EP1838570B1 - Support flottant stabilise - Google Patents

Support flottant stabilise Download PDF

Info

Publication number
EP1838570B1
EP1838570B1 EP06709110A EP06709110A EP1838570B1 EP 1838570 B1 EP1838570 B1 EP 1838570B1 EP 06709110 A EP06709110 A EP 06709110A EP 06709110 A EP06709110 A EP 06709110A EP 1838570 B1 EP1838570 B1 EP 1838570B1
Authority
EP
European Patent Office
Prior art keywords
period
swell
support
passing
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06709110A
Other languages
German (de)
English (en)
Other versions
EP1838570A2 (fr
Inventor
Yves Martin
Jean-François DESPLAT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
D2M Consultants SA
Original Assignee
D2M Consultants SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by D2M Consultants SA filed Critical D2M Consultants SA
Publication of EP1838570A2 publication Critical patent/EP1838570A2/fr
Application granted granted Critical
Publication of EP1838570B1 publication Critical patent/EP1838570B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B35/4413Floating drilling platforms, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/107Semi-submersibles; Small waterline area multiple hull vessels and the like, e.g. SWATH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/12Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly
    • B63B2001/128Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising underwater connectors between the hulls

Definitions

  • the present invention relates to a floating support which comprises a working bridge supporting installations connected to the seabed, and flotation devices supporting the working bridge.
  • a floating support which comprises a working bridge supporting installations connected to the seabed, and flotation devices supporting the working bridge.
  • flotation devices supporting the working bridge.
  • a floating support which comprises a working bridge supporting installations connected to the seabed, and flotation devices supporting the working bridge.
  • a floating support which comprises a working bridge supporting installations connected to the seabed, and flotation devices supporting the working bridge.
  • flotation devices supporting the working bridge.
  • such platform may be, for example, an oil or gas exploitation platform.
  • a floating support at sea has a vertical movement under the effect of the swell.
  • This vertical movement commonly called heave movement, depends on the swell and is particularly important because it conditions the operation of facilities that are both supported by the floating support and connected to the seabed.
  • These installations may be, for example, drill pipes or pipes for transporting oil or gas.
  • these installations have a relative vertical movement relative to the support, and therefore, it is necessary to equip these installations telescopic compensation systems allowing each moment to compensate for the heave of the floating support to allow interventions at the top of these facilities.
  • These compensation systems are very expensive, especially since the motion compensation to be achieved is important, and, moreover, they have technological limits of compensation.
  • the heave movement is approximately proportional to the wave height and is conventionally characterized by the quotient of the heave by the wave height, this quotient being in first approximation an invariant as a function of the height of the swell.
  • the heave movement also depends on the shape of the flotation organs, the action of the swell generating pressures on the walls of the latter whose cumulative effect on all the walls gives at each moment a vertical force excitatory movement.
  • the heave movement also depends on the period of the swell since the distribution of pressures on a flotation device having a predetermined shape depends on the wave period and its wavelength (for this purpose, in depth).
  • the wavelength of the swell (in meters) corresponds approximately to the square of its period (in second) multiplied by 1,56).
  • the heave also depends on the impact of the swell, ie the orientation of the floating support relative to the direction of propagation of the swell.
  • the hulling movement of the support at its geometric center (usually the point of connection with the installations connected to the sea bed) is characterized by a heave transfer function which is the representation of the evolution of the quotient heave / wave height depending on the period of the swell.
  • each flotation member (typically formed by a submerged float, the immersed part of a column supported by the submerged float and supporting the working bridge, and half of each of the adjacent submerged connecting elements connecting the column-float assembly to the other column-float assemblies) is shaped so that the cumulative effects of the pressures generated by the swell it undergoes vanishes for a period of time. predetermined, conventionally called the balancing period.
  • the transfer function of the heave of such a platform has a value close to 0 for small periods, regularly increases to reach a relative maximum which is approximately equal to 0.5, drops back to 0 for the balancing period, and rises rapidly and strongly then.
  • the limitation of the heave movement is carried out by correctly configuring each floating element of the floating support so that the balancing period associated therewith is greater than the periods of the swells usually encountered on the site. use of the platform. Therefore, for the usual swells on the site, the heave transfer function will be at most equal to 0.5.
  • this value of 0.5 is relatively large and involves the use of relatively large compensation systems.
  • the heave transfer function is greater than 0.25 for a significant range of wave periods.
  • the present invention aims at producing a floating support having a particularly low heave transfer function for the usual swells.
  • the spacing between the vertical axes passing through the volume center of the flotation devices is such that, for each direction of propagation of the swell, when the period of the swell is equal, within 20%, to the period of 100-year storm swell associated with the direction of propagation considered, the centennial storm swell being the swell whose annual probability of being encountered on the site where the support is intended to be installed is 1/100, the sum of the moments, taken with respect to the horizontal axis perpendicular to the direction of propagation considered and passing through the center of gravity of the support, vertical forces of excitation of the swell on the flotation devices situated on one side of the vertical plane passing through this horizontal axis is equal to the corresponding sum associated with the flotation devices located on the other side of this vertical plane.
  • the floating support is shaped so that, for each direction of wave propagation, the sum of the moments taken with respect to the horizontal axis perpendicular to the direction of propagation considered and passing through the center of the gravity of the platform, vertical forces of excitation of the swell on the flotation devices located on one side of the vertical plane passing through this horizontal axis is equal to the corresponding sum associated with the flotation devices located on the other side of this vertical plane for a swell of predetermined period, hereinafter referred to as the extinction period.
  • the transfer function of the heave of such a platform for the direction of propagation of the swell considered has a value close to 0 for the extinction period.
  • the cancellation of the heave motion at the center of gravity for the extinction period following the direction of propagation of the swell is due to the fact that, with a predetermined spacing between the various vertical axes passing through the volume center of the flotation devices, the sum of the moments, taken with respect to the horizontal axis perpendicular to the direction of propagation considered and passing through the center of gravity of the support, vertical forces of excitation of the swell on the flotation devices situated on one side of the plane vertical passing through this horizontal axis is equal to the corresponding sum associated with the flotation devices located on the other side of this vertical plane, although each of the efforts on each flotation device taken separately is not zero.
  • the phenomenon can be easily understood by imagining a floating support comprising a working bridge and two flotation devices.
  • the swell has for half-wavelength the distance separating the two vertical axes passing through the center of volume of the buoyancy members and has for direction of propagation the direction of alignment of the two axes
  • these two buoyancy devices are subject to to vertical forces in phase opposition due to the excitation of the swell (one being at the right of one ridge when the other is at the right of a hollow, for example) and, consequently, the moment, taken with respect to the horizontal axis perpendicular to the direction of propagation considered and passing through the central point of the bridge (located halfway between the two flotation organs), vertical forces of excitation of the swell on one both flotation devices are equal to the corresponding moment associated with the other flotation device.
  • the period of the wave corresponding to this half-wavelength is the extinction period of the support.
  • the direction of propagation of the swell is perpendicular to the alignment direction of the two vertical axes, there is no extinction period for this direction of propagation.
  • each flotation member is dimensioned (in the usual way) so that the sum of the vertical excitation forces it supports is zero for a swell whose period is equal to 1.5 times. the period of the centennial storm swell.
  • the balancing period is equal to 1.5 times the extinction period.
