EP1834994B1 - Polyelektrolyt-verkapselte Pigmente - Google Patents

Polyelektrolyt-verkapselte Pigmente Download PDF

Info

Publication number
EP1834994B1
EP1834994B1 EP06005240A EP06005240A EP1834994B1 EP 1834994 B1 EP1834994 B1 EP 1834994B1 EP 06005240 A EP06005240 A EP 06005240A EP 06005240 A EP06005240 A EP 06005240A EP 1834994 B1 EP1834994 B1 EP 1834994B1
Authority
EP
European Patent Office
Prior art keywords
pigment
red
yellow
pigment red
pigment yellow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06005240A
Other languages
English (en)
French (fr)
Other versions
EP1834994A1 (de
Inventor
Hans Joachim Dr. Metz
Carsten Dr. Plüg
Gerald Dr. Mehltretter
Karl-Heinz Dr. Schweikart
Andreas Dr. Voigt
Lars Dr. Dähne
Lutz KRÖHNE
Jan Möschwitzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Finance BVI Ltd
Original Assignee
Clariant Finance BVI Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Finance BVI Ltd filed Critical Clariant Finance BVI Ltd
Priority to EP06005240A priority Critical patent/EP1834994B1/de
Priority to ES06005240T priority patent/ES2345452T3/es
Priority to DE502006007414T priority patent/DE502006007414D1/de
Priority to JP2007043304A priority patent/JP5159119B2/ja
Priority to US11/717,989 priority patent/US8021716B2/en
Publication of EP1834994A1 publication Critical patent/EP1834994A1/de
Application granted granted Critical
Publication of EP1834994B1 publication Critical patent/EP1834994B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/34Hot-melt inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • C09B67/0004Coated particulate pigments or dyes
    • C09B67/0008Coated particulate pigments or dyes with organic coatings
    • C09B67/0013Coated particulate pigments or dyes with organic coatings with polymeric coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0097Dye preparations of special physical nature; Tablets, films, extrusion, microcapsules, sheets, pads, bags with dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/41Organic pigments; Organic dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to polyelectrolyte-encapsulated pigments, their preparation and their use as colorants, in particular for water- and solvent-based inks and coatings.
  • the stability of pigment dispersions in solvent-containing .and purely aqueous application media such as printing inks, ink-jet inks, mill-bases and paints is among other things greatly influenced by the surface charge of the pigments used.
  • a common measure for the characterization of particle dispersions is the zeta potential, which is directly linked to the surface charge of the particles and the charged boundary layer.
  • inorganic pigments Due to their oxidic or sulphidic structure, inorganic pigments usually carry a slightly negative surface charge, which can be altered, for example, by the superficial incorporation of other metal ions.
  • the surface charge of organic pigments is usually low and can vary widely, the pigment class, the substitution pattern and the respective crystal structure have an influence.
  • the person skilled in several ways are known to vary the surface charge of organic pigments.
  • One possibility lies in the use of additives which strongly absorb the pigment surface and which carry a charge or partial charge themselves. These additives can be polymers having anchor groups that strongly interact with the pigment surface. Alternatively, additives are also common, which are substituted starting from a pigment base body and thus adhere particularly strongly to the pigment surface of the respective structural class.
  • the disadvantage of these polymeric and pigment-based additives is that these substances usually act specifically for individual pigments or pigment classes and an adjustment of the Surface charge only in a narrow range is possible. In addition, these additives must be produced consuming.
  • WO 02/28660 describes the coating of particles with colorant containing Polyelektrolytschichen. These materials are expressly described as well suited for ink-jet inks. However, this good suitability is limited to an improvement of the colorants with respect to degradation reactions by light and other influences. There is no suggestion in this document that pigments show improved properties by changing surface charges.
  • US-A-2004/229974 discloses ink-jet inks containing anionic group-coated pigments coated with cationic and anionic polyelectrolytes.
  • pigment particles are first coated with anionic, then cationic high molecular weight components.
  • Lacquer pigments are first anionic, then cationically occupied.
  • EP-A-0058865 describes pigment preparations prepared by mixing a pigment suspension with anionic polymers and anionic surfactants and subsequent precipitation with metal salts.
  • pigment-based ink formulations are desired, which combine a brilliant print image with a trouble-free printing process.
  • the ink-jet printing process such as electrophotography (laser printer and copier), is a non-impact printing process and, due to the increasing use of computers, especially in the so-called SOHO area (small office, home office ), but also in the so-called wide-format area has gained in importance over the last few years.
  • ink-jet printing a distinction is made between the so-called continuous printing processes and the drop-on-demand process, with the latter processes the ink drops are generated by a computer-controlled electrical signal.
  • thermal ink-jet printing also referred to as bubble jet
  • piezoelectric ink-jet printing the so-called piezoelectric ink-jet printing
  • pigments are increasingly used as colorants in ink-jet inks in recent times.
  • the pigmented inks for ink-jet printing are subject to a number of requirements: they must have a suitable viscosity and surface tension for printing, they must be storage-stable, i. they should not aggregate and the dispersed pigment should not settle and they must not lead to clogging of the printer nozzles.
  • a further object was to find a process for producing surface-modified pigments, which makes it possible to adjust the surface charge of these particles in a targeted manner. This method should be largely independent of the class of pigment used.
  • the pigment dispersion used can be obtained by customary methods such as milling, ultrasound treatment or high-pressure homogenization and expediently contains ionic and / or nonionic dispersants and wetting agents.
  • nonionic surfactants which may also be used in steps (B), (C) and (D) are alkyl or aryl alkoxylates, e.g. Alkoxylates of castor oils, fatty alcohols, fatty amines, fatty acids or fatty acid amides and alkoxylation products of alkylphenols or their oligomeric or polymeric derivatives, e.g. Aldehyde condensation products and alkyl polyglucosides.
  • alkoxylates of styrene-phenol addition products such as e.g. 2,4,6-tris (1-phenylethyl) phenol and diglycerol and Polyglycerolester long-chain acids possible.
  • amphiphilic polymers or copolymers can be used as the dispersing aids, such as block polymethacrylate ester-block polyethylene oxide copolymers, block polystyrene block polyethylene oxide copolymers, block polyethylene oxide block polypropylene oxide copolymers, block polyethylene diamine block polyethylene oxide Block polypropylene oxide copolymers, polyvinylpyrrolidones or polyvinyl alcohols.
  • Suitable ionic surface-active compounds are anionic and cationic surfactants.
  • These surfactants are expediently used in the form of the alkali metal salts, ammonium salts and / or the water-soluble amine salts.
  • sulfonates of alpha-olefins Sulfonates of polynaphthalenes, lignosulfonates, dialkylsulfosuccinates and sulfated fatty acids or oils and their salts can be used.
  • cationic surfactants are suitable, for example, from the group of alkyl or arylammonium salts and zwitterionic surfactants or mesoionic surfactants, such as amine oxides.
  • polymeric surface-active compounds can be used as dispersants, for example, acrylate resin copolymers having an average molecular weight M v between 1000 and 50,000 g / mol, consisting essentially of Monoalkenylaromaten and acrylates.
  • Monoalkenylaromatics are understood as meaning, in particular, monomers from the group of styrene, .alpha.-methylstyrene, vinyltoluene, tert-butyl-styrene, o-chlorostyrene, and mixtures thereof.
  • Acrylates are understood as meaning monomers from the group consisting of acrylic acid, methacrylic acid and esters of acrylic or methacrylic acid.
  • Examples are: methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, isopropyl methacrylate, isobutyl methacrylate, n-amyl methacrylate, n-hexyl methacrylate, iso-amyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylic, N, N-dimethylaminoethyl methacrylate, N, N-diethylaminoethyl methacrylate, t-butylaminoethyl methacrylate, 2-sulfoethyl methacrylate, trifluoroethyl methacrylate, glycidyl methacrylate, benzyl methacrylate, allyl methacrylate, 2-n-butoxyethyl methacrylate, 2-chloroethyl methacrylate,
  • the application to the surface according to step (B) of the process according to the invention is carried out in the dispersion according to (A) with a polyelectrolyte salt dissolved therein by precipitation, in which a shell with a defined thickness usually in the range around the pigment particle from 1 to 150 nm, preferably 1 to 100 nm, more preferably 5 to 50 nm, and most preferably 10 to 30 nm.
  • the thickness and homogeneity of the capsule shell are determined by the Rate of precipitation of the polyelectrolyte determined. This depends essentially on the concentration of the pigment particles, the concentration of the coating components and the rate of precipitation-causing solubility change in the liquid phase.
  • the precipitation can be effected, for example, by initially introducing a portion of the components forming the shell in the liquid phase and then adding one or more further shell components.
  • a precipitation step can be used, for example, for a combination of metal cations and oppositely charged polyelectrolytes.
  • Another possibility of surface precipitation is that the components required for the formation of the shell are already completely present in the liquid phase and a change of the liquid phase is effected which causes the precipitation.
  • This change in the liquid phase can be, for example, in an electrolyte addition, for example inorganic salts, or / and pH variation, for example addition of a buffer.
  • the polyelectrolytes By suitable choice of the polyelectrolytes, it is possible to set the properties and composition of the polyelectrolyte shell defined, in particular with regard to the surface charge.
  • the composition of the shells can be varied within a wide range by the choice of substances in the layer structure. In principle, there are no restrictions with regard to the polyelectrolytes to be used, as long as the molecules used have a sufficiently high charge and / or have the ability to bond with the underlying layer via other types of interaction, such as hydrogen bonds and / or hydrophobic interactions.
  • step (B), (C) and optionally (D) can be carried out particularly efficiently and without agglomerates in the presence of nonionic surfactants. Furthermore, it has been found that steps (C) and (D) can be optimized by a controlled surface precipitation so that several polyelectrolyte layers can be successively applied to the pigment particles without intermediate isolation. This can be done by successively adding the shell components and causing the precipitation by changing the electrolyte concentration and / or the pH. In this case, polyelectrolyte layers on the Applied pigment particles that are comparable in their protective and stabilizing effect with those of a layer by layer technique.
  • polyelectrolytes can be used linear or branched polyelectrolytes.
  • branched polyelectrolytes can lead to less compact polyelectrolyte films with a higher degree of porosity.
  • polyelectrolyte molecules can be crosslinked within and / or between the individual layers, e.g. by crosslinking amino groups with aldehydes.
  • amphiphilic polyelectrolytes for. B. amphiphilic block or Randomcopolymere be used with partial Polyelektrolyt seemingly to reduce the permeability to polar small molecules.
  • amphiphilic copolymers consist of units of different functionality, e.g.
  • the capsule walls can be controlled in a defined manner with respect to their surface charge or other properties.
  • weak polyelectrolytes, polyampholytes or copolymers having a poly (N-isopropylacrylamide) moiety e.g. Poly (N-isopropylacrylamide-acrylic acid), which change over the balance of hydrogen bonds their water solubility as a function of temperature, which is accompanied by a swelling.
  • the encapsulation can be carried out with a complex of a low molecular weight ion and an oppositely charged polyelectrolyte.
  • suitable low molecular weight ions are polyvalent metal cations, such as alkaline earth metal cations and transition metal cations, inorganic anions, such as sulfate, carbonate, phosphate, charged surfactants, charged lipids and charged oligomers in combination with a correspondingly oppositely charged polyelectrolyte.
  • a distributed source for the one polyelectrolyte is generated in the simultaneous presence of the other polyelectrolyte.
  • the polyelectrolyte of the complex may be both the polycation and the polyanion.
  • the coated pigment particles can be separated from the free complexes, for example by centrifugation, filtration and subsequent washing or membrane filtration.
  • Yet another preferred embodiment comprises the surface precipitation in a pigment dispersion comprising soluble, partially destabilized polyelectrolyte complexes (polycation / polyanion) by means of salt addition and / or pH variation and / or other destabilization factors.
  • soluble, partially destabilized polyelectrolyte complexes polycation / polyanion
  • the negative and positively charged polyelectrolyte may be placed in a high salinity aqueous solution, preferably at a salinity of greater than 0.5 mol / l, e.g. 1 M NaCl, introduced and stirred.
  • After addition of the pigment particles they are coated and can be recovered, for example, by centrifugation or filtration and subsequent washing.
  • the shell comprises metal cations and at least one negatively charged polyelectrolyte.
  • metal cations for example, divalent metal cations and in particular trivalent metal cations are used.
  • suitable metal cations are alkaline earth metal cations, transition metal cations and rare earth element cations such as Ca 2+ , Mg 2+ ; Al 3+ , Y 3+ , Tb 3+ and Fe 3+ .
  • the invention provides coated particles having a core which is an organic pigment and has an average particle size d 50 of less than 200 nm, and at least two polyelectrolyte layers of different charge in a layer thickness of 1 to 150 nm, preferably 1 to 100 nm, particularly preferably 5 to 50 nm, and most preferably 10 to 30 nm.
  • Organic pigments include monoazo, disazo, laked azo, ⁇ -naphthol, naphthol AS, benzimidazolone, disazo condensation, azo metal complex pigments and polycyclic pigments such as phthalocyanine, quinacridone, perylene, perinone -, thioindigo, anthanthrone, anthraquinone, flavanthrone, indanthrone; Isoviolanthone, pyranthrone, dioxazine, quinophthalone, isoindolinone, isoindoline and diketopyrrolopyrrole pigments or carbon blacks.
  • the organic pigments those are particularly suitable whose light fastness determined on the basis of a blue scale is assessed with a rating of greater than 5, in particular greater than 6.
  • the pigments used for the preparation of the preparations should be as finely divided as possible.
  • the average particle size d 50 is ideally at a value below 200 nm, in particular between 30 nm and smaller than 200 nm, particularly preferably between 40 and 180 nm.
  • organic pigments are carbon black pigments, such as gas or Furnaceruße; Monoazo and disazo pigments, in particular the Color Index Pigments Pigment Yellow 1, Pigment Yellow 3, Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 14, Pigment Yellow 16, Pigment Yellow 17, Pigment Yellow 73, Pigment Yellow 74, Pigment Yellow 81, Pigment Yellow® 83, Pigment Yellow® 87, Pigment Yellow® 97, Pigment Yellow® 111, Pigment Yellow® 126, Pigment Yellow® 127, Pigment Yellow® 128, Pigment Yellow TM 155, Pigment Yellow TM 174, Pigment Yellow TM 176, Pigment Yellow TM 191, Pigment Red 38, Pigment Red 144, Pigment Red 214, Pigment Red 242, Pigment Red 262, Pigment Red 266, Pigment Red 269, Pigment Red 274, Pigment Orange 13, Pigment Orange 34 or Pigment Brown 41; ⁇ -naphthol and naphthol AS pigments, in particular the Color Index Pigments Pigment Red 2, Pigment Red 13, Pigment Yellow 14 or
  • Polyelectrolytes useful in the present invention can be both polyanions and polybases, and are both biopolymers such as alginic acid, gum arabic, nucleic acids, pectins, proteins and others, as well as chemically modified biopolymers such as ionic or ionizable polysaccharides, e.g. Carboxymethylcellulose, chitosan and chitosan sulfate, ligninsulfonates and synthetic polymers such as polymethacrylic acid, polyvinylsulfonic acid, polyvinylphosphonic acid and polyethyleneimine.
  • biopolymers such as alginic acid, gum arabic, nucleic acids, pectins, proteins and others
  • chemically modified biopolymers such as ionic or ionizable polysaccharides, e.g. Carboxymethylcellulose, chitosan and chitosan sulfate, ligninsulfonates and synthetic polymers such as poly
  • Suitable polyanions include naturally occurring polyanions and synthetic polyanions.
  • naturally occurring polyanions are alginate, carboxymethylamylose, carboxymethylcellulose, carboxymethyldextran, Carageenan, cellulose sulfate, chondroitin sulfate, chitosan sulfate, dextran sulfate, gum arabic, gum guar, gellan gum, heparin, hyaluronic acid, pectin, xanthan gum and proteins at an appropriate pH.
  • Examples of synthetic polyanions are polyacrylates (salts of polyacrylic acid), anions of polyamino acids and their copolymers, polymaleinate, polymethacrylate; Polystyrene sulfate, polystyrene sulfonate, polyvinyl phosphate, polyvinyl phosphonate, polyvinyl sulfate, polyacrylamide methyl propane sulfonate, polylactate, poly (butadiene / maleate), poly (ethylene / maleate), poly (ethacrylate / acrylate) and poly (glycerol methacrylate).
  • Suitable polybases include naturally occurring polycations and synthetic polycations.
  • suitable naturally occurring polycations are chitosan, modified dextrans, e.g. Diethylaminoethyl-modified dextrans, hydroxymethylcellulosetrimethylamine, lysozyme, polylysine, protamine sulfate, hydroxyethylcellulosetrimethylamine and proteins at a corresponding pH.
  • Examples of synthetic polycations are polyallylamine, polyallylamine hydrochloride, polyamines, polyvinylbenzyltrimethylammonium chloride, polybrene, polydiallyldimethylammonium chloride, polyethylenimine, polyimidazoline, polyvinylamine, polyvinylpyridine, poly (acrylamide / methacryloxypropyltrimethylammoniumbromide), poly (diallyldimethylammoniumchloride / N-isopropylacrylamide), poly (dimethylaminoethylacrylate / acrylamide), Polydimethylaminoethyl methacrylate, polydimethylamino-epichlorohydrin, polyethyleneiminoepichlorohydrin, polymethacryloxyethyltrimethylammonium bromide, hydroxypropylmethacryloxyethyldimethylammonium chloride, poly (methyldiethylaminoethylmethacrylate
