream working chamber only from reaching a prevailing in this downstream working chamber predetermined minimum pressure.
  • the pressure prevailing in the downstream working chamber before reaching the damping phase can vary greatly depending on the stroke of the drive unit - the working chamber pressure can either be very high at the beginning of the stroke or, due to a delayed response of the drive unit and an associated strong pressure reduction via the exhaust throttle, be very low - is set by the pressure limiting valve according to the invention largely independent of the stroke and a substantially constant dynamic pressure, so that at the beginning of the damping phase as far as possible same, optimal conditions prevail, regardless of the stroke of the underlying starting position of the drive unit.
  • the pressure limiting valve means As long as the prevailing in the downstream working chamber pressure has not reached the predetermined by the pressure limiting valve means minimum pressure, the outflow-side working chamber remains shut off from the environment. Only when the minimum pressure is reached, the pressure limiting valve means release the vent path. As a result, the build-up of excessive back pressure in the downstream working chamber is prevented.
  • the response threshold of the pressure-limiting valve means is adjustable. This allows on-site optimization of the kinematic design with regard to the desired damping intensity and permitted lifting speed.
  • the pressure-limiting valve means expediently contain a spring-loaded shut-off valve member which is acted upon by the outflow-side air pressure against the spring force, the force-related tuning being such that the shut-off valve member only opens and allows venting of the connected working chamber if the pending in this working chamber air pressure has reached the predetermined minimum by the spring force. If, for some reason, the accumulating air pressure drops below the minimum pressure again, the shut-off valve member can return to the closed position which prevents the venting.
  • the spring force which biases the shut-off valve member into the closed position is expediently adjustable.
  • the channel guidance within the linear drive takes place in particular such that the air displaced by the drive unit flows both outside and during the damping phase into a control channel to which the pressure-limiting valve means are connected or connectable. Passing through this control channel expediently also takes place the pressurization in the connected working chamber when the opposite stroke movement of the drive unit is to be caused.
  • the linear actuator is suitably associated with a directional default valve means which is connected to the two working chambers and this can alternately connect to a compressed air source or a venting channel to cause the desired lifting movement of the drive unit in one or the other direction.
  • the pressure limiting valve means are suitably turned on in the course of that venting channel, which is connectable by the directional default valve means with that working chamber, which are associated with the damping means.
  • the two working chambers are assigned in this case expediently separate ventilation channels. If end position damping is desired only in one stroke direction, the venting channel which can be connected to the other working chamber can be connected directly to the environment without intermediate pressure-limiting valve means.
  • the pressure limiting valve means and the non-return valve connected in parallel therewith are expediently interposed between the directional presetting valve device and the control channel.
  • the check valve since the check valve inevitably causes a limitation of the compressed air inflow rate, if possible, the check valve will be dispensed with and the pressure relief valve means as described will be assigned to a venting channel downstream of the directional default valve means.
  • the damping means are designed so that they only become effective in the respective stroke direction of the drive unit when the drive unit has approached from its initial position to an attenuation start position to the associated Hubendlage.
  • the damping phase expediently begins until the stroke end position is reached.
  • the compressed air displaced by the drive unit can flow off via a main channel with a large flow cross-section adjoining the outflow-side working chamber, so that the desired operating speed of the drive unit is ensured.
  • the damping phase of the main channel is separated by the drive unit from the downstream working chamber, so that the further acted by the moving drive unit compressed air only throttled flow through the throttle channel and can reach the downstream pressure relief valve means.
  • the flow rate of the outflowing compressed air is reduced by the throttle channel, so that a back pressure or dynamic pressure which causes the desired speed reduction of the drive unit can build up in the outflow-side working chamber.
  • the throttle channel and the main channel are conveniently combined at their side opposite the connected working chamber in a control channel to which the pressure limiting valve means are connected, either directly or preferably with the interposition of a directional default valve device. Across this control channel can then take place expediently, the pressurization for the oppositely directed lifting movement.
  • linear drive device includes a pneumatic, that is operated with compressed air linear drive 10, which is aligned vertically in the embodiment described here.
  • the linear actuator 10 can also operate with a different orientation.
  • the linear drive 10 includes an elongated, designated as a drive housing 2 housing, which is composed of an example of a housing tube 3 and two arranged on the end faces housing covers 4a, 4b.
  • an elongated interior 5 is defined in which a drive piston 6 is slidably received in the direction of the longitudinal axis 7 of the drive housing 2.
  • the drive piston 6 carries in the region of its outer circumference annular sealing means 8, which are in sealing contact with the peripheral wall of the inner space 5, so that this inner space 5 is divided by the drive piston 6 with sealing in two axially successive working chambers 12a, 12b.
  • the drive piston 6 is part of a generally designated by reference numeral 13 drive unit which is movable relative to the drive housing 2 in the direction of the longitudinal axis 7 in two opposite directions of lift 14a, 14b.
  • the movement of the drive unit 13 can be tapped outside of the drive housing 2 to perform any application-specific actions.
  • the linear drive 10 of the embodiment is designed as a pneumatic cylinder. Its drive unit 13 therefore has a piston rod 15 connected to the drive piston 6, which extends coaxially with the longitudinal axis 7 and passes through the housing cover 4b, which is referred to below as the front housing cover, displaceably guided under sealing. Corresponding sealing means and guide means are schematically indicated at 16.
  • the two working chambers 12a, 12b are in each case connected to their own control channel 18a, 18b, which passes through the wall of the drive housing 2 and opens out on the outside of this drive housing 2.
  • These control channels 18a, 18b are connected directly or via intermediate fluid lines 22 to a directional default valve device 23, which for example has the functionality of a 5/2-way valve. It is designed for electrical operation, which may be a pilot operated valve device.
  • the directional default valve device 23 has a feed connection 26 connected or connectable to a compressed air source 31 and two venting ports 27, 28 leading to the atmosphere.
  • the two working chambers 12a, 12b can alternately be subjected to compressed air in opposite directions and vented in order to displace the drive unit 13 by the pressure difference acting on it in one of the two stroke directions 14a, 14b.
  • the drive unit 13 can be moved between two predetermined by housing fixed stop means 32 axial Hubendlagen.
  • the stop means 32 are, for example, faces of the housing covers 4a, 4b facing the interior 5, onto which the drive unit 13 has accumulated with its drive piston 6 when its stroke end position is reached.
  • the drive piston 6 In the retracted stroke end position, the drive piston 6 is located on the rear housing cover 4a and in the extended stroke end position on the front housing cover 4b.
  • the movement of the drive unit 13 in the direction of the retracted stroke end position is referred to as the retraction movement 33a, the movement in the direction of the extended stroke end position as the extension movement 33b.
  • the working chamber currently supplied with compressed air is also referred to below as the inflow-side working chamber, which currently has a venting connection 27 or 28 connected working chamber as a downstream working chamber.
  • the exemplary embodiment shows an application of the linear drive device in a combined stretch-blow process, which is used in the production of plastic containers, in particular beverage bottles.
  • a combined stretch-blow process which is used in the production of plastic containers, in particular beverage bottles.
  • it is the molding of plastic bottles made of PET plastic material.
  • An output body for a plastic container to be produced is indicated at 17. He is placed in extension of the retracted Hubendlage engaging drive unit 13. Subsequently, the drive unit 13 is driven to its extension movement 33b, wherein it dips into the designed as a hollow body output body 17 and this axially stretches by mechanical loading. Subsequently or simultaneously, pressurized air under high pressure is blown into the outlet body 17 via at least one discharge opening 34 assigned to the piston rod 15, so that the latter presses against the wall of a negative mold receiving it, forming the desired container.