  • the transfer function of the heave at the center of gravity of such a platform is then particularly remarkable: it has a value close to 0 for small periods, regularly increases to reach a first relative maximum which is less than 0.1 ( approximately equal to 0.075), drops back to 0 for the extinction period, increases again regularly to reach a second relative maximum which is less than 0.15 (approximately equal to 0.125), drops back to 0 for the equilibration period, and goes up quickly and strongly thereafter.
  • the compensation systems used may have a reduced compensation amplitude, the heave transfer function being at most equal to 0.15 for all the swells encountered on the site.
  • the floating support 1 (in this case the semi-submersible platform 1) illustrated in FIG. figure 1 comprises a working bridge 2 and four buoyancy members 3 supporting the bridge 2. Installations 4 (in this case pipes 4) which are connected to the seabed are supported and connected to the bridge 2 at its geometric center 5.
  • Each flotation member 3 is formed of a submerged float 6, the immersed part of a column 7 which is supported by the submerged float 6 and which supports the working bridge 2, and half of each submerged connecting element 11 connecting this float-column assembly to other float-column assemblies.
  • the four flotation members 3 are arranged so that the vertical axes Z passing through the center of their respective volume form a square and the distance L separating the two vertical axes Z delimiting the same side of the square is equal to the half-length of wave H of a swell whose direction of movement corresponds to the alignment direction D of these two vertical axes Z.
  • the four flotation members 3 are, two by two, subjected to vertical forces of excitation in opposition of phase, and consequently, the sum of the moments, taken with respect to the horizontal axis perpendicular to the direction of propagation considered and passing through the center of gravity of the support (generally close of the geometric center 5 of the bridge 2), vertical forces of excitation of the swell on the floating members 3 situated on one side of the plane vertical P passing through this horizontal axis is equal to the corresponding sum associated with the flotation members 3 located on the other side of this vertical plane P.
  • the period of the swell corresponding to this half-wavelength is the period of extinction of the support 1, when the swell has for direction of propagation the alignment direction D of the two axes Z.
  • a floating support 1 having a particular geometry for example having three flotation members 3 arranged so that their vertical axes Z passing through their respective centers of volume form an equilateral triangle as illustrated in FIG. figure 3 or having four flotation members 3 arranged so that their vertical axes Z passing through their respective centers of volume form a square such as that shown in FIG.
  • the theoretical spacing between the vertical axes Z is determined so that the sum of the moments, taken with respect to the horizontal axis perpendicular to the direction of propagation of the swell and passing through the geometric center 5 of the bridge 2 (in general near the center of gravity of the platform 1), vertical forces of excitation of the swell on the flotation devices 3 situated on one side of the vertical plane P passing through this horizontal axis is equal to the corresponding sum associated with the buoyancy members 3 situated on the other side of this vertical plane P, for the swell whose period corresponds to the period of extinction.
  • this theoretical spacing is performed for a range of wave propagation directions. Given the possible symmetries, for a platform 1 having three flotation devices 3 arranged in equilateral triangle, the direction of propagation of the swell can vary by 60 °, and for a platform 1 having four floating members 3 arranged in square, it can vary from 45 °. This determination for different propagation directions makes it possible to choose an optimum spacing with respect to the hulling behavior of platform 1 for centennial storm swells, which defines the shutdown period of platform 1 for the propagation direction concerned. A tolerance of 20% over the extinction period makes it possible to adapt the geometry of the platform without damaging its heaving behavior.
  • the extinction period for the direction of propagation of the parallel swell to one side of the square, is obtained when the length of one side of the square corresponds to the half-wavelength of the centennial storm swell.
  • the extinction period is obtained when the height of the triangle corresponds to the half-length wave of the centennial storm swell.
  • the wavelength of the corresponding swell is 224 m
  • the height of the equilateral triangle formed by the three vertical axes Z is 112 m
  • the spacing between each axis vertical Z is 130 m.
  • each flotation member 3 is dimensioned (in the usual way) so that the sum of the vertical excitation forces to which it is subjected is canceled for a swell whose period is greater than the period of time. extinction, that is to say each flotation member 3 is dimensioned so that the balancing period associated with it is greater than the extinction period.
  • each flotation device 3 is equal to about 1.5 times the extinction period.
  • each flotation device 3 is sized to have a balancing period of 18 s.
  • the figure 3 represents a platform with three flotation members 3 arranged so that the vertical axes Z passing through their centers of respective volumes form an equilateral triangle, and having an extinction period of 12 s (the distance between the vertical axes Z is therefore 130 m).
  • Each flotation member 3 is configured to have a balancing period of 18 seconds, the submerged float 6 having the shape of a cylinder 30 meters in diameter, and the column 7 having the shape of a cylinder of 18 meters in diameter, the draft on site is 44 meters.
  • the mass of the platform 1, including the oil processing facilities it supports, is 65 000 tonnes.
  • the figure 2 is the representation of the transfer function of the heave of two platforms having both the same balancing period of 18 s and having three flotation members 3 arranged so that the vertical axes Z passing through their centers of respective volumes form an equilateral triangle.
  • the first curve FT1 corresponds to a conventional platform classically sized and adapted to severe waves of 12 s, the vertical axes Z being spaced from each other by about 70 meters: the transfer function of the heave has a value close to 0 for short periods (less than 6 s), increases steadily to reach a relative maximum of about 0.5 (for a period of about 13 s), decreases to 0 for the balancing period (18 s ), and goes up quickly and strongly thereafter.
  • the second curve FT2 corresponds to a platform sized according to the present invention, the spacing between the vertical axes Z being 130 m so as to have an extinction period of 12 s: the transfer function of the heave has a value close to 0 for small periods (less than 6 s), regularly increases to reach a first relative maximum which is approximately equal to 0.075 (for a period of about 10 s), decreases to 0 for the extinction period (12 s), increases again regularly to reach a second relative maximum which is approximately equal to 0.125 (for a period of about 15 s), drops back to 0 for the balancing period (18 s), and rises rapidly and strongly thereafter .
  • the offshore behavior of a platform 1 according to the present invention is particularly improved.
  • the working bridge 2 may comprise volumes that can be rendered watertight, in order to ensure the safety of the floating support 1 in the event of damage to a flotation member 3 causing its invasion by the water sea.
  • the platform 1 is associated with a guide structure which is adapted to be supported by the platform and to guide, in the vicinity of the sea level, the installations 4 (for example the pipes 4) connected to the seabed.
  • the guiding structure comprises a cage which extends in a longitudinal direction (which corresponds substantially to the vertical when the structure is connected to the platform) and a connecting member which is adapted to cooperate with a complementary linkage member. by the platform so as to form a ball joint between it and the cage. In this way, when the platform is subjected to the action of the swell, the ball joint makes the guiding structure less sensitive to the overall movement of the platform, which greatly reduces the contact forces between the pipes and the guide structure.
  • the guide structure can support vertical tensioning systems of the pipes, well heads, a derrick ...
  • the connecting member may be arranged longitudinally at one end of the cage and, transversely, either in the center of the cage (the organ is then a spherical pivot, or at the periphery of the cage (the organ is then a spherical crown).
  • the guide structure also comprises a ballast element which is disposed at a portion of the cage longitudinally remote from the connecting member (the ballast element is fixed to the longitudinal end of the cage opposite to the one where the linkage is arranged). While the marine currents tend to deflect the cage and pipes from the vertical due to the ball joint between the cage and the floating support, the ballast element tends to reduce this deflection and thus protects the pipes from mechanical stresses. consecutive to this deviation.
  • ballast element has an immersed mass-to-volume ratio at least equal to twice (or even triple) that of the cage.
  • floats are connected to the upper part of the cage, and more specifically, at the level of the cage that is adapted to be close to the surface of the sea.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Earth Drilling (AREA)
  • Bridges Or Land Bridges (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Description