  • the coated particles can be used as colorants for printing inks, in particular for ink-jet inks, electrophotographic toners, in particular polymerization toners, lacquers, powder coatings and color filters.
  • the polyelectrolyte-encapsulated pigments can be used either in isolated form or in dispersion.
  • the preparation of the dispersion is expediently carried out with resulting pigment contents of at least 8 wt .-%, preferably at least 10 wt .-%, these dispersions directly to To use ink formulation.
  • a separation of low molecular weight compounds or non-enveloping polyelectrolytes may take place.
  • membrane filtration of the dispersion or isolation of the pigment by centrifugation or filtration and subsequent washing is expediently used.
  • the polyelectrolyte-encapsulated pigments of the invention are characterized by a high stability. Many pigments in the ink-jet process promote nozzle clogging which results in poor printing performance. Such a failure of individual nozzles is not observed when using the polyelectrolyte-encapsulated pigments of the invention, which allows a streak-free and thus uniform pressure.
  • the polyelectrolyte-encapsulated pigments of the invention are preferably used as colorants in aqueous and nonaqueous based ink-jet inks, in microemulsion inks, and in inks which operate according to the hot-melt process.
  • the invention further ink-jet inks according to claim 7.
  • Microemulsion inks are based on organic solvents, water and optionally an additional hydrotropic substance (interface mediator).
  • Microemulsion inks generally contain from 0.5 to 30% by weight, preferably from 1 to 15% by weight, of the polyelectrolyte-encapsulated pigments of the invention, from 5 to 99% by weight of water and from 0.5 to 94.5% by weight of organic Solvent and / or hydrotrope.
  • "Solvent based" ink jet inks preferably contain 0.5 to 30% by weight of the polyelectrolyte-encapsulated pigments of the invention, 85 to 99.5% by weight of organic solvent and / or hydrotropic compounds.
  • Hot-melt inks are usually based on waxes, fatty acids, fatty alcohols or sulfonamides, which are solid at room temperature and liquid when heated, with the preferred melting range between about 60 ° C and about 140 ° C.
  • hot-melt ink-jet inks consist essentially of 20 to 90% by weight of wax and 1 to 10% by weight of the polyelectrolyte-encapsulated pigments of the invention. Furthermore, 0 to 20 wt .-% of an additional polymer, to 5 wt .-%.
  • Dispersing agent 0 to 20% by weight of viscosity modifier, 0 to 20% by weight of plasticizer, 0 to 10% by weight of tackifier additive, 0 to 10% by weight Transparency stabilizer (prevents, for example, crystallization of the waxes) and 0 to 2 wt .-% antioxidant contained.
  • the polyelectrolyte-encapsulated pigments of the invention may also be nuanced with other colorants such as, for example, inorganic or organic pigments and / or dyes. They are used in ink sets, consisting of yellow, magenta, cyan and black inks, which contain pigments and / or dyes as colorants. Furthermore, they can be used in ink sets, which additionally contain one or more of the so-called “spot colors" in the colors, for example, orange, green, blue, golden and silver.
  • the ink sets may contain Nuancierfarbstoffe, preferably from the group CI Acid Yellow 17 and CI Acid Yellow 23; CI Direct Yellow 86, CI Direct Yellow 98 and CI Direct Yellow 132; CI Reactive Yellow 37; CI Pigment Yellow 17, CI Pigment Yellow 74, CI Pigment Yellow 83, CI Pigment Yellow 97, CI Pigment Yellow 120, CI Pigment Yellow 139, CI Pigment Yellow 151, CI Pigment Yellow 155 and CI Pigment Yellow 180; CI Direct Red 1, CI Direct Red 11, CI Direct Red 37, CI Direct Red 62, CI Direct Red 75, CI Direct Red 81, CI Direct Red 87, CI Direct Red 89, CI Direct Red 95 and CI Direct Red 227; CI Acid Red 1, CI Acid Red 8, CI Acid Red 80, CI Acid Red 81, CI Acid Red 82, CI Acid Red 87, CI Acid Red 94, CI Acid Red 115, CI Acid Red 131, CI Acid Red
  • Reactive Red 21 CI Reactive Red 22, CI Reactive Red 23, CI Reactive Red 35, CI Reactive Red 63, CI Reactive Red 106, CI Reactive Red 107, CI Reactive Red 112, CI Reactive Red 113, CI Reactive Red 114, CI Reactive Red 126, CI Reactive Red 127, CI Reactive Red 128, CI Reactive Red 129, CI Reactive Red 130, CI Reactive Red 131, CI Reactive Red 137, CI Reactive Red 160, Cl Reactive Red 161, Cl Reactive Red 174 and Cl. Reactive Red 180.
  • the polyelectrolyte-encapsulated pigments of the invention are suitable for the production of inks for use in all conventional ink-jet printers, in particular for those based on the bubble jet or piezo process.
  • the polyelectrolyte-encapsulated pigments of the present invention can be used to print a variety of types of coated or uncoated substrate materials, e.g. for printing on cardboard, cardboard, wood and wood-based materials, metallic materials, semiconductor materials, ceramic materials, glasses, glass and ceramic fibers, inorganic materials, concrete, leather, food, cosmetics, skin and hair.
  • the substrate material may be two-dimensionally planar or spatially extended, i. be designed in three dimensions and both completely or only partially printed or coated.
  • the polyelectrolyte-encapsulated pigments of the present invention are also useful as colorants in electrophotographic toners and developers such as one- or two-component powder toners (also called one or two-component developers), magnetic toners, liquid toners, polymerization toners, and specialty toners.
  • electrophotographic toners and developers such as one- or two-component powder toners (also called one or two-component developers), magnetic toners, liquid toners, polymerization toners, and specialty toners.
  • Typical toner binders are polymerization, polyaddition and polycondensation resins, such as styrene, styrene acrylate, styrene butadiene, acrylate, polyester, phenolic epoxy resins, polysulfones, polyurethanes, individually or in combination, as well as polyethylene and polypropylene, which contain other ingredients, such as charge control agents, waxes or flow aids, or may be subsequently modified with these additives.
  • resins such as styrene, styrene acrylate, styrene butadiene, acrylate, polyester, phenolic epoxy resins, polysulfones, polyurethanes, individually or in combination, as well as polyethylene and polypropylene, which contain other ingredients, such as charge control agents, waxes or flow aids, or may be subsequently modified with these additives.
  • polyelectrolyte-encapsulated pigments according to the invention are suitable as colorants in powders and powder coatings, especially in triboelectrically or electrokinetically sprayable powder coatings, which are used for surface coating of objects made of, for example, metal, wood, plastic, glass, ceramic, concrete, textile material, paper or rubber Application come.
  • the polyelectrolyte-encapsulated pigments according to the invention are also colorants for color filters, both for additive and for subtractive color generation, such as in electro-optical systems such as television screens, LCD (liquid crystal displays), charge coupled devices, plasma displays or electroluminescent displays, which in turn may be active (twisted nematic) or passive (supertwisted nematic) ferroelectric displays or light-emitting diodes, and as colorants for electronic inks ("e-inks”) or "electronic paper” ( “e-paper”).
  • electro-optical systems such as television screens, LCD (liquid crystal displays), charge coupled devices, plasma displays or electroluminescent displays, which in turn may be active (twisted nematic) or passive (supertwisted nematic) ferroelectric displays or light-emitting diodes, and as colorants for electronic inks ("e-inks") or "electronic paper” ( “e-paper”).
  • a stable paste or a pigmented photoresist also has a high pigment purity
  • the pigmented color filters can also be applied by ink jet printing or other suitable printing methods.
  • polyelectrolyte-encapsulated pigments according to the invention are suitable for the pigmentation of paints and dispersion paints, dispersion paints, printing inks, for example textile printing, flexographic printing, decorative printing or gravure printing inks, for wallpaper paints, for waterborne paints, for wood protection systems, for viscose spin dyeing, for varnishes, for sausage casings, for seeds, for glass bottles, for the mass coloration of roof tiles, for plasters, for wood stains, for colored pencil leads, felt-tip pens, inks, pens for ballpoint pens, chalks, detergents and cleaners, shoe care products, coloring of latex products, Abrasives and for coloring plastics and high molecular weight materials.
  • An essential feature of the examples below is that a nonionic surfactant is used during the coating.
  • the particle size increase by aggregation in the coating under control so that the resulting polyelectrolyte-encapsulated pigments exhibit a particle size, surface charge and dispersion stability suitable for the application.
  • a mixture of 50 parts C.I. Pigment Blue 15: 3, 13.5 parts of an ethylene oxide-propylene oxide copolymer (Pluronic TM F68, BASF), 1st part of sodium dodecyl sulfate and 435.5 parts of demineralized water are predispersed with an Ultra-TurraX TM and then dispersed with a high-pressure homogenizer, until the particle size distribution is constant.
  • Example 1 b Coating with a Cationic Layer of Polyallylamine Hydrochloride (PAH):
  • Example 1c Coating with a cationic layer of polydiallyldimethylammonium chloride (PDADMAC):
  • PDADMAC polydiallyldimethylammonium chloride
  • the pigment dispersion obtained from Example 1a is admixed with 2000 parts of a surfactant-containing 1.0% strength by weight PDADMAC solution (0.1% by weight of Pluronic TM F68, 0.05M acetate buffer pH 5.6, 0.2M NaCl) and Stirred at room temperature for min. The coated pigment particles are then separated by centrifugation and washed twice with 500 parts of demineralized water.
  • PDADMAC solution 0.1% by weight of Pluronic TM F68, 0.05M acetate buffer pH 5.6, 0.2M NaCl
  • Example 1d Coating with an Anionic Layer of Polystyrenesulfonic Acid (PSS)
  • the pigment preparation obtained from Example 1b is dispersed in 440 parts of demineralized water and treated with 2000 parts of a surfactant-containing 0.5% by weight polystyrenesulphonic acid solution (70,000 g / mol, 0.1% by weight of Pluronic TM F68, 0.05M Acetate buffer pH 5.6, 0.2M NaCl) and stirred for 20 min at room temperature. The coated pigment particles are then separated by centrifugation and washed twice with 500 parts of demineralized water.
  • a surfactant-containing 0.5% by weight polystyrenesulphonic acid solution (70,000 g / mol, 0.1% by weight of Pluronic TM F68, 0.05M Acetate buffer pH 5.6, 0.2M NaCl)
  • Example 1 e Coating with an anionic layer of polystyrene sulfonic acid (PSS):
  • the pigment preparation obtained from Example 1c is dispersed in 440 parts of demineralized water and mixed with 2000 parts of a surfactant-containing 0.5% by weight polystyrene sulfonic acid solution (70,000 g / mol, 0.1% by weight of Pluronic TM F68, 0.05M Acetate buffer pH 5.6, 0.2M NaCl) and stirred for 20 min at room temperature.
  • the coated pigment particles are then separated by centrifugation and washed twice with 500 parts of demineralized water.
  • Example 1f Coating with a Cationic Layer of PAH
  • the pigment preparation obtained from Example 1d is mixed with 2000 parts of a surfactant-containing 1.0 wt .-% PAH solution (15.000g / mol, 0.1 wt .-% Pluronic TM F68, 0.05M acetate buffer pH 5.6, 0.2M NaCl) and stirred for 20 min at room temperature. The coated pigment particles are then separated by centrifugation and washed twice with 500 parts of demineralized water.
  • a surfactant-containing 1.0 wt .-% PAH solution (15.000g / mol, 0.1 wt .-% Pluronic TM F68, 0.05M acetate buffer pH 5.6, 0.2M NaCl
  • Example 1 g Coating with a cationic layer of polydiallyldimethylammonium chloride (PDADMAC):
  • the pigment preparation obtained from Example 1e is admixed with 2000 parts of a 1.0% strength by weight PDADMAC solution (0.05M acetate buffer pH 5.6, 0.2M NaCl) and stirred at room temperature for 20 minutes. The coated pigment particles are then separated by centrifugation and washed twice with 500 parts of demineralized water.
  • PDADMAC solution 0.05M acetate buffer pH 5.6, 0.2M NaCl
  • Table 1 shows that the layered encapsulation of C.I. Pigment Blue 15: 3 the zeta potential and thus the surface charge is strongly influenced. Thus values can be adjusted in a wide range. Without nonionic surfactant, larger particles are formed by a factor of 10 (Example 1g).
  • a mixture of 50 parts of CI Pigment Yellow 213, 13.5 parts of Pluronic TM F68, 1 part of sodium dodecylsulfate and 435.5 parts of demineralized water are predispersed with an Ultra-TurraX TM and then dispersed with a high pressure homogenizer until the particle size distribution is constant.
  • Example 2c Coating with a cationic polyelectrolyte layer from Eudragit E:
  • Example 2a To the pigment dispersion obtained from Example 2a are added 2000 parts of a 0.1% by weight acrylate copolymer (Eudragit E) solution (0.1% Pluronic TM F68, 0.2M NaCl, pH 4.6) and the mixture Stirred for 20 min at room temperature. The coated pigment particles are then separated by centrifugation and washed twice with 500 parts of demineralized water.
  • a 0.1% by weight acrylate copolymer Eudragit E
  • Pluronic TM F68 0.2M NaCl, pH 4.6
  • Example 2d Coating with an Anionic Layer of Polystyrenesulfonic Acid (PSS)
  • the pigment preparation obtained from Example 2b is dispersed in 440 parts of demineralized water and treated with 2000 parts of a surfactant-containing 0.5% by weight polystyrenesulphonic acid solution (70,000 g / mol, 0.1% by weight of Pluronic TM F68, 0.05M Acetate buffer pH 5.6, 0.2M NaCl) and stirred for 20 min at room temperature. The coated pigment particles are then separated by centrifugation and washed twice with 500 parts of demineralized water.
  • a surfactant-containing 0.5% by weight polystyrenesulphonic acid solution (70,000 g / mol, 0.1% by weight of Pluronic TM F68, 0.05M Acetate buffer pH 5.6, 0.2M NaCl)
  • Example 2e Coating with an Anionic Layer of Polystyrenesulfonic Acid (PSS)
  • the pigment preparation obtained from Example 2c is dispersed in 440 parts of eritmineralized water and treated with 2000 parts of a surfactant-containing 0.5% by weight polystyrenesulphonic acid solution (70,000 g / mol, 0.1% by weight of Pluronic TM F68, 0.05M Acetate buffer pH 5.6, 0.2M NaCl) and stirred for 20 min at room temperature.
  • the coated pigment particles are then separated by centrifugation and washed twice with 500 parts of demineralized water.
  • Table 2 shows that the layered encapsulation of C.I. Pigment Yellow 213 strongly affects the zeta potential and thus the surface charge. Thus values can be adjusted in a wide range.
  • Example 3a The pigment preparation obtained from Example 3a is dispersed in 440 parts of demineralized water and admixed with 2000 parts of a 0.1% strength by weight Eudragit E solution (pH 4.7, 0.2M NaCl) and 0.1% by weight of Pluronic TM F68 and the mixture stirred at room temperature for 20 minutes. The coated pigment particles are then separated by centrifugation and washed twice with 500 parts of demineralized water.
  • Table 3 shows that the layered encapsulation of C.I. Pigment Blue 15: 3 the zeta potential and thus the surface charge is strongly influenced. Thus values can be adjusted in a wide range.
  • a dispersion is obtained by dispersing a pigment preparation according to Example 1e in deionized water containing 10.5% by weight of C.I. Pigment Blue 15: 3.
  • a dispersion is obtained by dispersing a pigment preparation according to Example 2e in deionized water containing 9.2% by weight of C.I. Pigment Yellow 213. Comparative Examples:
  • the pigment together with the below-mentioned dispersants, organic solvent and other additives, is made into a paste in demineralized water and then predispersed with a dissolver.
  • the subsequent fine dispersion is carried out under cooling with the aid of a bead mill over a period of 2 hours.
  • the dispersion with demineralized Adjusted water to the desired final pigment concentration of 20%, wherein 100 parts of the respective dispersion formed and parts by weight.
  • Comparative Example 1 Pigment dispersion based on styrene acrylate and C.I. Pigment Blue 15: 3, non-encapsulated:
  • Comparative Example 2 Pigment dispersion based on anionic surfactant and C.I. Pigment Yellow 213, non-encapsulated:
  • test inks were produced and their printability was investigated with a thermal ink-jet printer.
  • the dispersions were first filtered through a 1 micron filter to separate Mahl stressesabrieb and any coarse fractions. After that The filtered dispersions were diluted with water and treated with other low molecular weight alcohols and polyols, wherein the pigment content was adjusted to 5 wt .-% based on the ink (100 wt .-%).
  • the inks suitable for ink-jet printing must meet a number of physical characteristics. So it is necessary that they have the lowest possible viscosity (preferably ⁇ 5 mPas) in order to avoid clogging of the printer nozzles and to produce a uniform printed image.
  • the viscosity was determined using a Haake cone-and-plate viscometer (RS 1) (titanium gel: 0 60 mm, 1 °). The viscosity values listed in Table 4 were measured at a shear rate of 60 s -1 .
  • test images were printed on standard commercial papers (copier papers) and specialty papers (premium quality). The assessment regarding the quality and quality of the printed image was made by visual inspection.
  • test inks were printed with the HP 960c printer on full-surface printing on uncoated paper from DataCopy and the optical density measured using a spectrophotometer from GretagMacBeth. The results are summarized in Table 4.
  • Table 4 Viscosities and optical densities of the test inks Viscosity test ink Optical density
  • Application example 1 2.9 mPas 1.12
  • Application Example 2 2.4 mPas 1.22
  • the test inks produced from the dispersions of Application Examples 1 and 2 have a very low viscosity compared to Comparative Examples 1 and 2 and show a very good printing behavior. In particular, a result high reliability in the printing process (very good pressure behavior, no nozzle clogging) and a very uniform print image of excellent quality on the various papers used.
  • Prints of the test inks prepared according to Application Examples 1 and 2 on plain paper show a higher optical density than the test inks of Comparative Examples 1 and 2.
  • the prints of Application Examples 1 and 2 in contrast to those of Comparative Examples 1 and 2, a streak-free print image.
  • the test inks produced in accordance with Application Examples 1 and 2 thus meet the requirements imposed by ink-jet printing in an excellent manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Optical Filters (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Ink Jet (AREA)

