EP1806429A1 - Appareil et procédé de pulverisation à froid avec écoulement gazeux module - Google Patents

Appareil et procédé de pulverisation à froid avec écoulement gazeux module Download PDF

Info

Publication number
EP1806429A1
EP1806429A1 EP06000403A EP06000403A EP1806429A1 EP 1806429 A1 EP1806429 A1 EP 1806429A1 EP 06000403 A EP06000403 A EP 06000403A EP 06000403 A EP06000403 A EP 06000403A EP 1806429 A1 EP1806429 A1 EP 1806429A1
Authority
EP
European Patent Office
Prior art keywords
cold gas
cold
pressure
particle stream
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06000403A
Other languages
German (de)
English (en)
Other versions
EP1806429B1 (fr
Inventor
Rene Jabado
Jens Dahl Dr. Jensen
Ursus Dr. Krüger
Daniel Körtvelyessy
Volkmar Dr. Lüthen
Ralph Reiche
Michael Rindler
Raymond Ullrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT06000403T priority Critical patent/ATE400674T1/de
Priority to EP06000403A priority patent/EP1806429B1/fr
Priority to DE502006001063T priority patent/DE502006001063D1/de
Priority to RU2007100423/05A priority patent/RU2426602C2/ru
Priority to US11/651,730 priority patent/US7631816B2/en
Publication of EP1806429A1 publication Critical patent/EP1806429A1/fr
Application granted granted Critical
Publication of EP1806429B1 publication Critical patent/EP1806429B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/08Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators
    • B05B1/083Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators the pulsating mechanism comprising movable parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • B05B7/1613Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed
    • B05B7/162Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed
    • B05B7/1626Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed at the moment of mixing