  • La présente invention concerne un support flottant qui comprend un pont de travail supportant des installations reliées au fond marin, et des organes de flottaison supportant le pont de travail. Upe telle plate-forme peut être, par exemple, une plate-forme d'exploitation pétrolière ou gazière.
  • Un support flottant en mer a un mouvement vertical sous l'effet de la houle. Ce mouvement vertical, appelé communément mouvement de pilonnement, dépend de la houle et est particulièrement important car il conditionne le fonctionnement des installations qui sont à la fois supportées par le support flottant et reliées au fond marin. Ces installations peuvent être, par exemple, des tiges de forage ou des canalisations permettant le transport du pétrole ou du gaz. Quand le support flottant pilonne, ces installations ont un mouvement vertical relatif par rapport au support, et de ce fait, il est nécessaire d'équiper ces installations de systèmes de compensation télescopiques permettant à chaque instant de compenser le pilonnement du support flottant afin de permettre des interventions à la partie supérieure de ces installations. Ces systèmes de compensation sont très coûteux, d'autant plus que la compensation de mouvemement à réaliser est importante, et, de plus, ils ont des limites technologiques de compensation.
  • Le mouvement de pilonnement est approximativement proportionnel à la hauteur de houle et il est conventionnellement caractérisé par le quotient du pilonnement par la hauteur de houle, ce quotient étant en première approximation un invariant en fonction de la hauteur de la houle. Le mouvement de pilonnement dépend également de la forme des organes de flottaison, l'action de la houle générant des pressions sur les parois de ces derniers dont l'effet cumulé sur l'ensemble des parois donne à chaque instant une force verticale excitatrice du mouvement. Le mouvement de pilonnement dépend aussi de la période de la houle étant donné que la répartition des pressions sur un organe de flottaison ayant une forme prédéterminée dépend de la période de la houle et de sa longueur d'onde (à cet effet, en profondeur d'eau élevée, la longueur d'onde de la houle (en mètre) correspond approximativement au carré de sa période (en seconde) multiplié par 1,56). Enfin, le pilonnement dépend également de l'incidence de la houle, c'est à dire l'orientation du support flottant par rapport à la direction de propagation de la houle.
  • De ce fait, conventionnellement, le mouvement de pilonnement du support à son centre géométrique (en général le point de liaison avec les installations reliées au fond marin) est caractérisé par une fonction de transfert du pilonnement qui est la représentation de l'évolution du quotient pilonnement / hauteur de houle en fonction de la période de la houle.
  • Afin de minimiser le mouvement de pilonnement, dans les plates-formes actuelles dites semi-submersibles, chaque organe de flottaison (typiquement formé par un flotteur immergé, la partie immergée d'une colonne supportée par le flotteur immergé et supportant le pont de travail, et la moitié de chacun des éléments de liaison immergés adjacents reliant l'ensemble colonne-flotteur aux autres ensembles colonne-flotteur) est conformé de sorte que le cumul des effets des pressions générées par la houle qu'il subit s'annule pour une période prédéterminée, conventionnellement appelée période d'équilibrage. La fonction de transfert du pilonnement d'une telle plate-forme a une valeur voisine de 0 pour des petites périodes, croit régulièrement pour atteindre un maximum relatif qui est environ égal à 0,5, redescend vers 0 pour la période d'équilibrage, et remonte rapidement et fortement ensuite.
  • Ainsi, dans l'art antérieur, la limitation du mouvement de pilonnement est réalisée en configurant correctement chaque organe de flottaison du support flottant de sorte que la période d'équilibrage qui leur est associée soit supérieure aux périodes des houles usuellement rencontrées sur le site d'utilisation de la plate-forme. De ce fait, pour les houles usuelles sur le site, la fonction de transfert du pilonnement sera au plus égale à 0,5.
  • Cependant, cette valeur de 0,5 est relativement importante et entraîne l'utilisation de systèmes de compensation relativement importants. De plus, la fonction de transfert du pilonnement est supérieure à 0,25 pour une plage importante des périodes de houle.
  • Par ailleurs, on sait, par exemple d'après US 3 490 406 , qui est consideré comme étant l'état de la technique le plus proche, que quelle que soit la distance séparant deux axes verticaux passant par le centre de volume des organes de flottaison, le pilonnement est particulièrement réduit quand le support flottant est soumis à une houle dont la direction de propagation est celle reliant les deux axes verticaux et dont la période est égale au double de la distance séparant ces deux axes.
  • La présente invention vise à réaliser un support flottant ayant une fonction de transfert du pilonnement particulièrement faible pour les houles usuelles.
  • Selon l'invention, l'espacement entre les axes verticaux passant par le centre de volume des organes de flottaison est tel que, pour chaque direction de propagation de la houle, lorsque la période de la houle est égale, à 20% près, à la période de houle de tempête centennale associée à la direction de propagation considérée, la houle de tempête centennale étant la houle dont la probabilité annuelle d'être rencontrée sur le site où le support est destiné à être installé est de 1/100, la somme des moments, pris par rapport à l'axe horizontal perpendiculaire à la direction de propagation considérée et passant par le centre de gravité du support, des forces verticales d'excitation de la houle sur les organes de flottaison situés d'un côté du plan vertical passant par cet axe horizontal est égale à la somme correspondante associée aux organes de flottaison situés de l'autre côté de ce plan vertical.