  • the retracted stroke end position forms the starting position.
  • Your final position has reached the extending drive unit 13 in the embodiment in the apparent from the drawing intermediate position between the two Hubendlagen, ie before it has arrived in the extended Hubendlage.
  • This end position is determined by the length of the required for the production of the plastic container stretching operation.
  • the end position of the extension movement 33b can also be at a different axial position and maximum with the extended Stroke end position coincide.
  • the end position reached during the extension movement 33b forms the starting position for the retraction movement 33a completed when the retracted stroke end position is reached.
  • this starting position as explained, can vary axially in an application-specific manner and, accordingly, also the length ratio present at the starting position and therefore also the volume ratio of the two working chambers 12a, 12b.
  • the overhead in the illustrated vertical arrangement rear working chamber 12a are associated with the linear drive 10 damping means 35 which cause the drive unit 13 is braked during its retraction 33a during a pre-retracted end position damping phase and consequently with only greatly reduced kinetic energy on the the retracted stroke end position predisposing stop means 32 impacts. This protects the components and reduces operating noise.
  • the retraction movement 33a is thus composed of an initially uninfluenced by the damping means 35 movement phase and a subsequent thereto from a certain damping start position damping phase.
  • the front working chamber 12b are assigned no comparable damping means in the embodiment.
  • the extension movement 33b therefore takes place undamped throughout. Nevertheless, it is of course possible to additionally allocate damping means 35 to the front working chamber 12b or only to this front working chamber 12b.
  • the principle of operation of the damping means 35 is fundamentally based on the fact that during the aforementioned damping phase the outflow rate of the air displaced from the momentarily outflow-side working chamber 12a is reduced. Thereby builds in the downstream working chamber 12a on a back pressure, which opposes the retracted stroke end position approximate drive unit 13, a fluidic force that is higher than outside the damping phase. Details of the preferred embodiment of the damping means 35 realized in the embodiment will be explained below.
  • a main channel 36 forming recess which is suitably formed in the rear housing cover 4a and is connected via a channel mouth 37 with the rear working chamber 12a in fluid communication.
  • a sealing ring 38 framing the channel mouth 37 is fixed to the housing.
  • the control channel 18a used for the control of the rear working chamber 12a passes through the wall of the rear housing cover 4a and is in constant communication with the main channel 36.
  • the control channel 18a is also in fluid communication with the rear working chamber 12a via a throttle passage 42 bypassing the main passage 36.
  • the provided by him flow cross-section is substantially less than that of the main channel 36th
  • throttle device 43 is switched on, either predetermines a certain throttling intensity or, suitably, offers an adjustment with respect to the desired throttling intensity.
  • the throttle device 43 may include an adjustable throttle screw.
  • the drive unit 13 carries on its rear cover facing the rear side 4a as a damper piston markable piston-like closure member 44. This is aligned coaxially with the main channel 36 and can dive into the fixed in the region of the channel mouth 37 sealing ring 38 with sealing, so that the fluid connection between the rear Working chamber 12 a and the main channel 36 is shut off. A fluid connection between the rear working chamber 12 a and the associated rear control channel 18 a is then given only via the throttle passage 42.
  • the direction setting valve device 23 is switched so that the front control channel 18b communicates with the compressed air source 31 and the rear control channel 18a with a connected to the one vent port 27 to The drive unit 13 thus moves backwards - in the embodiment upwards - the retraction 33a is initially still undamped because the displaced from the rear working chamber 12a compressed air can flow over the large cross section of the main channel 36.
  • the extension movement 33b is effected by switching the direction setting valve means 23. So that in this case the fed via the rear control channel 18 a of compressed air
  • the sealing ring 38 is formed as part of a non-return valve in the corresponding flow direction.
  • the injected compressed air can flow not only through the throttle channel 42, but also through the main channel 36 from the beginning to the rear working chamber 12a. The full throughput occurs after the closure member 44 is extended out of the sealing ring 38.
  • first vent passage 45 pressure relief valve means 47 are turned on. These affect the venting flow rate of the air displaced in the retraction movement 33a, independently of and in addition to the damping means 35. Specifically, they are designed to permit venting of the downstream working chamber 12a to the atmosphere only when in the lock-side cylinder chamber 12a, a predetermined minimum pressure of the compressed air prevails. This minimum pressure practically represents the response threshold of the pressure limiting valve means 47. If the air pressure is lower, take the pressure limiting valve means 47 a the first venting channel 45 completely shut off a closed position. From reaching the minimum pressure and at higher air pressure are the pressure limiting valve means 47 in a venting enabling, that is, the connection between the first vent passage 45 and the atmosphere unlocks open position.
  • the pressure limiting valve means 47 prevent excessive pressure rise in the rear, downstream working chamber by early opening 12a. Otherwise, this increase in pressure could result in the retracting drive unit 13 not immediately reaching a stable stroke end position, but being excited to oscillate.
  • the starting position of the drive unit 13 is relatively close to the retracted stroke end position, it takes longer until the correspondingly larger volume front working chamber 12b has built up the actuation pressure required for the retraction movement 33a.
  • the pressure prevailing in the rear working chamber 12a over the exhaust air throttle could degrade to such an extent during this time period that a sufficiently high back pressure can no longer build up in the damping phase.
  • the pressure-limiting valve means 47 according to the invention in this phase, the rear working chamber 12a is completely separated from the atmosphere, so that the disadvantageous pressure reduction can not take place. Consequently, here can be despite one low hub build the required for the functioning of the damping means minimum pressure.
  • FIG. 2 differs, on the one hand, in that the pressure-limiting valve means 47 are interposed between the control channel 18a and the directional default valve device 23 (not shown here).
  • a check valve 48 is connected in parallel. The latter allows compressed air flow from the directional default valve device 23 to the control channel 18a, bypassing the pressure limiting valve means 47, but prevents such in the opposite direction, so that then the pressure limiting valve means 47 are effective in the described manner.
  • Figure 1 Since the flow rate of the incoming compressed air is limited by the check valve 48 compared with an open channel connection, the design of Figure 1 is usually preferable to that of Figure 2.
  • the design of Figure 1 allows unthrottled pressurization of the drive unit 13 to cause the extension movement 33b, so that it is possible to achieve a very high extension speed.
  • the response threshold of the pressure-limiting valve means 47 is adjustable. This allows an optimal design of the overall system in terms of damping intensity and lifting speed.
  • the pressure-limiting valve means 47 preferably have a spring-loaded by spring means 52 in a closed position shut-off valve member 53.
  • the shut-off valve member 53 is the outflow prevailing working chamber pressure switched, for example directly ( Figure 2) or via a branched admission channel 54 ( Figure 1).
  • the venting process takes place when the working chamber pressure acting on the shut-off valve member 53 corresponds at least to the minimum pressure acting as a threshold.
  • the threshold can be varied by a change in the Federstellkraft the spring means 52 and specified as desired.
  • the pressure applied to the shut-off valve member 53 of the outflow-side working chamber is not necessarily directly accessible from the relevant working chamber. In the embodiment of Figure 1, it is tapped in the pressure limiting valve means 47 to the linear drive 10 upstream channel portion of the first vent passage 45.
  • the pressure-limiting valve means 47 are combined with the linear drive 2 expediently to form an assembly.
  • the possibly existing directional default valve device 23 is preferably a part of this module.
  • a control device 55 which is attached to the drive housing 2, is indicated by dash-dot lines, which contains both the directional specification valve device 23 and the pressure-limiting valve device 47.
  • the pressure limiting valve means 47 may be mounted directly to the directional default valve means 23 or integrated therein. In a direct attachment, the first vent channel 45 could be applied to the connection area between the associated vent port 27 and the input port of the pressure limiting valve means 47 may be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Vehicle Body Suspensions (AREA)
  • Valve Device For Special Equipments (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Actuator (AREA)