Description

  • Die vorliegende Erfindung betrifft polyelektrolyt-verkapselte Pigmente, deren Herstellung und deren Verwendung als Farbmittel insbesondere für Wasser- und lösungsmittelbasierende Tinten und Lacke.
  • Die Stabilität von Pigmentdispersionen in lösungsmittelhaltigen .und rein wässrigen Anwendungsmedien wie Drucktinten, Ink-Jet-Tinten, Mill-bases und Lacken wird unter anderem stark durch die Oberflächenladung der eingesetzten Pigmente beeinflusst. Für viele Zwecke ist es wünschenswert, die Oberflächenladung gezielt einzustellen, um damit die Fließfähigkeit, das Benetzungsverhalten, die Stabilität und Güte der Dispersion auf das jeweilige Bindemittelsystem anzupassen. Ein übliches Maß für die Charakterisierung von Partikeldispersionen bildet das Zeta-Potential, das mit der Oberflächenladung der Partikel und der geladenen Grenzschicht direkt verknüpft ist.
  • Anorganische Pigmente tragen aufgrund ihrer oxidischen oder sulfidischen Struktur zumeist eine leicht negative Oberflächenladung, die beispielsweise durch den oberflächlichen Einbau anderer Metallionen verändert werden kann.
    Die Oberflächenladung von organischen Pigmenten ist meist gering und kann stark variieren, wobei die Pigmentklasse, das Substitutionsmuster und die jeweilige Kristallstruktur einen Einfluss haben. Dem Fachmann sind mehrere Wege bekannt, die Oberflächenladung von organischen Pigmenten zu variieren. Eine Möglichkeit liegt in der Verwendung von Additiven, die stark an die Pigmentoberfläche absorbieren und die selbst eine Ladung oder Partialladung tragen. Diese Additive können Polymere darstellen, die über Ankergruppen verfügen, die stark mit der Pigmentoberfläche wechselwirken. Alternativ sind auch Additive üblich, die ausgehend von einem Pigmentgrundkörper substituiert sind und somit besonders stark an der Pigmentoberfläche der jeweiligen Strukturklasse haften. Der Nachteil an diesen polymeren und pigmentbasierenden Additiven liegt darin, dass diese Stoffe meist spezifisch für einzelne Pigmente oder Pigmentklassen wirken und eine Einstellung der Oberflächenladung nur in einem engen Bereich möglich ist. Außerdem müssen diese Additive aufwendig hergestellt werden.
  • Eine allgemeine Methode, Polyelektrolyte auf bestimmte Feststoffpartikel aufzubringen, ist in WO 99/47252 beschrieben. Diese Schrift enthält jedoch keinerlei Hinweise, dass durch eine solche Verkapselung die anwendungstechnischen Eigenschaften von Pigmenten verbessert werden. Die Schrift erwähnt zwar die Einkapselung von Farbstoffen. Dieser Ausdruck bezieht sich jedoch auf lösliche Farbmittel, während Pigmente unlösliche Farbmittel darstellen.
  • WO 02/28660 beschreibt die Belegung von Partikeln mit Farbmittel enthaltenden Polyelektrolytschichen. Diese Materialien sind ausdrücklich als gut geeignet für Ink-Jet-Tinten beschrieben. Diese gute Eignung wird aber auf eine Verbesserung der Farbmittel hinsichtlich Abbaureaktionen durch Licht und anderer Einflüsse begrenzt. In dieser Schrift finden sich keinerlei Hinweise, dass Pigmente durch die Veränderung von Oberflächenladungen verbesserte Eigenschaften zeigen.
  • Yuan, J; Zhou, S.; You, B; Lu, L.; Chem. Mat. 2005, 117, 3587-3894 berichtet von der Belegung von Pigment Yellow 109 einer Teilchengröße von mehr als 480 nm mit Multischichten aus Poly(diallyldimethyl)ammoniumchlorid und Natrium Poly(4-styrylsulfonat) und nachträglicher Belegung mit nano-teiligen Siliziumdioxidpartikeln.
  • US-A-2004/229974 offenbart Ink-Jet-Tinten, die mit anionischen Gruppen ausgestaltete Pigmente enthalten, welche mit kationischen und anionischen Polyelektrolyten beschichtet sind.
  • In der JP-A-57 126857 werden Pigmentpartikel zunächst mit anionischen, dann mit kationischen hochmolekularen Komponenten beschichtet.
  • Auch in der GB-A-955 283 werden Lackpigmente zunächst anionisch, dann kationisch belegt. EP-A-0058 865 beschreibt Pigmentpräparationen, hergestellt durch Mischen einer Pigmentsuspension mit anionischen Polymeren sowie anionischen Surfactants und anschließendem Ausfällen mit Metallsalzen.
  • Besonders im Bereich der Ink-Jet-Druckverfahren sind pigmentbasierende Tintenformulierungen gewünscht, die ein brilliantes Druckbild mit einem problemlosen Druckvorgang verbinden.
  • Das Ink-Jet-Druckverfahren ist, wie zum Beispiel die Elektrophotographie (Laserdrucker und Kopierer), ein berührungsloses Druckverfahren (non impact printing process) und hat durch die zunehmende Verwendung von Computern vor allem im so genannten SOHO-Bereich (small office, home office), aber auch im so genannten Wide-Format-Bereich im Verlauf der letzten Jahre immer mehr an Bedeutung gewonnen.
  • Im Ink-Jet-Druck unterscheidet man zwischen den so genannten kontinuierlichen Druckverfahren und den Drop-on-Demand-Verfahren, wobei bei den letzteren Verfahren die Tintentropfen durch ein computergesteuertes elektrisches Signal erzeugt werden. Grundsätzlich lassen sich zwei Arten von Drop-on-Demand-Ink-Jet-Verfahren unterscheiden, der so genannte thermische Ink-Jet-Druck, auch als Bubble-Jet bezeichnet, und der piezoelektrische Ink-Jet-Druck.
  • Neben Farbstoffen werden in jüngster Zeit auch verstärkt Pigmente als Farbmittel in Ink-Jet-Tinten eingesetzt. An die pigmentierten Tinten für den Tintenstrahldruck werden dabei eine Reihe von Anforderungen gestellt: Sie müssen zum Drucken eine geeignete Viskosität und Oberflächenspannung aufweisen, sie müssen lagerstabil sein, d.h. sie sollen nicht aggregieren und das dispergierte Pigment soll sich nicht absetzen und sie dürfen nicht zu einer Verstopfung der Druckerdüsen führen.
  • Beim Ink-Jet-Druck werden außerdem sehr hohe Anforderungen insbesondere an die Farbstärke, den Farbton, die Brillianz, den Glanz, die Transparenz und an Echtheitseigenschaften, wie beispielsweise Lichtechtheit, Wasserechtheit und Reibeechtheit, der Ausdrucke gestellt. Insbesondere beim Drucken auf unbeschichtetem Papier (Plain Paper) ist es schwierig, eine hohe optische Dichte und einen guten Glanz zu erreichen. Diese Eigenschaften werden durch die Obertlächenladung der eingesetzten Pigmentpartikel maßgeblich bestimmt.
    Die nach dem Stand der Technik bekannten Pigmente erfüllen die für den Ink-Jet-Druck geforderten Eigenschaften oftmals nicht.
    Es bestand daher die Aufgabe, oberflächengeladene Pigmente zu finden, die die für den Ink-Jet-Druck erforderlichen Eigenschaften erfüllen.
  • Es bestand weiterhin die Aufgabe ein Verfahren zur Herstellung oberflächenmodifizierter Pigmente zu finden, das es erlaubt, die Oberflächenladung dieser Teilchen gezielt einzustellen. Dieses Verfahren sollte weitgehend unabhängig von der Klasse des verwendeten Pigments sein.
  • Überraschenderweise wurde gefunden, dass eine Verkapselung von Pigmenten mit Polyelektrolyt-Schichten diese Aufgaben löst.
  • Gegenstand der Erfindung ist ein Verfahren zur Verkapselung von Pigmentpartikeln, gekennzeichnet durch
    1. (A) die Herstellung einer Dispersion des zu verkapselnden Pigments,
    2. (B) die nachfolgende Aufbringung einer Polyelektrolytschicht auf die Oberfläche der Pigmentpartikel,
    3. (C) die weitere Aufbringung einer zu (B) gegensätzlich geladenen Polyelektrolytschicht und/oder der Zugabe von zu (B) gegensätzlich geladenen niedermolekularen mehrwertigen Ionen und
    4. (D) gegebenenfalls die Wiederholung der Schritte (B) und (C),
    wobei die Schritte (B), (C) und gegebenenfalls (D) in Gegenwart eines nichtionischen Tensids durchgeführt werden.
  • (A): Die eingesetzte Pigmentdispersion kann durch übliche Methoden wie Mahlung, Ultraschallbehandlung oder Hochdruckhomogenisation erhalten werden und enthält zweckmäßigerweise ionische und/oder nichtionische Dispergier- und Netzmittel. Beispiele nichtionischer Tenside, die auch in den Schritten (B), (C) und (D) eingesetzt werden können, sind Alkyl- oder Arylalkoxylate, wie z.B. Alkoxylate von Ricinusötkoiophoniumestern, Fettalkoholen, Fettaminen, Fettsäuren oder Fettsäureamiden sowie Alkoxylierungsprodukte von Alkylphenolen bzw. deren oligo- oder polymere Derivate, z.B. Aldehyd-Kondensationsprodukte sowie Alkylpolyglucoside. Des Weiteren sind Alkoxylate von Styrol-Phenol Additionsprodukten wie z.B. 2,4,6-Tris-(1-phenylethyl)phenol sowie von Diglycerol- sowie Polyglycerolester langkettiger Säuren möglich. Ebenfalls können amphiphile Polymere oder Copolymere als Dispergierhilfsmittel verwendet werden, wie beispielsweise Block-Polymethacrylsäureester-Block-Polyethylenoxid-Copolymere, Block-Polystyrol-Block-Polyethylenoxid-Copolymere, Block-Polyethylenoxid-Block-Polypropylenoxid-Copolymere, Block-Polyethylendiamin-Block-Polyethylenoxid-Block- Polypropylenoxid-Copolymere, Polyvinylpyrrolidone oder Polyvinylalkohole.
  • Als ionische grenzflächenaktive Verbindungen eignen sich anionische und kationische Tenside. Zum Beispiel sind Tenside, die durch chemische Modifikation der nichtionischen Tenside erhältlich sind, Verbindungen mit den Gruppen -O-SO3H, -SO3H, -COOH, -O-PO(OH)2, -O-PO(OH)-O-, -O-CO-CH=CH-COOH, -O-COCH(SO3H)CH2COOH, -COCH2CH(SO3H)COOH. Diese Tenside werden zweckmäßigerweise in Form der Alkalisalze, Ammoniumsalze und/oder der wasserlöslichen Aminsalze eingesetzt. Daneben können auch Sulfonate von alpha-Olefinen, Sulfonate von Polynaphthalenen, Ligninsulfonate, Dialkylsulfosuccinate sowie sulfatierte Fettsäuren bzw. Öle und deren Salze verwendet werden.
    Außerdem eignen sich kationische Tenside beispielsweise aus der Gruppe der Alkyl- bzw. Arylammoniumsalze sowie zwitterionische Tenside oder mesoionische Tenside, wie z.B. Aminoxide.
  • Außerdem können polymere grenzflächenaktive Verbindungen als Dispergiermittel eingesetzt werden, beispielsweise Acrylatharz-Copolymere mit einer mittleren Molmasse Mv zwischen 1000 und 50.000 g/mol, bestehend im Wesentlichen aus Monoalkenylaromaten und Acrylaten. Unter Monoalkenylaromaten werden insbesondere Monomere aus der Gruppe Styrol, α-Methyl-styrol, Vinyltoluol, tert.-Butyl-styrol, o-Chlor-styrol, sowie Gemische davon, verstanden. Unter Acrylaten werden Monomere aus der Gruppe Acrylsäure, Methacrylsäure sowie Ester der Acryl- oder Methacrylsäure verstanden. Beispiele sind: Methylmethacrylat, Ethylmethacrylat, n-Propylmethacrylat, n-Butylmethacrylat, Isopropyl-methacrylat, Isobutyl-methacrylat, n-Amyl-methacrylat, n-Hexyl-methacrylat, Iso-amyl-methacrylat, 2-Hydroxyethyl-methacrylat, 2-Hydroxypropyl-methacrylal, N,N-Dimethylaminoethylmethacrylat, N,N-Diethylaminoethyl-methacrylat, t-Butylaminoethyl-methacrylat, 2-Sulfoethyl-methacrylat, Trifluorethyl-methacrylat, Glycidyl-methacrylat, Benzyl- methacrylat, Allyl-methacrylat, 2-n-Butoxyethyl-methacrylat, 2-Chloroethyl-methacrylat, sec.-Butyl methacrylat, tert.-Butyl-methacrylat, 2-Ethylbutyl-methacrylat, Cinnamylmethacrylat, Crotyl-methacrylat, Cyclohexyl-methacrylat, Cyclopentyl-methacrylat, 2-Ethoxyethyl-methacrylat, Furfuryl-methacrylat, Hexafluorisopropyl-methacrylat, Methallyl-methacrylat, 3-Methoxybutyl-methacrylat, 2-Methoxybutyl-methacrylat, 2-Nitro-2-methylpropyl-methacrylat, n-Octylmethacrylat, 2-Ethylhexyl-methacrylat, 2-Phenoxyethyl-methacrylat, 2-Phenylethyl-methacrylat, Phenyl-methacrylat, Propargylmethacrylat, Tetrahydrofurfuryl-methacrylat und Tetrahydropyranyl-methacrylat.
  • (B) und (C): Das Aufbringen auf die Oberfläche gemäß Schritt (B) des erfindungsgemäßen Verfahrens erfolgt in der Dispersion gemäß (A) mit einem darin gelösten Polyelektrolytsalz durch Präzipitation, bei der um das Pigmentpartikel eine Hülle mit definierter Dicke meist im Bereich von 1 bis 150 nm, vorzugsweise 1 bis 100 nm, besonders bevorzugt 5 bis 50 nm und am meisten bevorzugt 10 bis 30 nm gebildet wird. Die Dicke und die Homogenität der Kapselhülle werden durch die Geschwindigkeit der Präzipitation des Polyelektrolyten bestimmt. Diese hängt im Wesentlichen von der Konzentration der Pigmentpartikel, der Konzentration der Beschichtungskomponenten und der Geschwindigkeit der die Präzipitation bewirkenden Löslichkeitsveränderung in der Flüssigkeitsphase ab.
    Die Präzipitation kann beispielsweise dadurch erfolgen, dass ein Teil der die Hülle bildenden Komponenten in der Flüssigphase vorgelegt und anschließend eine oder mehrere weitere Hüllkomponenten zugegeben werden. Ein derartiger Präzipitationsschritt kann beispielsweise für eine Kombination von Metallkationen und entgegengesetzt geladenen Polyelektrolyten eingesetzt werden.
    Eine andere Möglichkeit der Oberflächenpräzipitation besteht darin, dass die zur Bildung der Hülle erforderlichen Komponenten bereits vollständig in der Flüssigphase vorliegen und eine die Präzipitation bewirkende Veränderung der Flüssigphase erfolgt. Diese Veränderung der Flüssigphase kann beispielsweise in einer Elektrolytzugabe, z.B. anorganische Salze, oder/und pH-Variation, z.B. Zugabe eines Puffers, bestehen. Durch geeignete Wahl der Polyelektrolyte ist es möglich, die Eigenschaften und Zusammensetzung der Polyelektrolythülle definiert einzustellen, insbesondere in Hinblick auf die Oberflächenladung. Dabei kann die Zusammensetzung der Hüllen durch die Wahl der Substanzen beim Schichtaufbau in weiten Grenzen variiert werden. Grundsätzlich ergeben sich keine Einschränkungen hinsichtlich der zu verwendenden Polyelektrolyte, solange die verwendeten Moleküle eine genügend hohe Ladung aufweisen oder/und die Fähigkeit besitzen, über andere Wechselwirkungsarten, wie beispielsweise Wasserstoffbrückenbindungen und/oder hydrophobe Wechselwirkungen, eine Bindung mit der darunter liegenden Schicht einzugehen.