  • Ainsi, selon la présente invention, le support flottant est conformé de sorte que, pour chaque direction de propagation de la houle, la somme des moments pris par rapport à l'axe horizontal perpendiculaire à la direction de propagation considérée et passant par le centre de gravité de la plate-forme, des forces verticales d'excitation de la houle sur les organes de flottaison situés d'un côté du plan vertical passant par cet axe horizontal est égale à la somme correspondante associée aux organes de flottaison situés de l'autre côté de ce plan vertical pour une houle de période prédéterminée, appelée ci-après période d'extinction. La fonction de transfert du pilonnement d'une telle plate-forme pour la direction de propagation de la houle considérée a donc une valeur voisine de 0 pour la période d'extinction. L'annulation du mouvement de pilonnement au centre de gravité pour la période d'extinction suivant la direction de propagation de la houle provient de ce que, avec un espacement prédéterminé entre les différents axes verticaux passant par le centre de volume des organes de flottaison, la somme des moments, pris par rapport à l'axe horizontal perpendiculaire à la direction de propagation considérée et passant par le centre de gravité du support, des forces verticales d'excitation de la houle sur les organes de flottaison situés d'un côté du plan vertical passant par cet axe horizontal est égale à la somme correspondante associée aux organes de flottaison situés de l'autre côté de ce plan vertical, bien que chacun des efforts sur chaque organe de flottaison pris séparément soit non nul.
  • Le phénomène peut être aisément compris en imaginant un support flottant comprenant un pont de travail et deux organes de flottaison. Quand la houle a pour demi-longueur d'onde la distance séparant les deux axes verticaux passant par le centre de volume des organes de flottaison et a pour direction de propagation la direction d'alignement des deux axes, ces deux organes de flottaison sont soumis à des efforts verticaux en opposition de phase du fait de l'excitation de la houle (l'un se trouvant au droit d'une crête quand l'autre est au droit d'un creux, par exemple) et, en conséquence, le moment, pris par rapport à l'axe horizontal perpendiculaire à la direction de propagation considérée et passant par le point central du pont (situé à mi chemin des deux organes de flottaison), des forces verticales d'excitation de la houle sur l'un des deux organes de flottaison est égale au moment correspondant associé à l'autre organe de flottaison. La période de la houle correspondant à cette demi-longueur d'onde est la période d'extinction du support. De plus, quand la direction de propagation de la houle est perpendiculaire à la direction d'alignement des deux axes verticaux, il n'y a pas de période d'extinction pour cette direction de propagation.
  • Selon un mode de réalisation particulièrement avantageux, chaque organe de flottaison est dimensionné (de façon usuelle) de sorte que la somme des efforts d'excitation verticale qu'il supporte s'annule pour une houle dont la période est égale à 1,5 fois la période de la houle de tempête centennale. Ainsi, selon ce mode de réalisation, la période d'équilibrage est égale à 1,5 fois la période d'extinction.
  • La fonction de transfert du pilonnement au centre de gravité d'une telle plate-forme est alors particulièrement remarquable : elle a une valeur voisine de 0 pour des petites périodes, croit régulièrement pour atteindre un premier maximum relatif qui est inférieur à 0,1 (environ égal à 0,075), redescend vers 0 pour la période d'extinction, croit à nouveau régulièrement pour atteindre un second maximum relatif qui est inférieur à 0,15 (environ égal à 0,125), redescend vers 0 pour la période d'équilibrage, et remonte rapidement et fortement ensuite. Avec une telle plate-forme, les systèmes de compensation utilisés peuvent avoir une amplitude de compensation réduite, la fonction de transfert du pilonnement étant au plus égale à 0,15 pour l'ensemble des houles rencontrées sur le site.
  • D'autres particularités apparaîtront dans la description de la présente invention en liaison avec les dessins donnés à titre d'exemples non limitatifs.
    • La figure 1 est un schéma en coupe illustrant le principe de la présente invention pour une structure flottante ayant quatre organes de flottaison, la coupe étant faite selon un plan vertical passant par le centre du pont,
    • La figure 2 est un schéma illustrant la valeur de la fonction de transfert du pilonnement au centre de gravité pour une plate-forme conçue conformément à la présente invention, et celle pour une plate-forme semi-submersible classique, et
    • La figure 3 représente la partie immergée d'une plate-forme comportant trois organes de flottaison.
  • Le support flottant 1 (en l'occurrence la plate-forme 1 semi-submersible) illustré à la figure 1 comprend un pont de travail 2 et quatre organes de flottaison 3 supportant le pont 2. Des installations 4 (en l'occurrence des canalisations 4) qui sont reliées au fond marin sont supportées et reliées au pont 2, en son centre géométrique 5. Chaque organe de flottaison 3 est formé d'un flotteur immergé 6, la partie immergée d'une colonne 7 qui est supportée par le flotteur immergé 6 et qui supporte le pont de travail 2, et de la moitié de chaque élément de liaison immergé 11 reliant cet ensemble flotteur-colonne aux autres ensembles flotteur-colonne.