Abstract

Es wird eine Linearantriebsvorrichtung (1) vorgeschlagen, die einen Linearantrieb (10) mit integrierten, eine Endlagendämpfung ermöglichenden Dämpfungsmitteln (35) umfasst. Die Entlüftung mindestens einer Arbeitskammer (12a) des Linearantriebes (10) wird durch Druckbegrenzungs-Ventilmittel (47) gesteuert. Diese ermöglichen eine Entlüftung nur dann, wenn in der abströmseitigen Arbeitskammer (12a) ein vorbestimmter Mindestdruck herrscht. Auf diese Weise kann eine vom Anwendungsfall weitgehend unabhängige Endlagen-Dämpfungswirkung gewährleistet werden.

Description

  • Die Erfindung betrifft eine Linearantriebsvorrichtung, mit einem pneumatischen Linearantrieb, der eine in einem Antriebsgehäuse zwei Arbeitskammern voneinander abteilende Antriebseinheit aufweist, die durch gesteuerte Druckluftbeaufschlagung ausgehend von mindestens einer Ausgangsposition in mindestens eine Hubendlage linear verfahrbar ist, und der mit Dämpfungsmitteln ausgestattet ist, die während einer dem Erreichen mindestens einer Hubendlage vorausgehenden Dämpfungsphase die Ausströmrate der aus der momentan abströmseitigen Arbeitskammer verdrängten Luft herabsetzen können, um die Antriebseinheit abzubremsen.
  • Eine aus der DE 20 2005 018 038 U1 bekannte Linearantriebsvorrichtung dieser Art enthält einen pneumatischen Linearantrieb, der mit Dämpfungsmitteln zum Abbremsen der Geschwindigkeit seiner Antriebseinheit ausgestattet ist. Die Dämpfungsmittel sind während einer kurzen Dämpfungsphase wirksam, die dem Erreichen einer oder beider Hubendlagen der Antriebseinheit vorausgehen kann. Während dieser Dämpfungsphase wird ein der abströmseitigen Arbeitskammer zugeordneter Abströmquerschnitt abgesperrt, so dass die Druckluft nurmehr gedrosselt, mit stark reduzierter Ausströmrate, zur Umgebung ausströmen kann. Der sich hierbei in der abströmseitigen Arbeitskammer aufbauende Gegendruck sorgt für eine Verringerung der Hubgeschwindigkeit der Antriebseinheit.
  • Das vorstehend erläuterte pneumatische Dämpfungssystem wird in der Regel auf den speziellen Anwendungsfall hin ausgelegt. Hierbei wird insbesondere die Hubgeschwindigkeit der Antriebseinheit berücksichtigt. Bei sehr hohen Hubgeschwindigkeiten bedarf es einer starken Drosselung zum wirksamen Abbremsen der Antriebseinheit, während bei geringen Hubgeschwindigkeiten eine nur geringe Drosselungsintensität wünschenswert ist. Solchen unterschiedlichen Belastungsfällen kann zwar bei dem vorgenannten Stand der Technik durch eine Variation der Drosselungsintensität des Dämpfungskanals Rechnung getragen werden. Das Finden der für den jeweiligen Belastungsfall optimalen Einstellung ist jedoch relativ schwierig und zeitraubend. Für Anwendungen mit häufig wechselnden Hubgeschwindigkeiten und/oder Belastungsfällen ist ein solches Dämpfungssystem daher nicht uneingeschränkt zu empfehlen.
  • Um der geschilderten Problematik entgegen zu wirken, geht man nicht selten dazu über, zusätzlich zu den Dämpfungsmitteln eine diesen nachgeschaltete Abluftdrosselung vorzunehmen. Eine in den Entlüftungsstrom eingeschaltete einstellbare Drossel bewirkt hier eine grundsätzliche Beschränkung der Entlüftungs-Strömungsrate, um die Hubgeschwindigkeit der Antriebseinheit zu begrenzen. Auch hier ergeben sich jedoch vor allem dann Unzulänglichkeiten, wenn der Linearantrieb mit unterschiedlichen Hüben betrieben werden soll, mit anderen Worten die mit einer Endlagendämpfung abschließende Hubbewegung bei unterschiedlichen Ausgangspositionen beginnt. Letzteres ist eine beispielsweise bei der Herstellung von PET-Flaschen auftretende Problematik, wo die Linearantriebsvorrichtung für den Streck-Blas-Prozess der Flaschenkörper eingesetzt werden soll und unterschiedliche Ausgangspositionen für den Rückhub daraus resultieren, dass unterschiedlich große Flaschenkörper in unterschiedlichem Maße axial gereckt werden müssen. Um hier ein optimales Arbeitsergebnis bei wirksamer Endlagendämpfung zu erzielen, ist man bisher in der Regel dazu gezwungen, für unterschiedliche Hubbereiche auf unterschiedlich große Linearantriebe zurückzugreifen.
  • Es ist die Aufgabe der vorliegenden Erfindung, Maßnahmen vorzuschlagen, die unabhängig vom Hub der Antriebseinheit eine wirksame Endlagendämpfung ermöglichen.
  • Zur Lösung dieser Aufgabe ist die abströmseitige Arbeitskammer des Linearantriebes an zusätzlich zu den Dämpfungsmitteln vorhandene und unabhängig von diesen arbeitende Druckbegrenzungs-Ventilmittel angeschlossen, die ein Entlüften der abströmseitigen Arbeitskammer erst ab Erreichen eines in dieser abströmseitigen Arbeitskammer herrschenden vorbestimmten Mindestdruckes hervorrufen.
  • Auf diese Weise wird eine hoch wirksame Endlagendämpfung ungeachtet unterschiedlicher Ausgangspositionen der Antriebseinheit ohne Veränderung der Einstellung der für die Endlagendämpfung verantwortlichen Dämpfungsmittel gewährleistet. Die in Abhängigkeit von den unterschiedlichen Ausgangspositionen im Normalfall stark unterschiedlichen Druckverhältnisse in der abströmseitigen Arbeitskammer und mithin auch die daraus resultierenden unterschiedlichen Hubgeschwindigkeiten werden durch die Druckbegrenzurigs-Ventilmittel vergleichmäßigt, so dass während der Dämpfungsphase vergleichbare Verhältnisse herrschen, mit der Folge einer gleichbleibenden Dämpfungsqualität. Während beispielsweise bei einer reinen Abluftdrosselung der in der abströmseitigen Arbeitskammer vor Erreichen der Dämpfungsphase herrschende Druck in Abhängigkeit vom Hub der Antriebseinheit stark variieren kann - der Arbeitskammerdruck kann bei Hubbeginn entweder noch sehr hoch oder aber, bedingt durch ein verzögertes Ansprechen der Antriebseinheit und einem damit verbundenen starken Druckabbau über die Abluftdrossel, sehr gering sein - wird durch die erfindungsgemäßen Druckbegrenzungs-Ventilmittel ein vom Hub weitestgehend unabhängiger und im Wesentlichen konstanter Staudruck eingestellt, so dass zu Beginn der Dämpfungsphase weitestgehend gleiche, optimale Verhältnisse herrschen, unabhängig von der der Hubbewegung zu Grunde liegenden Ausgangsposition der Antriebseinheit. Solange der in der abströmseitigen Arbeitskammer herrschende Druck den durch die Druckbegrenzungs-Ventilmittel vorgegebenen Mindestdruck nicht erreicht hat, bleibt die abströmseitige Arbeitskammer von der Umgebung abgesperrt. Erst bei Erreichen des Mindestdruckes geben die Druckbegrenzungs-Ventilmittel den Entlüftungsweg frei. Dadurch wird der Aufbau eines zu hohen Rückstaudruckes in der abströmseitigen Arbeitskammer verhindert.
  • Vorteilhafte Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.
  • Es ist von Vorteil, wenn die Ansprechschwelle der Druckbegrenzungs-Ventilmittel einstellbar ist. Dies ermöglicht vor Ort eine Optimierung der kinematischen Auslegung hinsichtlich gewünschter Dämpfungsintensität und zugelassener Hubgeschwindigkeit.
  • Prinzipiell wäre es möglich, das Erreichen der Ansprechschwelle des in der abströmseitigen Arbeitskammer herrschenden Druckes durch Drucksensormittel zu erfassen und anhand eines von diesen generierten elektrischen Sensorsignals eine die Druckbegrenzung bewirkende Absperrventileinrichtung wahlweise in die Offenstellung oder die Schließstellung zu schalten. Vorzugsweise kommen jedoch rein mechanisch und durch Druckkraft betätigbare Druckbegrenzungs-Ventilmittel zum Einsatz, so dass sich elektrische Überwachungs- und Ansteuermaßnahmen erübrigen. Die Druckbegrenzungs-Ventilmittel enthalten in diesem Fall zweckmäßigerweise ein federbelastet in eine Schließstellung vorgespanntes Absperrventilglied, das entgegen der Federstellkraft durch den abströmseitigen Luftdruck beaufschlagt wird, wobei die kräftemäßige Abstimmung so getroffen ist, dass das Absperrventilglied erst öffnet und eine Entlüftung der angeschlossenen Arbeitskammer ermöglicht, wenn der in dieser Arbeitskammer anstehende Luftdruck den durch die Federstellkraft vorgegebenen Mindestdruck erreicht hat. Sinkt der sich aufstauende Luftdruck aus irgendwelchen Gründen wieder unter den Mindestdruck ab, kann das Absperrventilglied wieder in die die Entlüftung unterbindende Schließstellung zurückkehren.