Definitions

  • the invention relates to a cold gas spraying plant and a cold gas spraying process.
  • the US 6,124,563 and the US Pat. No. 6,630,207 describe pulsed thermal spray processes.
  • the DE 103 19 481 A1 and the WO 2003/041868 A2 describe special spray nozzle designs for the cold gas spraying process.
  • the object is achieved by a cold gas spraying system according to claim 1 and a cold gas spraying method according to claim 29.
  • the powder for a coating 13 is passed through a nozzle 8 onto a substrate 10, for example a component (turbine blade 120, 130, (FIG. 9, 10), combustion chamber wall 155 (FIG. 11) or a housing part (FIG. 9) of a turbine 9), so that a coating 13 forms there
  • the powder comes from a powder container 16, wherein the pressure required for the cold gas spraying is generated by a high pressure gas generator 22, so that a cold gas particle stream 7 is generated by the powder
  • High-pressure gas is supplied as carrier gas in the nozzle 8.
  • the high-pressure gas can optionally be heated by means of a heater 19.
  • the heater 19 can be integrated in the high-pressure gas generator.
  • Cold spraying means that temperatures up to a maximum of 80 ° C - 550 ° C, especially 400 ° C to 550 ° C are used.
  • the substrate temperature is 80 ° C to 100 ° C.
  • the speeds are at 300m / s to 2000m / s.
  • FIG. 2 shows a cold gas spraying installation 1 according to the invention.
  • the cold gas spraying installation 1 according to the invention has one or more influencing means 25, 26, 29, 32, 35, 36, which have at least one property of the cold gas particle flow 7 (e.g. As temperature T, pressure p, particle density p, particulate material M, speed v, ...) changeable change (modulated).
  • This influencing of the properties of the cold gas particle stream 7 can take place periodically or aperiodically during a coating process.
  • periodic changes in coating times may be followed by aperiodic changes or vice versa.
  • Preferably, only a periodic change of the one or more properties takes place.
  • the influencing means may be, for example, a pulse heating means 25 which alternately, preferably pulsatingly, heats the high-pressure gas of the high-pressure gas generator and thus leads to a modulation of the cold gas particle stream 7.
  • the pulse heating means 25 may also be part of the heater 19.
  • a valve 32 as an influencing means in particular a perforated disc (chopper) 32 may be mounted in front of the nozzle inlet opening 8 '. Since this interrupts the cold gas particle stream 7 periodically or aperiodically, a pulsating cold gas particle stream 7 is generated in the direction of the substrate 10, which causes locally different particle densities p in the beam direction.
  • the valve 32 When the valve 32 is closed, the material accumulates in front of the nozzle 8 and it builds up a higher pressure, which relaxes after opening the valve again.
  • a modulated cold gas particle stream 7 can also be produced by adding the powder from the powder container 16 in changeable amounts per unit time, preferably pulsatingly, to the high-pressure gas. This can be done for example by particular piezoelectric injectors 35 as influencing means.
  • the cold gas particle stream 7 can be modulated by pressure generator 29 as an influencing means, preferably by piezoelectric pressure generator 29, which are arranged at the beginning of the Laval nozzle 8 or on the nozzle 8 and change the cross section of the Laval nozzle changeable.
  • the nozzle 8 may comprise a piezoelectric material or an inner piezoelectric coating which expand or contract by applying a voltage and thus change the cross section of the cold gas particle stream 7 and hence the particle density p, the pressure p and the velocity of the cold gas particle stream 7 change.
  • the cold gas particle stream 7 in the region of the nozzle 8 can be influenced by an acoustic wave coupling by means of a shaft coupler 26, in particular by an ultrasound generator, which rests on the nozzle 8. These prevent any adhesion of particles in the nozzle 8.
  • the high pressure gas can be controlled by a high pressure valve 36 as an influencing means.
  • the high-pressure valve 36 is integrated, for example, in the high-pressure gas generator or along a line 37, which leads the gas from the high-pressure gas generator 22 to the powder.
  • the influencing means 25, 26, 29, 32, 35, 36 can be used singly, paired or multiple and used.
  • the material M is supplied by the or the powder injectors 35 pulse-like the cold gas particle stream 7 and the velocity v of the cold gas particle stream 7 is modulated.
  • the influencing means 25, 32, 35, 36 can either be arranged only in front of the nozzle inlet opening 8 '(FIG. 7) or can be arranged only after the nozzle inlet opening 8' (FIG. 8).
  • the diameter ⁇ , the temperature T and / or the pressure p can be varied changeably to influence the cold gas particle stream 7.
  • the nozzle 8 can be heated to produce a constant temperature T of the cold gas particle stream 7 or to change the temperature T of the cold gas particle stream 7 changeable.
  • the entire cold gas spraying system 1 can be arranged in a vacuum chamber (not shown).
  • Cold spraying means that temperatures up to a maximum of 80 ° C - 550 ° C, especially 400 ° C to 550 ° C are used.
  • the substrate temperature is 80 ° C to 100 ° C.
  • the speeds are from 300m / s to 2000m / s, especially up to 900m / s.
  • the properties of the cold gas particle stream 7 can be changed individually or together in a coating process, in particular if the change acts in the same direction, ie temperature increase and pressure increase.
  • the pulsed injection of powder particles may preferably be effected by a piezoelectric powder injector 35.
  • Particularly grain sizes smaller than 1 ⁇ m, preferably less than 500 nm (nanoparticles) may be sprayed with the modulated cold gas particle streams. 7
  • powder injectors 35 with different powder materials M can be used to achieve graded or multiple coatings.
  • metals, metal alloys, semimetals and compounds thereof as well as semiconductors, high-temperature superconductors, magnetic materials, glasses and / or ceramics can be sprayed.
  • FIG. 6 shows two powder containers 16, 16 'containing different materials for the particles.
  • the materials of the powder containers 16, 16 ' can be added simultaneously or only one powder container 16, 16' is active.
  • the particles have different particle sizes, it makes sense to change the velocity v of the cold gas particle stream, thus z. B. the same pulse at smaller, ie lighter particles is achieved.
  • two gas heaters and or two high-pressure gas generators can be used.
  • FIG. 9 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • Each turbine stage 112 is formed, for example, from two blade rings.
  • a row 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110. To withstand the prevailing temperatures, they can be cooled by means of a coolant.
  • substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • SX structure monocrystalline
  • DS structure only longitudinal grains
  • As a material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110 are For example, iron, nickel or cobalt-based superalloys used.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
  • FIG. 10 shows a perspective view of a moving blade 120 or guide blade 130 of a turbomachine that extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • blades 120, 130 for example, solid metallic materials, in particular superalloys, are used in all regions 400, 403, 406 of the blade 120, 130.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • the term generally refers to directionally solidified microstructures, which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures. Such methods are known from U.S. Patent 6,024,792 and the EP 0 892 090 A1 known; these writings are part of the revelation regarding the solidification process.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from the EP 0 486 489 B1 .
  • the density is preferably 95% of the theoretical density.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrA1X layer.
  • suitable coating processes such as electron beam evaporation (EB-PVD)
  • stalk-shaped grains are produced in the thermal barrier coating.
  • Other coating methods are conceivable, for example atmospheric plasma spraying (APS), LPPS, VPS or CVD.
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.
  • FIG. 11 shows a combustion chamber 110 of the gas turbine 100.
  • the combustion chamber 110 is designed, for example, as a so-called annular combustion chamber, in which a multiplicity of burners 107 arranged circumferentially about a rotation axis 102 open into a common combustion chamber space 154, which produce flames 156.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
  • the heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.
  • Each heat shield element 155 made of an alloy is working medium side with a particularly heat-resistant protective layer (MCrA1X layer and / or ceramic coating) or is made of high temperature resistant material (solid ceramic stones).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • MCrA1X means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1
  • a ceramic thermal barrier coating consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • suitable coating processes such as electron beam evaporation (EB-PVD)
  • stalk-shaped grains are produced in the thermal barrier coating.
  • suitable coating methods are conceivable, for example atmospheric plasma spraying (APS), LPPS, VPS or CVD.
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • Refurbishment means that turbine blades 120, 130, heat shield elements 155 may need to be deprotected (e.g., by sandblasting) after use. This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, cracks in the turbine blade 120, 130 or the heat shield element 155 are also repaired. This is followed by a re-coating of the turbine blades 120, 130, heat shield elements 155 and a renewed use of the turbine blades 120, 130 or the heat shield elements 155.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Nozzles (AREA)
EP06000403A 2006-01-10 2006-01-10 Appareil et procédé de pulverisation à froid avec écoulement gazeux module Not-in-force EP1806429B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT06000403T ATE400674T1 (de) 2006-01-10 2006-01-10 Kaltspritzanlage und kaltspritzverfahren mit moduliertem gasstrom
EP06000403A EP1806429B1 (fr) 2006-01-10 2006-01-10 Appareil et procédé de pulverisation à froid avec écoulement gazeux module
DE502006001063T DE502006001063D1 (de) 2006-01-10 2006-01-10 Kaltspritzanlage und Kaltspritzverfahren mit moduliertem Gasstrom
RU2007100423/05A RU2426602C2 (ru) 2006-01-10 2007-01-09 Установка для холодного газового распыления и способ холодного газового распыления с модулированным газовым потоком
US11/651,730 US7631816B2 (en) 2006-01-10 2007-01-10 Cold spraying installation and cold spraying process with modulated gas stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06000403A EP1806429B1 (fr) 2006-01-10 2006-01-10 Appareil et procédé de pulverisation à froid avec écoulement gazeux module