  • Dans la représentation illustrée à la figure 1, les quatre organes de flottaison 3 sont disposés de sorte que les axes verticaux Z passant par le centre de leur volume respectif forment un carré et la distance L séparant les deux axes verticaux Z délimitant un même côté du carré est égale à la demi-longueur d'onde H d'une houle dont la direction de déplacement correspond à la direction d'alignement D de ces deux axes verticaux Z. De ce fait et du fait de la houle, les quatre organes de flottaison 3 sont, deux à deux, soumis à des efforts verticaux d'excitation en opposition de phase, et en conséquence, la somme des moments, pris par rapport à l'axe horizontal perpendiculaire à la direction de propagation considérée et passant par le centre de gravité du support (en général proche du centre géométrique 5 du pont 2), des forces verticales d'excitation de la houle sur les organes de flottaison 3 situés d'un côté du plan vertical P passant par cet axe horizontal est égale à la somme correspondante associée aux organes de flottaison 3 situés de l'autre côté de ce plan vertical P. La période de la houle correspondant à cette demi-longueur d'onde est la période d'extinction du support 1, lorsque la houle a pour direction de propagation la direction d'alignement D des deux axes Z.
  • Le dimensionnement des plates-formes 1 conformément à la présente invention est réalisé de la façon suivante :
  • Dans un premier temps il est nécessaire d'identifier, pour le site d'exploitation où la plate-forme 1 est destinée, pour chaque direction de propagation de houle, la période de la houle de tempête centennale qui est la houle dont la probabilité annuelle d'être rencontrée sur le site est de 1/100, la période de cette houle sera à 20% près la période d'extinction choisie pour la plate-forme 1 dans la direction de propagation considérée.
  • Dans un deuxième temps, pour un support flottant 1 ayant une géométrie particulière (par exemple ayant trois organes de flottaison 3 disposés de sorte que leurs axes verticaux Z passant par leurs centres de volumes respectifs forment un triangle équilatéral comme illustré à la figure 3, ou ayant quatre organes de flottaison 3 disposés de sorte que leurs axes verticaux Z passant par leurs centres de volumes respectifs forment un carré comme celle représentée à la figure 1), on détermine l'espacement théorique entre les axes verticaux Z de sorte que la somme des moments, pris par rapport à l'axe horizontal perpendiculaire à la direction de propagation de la houle et passant par le centre géométrique 5 du pont 2 (en général proche du centre de gravité de la plate-forme 1), des forces verticales d'excitation de la houle sur les organes de flottaison 3 situés d'un côté du plan vertical P passant par cet axe horizontal est égale à la somme correspondante associée aux organes de flottaison 3 situés de l'autre côté de ce plan vertical P, pour la houle dont la période correspond à la période d'extinction.
  • La détermination de cet espacement théorique est réalisée pour toute une gamme de directions de propagation de houle. Compte tenu des symétries envisageables, pour une plate-forme 1 ayant trois organes de flottaison 3 disposés en triangle équilatéral, la direction de propagation de la houle peut varier de 60°, et pour une plate-forme 1 ayant quatre organes de flottaison 3 disposées en carré, elle peut varier de 45°. Cette détermination pour différentes directions de propagation permet de choisir un espacement optimum vis-à-vis du comportement en pilonnement de la plate-forme 1 pour des houles de tempête centennale, qui définit la période d'extinction de la plate-forme 1 pour la direction de propagation concernée. Une tolérance de 20% sur la période d'extinction permet d'adapter la géométrie de la plate-forme sans trop détériorer son comportement en pilonnement.
  • Dans le cas d'une plate-forme 1 ayant quatre organes de flottaison 3 disposés de sorte que les axes verticaux Z passant par leurs centres de volumes respectifs forment un carré, la période d'extinction, pour la direction de propagation de la houle parallèle à un côté du carré, est obtenue quand la longueur d'un côté du carré correspond à la demi-longueur d'onde de la houle de tempête centennale. Dans le cas d'une plate-forme 1 ayant trois organes de flottaison 3 disposés de sorte que les axes verticaux Z passant par leurs centres de volumes respectifs forment un triangle équilatéral, la période d'extinction est obtenue quand la hauteur du triangle correspond à la demi-longueur d'onde de la houle de tempête centennale. Ainsi, pour une période d'extinction de 12 s, la longueur d'onde de la houle correspondante est de 224 m, la hauteur du triangle équilatéral formé par les trois axes verticaux Z est de 112 m, et l'espacement entre chaque axe vertical Z est de 130 m.
  • Selon un mode de réalisation particulier, chaque organe de flottaison 3 est dimensionné (de façon usuelle) de sorte que la somme des efforts d'excitation verticale à laquelle il est soumis s'annule pour une houle dont la période est supérieure à la période d'extinction, c'est à dire chaque organe de flottaison 3 est dimensionné de sorte que la période d'équilibrage qui lui est associé soit supérieure à la période d'extinction.
  • Il est particulièrement avantageux que la période de chaque organe de flottaison 3 soit égale à environ 1,5 fois la période d'extinction. Ainsi, pour une plate-forme 1 ayant une période d'extinction de 12 s, il est particulièrement avantageux que chaque organe de flottaison 3 soit dimensionné pour avoir une période d'équilibrage de 18 s.
  • La figure 3 représente une plate-forme à trois organes de flottaison 3 disposés de sorte que les axes verticaux Z passant par leurs centres de volumes respectifs forment un triangle équilatéral, et ayant une période d'extinction de 12 s (la distance entre les axes verticaux Z est donc de 130 m). Chaque organe de flottaison 3 est configuré de façon à avoir une période d'équilibrage de 18 s, le flotteur immergé 6 ayant la forme d'un cylindre de 30 mètres de diamètre, et la colonne 7 ayant la forme d'un cylindre de 18 mètres de diamètre, le tirant d'eau sur site d'exploitation étant de 44 mètres. La masse de la plate-forme 1, y compris celle des installations de traitement de pétrole qu'elle supporte, est de 65 000 tonnes.