  • Die das Absperrventilglied in die Schließstellung vorspannende Federkraft ist zweckmäßigerweise einstellbar.
  • Die Kanalführung innerhalb des Linearantriebes erfolgt insbesondere dergestalt, dass die von der Antriebseinheit verdrängte Luft sowohl außerhalb als auch während der Dämpfungsphase in einen Steuerkanal strömt, an den die Druckbegrenzungs-Ventilmittel angeschlossen oder anschließbar sind. Durch diesen Steuerkanal hindurch erfolgt zweckmäßigerweise auch die Druckbeaufschlagung in die angeschlossene Arbeitskammer, wenn die entgegengesetzte Hubbewegung der Antriebseinheit hervorgerufen werden soll.
  • Dem Linearantrieb ist zweckmäßigerweise eine Richtungsvorgabe-Ventileinrichtung zugeordnet, die an die beiden Arbeitskammern angeschlossen ist und diese abwechselnd mit einer Druckluftquelle oder einem Entlüftungskanal verbinden kann, um die gewünschte Hubbewegung der Antriebseinheit in der einen oder anderen Richtung hervorzurufen. Bei einer solchen Anordnung sind die Druckbegrenzungs-Ventilmittel zweckmäßigerweise in den Verlauf desjenigen Entlüftungskanals eingeschaltet, der durch die Richtungsvorgabe-Ventileinrichtung mit derjenigen Arbeitskammer verbindbar ist, welcher die Dämpfungsmittel zugeordnet sind.
  • Den beiden Arbeitskammern sind in diesem Fall zweckmäßigerweise gesonderte Entlüftungskanäle zugeordnet. Wenn nur bei einer Hubrichtung eine Endlagendämpfung gewünscht ist, kann der mit der anderen Arbeitskammer verbindbare Entlüftungskanal ohne zwischengeschaltete Druckbegrenzungs-Ventilmittel direkt mit der Umgebung verbunden sein.
  • Es besteht auch die alternative Möglichkeit, einen mit der zu Dämpfungszwecken verwendeten Arbeitskammer verbundenen Steuerkanal sowohl an die Druckbegrenzungs-Ventilmittel als auch, in Parallelschaltung, an ein ein Zuströmen von Druckluft in die angeschlossene Arbeitskammer ermöglichendes und in Gegenrichtung sperrendes Rückschlagventil anzuschließen. Die Einspeisung von Druckluft kann in diesem Fall über das Rückschlagventil hinweg erfolgen, das bei entgegengesetzter Strömungsrichtung sperrt, so dass hier dann die Druckbegrenzungs-Ventilmittel in der geschilderten Weise wirksam sind.
  • Ist die Linearantriebsvorrichtung mit einer Richtungsvorgabe-Ventileinrichtung ausgestattet, sind die Druckbegrenzungs-Ventilmittel und das zu diesen parallel geschaltete Rückschlagventil zweckmäßigerweise zwischen die Richtungsvorgabe-Ventileinrichtung und den Steuerkanal zwischengeschaltet. Da das Rückschlagventil jedoch unweigerlich eine Begrenzung der Druckluft-Zuströmrate hervorruft, wird man wenn möglich auf das Rückschlagventil verzichten und die Druckbegrenzungs-Ventilmittel wie geschildert einem der Richtungsvorgabe-Ventileinrichtung nachgeschalteten Entlüftungskanal zuordnen.
  • Bei einer bevorzugten Ausgestaltung sind die Dämpfungsmittel so ausgebildet, dass sie bei der betreffenden Hubrichtung der Antriebseinheit erst dann wirksam werden, wenn sich die Antriebseinheit ausgehend von ihrer Ausgangsposition bis zu einer Dämpfungs-Startposition an die zugeordnete Hubendlage angenähert hat. Bei dieser Dämpfungs-Startposition beginnt die zweckmäßigerweise bis zum Erreichen der Hubendlage wirksame Dämpfungsphase. Außerhalb der Dämpfungsphase kann die durch die Antriebseinheit verdrängte Druckluft über einen sich an die abströmseitige Arbeitskammer anschließenden Hauptkanal mit großem Strömungsquerschnitt abströmen, so dass die gewünschte Arbeitsgeschwindigkeit der Antriebseinheit gewährleistet ist. Während der Dämpfungsphase ist der Hauptkanal durch die Antriebseinheit von der abströmseitigen Arbeitskammer abgetrennt, so dass die weiterhin von der sich bewegenden Antriebseinheit beaufschlagte Druckluft nurmehr gedrosselt über den Drosselkanal abströmen und zu den nachgeschalteten Druckbegrenzungs-Ventilmitteln gelangen kann. Die Strömungsrate der abströmenden Druckluft wird durch den Drosselkanal verringert, so dass sich ein den gewünschten Geschwindigkeitsabbau der Antriebseinheit hervorrufender Gegendruck bzw. Staudruck in der abströmseitigen Arbeitskammer aufbauen kann.
  • Der Drosselkanal und der Hauptkanal sind an ihrer der angeschlossenen Arbeitskammer entgegengesetzten Seite zweckmäßigerweise in einem Steuerkanal zusammengeführt, an den die Druckbegrenzungs-Ventilmittel angeschlossen sind, entweder direkt oder bevorzugt unter Zwischenschaltung einer Richtungsvorgabe-Ventileinrichtung. Über diesen Steuerkanal hinweg kann dann zweckmäßigerweise auch die Druckbeaufschlagung für die entgegengesetzt gerichtete Hubbewegung stattfinden.
  • Nachfolgend wird die Erfindung anhand der beiliegenden Zeichnung näher erläutert. In dieser zeigen:
  • Figur 1
    in schematischer Darstellung und teils im Längsschnitt eine bevorzugte Bauform der erfindungsgemäßen Linearantriebsvorrichtung, und
    Figur 2
    einen Ausschnitt der Linearantriebsvorrichtung aus Figur 1 im Bereich modifizierter, mit einem Rückschlagventil kombinierter Druckbegrenzungs-Ventilmittel.
  • Die in ihrer Gesamtheit mit Bezugsziffer 1 bezeichnete Linearantriebsvorrichtung enthält einen pneumatischen, das heißt mit Druckluft betriebenen Linearantrieb 10, welcher bei dem hier geschilderten Ausführungsbeispiel vertikal ausgerichtet ist. Allerdings läßt sich der Linearantrieb 10 auch mit anderer Ausrichtung betreiben.
  • Der Linearantrieb 10 enthält ein längliches, als Antriebsgehäuse 2 bezeichnetes Gehäuse, das sich exemplarisch aus einem Gehäuserohr 3 und zwei an dessen Stirnseiten angeordneten Gehäusedeckeln 4a, 4b zusammensetzt.
  • Durch das Antriebsgehäuse 2 wird ein länglicher Innenraum 5 definiert, in dem ein Antriebskolben 6 in der Richtung der Längsachse 7 des Antriebsgehäuses 2 verschiebbar aufgenommen ist.
  • Der Antriebskolben 6 trägt im Bereich seines Außenumfanges ringförmige Dichtmittel 8, die mit der peripheren Wandung des Innenraumes 5 in Dichtkontakt stehen, so dass dieser Innenraum 5 durch den Antriebskolben 6 unter Abdichtung in zwei axial aufeinanderfolgende Arbeitskammern 12a, 12b unterteilt ist.
  • Der Antriebskolben 6 ist Bestandteil einer insgesamt mit Bezugsziffer 13 bezeichneten Antriebseinheit, die relativ zum Antriebsgehäuse 2 in Richtung der Längsachse 7 in zwei einander entgegengesetzten Hubrichtungen 14a, 14b bewegbar ist. Die Bewegung der Antriebseinheit 13 läßt sich außerhalb des Antriebsgehäuses 2 abgreifen, um irgendwelche anwendungsspezifische Aktionen durchzuführen.
  • Der Linearantrieb 10 des Ausführungsbeispiels ist als Pneumatikzylinder konzipiert. Seine Antriebseinheit 13 verfügt daher über eine mit dem Antriebskolben 6 verbundene Kolbenstange 15, die sich koaxial zu der Längsachse 7 erstreckt und den im Folgenden der besseren Unterscheidung wegen als vorderer Gehäusedeckel bezeichneten Gehäusedeckel 4b unter Abdichtung verschiebbar geführt durchsetzt. Entsprechende Dichtmittel und Führungsmittel sind bei 16 schematisch angedeutet.
  • Der entgegengesetzte, im Folgenden der besseren Unterscheidung wegen als rückseitiger Gehäusedeckel bezeichnete andere Gehäusedeckel 4a ist geschlossen. Es wäre jedoch möglich, die Kolbenstange 15 so auszubilden, dass sie das Antriebsgehäuse 2 axial komplett durchsetzt und mithin auch durch den rückseitigen Gehäusedeckel 4a hindurchgreift.
  • Die beiden Arbeitskammern 12a, 12b stehen jeweils mit einem eigenen Steuerkanal 18a, 18b in Verbindung, der die Wandung des Antriebsgehäuses 2 durchsetzt und außen an diesem Antriebsgehäuse 2 ausmündet. Diese Steuerkanäle 18a, 18b sind direkt oder über zwischengeschaltete Fluidleitungen 22 an eine Richtungsvorgabe-Ventileinrichtung 23 angeschlossen, die beispielhaft die Funktionalität eines 5/2-Wegeventils aufweist. Sie ist für elektrische Betätigung ausgelegt, wobei es sich um eine vorgesteuerte Ventileinrichtung handeln kann.