  • Besonders überraschend war, dass der Schritt (B), (C) und gegebenenfalls (D) in Anwesenheit nichtionischer Tenside besonders effizient und agglomeratfrei durchgeführt werden kann.
    Weiterhin wurde gefunden, dass die Schritte (C) und (D) durch eine kontrollierte Oberflächenpräzipitation so optimiert werden können, dass mehrere Polyelektrolytschichten nacheinander ohne Zwischenisolierung auf die Pigmentpartikel aufgebracht werden können. Dies kann durch sukzessive Zugabe der Hüllkomponenten und Herbeiführung der Präzipitation durch Änderung der Elektrolytkonzentration und/oder des pH-Wertes geschehen. Dabei werden Polyelektrolytschichten auf den Pigmentpartikeln aufgebracht, die in ihrer Schutz- und Stabilisierungswirkung mit denjenigen einer Layer by layer-Technik vergleichbar sind.
  • Es können lineare oder verzweigte Polyelektrolyte eingesetzt werden. Die Verwendung verzweigter Polyelektrolyte kann zu weniger kompakten Polyelektrolytfilmen mit einem höheren Grad an Porosität führen. Zur Erhöhung der Kapselstabilität können Polyelektrolytmoleküle innerhalb oder/und zwischen den einzelnen Schichten vernetzt werden, z.B. durch Crosslinking von Aminogruppen mit Aldehyden. Weiterhin können amphiphile Polyelektrolyte, z. B. amphiphile Block- oder Randomcopolymere mit partiellem Polyelektrolytcharakter zur Verringerung der Permeabilität gegenüber polaren kleinen Molekülen eingesetzt werden. Solche amphiphilen Copolymere bestehen aus Einheiten unterschiedlicher Funktionalität, z.B. einerseits sauren oder basischen Einheiten und andererseits hydrophoben Einheiten wie Styrolen, Dienen oder Siloxanen, die als Blöcke oder statistisch verteilt über das Polymer angeordnet sein können. Durch Verwendung von Copolymeren, die als Funktion äußerer Bedingungen ihre Struktur ändern, können die Kapselwände bezüglich ihrer Oberflächenladung oder anderer Eigenschaften definiert gesteuert werden. Hierzu bieten sich beispielsweise schwache Polyelektrolyte, Polyampholyte oder Copolymere mit einem Poly(N-isopropylacrylamid)-Anteil, z.B. Poly(N-isopropylacrylamid-acrylsäure) an, die über das Gleichgewicht von Wasserstoffbrückenbindungen ihre Wasserlöslichkeit als Funktion der Temperatur ändern, was mit einer Quellung einhergeht.
  • In einer bevorzugten Ausführungsform kann die Verkapselung mit einem Komplex aus einem niedermolekularen Ion und einem entgegengesetzt geladenen Polyelektrolyten erfolgen. Beispiele für geeignete niedermolekulare Ionen sind mehrwertige Metallkationen, wie Erdalkalimetallkationen und Übergangsmetallkationen, anorganische Anionen, wie Sulfat, Carbonat, Phosphat, geladene Tenside, geladene Lipide und geladene Oligomere in Kombination mit einem entsprechend entgegengesetzt geladenen Polyelektrolyten. Hierbei wird eine verteilte Quelle für den einen Polyelektrolyten bei gleichzeitiger Anwesenheit des anderen Polyelektrolyten erzeugt. Der Polyelektrolyt des Komplexes kann sowohl das Polykation als auch das Polyanion sein. Die Wahl hängt von der Natur des verwendeten Pigmentes und den erwünschten Oberflächeneigenschaften ab. In dieser Ausführungsform wird beispielsweise ein positiv geladener Polyelektrolyt mit einem mehrfach negativ geladenen niedermolekularen Anion, z.B. Sulfat, zu einer Lösung des negativ geladenen Polyelektrolyten und einer Dispersion des Pigments gegeben, wobei eine Beschichtung der Pigmentpartikel stattfindet. Die beschichteten Pigmentpartikel können von den freien Komplexen beispielsweise durch Zentrifugation, Filtration und anschließendes Waschen oder Membranfiltration abgetrennt werden.
  • Noch eine weitere bevorzugte Ausführungsform umfasst die Oberflächenpräzipitation in einer Pigmentdispersion enthaltend lösliche, partiell destabilisierte Polyelektrolytkomplexe (Polykation/Polyanion) mittels Salzzugabe oder/und pH-Variation und/oder andere Destabilisierungsfaktoren. Hierbei erfolgt eine allmähliche Übertragung von Polyelektrolyten aus den Komplexen auf die Pigmentoberfläche. Hierzu können der negativ und der positiv geladene Polyelektrolyt in eine wässrige Lösung mit hohem Salzgehalt, vorzugsweise einem Salzgehalt von mehr als 0,5 Mol/l, z.B. 1 M NaCl, eingebracht und gerührt werden. Nach Zugabe der Pigmentpartikel werden diese beschichtet und können beispielsweise durch Zentrifugation oder Filtration und anschließendes Waschen gewonnen werden.
  • In noch einer weiteren bevorzugten Ausführungsform umfasst die Hülle Metallkationen und mindestens einen negativ geladenen Polyelektrolyten. Als Metallkationen kommen beispielsweise divalente Metallkationen und insbesondere trivalente Metallkationen zum Einsatz. Beispiele für geeignete Metallkationen sind Erdalkalimetallkationen, Übergangsmetallkationen und Seltenerdelementkationen, wie etwa Ca2+, Mg2+; Al3+, Y3+, Tb3+ und Fe3+.
  • Die Erfindung liefert beschichtete Partikel mit einem Kern, der ein organisches Pigment ist und eine mittlere Teilchengröße d50 von unter 200 nm, und mindestens zwei Polyelektrolytschichten unterschiedlicher Ladung in einer Schichtdicke von jeweils 1 bis 150 nm, vorzugsweise 1 bis 100 nm, besonders bevorzugt 5 bis 50 nm und am meisten bevorzugt 10 bis 30 nm, hat.
  • Vorzugsweise enthalten die beschichteten Partikel der vorliegenden Erfindung
    1. (a.) 20 bis 99 Gew.-%, besonders bevorzugt 50 bis 99 Gew.-%, insbesondere 70 bis 99 Gew.-%, eines Kerns aus einem organischen Pigment,
    2. (b.) 1 bis 80 Gew.-%, besonders bevorzugt 1 bis 50 Gew.-%, insbesondere 1 bis 30 Gew.-%, mindestens zweier Polyelektrolytschichten und
    3. (c.) 0 bis 30 Gew.-%, vorzugsweise 0 bis 10 Gew.-%, beispielsweise 1 bis 20 Gew.-%, eines mehrwertigen, niedermolekularen Ions.
  • Als organische Pigmente kommen Monoazo-, Disazo-, verlackte Azo-, β-Naphthol-, Naphthol AS-, Benzimidazolon-, Disazokondensations-, Azo-Metallkomplex-Pigmente und polycyclische Pigmente wie zum Beispiel Phthalocyanin-, Chinacridon-, Perylen-, Perinon-, Thioindigo-, Anthanthron-, Anthrachinon-, Flavanthron-, Indanthron-; Isoviolanthcon-, Pyranthron-, Dioxazin-, Chinophthalon-, Isoindolinon-, Isoindolin- und Diketopyrrolopyrrol-Pigmente oder Ruße in Betracht.
  • Von den genannten organischen Pigmenten sind diejenigen besonders geeignet, deren anhand eines Blaumaßstabs ermittelte Lichtechtheit mit einer Note größer 5, insbesondere größer 6 beurteilt wird. Zudem sollten die für die Herstellung der Zubereitungen verwendeten Pigmente möglichst feinteilig sein. Die mittlere Teilchengröße d50 liegt idealerweise bei einem Wert unter 200 nm, insbesondere zwischen 30 nm und kleiner als 200 nm, besonders bevorzugt zwischen 40 und 180nm.
  • Als beispielhafte Auswahl besonders bevorzugter organischer Pigmente sind dabei Rußpigmente, wie z.B. Gas- oder Furnaceruße; Monoazo- und Disazopigmente, insbesondere die Colour Index Pigmente Pigment Yellow 1, Pigment Yellow 3, Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 14, Pigment Yellow 16, Pigment Yellow 17, Pigment Yellow 73, Pigment Yellow 74, Pigment Yellow 81, Pigment Yellow 83, Pigment Yellow 87, Pigment Yellow 97, Pigment Yellow 111, Pigment Yellow 126, Pigment Yellow 127, Pigment Yellow 128, Pigment Yellow 155, Pigment Yellow 174, Pigment Yellow 176, Pigment Yellow 191, Pigment Red 38, Pigment Red 144, Pigment Red 214, Pigment Red 242, Pigment Red 262, Pigment Red 266, Pigment Red 269, Pigment Red 274, Pigment Orange 13, Pigment Orange 34 oder Pigment Brown 41; β-Naphthol- und Naphthol AS-Pigmente, insbesondere die Colour Index Pigmente Pigment Red 2, Pigment Red 3, Pigment Red 4, Pigment Red 5, Pigment Red 9, Pigment Red 12, Pigment Red 14, Pigment Red 53:1, Pigment Red 112, Pigment Red 146, Pigment Red 147, Pigment Red 170, Pigment Red 184, Pigment Red 187, Pigment Red 188, Pigment Red 210, Pigment Red 247, Pigment Red 253, Pigment Red 256, Pigment Orange 5, Pigment Orange 38 oder Pigment Brown 1; verlackte Azo- und Metallkomplexpigmente, insbesondere die Colour Index Pigmente Pigment Red 48:2, Pigment Red 48:3, Pigment Red 48:4, Pigment Red 57:1, Pigment Red 257, Pigment Orange 68 oder Pigment Orange 70; Benzimidazolinpigmente, insbesondere die Colour Index Pigmente Pigment Yellow 120, Pigment Yellow 151, Pigment Yellow 154, Pigment Yellow 175, Pigment Yellow 180, Pigment Yellow 181, Pigment Yellow 194, Pigment Red 175, Pigment Red 176, Pigment Red 185, Pigment Red 208, Pigment Violet 32, Pigment Orange 36, Pigment Orange 62, Pigment Orange 72 oder Pigment Brown 25; Isoindolinon- und Isoindolinpigmente, insbesondere die Colour Index Pigmente Pigment Yellow 139 oder Pigment Yellow 173; Phthalocyaninpigmente, insbesondere die Colour Index Pigmente Pigment Blue 15, Pigment Blue 15:1, Pigment Blue 15:2, Pigment Blue 15:3, Pigment Blue 15:4, Pigment Blue 16, Pigment Green 7 oder Pigment Green 36; Anthanthron-, Anthrachinon-, Chinacridon-, Dioxazin-, Indanthron-, Perylen-, Perinon- und Thioindigopigmente, insbesondere die Colour Index Pigmente Pigment Yellow 196, Pigment Red 122, Pigment Red 149, Pigment Red 168, Pigment Red 177, Pigment Red 179, Pigment Red 181, Pigment Red 207, Pigment Red 209, Pigment Red 263, Pigment Blue 60, Pigment Violet 19, Pigment Violet 23, Pigment Blue 80 oder Pigment Orange 43; Triarylcarboniumpigmente, insbesondere die Colour Index Pigmente Pigment Red 169, Pigment Blue 56 oder Pigment Blue 61; Diketopyrrolopyrrolpigmente, insbesondere die Colour Index Pigmente Pigment Red 254 zu nennen.
  • Erfindungsgemäß geeignete Polyelektrolyte können sowohl Polyanionen als auch Polybasen darstellen und sind sowohl Biopolymere, wie etwa Alginsäure, Gummi Arabicum, Nukleinsäuren, Pektine, Proteine und andere, sowie chemisch modifizierte Biopolymere, wie etwa ionische oder ionisierbare Polysaccharide, z.B. Carboxymethylcellulose, Chitosan und Chitosansulfat, Ligninsulfonate sowie synthetische Polymere, wie etwa Polymethacrylsäure, Polyvinylsulfonsäure, Polyvinylphosphonsäure und Polyethylenimin.
  • Geeignete Polyanionen umfassen natürlich vorkommende Polyanionen und synthetische Polyanionen. Beispiele für natürlich vorkommende Polyanionen sind Alginat, Carboxymethylamylose, Carboxymethylcellulose, Carboxymethyldextran, Carageenan, Cellulosesulfat, Chondroitinsulfat, Chitosansulfat, Dextransulfat, Gummi Arabicum, Gummi Guar, Gummi Gellan, Heparin, Hyaluronsäure, Pektin, Xanthan und Proteine bei einem entsprechenden pH-Wert. Beispiele für synthetische Polyanionen sind Polyacrylate (Salze der Polyacrylsäure), Anionen von Polyaminosäuren und deren Copolymeren, Polymaleinat, Polymethacrylat; Polystyrolsulfat, Polystyrolsulfonat, Polyvinylphosphat, Polyvinylphosphonat, Polyvinylsulfat, Polyacrylamidmethylpropansulfonat, Polylactat, Poly(butadien/maleinat), Poly(ethylen/maleinat), Poly(ethacrylat/acrylat) und Poly(glycerinmethacrylat).
  • Geeignete Polybasen umfassen natürlich vorkommende Polykationen und synthetische Polykationen. Beispiele für geeignete natürlich vorkommende Polykationen sind Chitosan, modifizierte Dextrane, z.B. Diethylaminoethyl-modifizierte Dextrane, Hydroxymethylcellulosetrimethylamin, Lysozym, Polylysin, Protaminsulfat, Hydroxyethylcellulosetrimethylamin und Proteine bei einem entsprechenden pH-Wert. Beispiele für synthetische Polykationen sind Polyallylamin, Polyallylaminhydrochlorid, Polyamine, Polyvinylbenzyltrimethylammoniumchlorid, Polybren, Polydiallyldimethylammoniumchlorid, Polyethylenimin, Polyimidazolin, Polyvinylamin, Polyvinylpyridin, Poly(acrylamid/methacryloxypropyl-trimethylammoniumbromid), Poly(diallyldimethylammoniumchlorid/N-isopropylacrylamid), Poly(dimethylaminoethylacrylat/acrylamid), Polydimethylaminoethylmethacrylat, Polydimethylamino-epichlorhydrin, Polyethyleniminoepichlorhydrin, Polymethacryloxyethyltrimethylammoniumbromid, Hydroxypropylmethacryl-oxyethyldimethylammoniumchlorid, Poly(methyldiethylaminoethylmethacrylat/ acrylamid), Poly(methyl/guanidin), Polymethylvinylpyridiniumbromid, Poly(vinylpyrrolidon-dimethylaminoethylmethacrylat) und Polyvinylmethylpyridiniumbromid.
  • Die beschichteten Partikel können als Farbmittel für Drucktinten, insbesondere für Ink-Jet-Tinten, elektrophotographische Toner, insbesondere Polymerisationstoner, Lacke, Pulverlacke und Farbfilter emgesetzt werden.
  • Die polyelektrolyt-verkapselten Pigmente können entweder in isolierter Form oder in Dispersion verwendet werden. Die Herstellung der Dispersion erfolgt zweckmäßigerweise mit resultierenden Pigmentgehalten von mindestens 8 Gew.-%, bevorzugt mindestens 10 Gew.-%, um diese Dispersionen direkt zur Tintenformulierung zu verwenden. Nach der Verkapselung kann nach jedem Teilschritt (B), (C) oder (D) eine Abtrennung von niedermolekularen Verbindungen oder nicht umhüllenden Polyelektrolyten erfolgen. Hierzu kommt zweckmäßigerweise eine Membranfiltration der Dispersion oder eine Isolierung des Pigments durch Zentrifugation oder Filtration und nachfolgendes Waschen zum Einsatz.