  • La figure 2 est la représentation de la fonction de transfert du pilonnement de deux plate-formes ayant toutes les deux la même période d'équilibrage de 18 s et comportant trois organes de flottaison 3 disposés de sorte que les axes verticaux Z passant par leurs centres de volumes respectifs forment un triangle équilatéral.
  • La première courbe FT1 correspond à une plate-forme usuelle dimensionnée classiquement et adaptée à des houles sévères de 12 s, les axes verticaux Z étant espacés les uns des autres d'environ 70 mètres : la fonction de transfert du pilonnement a une valeur voisine de 0 pour des petites périodes (inférieures à 6 s), croit régulièrement pour atteindre un maximum relatif qui est environ égal à 0,5 (pour une période d'environ 13 s), redescend vers 0 pour la période d'équilibrage (18 s), et remonte rapidement et fortement ensuite.
  • La seconde courbe FT2 correspond à une plate forme dimensionnée conformément à la présente invention, l'espacement entre les axes verticaux Z étant de 130 m de façon à avoir une période d'extinction de 12 s : la fonction de transfert du pilonnement a une valeur voisine de 0 pour des petites périodes (inférieures à 6 s), croit régulièrement pour atteindre un premier maximum relatif qui est environ égal à 0,075 (pour une période d'environ 10 s), redescend vers 0 pour la période d'extinction (12 s), croit à nouveau régulièrement pour atteindre un second maximum relatif qui est environ égal à 0,125 (pour une période d'environ 15 s), redescend vers 0 pour la période d'équilibrage (18 s), et remonte rapidement et fortement ensuite.
  • Le comportement en mer d'une plate-forme 1 conformément à la présente invention est particulièrement amélioré.
  • Les plages de variation sur la valeur des périodes d'extinction et d'équilibrage permettent d'obtenir ce bon comportement, tout en autorisant une flexibilité pour la réalisation de la plate-forme vis-à-vis d'autres paramètres de dimensionnement.
  • Vu les dimensions de telles plates-formes 1, comme on peut le voir à la figure 1, il est avantageux que le pont 2 et les organes de flottaison 3 soient rigidement liés entre eux par des structures annexes 8. De plus, il est préférable que seules les installations reliées au fond marin (les canalisations 4 ou les tiges de forage ainsi que les structures qui permettent leur guidage au voisinage du niveau de la mer) soient situées au centre géométrique 5 du pont 2, les installations connexes 9 pouvant être rassemblées au-dessus des colonnes 7 afin de limiter les efforts dans les structures du pont de travail 2.
  • Par ailleurs, le pont de travail 2 peut comporter des volumes 10 pouvant être rendus étanches à l'eau, afin d'assurer la sécurité du support flottant 1 en cas d'avarie sur un organe de flottaison 3 entraînant son envahissement par l'eau de mer.
  • En relation avec la présente invention qui permet de limiter le mouvement vertical du pont de travail 2 au niveau de sa liaison avec les installations 4 reliées au fond marin, il est également possible de limiter les contraintes mécaniques subies par ces installations au niveau de cette liaison dues aux mouvements de tangage, de roulis, d'embardée et de cavalement de la plate-forme 1.
  • A cet effet, à la plate-forme 1 est associée une structure de guidage qui est adaptée à être supportée par la plate-forme et à guider, au voisinage du niveau de la mer, les installations 4 (par exemple les canalisations 4) reliées au fond marin. La structure de guidage comprend une cage qui s'étend dans une direction longitudinale (qui correspond sensiblement à la verticale quand la structure est reliée à la plate-forme) et un organe de liaison qui est adapté à coopérer avec un organe complémentaire de liaison porté par la plate-forme de façon à former une liaison à rotule entre celle-ci et la cage. De cette façon, quand la plate-forme est soumise à l'action de la houle, la liaison à rotule rend la structure de guidage moins sensible au mouvement d'ensemble de la plate-forme, ce qui réduit fortement les forces de contact entre les canalisations et la structure de guidage. De façon avantageuse, la structure de guidage peut supporter des systèmes de mise sous tension verticale des canalisations, des têtes de puits, un derrick... L'organe de liaison peut être disposé longitudinalement à une extrémité de la cage et, transversalement, soit au centre de la cage (l'organe est alors un pivot sphérique, soit à la périphérie de la cage (l'organe est alors une couronne sphérique).
  • Selon un mode de réalisation particulier, la structure de guidage comprend également un élément formant lest qui est disposé à une partie de la cage longitudinalement éloignée de l'organe de liaison (l'élément formant lest est fixé à l'extrémité longitudinale de la cage opposée à celle où est disposé l'organe de liaison). Alors que les courants marins ont tendance à dévier la cage et les canalisations de la verticale du fait de la liaison à rotule entre la cage et le support flottant, l'élément formant lest tend à diminuer cette déviation et donc protège les canalisations de contraintes mécaniques consécutives à cette déviation. Un tel élément formant lest a un rapport masse sur volume immergé au moins égale au double (voire au triple) de celui de la cage.
  • Selon un autre mode de réalisation particulier, de façon à réduire les efforts verticaux entre la cage et la plate-forme au niveau de la liaison à rotule, des flotteurs sont reliés à la partie supérieure de la cage, et plus précisément, au niveau de la cage qui est adapté à être à proximité de la surface de la mer.