  • Zusätzlich zu den beiden mit den Steuerkanälen 18a, 18b verbundenen Arbeitsanschlüssen 24, 25 verfügt die Richtungsvorgabe-Ventileinrichtung 23 über einen mit einer Druckluftquelle 31 verbundenen oder verbindbaren Speiseanschluss 26 sowie über zwei zur Atmosphäre führende Entlüftungsanschlüsse 27,28.
  • Über die Richtungsvorgabe-Ventileinrichtung 23 können die beiden Arbeitskammern 12a, 12b abwechseln gegensinnig mit Druckluft beaufschlagt und entlüftet werden, um die Antriebseinheit 13 durch die hierbei an ihr angreifende Druckdifferenz in einer der beiden Hubrichtungen 14a, 14b zu verlagern.
  • Die Antriebseinheit 13 kann zwischen zwei durch gehäusefeste Anschlagmittel 32 vorgegebenen axialen Hubendlagen bewegt werden. Bei den Anschlagmitteln 32 handelt es sich beispielsweise um dem Innenraum 5 zugewandte Stirnflächen der Gehäusedeckel 4a, 4b, auf die die Antriebseinheit 13 bei Erreichen ihrer Hubendlage mit ihrem Antriebskolben 6 aufgelaufen ist.
  • In der eingefahrenen Hubendlage befindet sich der Antriebskolben 6 am rückseitigen Gehäusedeckel 4a und in der ausgefahrenen Hubendlage am vorderen Gehäusedeckel 4b. Die Bewegung der Antriebseinheit 13 in Richtung zur eingefahrenen Hubendlage sei als Einfahrbewegung 33a bezeichnet, die Bewegung in Richtung der ausgefahrenen Hubendlage als Ausfahrbewegung 33b.
  • Je nach Bewegungsrichtung, wird in die eine Arbeitskammer Druckluft eingespeist und gleichzeitig aus der anderen Arbeitskammer Druckluft abgeführt. Die momentan mit Druckluft gespeiste Arbeitskammer sei im Folgenden auch als zuströmseitige Arbeitkammer bezeichnet, die momentan mit einem Entlüftungsanschluss 27 oder 28 verbundene Arbeitskammer als abströmseitige Arbeitskammer.
  • Das Ausführungsbeispiel zeigt eine Anwendung der Linearantriebsvorrichtung bei einem kombinierten Streck-Blas-Prozess, der bei der Herstellung von Kunststoffbehältnissen, insbesondere Getränkeflaschen, zum Einsatz gelangt. Bevorzugt handelt es sich um die Formung von Kunststoffflaschen aus PET-Kunststoffmaterial.
  • Ein Ausgangskörper für ein herzustellendes Kunststoffbehältnis ist bei 17 angedeutet. Er wird in Verlängerung der die eingefahrene Hubendlage einnehmenden Antriebseinheit 13 platziert. Anschließend wird die Antriebseinheit 13 zu ihrer Ausfahrbewegung 33b angetrieben, wobei sie in den als Hohlkörper ausgeführten Ausgangskörper 17 eintaucht und diesen durch mechanische Beaufschlagung axial streckt. Anschließend oder gleichzeitig wird über mindestens eine der Kolbenstange 15 zugeordnete Ausblasöffnung 34 unter hohem Druck stehende Druckluft in den Ausgangskörper 17 eingeblasen, so dass dieser sich unter Bildung des gewünschten Behältnisses an die Wandung einer ihn aufnehmenden Negativform anlegt.
  • Für die Ausfahrbewegung 33b bildet die eingefahrene Hubendlage die Ausgangsposition. Ihre Endposition hat die ausfahrende Antriebseinheit 13 beim Ausführungsbeispiel in der aus der Zeichnung ersichtlichen Zwischenstellung zwischen den beiden Hubendlagen erreicht, also bevor sie in der ausgefahrenen Hubendlage angelangt ist. Diese Endposition ist durch die Länge des für die Herstellung des Kunststoffbehältnisses erforderlichen Streckvorganges bestimmt. In Verbindung mit der Herstellung größerer oder auch kleinerer Kunststoffbehältnisse kann die Endposition der Ausfahrbewegung 33b auch an einer anderen Axialposition liegen und maximal mit der ausgefahrenen Hubendlage zusammenfallen. Jedenfalls bildet die bei der Ausfahrbewegung 33b erreichte Endposition die Ausgangsposition für die bei Erreichen der eingefahrenen Hubendlage abgeschlossene Einfahrbewegung 33a. Ersichtlich kann diese Ausgangsposition, wie erläutert, anwendungsspezifisch axial variieren und dementsprechend auch das bei der Ausgangsposition vorhandene Längenverhältnis und mithin auch Volumenverhältnis der beiden Arbeitskammern 12a, 12b.
  • Der bei der abgebildeten Vertikalanordnung oben liegenden rückseitigen Arbeitskammer 12a sind zum Linearantrieb 10 gehörende Dämpfungsmittel 35 zugeordnet, die bewirken, dass die Antriebseinheit 13 bei ihrer Einfahrbewegung 33a während einer dem Erreichen der eingefahrenen Endlage vorausgehenden Dämpfungsphase abgebremst wird und folglich mit nurmehr stark reduzierter Bewegungsenergie auf die die eingefahrene Hubendlage vorgebenden Anschlagmittel 32 aufprallt. Dadurch werden die Bauteile geschont und das Betriebsgeräusch reduziert. Die Einfahrbewegung 33a setzt sich also aus einer anfänglich durch die Dämpfungsmittel 35 unbeeinflussten Bewegungsphase und einer sich daran ab einer bestimmten Dämpfungs-Startposition anschließenden Dämpfungsphase zusammen.
  • Der vorderen Arbeitskammer 12b sind beim Ausführungsbeispiel keine vergleichbaren Dämpfungsmittel zugeordnet. Die Ausfahrbewegung 33b findet daher durchweg ungedämpft statt. Gleichwohl besteht selbstverständlich die Möglichkeit, zusätzlich auch der vorderen Arbeitskammer 12b Dämpfungsmittel 35 zuzuordnen oder auch nur dieser vorderen Arbeitskammer 12b.
  • Das Funktionsprinzip der Dämpfungsmittel 35 basiert grundsätzlich darauf, dass während der erwähnten Dämpfungsphase die Ausströmrate der aus der momentan abströmseitigen Arbeitskammer 12a verdrängten Luft herabgesetzt wird. Dadurch baut sich in der abströmseitigen Arbeitskammer 12a ein Gegendruck auf, der der sich an die eingefahrene Hubendlage annähernden Antriebseinheit 13 eine fluidische Stellkraft entgegensetzt, die höher ist als außerhalb der Dämpfungsphase. Details der beim Ausführungsbeispiel realisierten bevorzugten Bauform der Dämpfungsmittel 35 werden nachstehend erläutert.
  • An die rückwärtige Arbeitskammer 12a schließt sich in koaxialer Verlängerung eine einen Hauptkanal 36 bildende Ausnehmung an, die zweckmäßigerweise im rückseitigen Gehäusedeckel 4a ausgebildet ist und über eine Kanalmündung 37 mit der rückwärtigen Arbeitskammer 12a in Fluidverbindung steht. Im Bereich der Kanalmündung 37, also dem Übergangsbereich zwischen dem Hauptkanal 36 und der rückwärtigen Arbeitskammer 12a, ist gehäusefest ein die Kanalmündung 37 umrahmender Dichtungsring 38 angeordnet. Der für die Ansteuerung der rückwärtigen Arbeitskammer 12a verwendete Steuerkanal 18a durchsetzt die Wandung des rückseitigen Gehäusedeckels 4a und steht mit dem Hauptkanal 36 in ständiger Verbindung.
  • Der Steuerkanal 18a steht außerdem auch noch über einen den Hauptkanal 36 umgehenden Drosselkanal 42 mit der rückwärtigen Arbeitskammer 12a in fluidischer Verbindung. Der durch ihn zur Verfügung gestellte Strömungsquerschnitt ist wesentlich geringer als derjenige des Hauptkanals 36.
  • In den Verlauf des Drosselkanals 42 ist zweckmäßigerweise eine in der Zeichnung nur schematisch angedeutete Drosseleinrichtung 43 eingeschaltet, die entweder eine bestimmte Drosselungsintensität fest vorgibt oder, zweckmäßigerweise, eine Einstellmöglichkeit hinsichtlich der gewünschten Drosselungsintensität bietet. Die Drosseleinrichtung 43 kann eine einstellbare Drosselschraube enthalten.
  • Die Antriebseinheit 13 trägt an ihrer dem rückwärtigen Gehäusedeckel 4a zugewandten Rückseite ein als Dämpfungskolben bezeichenbares kolbenartiges Verschlussglied 44. Dieses ist koaxial zum Hauptkanal 36 ausgerichtet und kann in den im Bereich der Kanalmündung 37 fixierten Dichtungsring 38 unter Abdichtung eintauchen, so dass die Fluidverbindung zwischen der rückwärtigen Arbeitskammer 12a und dem Hauptkanal 36 abgesperrt ist. Eine Fluidverbindung zwischen der rückwärtigen Arbeitskammer 12a und dem zugeordneten rückwärtigen Steuerkanal 18a ist dann nurmehr über den Drosselkanal 42 gegeben.