  • Die erfindungsgemäßen polyelektrolyt-verkapselten Pigmente zeichnen sich durch eine hohe Stabilität aus. Viele Pigmente fördern beim Ink-Jet-Verfahren ein Verstopfen der Düsen des Druckkopfes (nozzle clogging), das zu einem schlechten Druckverhalten führt. Ein solcher Ausfall einzelner Düsen wird bei Einsatz der erfindungsgemäßen polyelektrolyt-verkapselten Pigmente nicht beobachtet, was einen streifenfreien und damit gleichmäßigen Druck ermöglicht.
  • Die erfindungsgemäßen polyelektrolyt-verkapselten Pigmente werden vorzugsweise als Farbmittel in Ink-Jet-Tinten auf wässriger und nichtwässriger Basis, in Mikroemulsionstinten sowie in solchen Tinten, die nach dem Hot-Melt-Verfahren arbeiten, verwendet.
  • Gegenstand der Erfindung sind weiterhin Ink-Jet-Tinten gemäß Anspruch 7.
  • Mikroemulsionstinten basieren auf organischen Lösemitteln, Wasser und ggf. einer zusätzlichen hydrotropen Substanz (Grenzflächenvermittler). Mikroemulsionstinten enthalten im Allgemeinen 0,5 bis 30 Gew.-%, vorzugsweise 1 bis 15 Gew.-%, der erfindungsgemäßen polyelektrolyt-verkapselten Pigmente, 5 bis 99 Gew.% Wasser und 0,5 bis 94,5 Gew.-% organisches Lösungsmittel und/oder hydrotrope Verbindung. "Solvent based" Ink-Jet-Tinten enthalten vorzugsweise 0,5 bis 30 Gew.-% der erfindungsgemäßen polyelektrolyt-verkapselten Pigmente, 85 bis 99,5 Gew.-% organisches Lösungsmittel und/oder hydrotrope Verbindungen. Hot-Melt-Tinten basieren meist auf Wachsen, Fettsäuren, Fettalkoholen oder Sulfonamiden, die bei Raumtemperatur fest sind und bei Erwärmen flüssig werden, wobei der bevorzugte Schmelzbereich zwischen ca. 60°C und ca. 140°C liegt. Hot-Melt Ink-Jet-Tinten bestehen z.B. im Wesentlichen aus 20 bis 90 Gew.-% Wachs und 1 bis 10 Gew.-% der erfindungsgemäßen polyelektrolyt-verkapselten Pigmente. Weiterhin können 0 bis 20 Gew.-% eines zusätzlichen Polymers, bis 5 Gew.-% . Dispergierhilfsmittel, 0 bis 20 Gew.-% Viskositätsveränderer, 0 bis 20 Gew.-% Plastifizierer, 0 bis 10 Gew.-% Klebrigkeitszusatz, 0 bis 10 Gew.-% Transparenzstabilisator (verhindert z.B. Kristallisation der Wachse) sowie 0 bis 2 Gew.-% Antioxidans enthalten sein.
  • In den Ink-Jet-Tinten können die erfindungsgemäßen polyelektrolyt-verkapselten Pigmente auch mit anderen Farbmitteln wie beispielsweise anorganische oder organische Pigmente und/oder Farbstoffe nuanciert sein. Sie werden dabei in Tintensets, bestehend aus gelben, magenta, cyan und schwarzen Tinten, welche als Farbmittel Pigmente und/oder Farbstoffe enthalten, verwendet. Des Weiteren können sie in Tintensets verwendet werden, die zusätzlich eine oder mehrere der so genannten "spot colors" in den Farben beispielsweise orange, grün, blau, golden und silber enthalten.
    Bevorzugt ist dabei ein Satz von Drucktinten, dessen schwarze Präparation bevorzugt Ruß als Farbmittel enthält, insbesondere einen Gas- oder Furnaceruß; dessen Cyan-Präparation bevorzugt ein Pigment aus der Gruppe der Phthalocyanin-, Indanthronoder Triarylcarboniumpigmente enthält, insbesondere die Colour Index Pigmente Pigment Blue 15, Pigment Blue 15:1, Pigment Blue 15:2, Pigment Blue 15:3, Pigment Blue 15:4, Pigment Blue 16, Pigment Blue 56, Pigment Blue 60 oder Pigment Blue 61; dessen Magenta-Präparation bevorzugt ein Pigment aus der Gruppe der Monoazo-, Disazo-, β-Naphthol, Naphthol AS-, verlackten Azo-, Metallkomplex-, Benzimidazolon-, Anthanthron-, Anthrachinon-, Chinacridon-, Dioxazin-, Perylen-, Thioindigo-, Triarylcarbonium- oder Diketopyrrolopyrrolpigmente enthält, insbesondere die Colour Index Pigmente Pigment Red 2, Pigment Red 3, Pigment Red 4, Pigment Red 5, Pigment Red 9, Pigment Red 12, Pigment Red 14, Pigment Red 38, Pigment Red 48:2, Pigment Red 48:3, Pigment Red 48:4, Pigment Red 53:1, Pigment Red 57:1, Pigment Red 112, Pigment Red 122, Pigment Red 144, Pigment Red 146, Pigment Red 147, Pigment Red 149, Pigment Red 168, Pigment Red 169, Pigment Red 170, Pigment Red 175, Pigment Red 176, Pigment Red 177, Pigment Red 179, Pigment Red 181, Pigment Red 184, Pigment Red 185, Pigment Red 187, Pigment Red 188, Pigment Red 207, Pigment Red 208, Pigment Red 209, Pigment Red 210, Pigment Red 214, Pigment Red 242, Pigment Red 247, Pigment Red 253, Pigment Red 254, Pigment Red 255, Pigment Red 256, Pigment Red 257, Pigment Red 262, Pigment Red 263, Pigment Red ,264, Pigment Red 266, Pigment Red 269, Pigment Red 270, Pigment Red 272, Pigment Red 274, Pigment Violet 19, Pigment Violet 23 oder Pigment Violet 32; dessen Gelb-Präparation bevorzugt ein Pigment aus der Gruppe der Monoazo-, Disazo- , Benzimidazolin-, Isoindolinon-, Isoindolin- oder Perinonpigmente enthält, insbesondere die Colour Index Pigmente Pigment Yellow 1, Pigment Yellow 3, Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 14, Pigment Yellow 16, Pigment Yellow 17, Pigment Yellow 73, Pigment Yellow 74, Pigment Yellow 81, Pigment Yellow 83, Pigment Yellow 87, Pigment Yellow 97, Pigment Yellow 111, Pigment Yellow 120, Pigment Yellow 126, Pigment Yellow 127, Pigment Yellow 128, Pigment Yellow 139, Pigment Yellow 151, Pigment Yellow 154, Pigment Yellow 155, Pigment Yellow 173, Pigment Yellow 174, Pigment Yellow 175, Pigment Yellow 176, Pigment Yellow 180, Pigment Yellow 181, Pigment Yellow 191, Pigment Yellow 194, Pigment Yellow 196, Pigment Yellow 213 oder Pigment Yellow 219 ; dessen Orange-Präparation bevorzugt ein Pigment aus der Gruppe der Disazo-, β-Naphthol-, Naphthol AS-, Benzimidazolon- oder Perinonpigmente enthält, insbesondere die Colour Index Pigmente Pigment Orange 5, Pigment Orange 13, Pigment Orange 34, Pigment Orange 36, Pigment Orange 38, Pigment Orange 43, Pigment Orange 62, Pigment Orange 68, Pigment Orange 70, Pigment Orange 71, Pigment Orange 72, Pigment Orange 73, Pigment Orange 74 oder Pigment Orange 81; dessen Grün-Präparation bevorzugt ein Pigment aus der Gruppe der Phthalocyaninpigmente enthält, insbesondere die Colour Index Pigmente Pigment Green 7 oder Pigment Green 36.
  • Zusätzlich können die Tintensets noch Nuancierfarbstoffe enthalten, vorzugsweise aus der Gruppe C.I. Acid Yellow 17 und C.I. Acid Yellow 23; C.I. Direct Yellow 86, C.I. Direct Yellow 98 und C.I. Direct Yellow 132; C.I. Reactive Yellow 37; C.I. Pigment Yellow 17, C.I. Pigment Yellow 74, C.I. Pigment Yellow 83, C.I. Pigment Yellow 97, C.I. Pigment Yellow 120, C.I. Pigment Yellow 139, C.I. Pigment Yellow 151, C.I. Pigment Yellow 155 und C.I. Pigment Yellow 180; C.I. Direct Red 1, C.I. Direct Red 11, C.I. Direct Red 37, C.I. Direct Red 62, C.I. Direct Red 75, C.I. Direct Red 81, C.I. Direct Red 87, C.I. Direct Red 89, C.I. Direct Red 95 und C.I. Direct Red 227; C.I. Acid Red 1, C.I. Acid Red 8, C.I. Acid Red 80, C.I. Acid Red 81, C.I. Acid Red 82, C.I. Acid Red 87, C.I. Acid Red 94, C.I. Acid Red 115, C.I. Acid Red 131, C.I. Acid Red 144, C.I. Acid Red 152, C.I. Acid Red 154, C.I. Acid Red 186, C.I. Acid Red 245, C.I. Acid Red 249 und C.I. Acid Red 289; C.I . Reactive Red 21, C.I. Reactive Red 22, C.I. Reactive Red 23, C.I. Reactive Red 35, C.I. Reactive Red 63, C.I. Reactive Red 106, C.I. Reactive Red 107, C.I. Reactive Red 112, C.I. Reactive Red 113, C.I. Reactive Red 114, C.I. Reactive Red 126, C.I. Reactive Red 127, C.I. Reactive Red 128, C.I. Reactive Red 129, C.I. Reactive Red 130, C.l. Reactive Red 131, C.I. Reactive Red 137, C.I. Reactive Red 160, C.l. Reactive Red 161, C.l. Reactive Red 174 und C.l . Reactive Red 180.
  • Die erfindungsgemäßen polyelektrolyt-verkapselten Pigmente eignen sich zur Herstellung von Tinten für den Einsatz in allen konventionellen Ink-Jet-Druckern, insbesondere für solche, die auf dem Bubble-Jet- oder Piezo-Verfahren beruhen.
  • Außer zum Bedrucken von Papier, natürlichen oder synthetischen Fasermaterialien, Folien oder Kunststoffen können die erfindungsgemäßen polyelektrolyt-verkapselten Pigmente zum Bedrucken verschiedenster Arten von beschichteten oder unbeschichteten Substratmaterialien verwendet werden, so z.B. zum Bedrucken von Pappe, Karton, Holz und Holzwerkstoffen, metallischen Materialien, Halbleitermaterialien, keramischen Materialien, Gläsern, Glas- und Keramikfasern, anorganischen Werkstoffen, Beton, Leder, Lebensmitteln, Kosmetika, Haut und Haaren. Das Substratmaterial kann dabei zweidimensional eben oder räumlich ausgedehnt, d.h. dreidimensional gestaltet sein und sowohl vollständig oder nur teilweise bedruckt oder beschichtet werden.
  • Die erfindungsgemäßen polyelektrolyt-verkapselten Pigmente sind auch geeignet als Farbmittel in elektrophotographischen Tonern und Entwicklern, wie beispielsweise Ein- oder Zweikomponentenpulvertonern (auch Ein- oder Zweikomponenten-Entwickler genannt), Magnettoner, Flüssigtoner, Polymerisationstoner sowie Spezialtoner. Typische Tonerbindemittel sind Polymerisations-, Polyadditions- und Polykondensationsharze, wie Styrol-, Styrolacrylat-, Styrolbutadien-, Acrylat-, Polyester-, Phenol-Epoxidharze, Polysulfone, Polyurethane, einzeln oder in Kombination, sowie Polyethylen und Polypropylen, die noch weitere Inhaltsstoffe, wie Ladungssteuermittel, Wachse oder Fließhilfsmittel, enthalten können oder im nachhinein mit diesen Zusätzen modifiziert werden.
  • Des weiteren sind die erfindungsgemäßen polyelektrolyt-verkapselten Pigmente geeignet als Farbmittel in Pulvern und Pulverlacken, insbesondere in triboelektrisch oder elektrokinetisch versprühbaren Pulverlacken, die zur Oberflächenbeschichtung von Gegenständen aus beispielsweise Metall, Holz, Kunststoff, Glas, Keramik, Beton, Textilmaterial, Papier oder Kautschuk zur Anwendung kommen.
  • Weiterhin sind die erfindungsgemäßen polyelektrolyt-verkapselten Pigmente auch als Farbmittel für Farbfilter, sowohl für die additive wie auch für die subtraktive Farberzeugung, wie beispielsweise in elektro-optischen Systemen wie Fernsehbildschirmen, LCD (liquid crystal displays), charge coupled devices, plasma displays oder electroluminescent displays, die wiederum aktive (twisted nematic) oder passive (supertwisted nematic) ferroelectric displays oder light-emitting diodes sein können, sowie als Farbmittel für elektronische Tinten ("electronic inks" bzw. "e-inks") oder "electronic paper" ("e-paper") geeignet. Bei der Herstellung von Farbfiltern, sowohl reflektierender wie durchsichtiger Farbfilter, werden Pigmente in Form einer Paste oder als pigmentierte Photoresists in geeigneten Bindemitteln (Acrylate, Acrylester, Polyimide, Polyvinylalkohole, Epoxide, Polyester, Melamine, Gelantine, Caseine) auf die jeweiligen LCD-Bauteilen (z.B. TFT-LCD = Thin Film Transistor Liquid Crystal Displays oder z.B. ((S) TN-LCD = (Super) Twisted Nematic-LCD) aufgebracht. Neben einer hohen Thermostabilität ist für eine stabile Paste bzw. einem pigmentierten Photoresist auch eine hohe Pigmentreinheit Voraussetzung. Darüber hinaus können die pigmentierten Color Filter auch durch Ink Jet-Druckverfahren oder andere geeignete Druckverfahren aufgebracht werden.
  • Außerdem eignen sich die erfindungsgemäßen polyelektrolyt-verkapselten Pigmente für die Pigmentierung von Anstrich- und Dispersionsfarben, Dispersionslacken, für Druckfarben, beispielsweise Textildruck-, Flexodruck-, Dekordruck- oder Tiefdruckfarben, für Tapetenfarben, für wasserverdünnbare Lacke, für Holzschutzsysteme, für Viskose-Spinnfärbung, für Lacke, für Wurstdärme, für Saatgut, für Glasflaschen, für die Massefärbung von Dachziegeln, für Putze, für Holzbeizen, für Buntstiftminen, Faserschreiber, Tuschen, Pasten für Kugelschreiber, Kreiden, Wasch- und Reinigungsmittel, Schuhpflegemittel, Einfärbung von Latex-Produkten, Schleifmitteln sowie zum Einfärben von Kunststoffen und hochmolekularen Materialien.
  • In den folgenden Beispielen bedeuten Prozentangaben Gewichtsprozente und Teile Gewichtsteile, sofern nicht anders angegeben.
  • Ein wesentliches Merkmal der nachfolgenden Beispiele besteht darin, dass während der Beschichtung ein nichtionisches Tensid angewendet wird. Damit kann der Partikelgrößenzuwachs durch Aggregation bei der Beschichtung unter Kontrolle gehalten werden, so dass die entstandenen polyelektrolyt-verkapselten Pigmente eine für die Anwendung geeignete Partikelgröße, Oberflächenladung und Dispersionsstabilität zeigen.
  • Herstellung von polyelektrolyt-verkapselten Pigmenten mittels Layer by layer Technologie: Beispiel 1: Beschichtungen von C.l . Pigment Blue 15:3 beginnend mit einer kationischen Schicht Beispiel 1a: Herstellung der Pigmentdispersion:
  • Ein Gemisch aus 50 Teilen C.l . Pigment Blue15:3, 13,5 Teilen eines Ethylenoxid-Propylenoxid-Copolymers (Pluronic™ F68, BASF), 1. Teil Natriumdodecylsulfat und 435,5 Teilen entmineralisiertem Wasser werden mit einem Ultra-TurraX™ vordispergiert und anschließend mit einem Hochdruckhomogenisator solange dispergiert, bis die Teilchengrößenverteilung konstant ist.
  • Beispiel 1 b: Beschichtung mit einer kationischen Schicht von Polyallylaminhydrochlorid (PAH):
  • Zu der aus Beispiel 1a erhaltenen Pigmentdispersion werden 2000 Teile einer 1,0%igen Lösung von PAH (15.000 g/mol, 0,05M Acetatpuffer pH 5.6, 0,2M NaCl) gegeben und das Gemisch 20 min bei Raumtemperatur gerührt. Die beschichteten Pigmentpartikel werden anschließend durch Zentrifugation abgetrennt und zweimal mit 500 Teilen entmineralisiertem Wasser gewaschen.