Claims (10)

  1. Support flottant (1) adapté à supporter des installations (4) qui sont adaptées à être reliées aux fond marin d'un site donné, le support flottant (1) comprenant un pont de travail (2) et des organes de flottaison (3) qui supportent le pont de travail (2), caractérisé en ce que l'espacement entre les axes verticaux (Z) passant par le centre de volume des organes de flottaison (3) est tel que, pour chaque direction de propagation de la houle, lorsque la période de la houle est égale, à 20% près, à la période de houle de tempête centennale associée à la direction de propagation considérée, la houle de tempête centennale étant la houle dont la probabilité annuelle d'être rencontrée sur le site où le support est destiné à être installé est de 1/100, la somme des moments, pris par rapport à l'axe horizontal perpendiculaire à la direction de propagation considérée et passant par le centre de gravité du support (1), des forces verticales d'excitation de la houle sur les organes de flottaison (3) situés d'un côté du plan vertical (P) passant par cet axe horizontal est égale à la somme correspondante associée aux organes de flottaison (3) situés de l'autre côté de ce plan vertical, cette période étant appelée période d'extinction selon la direction de propagation de la houle.
  2. Support flottant (1) selon la revendication 1, caractérisé en ce qu'il comprend trois organes de flottaison (3) disposés les uns par rapport aux autres de façon à ce que les axes verticaux (Z) passant par leurs centres de volumes respectifs forment un triangle équilatéral dont la hauteur correspond, à 20% près, à la demi-longueur d'onde de la houle de tempête centennale.
  3. Support flottant (1) selon la revendication 1, caractérisé en ce qu'il comprend quatre organes de flottaison (3) disposés les uns par rapport aux autres de façon à ce que les axes verticaux (Z) passant par leurs centres de volumes respectifs forment un carré dont la longueur des côtés correspond, à 20% près, à la demi-longueur d'onde de la houle de tempête centennale.
  4. Support flottant (1) selon l'une des revendications 1 à 3, caractérisé en ce que chaque organe de flottaison (3) est dimensionné de sorte que la somme des efforts d'excitation verticale qu'il subit s'annule pour une houle dont la période est supérieure à la période d'extinction, cette période étant appelée période d'équilibrage.
  5. Support flottant (1) selon la revendication 4, caractérisé en ce que la période d'équilibrage est égale 1,5 fois la période d'extinction.
  6. Support flottant (1) selon l'une des revendications 1 à 5, caractérisé en ce que le point de liaison (5) des installations (4) destinées à être reliées au fond marin est le centre de gravité du support (1).
  7. Support flottant (1) selon la revendication 6, caractérisé en ce que les installations (4) destinées à être reliées au fond marin sont associées à des installations connexes (9) disposées au-dessus des organes de flottaison (3).
  8. Support flottant (1) selon l'une des revendications 1 à 7, caractérisé en ce que chaque organe de flottaison (3) est formé par un flotteur immergé (6), la partie immergée d'une colonne (7) supportée par le flotteur immergé (6) et supportant le pont de travail (2), et la moitié de chacun des éléments de liaison (11) immergés adjacents reliant cet ensemble colonne-flotteur immergé aux autres ensembles colonne-flotteurs.
  9. Procédé de dimensionnement d'un support flottant (1) qui est adapté à supporter des installations (4) adaptées à être reliées aux fond marin d'un site donné et qui comprend un pont de travail (2) et des organes de flottaison (3) supportant le pont de travail (2), caractérisé en ce qu'il comprend une étape lors de laquelle est identifiée, pour le site où le support (1) est destiné, pour chaque direction de propagation de houle, la période de la houle de tempête centennale qui est la houle dont la probabilité annuelle d'être rencontrée sur le site est de 1/100, une étape lors de laquelle est déterminé, pour toute une gamme de directions de propagation de houle, l'espacement théorique entre les axes verticaux (Z) passant par le centre de volume des organes de flottaison (3) de sorte que la somme des moments, pris par rapport à l'axe horizontal perpendiculaire à la direction de propagation de la houle et passant par le centre géométrique (5) du pont (2), des forces verticales d'excitation de la houle sur les organes de flottaison (3) situés d'un côté du plan vertical (P) passant par cet axe horizontal est égale à la somme correspondante associée aux organes de flottaison (3) situés de l'autre côté de ce plan vertical (P), une étape lors de laquelle est déterminé un espacement optimum vis-à-vis du comportement'en pilonnement du support (1) pour des houles de tempête centennale, qui définit la période d'extinction du support (1) pour la direction de propagation concernée, et une éventuelle étape lors de laquelle la géométrie du support (1) est adaptée dans la limite d'une tolérance de 20% sur la période d'extinction.
  10. Procédé de dimensionnement d'un support flottant (1) selon la revendication 1, caractérisé en ce que chaque organe de flottaison (3) est dimensionné de sorte que la somme des efforts d'excitation verticale qu'il subit s'annule pour une houle dont la période est égale 1,5 fois la période d'extinction.
EP06709110A 2005-01-21 2006-01-17 Support flottant stabilise Expired - Fee Related EP1838570B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0500676A FR2881102B1 (fr) 2005-01-21 2005-01-21 Support flottant stabilise
PCT/FR2006/000103 WO2006077311A2 (fr) 2005-01-21 2006-01-17 Support flottant stabilise