  • Um ausgehend von der gezeigten Ausgangsposition der Antriebseinheit 13 die Einfahrbewegung 33a hervorzurufen, wird die Richtungsvorgabe-Ventileinrichtung 23 so geschaltet, dass der vordere Steuerkanal 18b mit der Druckluftquelle 31 in Verbindung steht und der rückwärtige Steuerkanal 18a mit einem an den einen Entlüftungsanschluss 27 angeschlossenen, zur Atmosphäre führenden ersten Entlüftungskanal 45. Die Antriebseinheit 13 bewegt sich mithin nach rückwärts - beim Ausführungsbeispiel nach oben - wobei die Einfahrbewegung 33a zunächst noch ungedämpft ist, weil die aus der rückwärtigen Arbeitskammer 12a verdrängte Druckluft über den großen Querschnitt des Hauptkanals 36 abströmen kann. Sobald jedoch das Verschlussglied 44 in den Dichtungsring 38 eintaucht - dies markiert die Dämpfungs-Startposition - kann die Druckluft die rückwärtige Arbeitskammer 12a nurmehr gedrosselt über den engeren Drosselkanal 42 hindurch verlassen, so dass sich die Hubbewegung der Antriebseinheit 13 verlangsamt und der Endaufprall bei Erreichen der eingefahrenen Hubendlage tolerierbar gering ist.
  • Die Ausfahrbewegung 33b wird durch Umschalten der Richtungsvorgabe-Ventileinrichtung 23 bewirkt. Damit hierbei die über den rückwärtigen Steuerkanal 18a eingespeiste Druckluft von Anbeginn an die Möglichkeit hat, die Antriebseinheit 13 mit einem relativ großen Volumenstrom zu beaufschlagen, ist der Dichtungsring 38 als Bestandteil eines in der entsprechenden Strömungsrichtung durchlassenden Rückschlagventils ausgebildet. Somit kann die eingespeist Druckluft nicht nur durch den Drosselkanal 42, sondern auch durch den Hauptkanal 36 von Anbeginn an in die rückwärtige Arbeitskammer 12a einströmen. Der volle Durchsatz stellt sich ein, nachdem das Verschlussglied 44 aus dem Dichtungsring 38 ausgefahren ist.
  • In den Verlauf des mit der rückwärtigen Arbeitskammer 12a verbindbaren ersten Entlüftungskanal 45 sind Druckbegrenzungs-Ventilmittel 47 eingeschaltet. Diese beeinflussen die Entlüftungs-Strömungsrate der bei der Einfahrbewegung 33a verdrängten Luft, und zwar unabhängig von und zusätzlich zu den Dämpfungsmitteln 35. Genauer gesagt sind sie so ausgebildet, dass sie die Entlüftung der abströmseitigen Arbeitskammer 12a an die Atmosphäre erst und nur zulassen, wenn in der abstörmseitigen Zylinderkammer 12a ein vorbestimmter Mindestdruck der Druckluft herrscht. Dieser Mindestdruck repräsentiert praktisch die Ansprechschwelle der Druckbegrenzungs-Ventilmittel 47. Ist der Luftdruck geringer, nehmen die Druckbegrenzungs-Ventilmittel 47 eine den ersten Entlüftungskanal 45 komplett absperrende Schließstellung ein. Ab Erreichen des Mindestdruckes und bei höherem Luftdruck befinden sich die Druckbegrenzungs-Ventilmittel 47 in einer die Entlüftung ermöglichenden, das heißt die Verbindung zwischen dem ersten Entlüftungskanal 45 und der Atmosphäre freischaltenden Offenstellung.
  • Auf diese Weise findet von Anbeginn der Einfahrbewegung 33a an eine Art Druckregelung des abströmseitigen Luftdruckes statt, das heißt eine Einstellung und weitesgehende Konstanthaltung des erwähnten Mindestdruckes. Dies gewährleistet in der abströmseitigen Arbeitskammer 12a eine von der axialen Ausgangsposition der Einfahrbewegung 33a unabhängige Druckeinstellung auf ein Maß, das die gewünschte Endlagen-Dämpfungsfunktion gewährleistet, in Verbindung mit einer maximal vertretbaren Einfahrgeschwindigkeit der Antriebseinheit 13.
  • Ist beispielsweise die Ausgangsposition relativ weit von der eingefahrenen Hubendlage entfernt und baut sich folglich zu Beginn der Einfahrbewegung 33a der Beaufschlagungsdruck in der vorderen Arbeitskammer 12b sehr rasch auf, verhindern die Druckbegrenzungs-Ventilmittel 47 durch ein frühzeitiges Öffnen einen übermäßigen Druckanstieg in der rückwärtigen, abströmseitigen Arbeitskammer 12a. Dieser Druckanstieg könnte ansonsten zur Folge haben, dass die einfahrende Antriebseinheit 13 nicht sofort in eine stabile Hubendlage gelangt, sondern zu Schwingungen angeregt wird.
  • Befindet sich die Ausgangsposition der Antriebseinheit 13 relativ nahe bei der eingefahrenen Hubendlage, dauert es länger, bis in der ein dementsprechend größeres Volumen aufweisenden vorderen Arbeitskammer 12b der für die Einfahrbewegung 33a erforderliche Betätigungsdruck aufgebaut ist. Bei einer Bauform mit einer an Stelle den Druckbegrenzungs-Ventilmitteln 47 vorhandenen Abluftdrossel könnte sich während dieser Zeitspanne der in der rückwärtigen Arbeitskammer 12a herrschende Druck über die Abluftdrossel hinweg soweit abbauen, dass sich in der Dämpfungsphase kein ausreichend hoher Gegendruck mehr aufbauen kann. Durch die erfindungsgemäßen Druckbegrenzungs-Ventilmittel 47 hingegen bleibt in dieser Phase die rückwärtige Arbeitskammer 12a von der Atmosphäre komplett abgetrennt, so dass der nachteilige Druckabbau nicht stattfinden kann. Mithin kann sich auch hier trotz eines geringen Hubes der für das Funktionieren der Dämpfungsmittel erforderliche Mindestdruck aufbauen.
  • Die vorstehenden Ausführungen gelten auch für die modifizierte Bauform der Figur 2. Diese unterscheidet sich zum einen dadurch, dass die Druckbegrenzungs-Ventilmittel 47 zwischen den Steuerkanal 18a und die hier nicht weiter abgebildete Richtungsvorgabe-Ventileinrichtung 23 zwischengeschaltet sind. Um die Einspeisung von Druckluft in den Steuerkanal 18a zu ermöglichen, ist hierbei den Druckbegrenzungs-Ventilmitteln 47 ein Rückschlagventil 48 parallel geschaltet. Letzteres lässt eine Druckluftströmung von der Richtungsvorgabe-Ventileinrichtung 23 zum Steuerkanal 18a unter Umgehung der Druckbegrenzungs-Ventilmittel 47 zu, verhindert eine solche jedoch in der Gegenrichtung, so dass dann die Druckbegrenzungs-Ventilmittel 47 in der geschilderten Weise wirksam sind.
  • Da durch das Rückschlagventil 48 die Strömungsrate der einströmenden Druckluft verglichen mit einer offenen Kanalverbindung eingeschränkt ist, ist die Bauform der Figur 1 derjenigen der Figur 2 in der Regel vorzuziehen. Die Bauform der Figur 1 ermöglicht eine ungedrosselte Druckbeaufschlagung der Antriebseinheit 13 zum Hervorrufen der Ausfahrbewegung 33b, so dass sich eine sehr hohe Ausfahrgeschwindigkeit erzielen lässt.
  • Bei beiden Ausführungsbeispielen ist es von Vorteil, wenn die Ansprechschwelle der Druckbegrenzungs-Ventilmittel 47 einstellbar ist. Dies ermöglicht eine optimale Auslegung des Gesamtsystems hinsichtlich Dämpfungsintensität und Hubgeschwindigkeit.
  • Die Druckbegrenzungs-Ventilmittel 47 verfügen vorzugsweise über ein durch Federmittel 52 federbelastet in eine Schließstellung vorgespanntes Absperrventilglied 53. Dem Absperrventilglied 53 ist der abströmseitig herrschende Arbeitskammerdruck aufgeschaltet, beispielsweise direkt (Figur 2) oder über einen abgezweigten Beaufschlagungskanal 54 (Figur 1). Der Entlüftungsvorgang findet statt, wenn der das Absperrventilglied 53 beaufschlagende Arbeitskammerdruck mindestens dem als Ansprechschwelle fungierenden Mindestdruck entspricht. Die Ansprechschwelle kann durch eine Veränderung der Federstellkraft der Federmittel 52 variiert und nach Wunsch vorgegeben werden.
  • Der dem Absperrventilglied 53 aufgeschaltete Druck der abströmseitigen Arbeitskammer ist nicht notwendigerweise direkt aus der betreffenden Arbeitskammer abzugreifen. Beim Ausführungsbeispiel der Figur 1 wird er in dem den Druckbegrenzungs-Ventilmitteln 47 zum Linearantrieb 10 hin vorgeschalteten Kanalabschnitt des ersten Entlüftungskanals 45 abgegriffen.
  • Die Druckbegrenzungs-Ventilmittel 47 sind mit dem Linearantrieb 2 zweckmäßigerweise zu einer Baugruppe zusammengefasst. Auch die gegebenenfalls vorhandene Richtungsvorgabe-Ventileinrichtung 23 ist bevorzugt ein Bestandteil dieser Baugruppe. In Figur 1 ist strichpunktiert eine an das Antriebsgehäuse 2 angebaute Steuereinrichtung 55 angedeutet, die sowohl die Richtungsvorgabe-Ventileinrichtung 23 als auch die Druckbegrenzungs-Ventilmittel 47 beinhaltet.
  • Die Druckbegrenzungs-Ventilmittel 47 können direkt an die Richtungsvorgabe-Ventileinrichtung 23 angebaut oder in diese integriert sein. Bei einem direkten Anbau könnte der erste Entlüftungskanal 45 auf den Verbindungsbereich zwischen dem zugeordneten Entlüftungsanschluss 27 und dem Eingangsanschluss der Druckbegrenzungs-Ventilmittel 47 reduziert sein.