  • Beispiel 1 c: Beschichtung mit einer kationischen Schicht aus Polydiallyldimethyl-ammoniumchlorid (PDADMAC):
  • Die aus Beispiel 1a erhaltene Pigmentdispersion wird mit 2000 Teilen einer tensidhaltigen 1,0 gew.-%igen PDADMAC-Lösung (0,1 Gew.-% Pluronic™ F68, 0,05M Acetatpuffer pH 5.6, 0,2M NaCI) versetzt und 20 min bei Raumtemperatur gerührt. Die beschichteten Pigmentpartikel werden anschließend durch Zentrifugation abgetrennt und zweimal mit 500 Teilen entmineralisiertem Wasser gewaschen.
  • Beispiel 1d: Beschichtung mit einer anionischen Schicht von Polystyrolsulfonsäure (PSS):
  • Die aus Beispiel 1b erhaltene Pigmentzubereitung wird in 440 Teilen entmineralisiertem Wasser dispergiert und mit 2000 Teilen einer tensidhaltigen 0,5 gew.-%igen Polystyrolsulfonsäure-Lösung (70.000 g/mol, 0,1 Gew.-% Pluronic™ F68, 0,05M Acetatpuffer pH 5.6, 0,2M NaCl) versetzt und 20 min bei Raumtemperatur gerührt. Die beschichteten Pigmentpartikel werden anschließend durch Zentrifugation abgetrennt und zweimal mit 500 Teilen entmineralisiertem Wasser gewaschen.
  • Beispiel 1 e: Beschichtung mit einer anionischen Schicht von Polystyrolsulfonsäure (PSS):
  • Die aus Beispiel 1c erhaltene Pigmentzubereitung wird in 440 Teilen entmineralisiertem Wasser dispergiert und mit 2000 Teilen einer tensidhaltigen 0,5 gew.-%igen Polystyrolsulfonsäure-Lösung (70.000 g/mol, 0,1 Gew.-% Pluronic™ F68, 0,05M Acetatpuffer pH 5.6, 0,2M NaCl) versetzt und 20 min bei Raumtemperatur gerührt. Die beschichteten Pigmentpartikel werden anschließend durch Zentrifugation abgetrennt und zweimal mit 500 Teilen entmineralisiertem Wasser gewaschen.
  • Beispiel 1f: Beschichtung mit einer kationischen Schicht aus PAH:
  • Die aus Beispiel 1d erhaltene Pigmentzubereitung wird mit 2000 Teilen einer tensidhaltigen 1,0 gew.-%igen PAH-Lösung (15.000g/mol, 0,1 Gew.-% PluronicTM F68, 0,05M Acetatpuffer pH 5.6, 0,2M NaCI) versetzt und 20 min bei Raumtemperatur gerührt. Die beschichteten Pigmentpartikel werden anschließend durch Zentrifugation abgetrennt und zweimal mit 500 Teilen entmineralisiertem Wasser gewaschen.
  • Beispiel 1 g (Vergleich): Beschichtung mit einer kationischen Schicht aus Polydiallyldimethyl-ammoniumchlorid (PDADMAC):
  • Die aus Beispiel 1e erhaltene Pigmentzubereitung wird mit 2000 Teilen einer 1,0 gew.-%igen PDADMAC-Lösung (0,05M Acetatpuffer pH 5.6, 0,2M Nacl) versetzt und 20 min bei Raumtemperatur gerührt. Die beschichteten Pigmentpartikel werden anschließend durch Zentrifugation abgetrennt und zweimal mit 500 Teilen entmineralisiertem Wasser gewaschen. Tabelle 1: Dispersionen von einem Teil (verkapseltem) C.I. Pigment Blue 15:3 in 9 Teilen entmineralisiertem Wasser
    Zetapotential (mV) Teilchengröße d50 (mittels PCS in nm)
    Beispiel 1a -54 164
    Beispiel 1b +32 254
    Beispiel 1c + 22 403
    Beispiel 1d - 47 287
    Beispiel 1e - 48 298
    Beispiel 1f + 40 285
    Beispiel 1g +41 2832
    PCS = Photon Correlation Spectroscopy
  • Die Tabelle 1 zeigt, dass durch die schichtweise Verkapselung von C.l . Pigment Blue 15:3 das Zetapotential und damit die Oberflächenladung stark beeinflusst wird. Somit können Werte in einem weiten Bereich gezielt eingestellt werden. Ohne nichtionisches Tensid entstehen um den Faktor 10 größere Teilchen (Beispiel 1g).
  • Beispiel 2: Zweischichtverkapseiung von C.l . Pigment Yellow 213 beginnend mit einer kationischen Schicht Beispiel 2a: Herstellung der Pigmentdispersion:
  • Ein Gemisch aus 50 Teilen C.I. Pigment Yellow 213, 13,5 Teilen Pluronic™ F68, 1 Teil Natriumdodecylsulfat und 435,5 Teilen entmineralisiertem Wasser werden mit einem Ultra-TurraX vordispergiert und anschließend mit einem Hochdruckhomogenisator solange dispergiert, bis die Teilchengrößenverteilung konstant ist.
  • Beispiel 2b: Beschichtung mit einer kationischen Polyelektrolytschicht von Polyallylaminhydrochlorid (PAH):
  • Zu der aus Beispiel 2a erhaltenen Pigmentdispersion werden 2000 Teile einer 1,0 gew.-%igen PAH-Lösung (15.000 g/mol, 0,05M Acetatpuffer pH 5.6, 0,2M NaCl) gegeben und das Gemisch 20 min bei Raumtemperatur gerührt. Die beschichteten Pigmentpartikel werden anschließend durch Zentrifugation abgetrennt und zweimal mit 500 Teilen entmineralisiertem Wasser gewaschen.
  • Beispiel 2c: Beschichtung mit einer kationischen Polyelektrolytschicht von Eudragit E:
  • Zu der aus Beispiel 2a erhaltenen Pigmentdispersion werden 2000 Teile einer 0,1 gew.-%igen Acrylat-Copolymer-(Eudragit E)-Lösung (0,1% Pluronic™ F68, 0,2M NaCl, pH 4.6) gegeben und das Gemisch 20 min bei Raumtemperatur gerührt. Die beschichteten Pigmentpartikel werden anschließend durch Zentrifugation abgetrennt und zweimal mit 500 Teilen entmineralisiertem Wasser gewaschen.
  • Beispiel 2d: Beschichtung mit einer anionischen Schicht von Polystyrolsulfonsäure (PSS):
  • Die aus Beispiel 2b erhaltene Pigmentzubereitung wird in 440 Teilen entmineralisiertem Wasser dispergiert und mit 2000 Teilen einer tensidhaltigen 0,5 gew.-%igen Polystyrolsulfonsäure-Lösung (70.000 g/mol, 0,1 Gew.-% Pluronic F68, 0,05M Acetatpuffer pH 5.6, 0,2M NaCl) versetzt und 20 min bei Raumtemperatur gerührt. Die beschichteten Pigmentpartikel werden anschließend durch Zentrifugation abgetrennt und zweimal mit 500 Teilen entmineralisiertem Wasser gewaschen.
  • Beispiel 2e: Beschichtung mit einer anionischen Schicht von Polstyrolsulfonsäure (PSS):
  • Die aus Beispiel 2c erhaltene Pigmentzubereitung wird in 440 Teilen eritmineralisiertem Wasser dispergiert und mit 2000 Teilen einer tensidhaltigen 0,5 gew.-%igen Polystyrolsulfonsäure-Lösung (70.000 g/mol, 0,1 Gew.-% Pluronic F68, 0,05M Acetatpuffer pH 5.6, 0,2M Nacl) versetzt und 20 min bei Raumtemperatur gerührt. Die beschichteten Pigmentpartikel werden anschließend durch Zentrifugation abgetrennt und zweimal mit 500 Teilen entmineralisiertem Wasser gewaschen. Tabelle 2:
    Dispersionen von einem Teil (verkapseltem) C.I. Pigment Yellow 213 in 9 Teilen entmineralisiertem Wasser
    Zetapotential (mV) Teilchengröße d50 mittels PCS (nm)
    Beispiel 2a -60 146
    Beispiel 2b + 45 184
    Beispiel 2c + 25 229
    Beispiel 2d - 46 255
    Beispiel 2e - 52 293
  • Die Tabelle 2 zeigt, dass durch die schichtweise Verkapselung von C.I. Pigment Yellow 213 das Zetapotential und damit die Oberflächenladung stark beeinflusst wird. Somit können Werte in einem weiten Bereich gezielt eingestellt werden.
  • Beispiel 3: Polyelektrolytbeschichtung von C.l. Pigment Blue 15:3 beginnend mit einer anionischen Polyelektrolytschicht Beispiel 3a: Beschichtung mit einer anionischen Schicht von Polystyrolsulfonsäure (PSS):
  • Zu der aus Beispiel 1 a erhaltenen Pigmentdispersion werden 2000 Teile einer tensidhaltigen 0,1 gew.-%igen Polyelektrolytlösung PSS (70.000 g/mol, 0,05M Acetatpuffer pH 5.6, 0,2M NaCl) gegeben und das Gemisch 20 min bei Raumtemperatur gerührt. Die beschichteten Pigmentpartikel werden anschließend durch Zentrifugation abgetrennt und zweimal mit 500 Teilen entmineralisiertem Wasser gewaschen.
  • Beispiel 3b: Beschichtung mit einer kationischen Polyelektrolytschicht von Eudragit E:
  • Die aus Beispiel 3a erhaltene Pigmentzubereitung wird in 440 Teilen entmineralisiertem Wasser dispergiert und mit 2000 Teilen einer 0.1 gew.-%igen Eudragit E-Lösung (pH 4,7, 0,2M NaCl) und mit 0.1 GeW.-% Pluronic™ F68 versetzt und das Gemisch 20 min bei Raumtemperatur gerührt. Die beschichteten Pigmentpartikel werden anschließend durch Zentrifugation abgetrennt und zweimal mit 500 Teilen entmineralisiertem Wasser gewaschen. Tabelle 3:
    Dispersionen von einem Teil (verkapseltem) C.I. Pigment Blue 15:3 in 9 Teilen entmineralisiertem Wasser
    Zetapotential (mV) Teilchengröße d50 mittels PCS (nm)
    Beispiel 1 a - 54 164
    Beispiel 3a - 49 222
    Beispiel 3b + 20,5 320
  • Die Tabelle 3 zeigt, dass durch die schichtweise Verkapselung von C.I. Pigment Blue 15:3 das Zetapotential und damit die Oberflächenladung stark beeinflusst wird. Somit können Werte in einem weiten Bereich gezielt eingestellt werden.
  • Beurteilung der anwendungstechnischen Eigenschaften der erfindungsgemäßen Pigmentzubereitungen
  • Herstellung von Dispersionen für den Ink-Jet-Druck: Anwendungsbeispiel 1: Pigmentdispersion aus C.I. Pigment Blue 15:3:
  • Eine Dispersion wird erhalten durch Dispergierung einer Pigmentzubereitung nach Beispiel 1e in entionisiertem Wasser, enthaltend 10,5 Gew.-% C.I. Pigment Blue 15:3.
  • Anwendungsbeispiel 2: Pigmentdispersion aus C.I. Pigment Yellow 213:
  • Eine Dispersion wird erhalten durch Dispergierung einer Pigmentzubereitung nach Beispiel 2e in entionisiertem Wasser, enthaltend 9,2 Gew.-% C.I. Pigment Yellow 213. Vergleichsbeispiele:
  • In den folgenden Beispielen wird das Pigment zusammen mit den nachstehend genannten Dispergiermitteln, dem organischen Lösemittel und den anderen Zusätzen in entmineralisiertem Wasser angeteigt und dann mit einem Dissolver vordispergiert. Die anschließende Feindispergierung erfolgt unter Kühlung mit Hilfe einer Perlmühle über einen Zeitraum von 2 Stunden. Im Anschluss wird die Dispersion mit entmineralisiertem Wasser auf die gewünschte Pigmentendkonzentration von 20 % eingestellt, wobei 100 Teile der jeweiligen Dispersion entstehen und Teile Gewichtsteile bedeuten.
  • Vergleichsbeispiel 1: Pigmentdispersion basierend auf Styrolacrylat und C.I. Pigment Blue 15:3, nichtverkapselt:
  • 20 Teile C.I. Pigment Blue 15:3
    2,5 Teile Acrylatharz, Na-Salz(Dispergiermittel)
    1,2 Teile Polyethylenglykolalkylether, Na-Salz (Dispergiermittel)
    1 Teil Benetzungsmittel
    25 Teile Glykol
    0,2 Teile Konservierungsmittel
    Rest Wasser
  • Vergleichsbeispiel 2: Pigmentdispersion basierend auf anionischem Tensid und C.I. Pigment Yellow 213, nichtverkapselt:
  • 20 Teile C.I. Pigment Yellow 213
    2 Teile anionisches Tensid (Dispergiermittel)
    2 Teile Disperbyk™ 190 (Dispergiermittel)
    5 Teile Glykol
    0,2 Teile Konservierungsmittel
    Rest Wasser
  • Prüfung der drucktechnischen Eigenschaften der Pigmentzubereitungen Herstellung von Testtinten:
  • Um die drucktechnischen Eigenschaften zu beurteilen, wurden ausgehend von den Dispersionen der Anwendungsbeispiele 1 und 2 und der Vergleichsbeispiele 1 und 2 Testtinten hergestellt und deren Verdruckbarkeit mit einem thermischen Ink-Jet-Drucker untersucht.
  • Für die Herstellung der Testtinten wurden die Dispersionen zunächst über einen 1 µm-Filter feinfiltriert, um Mahlkörperabrieb und eventuelle Grobanteile abzutrennen. Danach wurden die filtrierten Dispersionen mit Wasser verdünnt und mit weiteren niedermolekularen Alkoholen und Polyolen versetzt, wobei der Pigmentgehalt auf 5 Gew.-% bezogen auf die Tinte (100 Gew.-%) eingestellt wurde.
  • Viskosität:
  • Die für den Ink-Jet-Druck geeigneten Tinten müssen eine Reihe von physikalischen Eigenschaften erfüllen. So ist es erforderlich, dass sie eine möglichst geringe Viskosität (vorzugsweise < 5 mPas) aufweisen, um ein Verstopfen der Druckerdüsen zu vermeiden und ein gleichmäßiges Druckbild zu erzeugen.
    Die Viskosität wurde mit einem Kegel-Platte-Viskosimeter (RS 1) der Firma Haake bestimmt (Titankegel: 0 60 mm, 1°). Die in Tabelle 4 genannten Viskositätswerte wurden bei einer Schergeschwindigkeit von 60 s-1 gemessen.
  • Mit dem Drucker 960c (Hewlett Packard) wurden Testbilder auf handelsübliche Normalpapiere (Kopierpapiere) und Spezialpapiere (Premium Qualität) gedruckt. Die Beurteilung bzgl. Qualität und Güte des Druckbildes erfolgte durch visuelle Betrachtung.
  • Beurteilung der Optischen Dichte:
  • Zur Beurteilung der optischen Dichte wurden die Testtinten mit dem Drucker HP 960c im Vollflächendruck auf unbeschichtetes Papier der Firma DataCopy gedruckt und die optische Dichte mit Hilfe eines Spektralphotometers der Firma GretagMacBeth gemessen. Die Ergebnisse sind in Tabelle 4 zusammengestellt. Tabelle 4: Viskositäten und Optische Dichten der Testtinten
    Viskosität Testtinte Optische Dichte
    Anwendungsbeispiel 1 2,9 mPas 1,12
    Anwendungsbeispiel 2 2,4 mPas 1,22
    Vergleichsbeispiel 1 4,9 mPas 0,99
    Vergleichsbeispiel 2 4,3 mPas 1,12
  • Die aus den Dispersionen der Anwendungsbeispiele 1 und 2 hergestellten Testtinten besitzen eine gegenüber den Vergleichsbeispielen 1 und 2 verbesserte, sehr niedrige Viskosität und zeigen ein sehr gutes Druckverhalten. Insbesondere ergeben sich eine hohe Zuverlässigkeit im Druckverlauf (sehr gutes Andruckverhalten, keine Düsenverstopfung) und ein sehr gleichmäßiges Druckbild von exzellenter Qualität auf den verschiedenen verwendeten Papieren. Drucke der gemäß der Anwendungsbeispiele 1 und 2 hergestellten Testtinten auf unbeschichtetem Papier (plain paper) zeigen gegenüber den Testtinten der Vergleichsbeispiele 1 und 2 eine höhere optische Dichte. Zudem weisen die Drucke der Anwendungsbeispiele 1 und 2 im Gegensatz zu denen der Vergleichsbeispiele 1 und 2 ein streifenfreies Druckbild auf. Die gemäß den Anwendungsbeispielen 1 und 2 hergestellten Testtinten erfüllen somit die im Ink-Jet-Druck gestellten Anforderungen in ausgezeichneter Weise.