Publications (2)

Publication Number Publication Date
EP1838570A2 EP1838570A2 (fr) 2007-10-03
EP1838570B1 true EP1838570B1 (fr) 2010-06-16

Family

ID=34953679

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06709110A Expired - Fee Related EP1838570B1 (fr) 2005-01-21 2006-01-17 Support flottant stabilise

Country Status (5)

Country Link
US (1) US7503728B2 (fr)
EP (1) EP1838570B1 (fr)
BR (1) BRPI0606452B1 (fr)
FR (1) FR2881102B1 (fr)
WO (1) WO2006077311A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY173337A (en) * 2013-04-15 2020-01-16 Single Buoy Moorings Riser tensioner conductor for dry-tree semisubmersible
AT516640A3 (de) 2014-12-22 2024-05-15 Swimsol Gmbh Schwimmende Plattform
CN106428447A (zh) * 2016-12-06 2017-02-22 大连理工大学 一种超大型多浮体半潜式浮动平台

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490406A (en) * 1968-08-23 1970-01-20 Offshore Co Stabilized column platform
US4015552A (en) * 1975-08-25 1977-04-05 Korkut Mehmet D Semi-submersible drill barge
CA1075092A (fr) * 1976-01-19 1980-04-08 Seatek (A California Partnership) Methode et appareil de stabilisation d'une structure flottante semi-submersible
US4850744A (en) * 1987-02-19 1989-07-25 Odeco, Inc. Semi-submersible platform with adjustable heave motion
AU2002256234B2 (en) * 2001-05-01 2008-03-13 Itrec, B.V. Multipurpose unit with multipurpose tower and method for tendering with a semisubmersible

Also Published As

Publication number Publication date
WO2006077311A2 (fr) 2006-07-27
FR2881102A1 (fr) 2006-07-28
FR2881102B1 (fr) 2007-04-20
US7503728B2 (en) 2009-03-17
US20080101870A1 (en) 2008-05-01
BRPI0606452B1 (pt) 2018-06-19
BRPI0606452A2 (pt) 2009-06-30
WO2006077311A3 (fr) 2006-12-14
EP1838570A2 (fr) 2007-10-03

Similar Documents

Publication Publication Date Title
EP3464893B1 (fr) Éolienne flottante
WO2017220878A1 (fr) Dispositif flottant support d'eolienne offshore et ensemble eolien flottant correspondant
CA1305370C (fr) Systeme modulaire de production, de stockage et de chargement d'hydrocarbures au large des cotes
EP0840690B1 (fr) Plate-forme d'exploitation petroliere en mer
EP2528806A1 (fr) Support flottant pour structure off-shore telle que notamment une éolienne
FR2966175A1 (fr) Dispositif de support d'une eolienne de production d'energie electrique en mer, installation de production d'energie electrique en mer correspondante.
EP2479103A1 (fr) Support flottant pour structure de type éolienne
EP1838570B1 (fr) Support flottant stabilise
FR2772336A1 (fr) Plate-forme semi-submersible d'exploitation d'un champ petrolier en mer et procede d'installation d'une telle plate-forme
EP0307255A1 (fr) Ligne d'ancrage caténaire pour un engin flottant et dispositif et procédé de mise en oeuvre de cette ligne d'ancrage
WO2018154212A1 (fr) Dispositif d'accouplement de deux bateaux
EP3490882B1 (fr) Support flottant comportant un flotteur et une plaque d'amortissement munie d'une rangee d'orifines
FR3072643A1 (fr) Eolienne flottante a pilonnement reduit
FR2818327A1 (fr) Eolienne maritime embarquee sur une bouee ancree par un riser
FR2778931A1 (fr) Plate-forme marine auto-elevatrice et son procede d'installation
WO2018189084A1 (fr) Flotteur notamment d'eolienne offshore
EP3490883B1 (fr) Éolienne marine comprenant une éolienne et un support flottant
FR2581362A1 (fr) Plate-forme semi-submersible, notamment pour la recherche et/ou l'exploitation de gisements sous-marins en mers froides
EP0947420B1 (fr) Ancre et système d'ancrage non destructifs pour fond marin
FR3093074A1 (fr) Plateforme offshore flottante notamment pour éolienne
EP0056753B1 (fr) Dispositif élévateur pour plate-forme marine auto-élévatrice
WO2004045946A1 (fr) Barge de grandes dimensions presentant des cavites formant cavernes dans la coque
FR2670459A1 (fr) Plate-forme semi-submersible a pontons poreux.
FR2804081A1 (fr) Procede et dispositif de chargement ou de dechargement d'un navire de transport de gaz liquefie
FR2872830A1 (fr) Dispositif d'acces a un ponton flottant depuis un quai

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070725

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): FR GB IT NL

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT NL

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110317

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200130

Year of fee payment: 15

Ref country code: NL

Payment date: 20200130

Year of fee payment: 15

Ref country code: IT

Payment date: 20200129

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200129

Year of fee payment: 15

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210117