Claims (14)

  1. Linearantriebsvorrichtung, mit einem pneumatischen Linearantrieb (10), der eine in einem Antriebsgehäuse (2) zwei Arbeitskammern (12a, 12b) voneinander abteilende Antriebseinheit (13) aufweist, die durch gesteuerte Druckluftbeaufschlagung ausgehend von mindestens einer Ausgangsposition in mindestens eine Hubendlage linear verfahrbar ist, und der mit Dämpfungsmitteln (35) ausgestattet ist, die während einer dem Erreichen mindestens einer Hubendlage vorausgehenden Dämpfungsphase die Ausströmrate der aus der momentan abströmseitigen Arbeitskammer (12a) verdrängten Luft herabsetzen können, um die Antriebseinheit (13) abzubremsen, dadurch gekennzeichnet, dass die abströmseitige Arbeitskammer (12a) an zusätzlich zu den Dämpfungsmitteln (35) vorhandene und unabhängig von diesen arbeitende Druckbegrenzungs-Ventilmittel (47) angeschlossen ist, die ein Entlüften der abströmseitigen Arbeitskammer (12a) erst ab Erreichen eines in dieser abströmseitigen Arbeitskammer (12a) herrschenden vorbestimmten Mindestdruckes hervorrufen.
  2. Linearantriebsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Ansprechschwelle der Druckbegrenzungs-Ventilmittel (47) einstellbar ist.
  3. Linearantriebsvorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Druckbegrenzungs-Ventilmittel (47) ein federbelastet in eine Schließstellung vorgespanntes Absperrventilglied (53) enthalten, das erst öffnet und eine Entlüftung der angeschlossenen Arbeitskammer (12a) ermöglicht, wenn der sich in dieser Arbeitskammer (12a) aufstauende Luftdruck den durch die Federstellkraft vorgegebenen Mindestdruck erreicht hat.
  4. Linearantriebsvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die das Absperrventilglied (53) in die Schließstellung vorspannende Federstellkraft einstellbar ist.
  5. Linearantriebsvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Druckbegrenzungs-Ventilmittel (47) mit dem Linearantrieb (10) zu einer Baugruppe zusammengefasst sind.
  6. Linearantriebsvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die sowohl während als auch außerhalb der Dämpfungsphase von der Antriebseinheit (13) verdrängte Luft in einen Steuerkanal (18a) strömt, an den die Druckbegrenzungs-Ventilmittel (47) angeschlossen sind.
  7. Linearantriebsvorrichtung nach einem der Ansprüche 1 bis 6, gekennzeichnet durch eine die Druckluftbeaufschlagung der beiden Arbeitskammern (12a, 12b) und mithin die Bewegungsrichtung der Antriebseinheit (13) steuernde Richtungsvorgabe-Ventileinrichtung (23).
  8. Linearantriebsvorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Richtungsvorgabe-Ventileinrichtung (23) mit dem Linearantrieb (10) zu einer Baugruppe zusammengefasst ist.
  9. Linearantriebsvorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Richtungsvorgabe-Ventileinrichtung (23) in der Lage ist, mindestens einen Entlüftungskanal (45) mit einer der Arbeitskammern (12a) zu verbinden, wobei die Druckbegrenzungs-Ventilmittel (47) in den Verlauf dieses Entlüftungskanals (45) eingeschaltet sind.
  10. Linearantriebsvorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Druckbegrenzungs-Ventilmittel (47) mit einem ein Zuströmen von Druckluft in die zugeordnete Arbeitskammer (12a) gestattenden und in Gegenrichtung sperrenden Rückschlagventil (48) parallel geschaltet sind.
  11. Linearantriebsvorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Dämpfungsmittel (35) derart ausgebildet sind, dass sie bei der betreffenden Hubrichtung der Antriebseinheit (13) wirksam werden, wenn sich die Antriebseinheit (13) ausgehend von ihrer Ausgangsposition bis zu einer Dämpfungs-Startposition an die zugeordnete Hubendlage angenähert hat, wobei die Antriebseinheit (13) ab Erreichen der Dämpfungs-Startposition und während der damit beginnenden Dämpfungsphase einen bis dahin mit der abströmseitigen Arbeitskammer (12a) verbundenen Hauptkanal (36) von der abströmseitigen Arbeitskammer (12a) abtrennt, so dass die verdrängte Luft nur noch über einen den Hauptkanal (36) umgehenden Drosselkanal (42) zu den Druckbegrenzungs-Ventilmitteln (47) gelangen kann.
  12. Linearantriebsvorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass im Übergangsbereich zwischen der abströmseitigen Arbeitskammer (12a) und dem dieser zugeordneten Hauptkanal (36) ein gehäusefester Dichtungsring (38) angeordnet ist, in den die Antriebseinheit (13) während der Dämpfungsphase mit einem kolbenartigen Verschlussglied (44) unter Abdichtung eintaucht, um die Fluidverbindung zwischen der Arbeitskammer (12a) und dem Hauptkanal (36) abzusperren.
  13. Linearantriebsvorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass in den Verlauf des Drosselkanals (42) eine einstellbare Drosseleinrichtung (43) eingeschaltet ist.
  14. Linearantriebsvorrichtung nach einem der Ansprüche 1 bis 13 zur Verwendung für einen Streck-Blas-Prozess bei der Herstellung von Kunststoffbehältnissen, insbesondere von Kunststoff-Getränkeflaschen.
EP06008355A 2006-04-22 2006-04-22 Linearantriebsvorrichtung Expired - Fee Related EP1847720B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT06008355T ATE411477T1 (de) 2006-04-22 2006-04-22 Linearantriebsvorrichtung
EP06008355A EP1847720B1 (de) 2006-04-22 2006-04-22 Linearantriebsvorrichtung
DE502006001830T DE502006001830D1 (de) 2006-04-22 2006-04-22 Linearantriebsvorrichtung
CN2007100966943A CN101059140B (zh) 2006-04-22 2007-04-23 线性驱动装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06008355A EP1847720B1 (de) 2006-04-22 2006-04-22 Linearantriebsvorrichtung