Claims (7)

  1. Verfahren zur Verkapselung von Pigmentpartikeln, gekennzeichnet durch
    (A) die Herstellung einer Dispersion des zu verkapselnden Pigments,
    (B) die nachfolgende Aufbringung einer Polyelektrolytschicht auf die Oberfläche der Pigmentpartikel,
    (C) die weitere Aufbringung einer zu (B) gegensätzlich geladenen Polyelektrolytschicht und/oder der Zugabe von zu (B) gegensätzlich geladenen niedermolekularen, mehrwertigen Ionen und
    (D) gegebenenfalls die Wiederholung der Schritte (B) und (C),
    wobei die Schritte (B), (C) und gegebenenfalls (D) in Gegenwart eines nichtionischen Tensids durchgeführt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass mindestens zwei Polyelektrolytschichten entgegengesetzter Ladung aufgebracht werden.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die mindestens zwei Polyelektrolytschichten durch eine Layer-by-layer-Technik aufgebracht werden.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die mindestens zwei Polyelektrolytschichten nacheinander ohne Zwischenisolierung auf die Pigmentpartikel aufgebracht werden.
  5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Aufbringung der Polyelektrolytschichten durch Präzipitation auf die Oberfläche der Pigmentpartikel erfolgt.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Präzipitation durch Änderung der Polyelektrolytkonzentration und/oder des pH-Wertes erfolgt.
  7. Ink-Jet-Tinte enthaltend als Farbmittel beschichtete Partikel mit einem Kern, der ein organisches Pigment mit einer mittleren Teilchengröße d50 von unter 200 nm ist, und mindestens zwei Polyelektrolytschichten unterschiedlicher Ladung in einer Schichtdicke von jeweils 1 bis 150 nm, dadurch gekennzeichnet, dass das organische Pigment ein Pigment aus der Gruppe C.I. Pigment Yellow 1, Pigment Yellow 3, Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 14, Pigment Yellow 16, Pigment Yellow 17, Pigment Yellow 73, Pigment Yellow 74, Pigment Yellow 81, Pigment Yellow 83, Pigment Yellow 87, Pigment Yellow 97, Pigment Yellow 111, Pigment Yellow 126, Pigment Yellow 127, Pigment Yellow 128, Pigment Yellow 155, Pigment Yellow 174, Pigment Yellow 176, Pigment Yellow 191, Pigment Red 38, Pigment Red 144, Pigment Red 214, Pigment Red 242, Pigment Red 262, Pigment Red 266, Pigment Red 269, Pigment Red 274, Pigment Orange 13, Pigment Orange 34, Pigment Brown 41; Pigment Red 2, Pigment Red 3, Pigment Red 4, Pigment Red 5, Pigment Red 9, Pigment Red 12, Pigment Red 14, Pigment Red 53:1, Pigment Red 112, Pigment Red 146, Pigment Red 147, Pigment Red 170, Pigment Red 184, Pigment Red 187, Pigment Red 188, Pigment Red 210, Pigment Red 247, Pigment Red 253, Pigment Red 256, Pigment Orange 5, Pigment Orange 38, Pigment Brown 1; Pigment Red 48:2, Pigment Red 48:3, Pigment Red 48:4, Pigment Red 57:1, Pigment Red 257, Pigment Orange 68, Pigment Orange 70; Pigment Yellow 120, Pigment Yellow 151, Pigment Yellow 154, Pigment Yellow 175, Pigment Yellow 180, Pigment Yellow 181, Pigment Yellow 194, Pigment Red 175, Pigment Red 176, Pigment Red 185, Pigment Red 208, Pigment Violet 32, Pigment Orange 36, Pigment Orange 62, Pigment Orange 72, Pigment Brown 25; Pigment Yellow 139, Pigment Yellow 173; Pigment Blue 15, Pigment Blue 15:1, Pigment Blue 15:2, Pigment Blue 15:3, Pigment Blue 16, Pigment Green 7, Pigment Green 36; Pigment Yellow 196, Pigment Red 149, Pigment Red 168, Pigment Red 177, Pigment Red 179, Pigment Red 181, Pigment Red 207, Pigment Red 209, Pigment Red 263, Pigment Blue 60, Pigment Violet 19, Pigment Violet 23, Pigment Blue 80, Pigment Orange 43; Pigment Red 169, Pigment Blue 56, Pigment Blue 61; Pigment Red 254 ist.
EP06005240A 2006-03-15 2006-03-15 Polyelektrolyt-verkapselte Pigmente Not-in-force EP1834994B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06005240A EP1834994B1 (de) 2006-03-15 2006-03-15 Polyelektrolyt-verkapselte Pigmente
ES06005240T ES2345452T3 (es) 2006-03-15 2006-03-15 Pigmentos encapsulados con polielectrolitos.
DE502006007414T DE502006007414D1 (de) 2006-03-15 2006-03-15 Polyelektrolyt-verkapselte Pigmente
JP2007043304A JP5159119B2 (ja) 2006-03-15 2007-02-23 高分子電解質カプセル化顔料
US11/717,989 US8021716B2 (en) 2006-03-15 2007-03-14 Polyelectrolyte-encapsulated pigments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06005240A EP1834994B1 (de) 2006-03-15 2006-03-15 Polyelektrolyt-verkapselte Pigmente