Publications (2)

Publication Number Publication Date
EP1847720A1 true EP1847720A1 (de) 2007-10-24
EP1847720B1 EP1847720B1 (de) 2008-10-15

Family

ID=36498939

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06008355A Expired - Fee Related EP1847720B1 (de) 2006-04-22 2006-04-22 Linearantriebsvorrichtung

Country Status (4)

Country Link
EP (1) EP1847720B1 (de)
CN (1) CN101059140B (de)
AT (1) ATE411477T1 (de)
DE (1) DE502006001830D1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943789A (zh) * 2012-11-09 2013-02-27 昆明中铁大型养路机械集团有限公司 一种可调压力和流量的缓冲液压缸、控制方法及液压***
ITMI20120480A1 (it) * 2012-03-27 2013-09-28 Savio Macchine Tessili Spa Braccio portarocche per l'avvolgimento dei filati in rocca
US20140137731A1 (en) * 2011-08-03 2014-05-22 Abb Technology Ag Differential cylinder for a hydromechanical drive for electrical circuit breakers
US20140144315A1 (en) * 2011-08-03 2014-05-29 Abb Technology Ag Differential cylinder for a hydromechanical drive for electrical circuit breakers
US20210253077A1 (en) * 2018-07-11 2021-08-19 Continental Teves Ag & Co. Ohg Modular hydraulic control housing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016008151A1 (en) * 2014-07-18 2016-01-21 Norgren, Inc. Stretch blow molding cylinder and related method
CN109578369A (zh) * 2018-12-04 2019-04-05 长安大学 一种伸缩动臂油缸的缓冲装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3238850A (en) * 1962-10-13 1966-03-08 Cie Parisienne Outil Air Compr Jacks with damping means
US4210064A (en) * 1977-01-10 1980-07-01 Hydraudyne B.V. Method and device for braking the speed of movement of the piston of a plunger-cylinder device
US6038956A (en) * 1998-04-02 2000-03-21 Lane; Norman Dynamic pressure regulator cushion
US6305264B1 (en) * 1998-11-05 2001-10-23 Smc Kabushiki Kaisha Actuator control circuit
US20030232105A1 (en) * 2002-06-13 2003-12-18 Richard Nightingale Mold clamping apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2553182Y (zh) * 2002-07-26 2003-05-28 景宗兰 易控正压可调减振器
CN1256523C (zh) * 2003-09-03 2006-05-17 浙江大学 超高压气动比例减压阀

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3238850A (en) * 1962-10-13 1966-03-08 Cie Parisienne Outil Air Compr Jacks with damping means
US4210064A (en) * 1977-01-10 1980-07-01 Hydraudyne B.V. Method and device for braking the speed of movement of the piston of a plunger-cylinder device
US6038956A (en) * 1998-04-02 2000-03-21 Lane; Norman Dynamic pressure regulator cushion
US6305264B1 (en) * 1998-11-05 2001-10-23 Smc Kabushiki Kaisha Actuator control circuit
US20030232105A1 (en) * 2002-06-13 2003-12-18 Richard Nightingale Mold clamping apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140137731A1 (en) * 2011-08-03 2014-05-22 Abb Technology Ag Differential cylinder for a hydromechanical drive for electrical circuit breakers
US20140144315A1 (en) * 2011-08-03 2014-05-29 Abb Technology Ag Differential cylinder for a hydromechanical drive for electrical circuit breakers
US9714645B2 (en) * 2011-08-03 2017-07-25 Abb Schweiz Ag Differential cylinder for a hydromechanical drive for electrical circuit breakers
US9920777B2 (en) * 2011-08-03 2018-03-20 Abb Schweiz Ag Differential cylinder for a hydromechanical drive for electrical circuit breakers
ITMI20120480A1 (it) * 2012-03-27 2013-09-28 Savio Macchine Tessili Spa Braccio portarocche per l'avvolgimento dei filati in rocca
EP2644549A1 (de) * 2012-03-27 2013-10-02 Savio Macchine Tessili S.p.A. Wickelmaschine
CN102943789A (zh) * 2012-11-09 2013-02-27 昆明中铁大型养路机械集团有限公司 一种可调压力和流量的缓冲液压缸、控制方法及液压***
CN102943789B (zh) * 2012-11-09 2015-12-09 昆明中铁大型养路机械集团有限公司 一种可调压力和流量的缓冲液压缸、控制方法及液压***
US20210253077A1 (en) * 2018-07-11 2021-08-19 Continental Teves Ag & Co. Ohg Modular hydraulic control housing
US11702057B2 (en) * 2018-07-11 2023-07-18 Continental Teves Ag & Co. Ohg Modular hydraulic control housing

Also Published As

Publication number Publication date
CN101059140A (zh) 2007-10-24
CN101059140B (zh) 2011-07-06
ATE411477T1 (de) 2008-10-15
EP1847720B1 (de) 2008-10-15
DE502006001830D1 (de) 2008-11-27

Similar Documents

Publication Publication Date Title
EP1987257B1 (de) Pneumatisches antriebssystem
EP1788257B1 (de) Fluidbetätigter Arbeitszylinder mit Endlagenverriegelung
EP1847720B1 (de) Linearantriebsvorrichtung
EP2107257B1 (de) Fluidbetätigter Arbeitszylinder
EP1860328A1 (de) Einrichtung zur Steuerung eines pneumatischen, insbesondere doppelwirkenden, Zylinders
EP1987255B1 (de) Pneumatisches antriebssystem
EP2294331B1 (de) Hydraulische ventilvorrichtung
DE102008015776B3 (de) Ventileinheit und damit ausgestattete Streckblasvorrichtung
EP3087022B1 (de) Arbeitsvorrichtung
DE19732761C2 (de) Vorrichtung zur Endlagendämpfung
DE102014000814B4 (de) Ventileinheit
DE19637291C2 (de) Vorrichtung zur Endlagendämpfung
EP3205891A1 (de) Fluidbetätigte lineareinheit
DE3844267C2 (de) Reifendruck-Steuerventil
DE19709593C2 (de) Vorrichtung zur Verzögerung einer bewegten Masse
DE19702948C2 (de) Ventilanordnung
EP1626184B1 (de) Hydraulikeinrichtung
EP0547367B1 (de) Schaltventil für pneumatische oder hydraulische Druckmittel
AT412810B (de) Bremsventil, insbesonders für hydraulische betätigungsanordnungen für bewegbare teile an fahrzeugen
EP1729015A1 (de) Fluidgerät, insbesondere fluidbetätigter Antrieb
DE10161703A1 (de) Entlüftungseinrichtung für einen Pneumatikantrieb
DE102008007892A1 (de) Fluidbetätigter Mehrstellungszylinder
DE10118867C1 (de) Dämpfungsvorrichtung sowie damit ausgestattetes pneumatisches System
DE102015207170B3 (de) Fluidsystem
DE10135029A1 (de) Speicherbremsgerät insbesondere für Schienenfahrzeuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): AT BE DE GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FESTO AG & CO. KG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502006001830

Country of ref document: DE

Date of ref document: 20081127

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090716

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100310

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100420

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100430

Year of fee payment: 5

BERE Be: lapsed

Owner name: FESTO A.G. & CO. KG

Effective date: 20110430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110422

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150303

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006001830

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101