Publications (2)

Publication Number Publication Date
EP1834994A1 EP1834994A1 (de) 2007-09-19
EP1834994B1 true EP1834994B1 (de) 2010-07-14

Family

ID=37667237

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06005240A Not-in-force EP1834994B1 (de) 2006-03-15 2006-03-15 Polyelektrolyt-verkapselte Pigmente

Country Status (5)

Country Link
US (1) US8021716B2 (de)
EP (1) EP1834994B1 (de)
JP (1) JP5159119B2 (de)
DE (1) DE502006007414D1 (de)
ES (1) ES2345452T3 (de)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534931A (ja) * 2002-08-02 2005-11-17 カプサルーション ナノサイエンス アクチェン ゲゼルシャフト コンビナトリアル解析ライブラリーおよび特定光学センサーとしての着色コード化した積層マイクロカプセル
DE102004020726A1 (de) * 2004-04-28 2005-11-24 Clariant Gmbh Verfahren zur Herstellung polymerverkapselter Pigmente
US7651557B2 (en) * 2004-12-17 2010-01-26 Cabot Corporation Inkjet inks comprising multi-layer pigments
JP4967378B2 (ja) 2005-03-29 2012-07-04 セイコーエプソン株式会社 インク組成物
KR20080000675A (ko) * 2005-04-21 2008-01-02 시바 스페셜티 케미칼스 홀딩 인크. 안료 제형
EP1917314B1 (de) * 2005-07-22 2013-12-04 Cabot Corporation Verfahren zur herstellung von pigmentzusammensetzungen
US8728223B2 (en) 2006-05-16 2014-05-20 Cabot Corporation Low viscosity, high particulate loading dispersions
US8585816B2 (en) * 2006-05-16 2013-11-19 Cabot Corporation Low viscosity, high particulate loading dispersions
US20080132599A1 (en) 2006-11-30 2008-06-05 Seiko Epson Corporation. Ink composition, two-pack curing ink composition set, and recording method and recorded matter using these
JP5472670B2 (ja) 2007-01-29 2014-04-16 セイコーエプソン株式会社 インクセット、インクジェット記録方法及び記録物
US20080249217A1 (en) * 2007-02-27 2008-10-09 Sze-Ming Lee Inkjet ink compositions comprising multiple modified pigments
US8894197B2 (en) 2007-03-01 2014-11-25 Seiko Epson Corporation Ink set, ink-jet recording method, and recorded material
US7670418B2 (en) * 2007-03-22 2010-03-02 Seiko Epson Corporation Yellow ink composition, inkset for inkjet, inkjet recording method, and recorded matter
AU2008237210B2 (en) 2007-04-05 2012-08-16 Avery Dennison Corporation Pressure sensitive shrink label
US8282754B2 (en) 2007-04-05 2012-10-09 Avery Dennison Corporation Pressure sensitive shrink label
JP4816976B2 (ja) * 2007-08-09 2011-11-16 セイコーエプソン株式会社 光硬化型インク組成物
EP2028241A1 (de) * 2007-08-09 2009-02-25 Seiko Epson Corporation Lichthärtbare Tintenzusammensetzung, Tintenpatrone, Tintenstrahlaufzeichnungsverfahren und aufgezeichnetes Material
JP4766281B2 (ja) 2007-09-18 2011-09-07 セイコーエプソン株式会社 インクジェット記録用非水系インク組成物、インクジェット記録方法および記録物
US20090192248A1 (en) * 2007-12-07 2009-07-30 Palumbo Paul S Method of preparing a pigment composition
JP2009179722A (ja) * 2008-01-31 2009-08-13 Seiko Epson Corp イエローインク組成物およびインクセット、これを用いた記録方法、記録物
JP2009269397A (ja) 2008-02-29 2009-11-19 Seiko Epson Corp 不透明層の形成方法、記録方法、インクセット、インクカートリッジ、記録装置
KR20100139001A (ko) * 2008-03-07 2010-12-31 제록스 코포레이션 캡슐화된 나노스케일 유기 안료 입자
EP2260081B1 (de) * 2008-03-25 2014-11-26 Xerox Corporation In kieselsäure eingekapselte organische nanopigmente und verfahren zu ihrer herstellung
KR101511202B1 (ko) 2008-09-02 2015-04-10 후지필름 가부시키가이샤 가공 안료, 안료 분산 조성물, 광경화성 조성물, 컬러 필터, 및 컬러 필터의 제조방법
CA2753993C (en) * 2009-02-27 2017-04-25 Council Of Scientific & Industrial Research A controlled release micro-capsule for osteogenic action
WO2010126517A1 (en) * 2009-04-30 2010-11-04 Hewlett-Packard Development Company, L.P. Method of making a dispersion of polymer binder-encapsulated silica pigments and coated media including such dispersion
EP3483610A1 (de) 2009-11-09 2019-05-15 University Of Washington Center For Commercialization Funktionalisierte chromophore polymerpunkte und biokonjugate daraus
US9221573B2 (en) 2010-01-28 2015-12-29 Avery Dennison Corporation Label applicator belt system
JP5692490B2 (ja) 2010-01-28 2015-04-01 セイコーエプソン株式会社 水性インク組成物、およびインクジェット記録方法ならびに記録物
JP2011152747A (ja) 2010-01-28 2011-08-11 Seiko Epson Corp 水性インク組成物、およびインクジェット記録方法ならびに記録物
WO2011114689A1 (ja) * 2010-03-15 2011-09-22 大正製薬株式会社 顔料組成物
CA2814790C (en) 2010-10-18 2019-11-19 University of Washington Center for Commercialization Chromophoric polymer dots
US9797840B2 (en) 2011-11-28 2017-10-24 University Of Washington Through Its Center For Commercialization Highly fluorescent polymer nanoparticle
US10150841B2 (en) 2011-12-30 2018-12-11 University Of Washington Through Its Center For Commercialization Chromophoric polymer dots with narrow-band emission
EP2809510B1 (de) 2012-02-03 2021-03-31 University of Washington through its Center for Commercialization Polyelektrolytbeschichtete polymerpunkte und zugehörige verfahren
US9340008B2 (en) * 2012-03-26 2016-05-17 Canon Kabushiki Kaisha Image recording method
US9415581B2 (en) 2012-03-26 2016-08-16 Canon Kabushiki Kaisha Image recording method
US9440430B2 (en) 2012-03-26 2016-09-13 Canon Kabushiki Kaisha Image recording method
TWI605870B (zh) * 2012-10-25 2017-11-21 奇華頓公司 方法
JP6587605B2 (ja) 2013-03-14 2019-10-09 ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャリゼーション ポリマードット組成物および関連方法
WO2015034357A1 (en) * 2013-09-04 2015-03-12 Ceradis B.V. Paint composition comprising a polyelectrolyte complex
JP6031053B2 (ja) * 2014-02-13 2016-11-24 富士フイルム株式会社 放射線硬化型インクジェットインクセット及びインクジェット記録方法
JP6866676B2 (ja) * 2017-02-17 2021-04-28 セイコーエプソン株式会社 インクジェット捺染インク組成物、及びインクジェット捺染方法
CN111344607B (zh) * 2017-10-27 2022-06-07 3M创新有限公司 包括具有双层结构的颜色层的外露透镜回射制品
EP4357424A1 (de) 2022-10-20 2024-04-24 Agfa Nv Industrielle tintenstrahldruckverfahren

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB955283A (en) 1961-07-03 1964-04-15 Ici Ltd Pigment treatment process
DE3106357A1 (de) 1981-02-20 1982-09-09 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von polymer-pigment-praeparationen und ihre verwendung
JPS57126857A (en) 1981-07-22 1982-08-06 Shiseido Co Ltd Surface treatment of pigment
DE69802430T2 (de) * 1997-01-09 2002-07-18 Ciba Sc Holding Ag Kompositpigment
WO1999047253A1 (en) 1998-03-19 1999-09-23 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Fabrication of multilayer-coated particles and hollow shells via electrostatic self-assembly of nanocomposite multilayers on decomposable colloidal templates
EP1867325B1 (de) 1998-03-19 2011-09-14 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Kapseln enthaltend Lipide in der Hülle
US7101575B2 (en) 1998-03-19 2006-09-05 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Production of nanocapsules and microcapsules by layer-wise polyelectrolyte self-assembly
EP0972563A1 (de) * 1998-07-15 2000-01-19 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Herstellung von mit Mehrlagen gestrichenen Partikeln und hohlen Schalen durch elektrostatische Selbstorganisierung von Nanokompositmehrlagen auf zersetzbaren kolloidalen Schablonen
EP1098696B2 (de) 1998-07-15 2010-07-14 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Polyelektrolythüllen auf biologischen templaten
DE19941061A1 (de) 1999-08-28 2001-03-01 Clariant Gmbh Verfahren zur Herstellung von Pigmentgranulaten
DE19959288C2 (de) 1999-12-09 2002-01-24 Clariant Gmbh Sicherheitstechnisch verbesserte Pigmentzubereitungen
JP4429446B2 (ja) * 2000-01-11 2010-03-10 竹本油脂株式会社 微粒子用水系分散剤
EP1324885A1 (de) * 2000-10-02 2003-07-09 Kimberly-Clark Worldwide, Inc. Nanopartikel enthaltendes aufzeichnungsmedium und verfahren zu dessen herstellung
DE10054344A1 (de) 2000-11-02 2002-05-29 Clariant Gmbh Verwendung von gecoateten Pigmentgranulaten in elektrophotographischen Tonern und Entwicklern, Pulverlacken und Ink-Jet-Tinten
DE10122616A1 (de) 2001-05-10 2002-11-14 Clariant Gmbh Verfahren zur Herstellung von Pigmentgranulaten
JP4547885B2 (ja) * 2002-09-30 2010-09-22 セイコーエプソン株式会社 マイクロカプセル化顔料及びその製造方法、水性分散液、並びに、インクジェット記録用インク
KR101026589B1 (ko) * 2003-01-08 2011-04-04 가부시키가이샤 시세이도 수팽윤성 점토 광물 적층 분체, 염료-수팽윤성 점토 광물복합체, 및 이를 함유하는 조성물
KR100532115B1 (ko) * 2004-01-20 2005-11-29 삼성전자주식회사 결정성 고분자가 공중합된 안료 함유 라텍스의 제조방법
US7651557B2 (en) * 2004-12-17 2010-01-26 Cabot Corporation Inkjet inks comprising multi-layer pigments

Also Published As

Publication number Publication date
ES2345452T3 (es) 2010-09-23
EP1834994A1 (de) 2007-09-19
JP5159119B2 (ja) 2013-03-06
US8021716B2 (en) 2011-09-20
JP2007291342A (ja) 2007-11-08
DE502006007414D1 (de) 2010-08-26
US20070224345A1 (en) 2007-09-27

Similar Documents

Publication Publication Date Title
EP1834994B1 (de) Polyelektrolyt-verkapselte Pigmente
DE69932052T2 (de) Wässrige pigmentdispersion, herstellungsverfahren dafür und wässrige tinte welche diese enthält
DE69916094T3 (de) Dispersionen mit verbesserter stabilität
EP2013299B1 (de) Wasserbasierende pigmentpräparation
EP1805270B1 (de) Wasserbasierende pigmentpräparationen auf oligoesterbasis, ihre herstellung und verwendung
CN100386390C (zh) 喷墨油墨、油墨以及含着色颜料的其它组合物
EP1834996B1 (de) Pigmentzubereitungen auf Basis von PY 155
DE69912214T2 (de) Tinten mit wärmefixierbaren Teilchen und Verfahren zu deren Verwendung
EP1618159B1 (de) Wasserbasierende farbmittelpräparationen für den ink-jet-druck
EP1409592B1 (de) Wasserbasierende farbmittelpräparationen
DE69920041T2 (de) Polyelektrolyt enthaltende dispergiermittel fuer hydrophobe partikel in waessrigen systemen
EP2066752B1 (de) Farbige wässrige polymerdispersion, deren herstellung und verwendung
EP1406974B1 (de) Wasserbasierende farbmittelpräparationen für den ink-jet-druck
DE10350556A1 (de) Wasserbasierende Pigmentpräparationen
EP0915137A1 (de) Nanoskalige anorganische Pigmente enthaltende Ink-Jet Tinten
DE102004020726A1 (de) Verfahren zur Herstellung polymerverkapselter Pigmente
DE69831916T2 (de) Farbige Perlglanzpigmente
DE10242875B4 (de) Verfahren zum Herstellen sulfonierter fester Teilchen
WO2001092421A1 (de) Pigmentzubereitungen, enthaltend alkoxyliertes polyethylenimin
EP1726624A2 (de) Wässrige Pigmentpräparationen für brilliante Ink-Jet-Ausdrucke
JP2016121237A (ja) インクジェット記録用水系顔料分散体の製造方法
EP1030895A1 (de) Anorganische pigmente enthaltende pigmentpräparationen
DE102004009940A1 (de) Aufzeichnungsflüssigkeiten
EP1618160B1 (de) Leicht dispergierbare pigmente mit schneller farbstrkeentwicklung
JP2008063500A (ja) インクジェット記録用水系インク

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080319

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080506

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLARIANT FINANCE (BVI) LIMITED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RBV Designated contracting states (corrected)

Designated state(s): BE CH DE ES FR GB IT LI NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502006007414

Country of ref document: DE

Date of ref document: 20100826

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2345452

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006007414

Country of ref document: DE

Effective date: 20110415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150226

Year of fee payment: 10

Ref country code: ES

Payment date: 20150220

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006007414

Country of ref document: DE

Representative=s name: MIKULECKY, KLAUS, DIPL.-CHEM. DR.PHIL.NAT., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006007414

Country of ref document: DE

Owner name: CLARIANT INTERNATIONAL LTD, CH

Free format text: FORMER OWNER: CLARIANT FINANCE (BVI) LTD., ROAD TOWN, TORTOLA, VG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: CLARIANT INTERNATIONAL LTD., CH

Free format text: FORMER OWNER: CLARIANT FINANCE (BVI) LIMITED, VG

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160315

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160316

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200325

Year of fee payment: 15

Ref country code: GB

Payment date: 20200326

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20200325

Year of fee payment: 15

Ref country code: CH

Payment date: 20200324

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200326

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200528

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006007414

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210315

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210315

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331