Publications (2)

Publication Number Publication Date
EP1806429A1 true EP1806429A1 (fr) 2007-07-11
EP1806429B1 EP1806429B1 (fr) 2008-07-09

Family

ID=36032100

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06000403A Not-in-force EP1806429B1 (fr) 2006-01-10 2006-01-10 Appareil et procédé de pulverisation à froid avec écoulement gazeux module

Country Status (5)

Country Link
US (1) US7631816B2 (fr)
EP (1) EP1806429B1 (fr)
AT (1) ATE400674T1 (fr)
DE (1) DE502006001063D1 (fr)
RU (1) RU2426602C2 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010003396A1 (fr) * 2008-07-05 2010-01-14 Mtu Aero Engines Gmbh Procédé et dispositif de pulvérisation gazeuse à froid
DE102008057159A1 (de) 2008-11-13 2010-05-20 Mtu Aero Engines Gmbh Gasturbine
WO2010054643A1 (fr) 2008-11-13 2010-05-20 Mtu Aero Engines Gmbh Procédé de réparation du composant d'une turbine à gaz
WO2011036045A1 (fr) * 2009-09-25 2011-03-31 Siemens Aktiengesellschaft Aube pour une utilisation dans des flux diphasiques et procédé de production d'une telle aube
WO2011057612A1 (fr) * 2009-11-12 2011-05-19 Mtu Aero Engines Gmbh Procédé et dispositif de revêtement d'élément
US8268237B2 (en) 2009-01-08 2012-09-18 General Electric Company Method of coating with cryo-milled nano-grained particles
EP2564980A3 (fr) * 2011-08-29 2013-09-04 General Electric Company Système à l'état solide et procédé de réparation de pièces forgées
US8544769B2 (en) 2011-07-26 2013-10-01 General Electric Company Multi-nozzle spray gun
CN103521404A (zh) * 2013-10-25 2014-01-22 中国船舶重工集团公司第七二五研究所 一种便携式低压冷喷涂装置
EP2298962B1 (fr) * 2009-07-17 2014-06-04 MTU Aero Engines GmbH Pulverisation à froid de revêtements contenant des oxydes
WO2019180190A1 (fr) * 2018-03-22 2019-09-26 Reinhold Riemensperger Dispositif de transport et de dosage de poudre, dispositif de fabrication d'une structure en couches sur une surface d'un élément de construction, élément chauffant plat et procédé de fabrication d'un élément chauffant plat
EP3789516A1 (fr) * 2019-09-09 2021-03-10 Siemens Aktiengesellschaft Installation de pulvérisation par gaz froid à rayon de particules réglable

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117144A1 (fr) * 2005-05-05 2006-11-09 H.C. Starck Gmbh Procede de revetement d'une surface de substrat et produit muni du revetement
WO2008031185A1 (fr) * 2006-09-13 2008-03-20 Doben Limited Ensemble tuyère pour système de pulvérisation dynamique à gaz froid
US20080078268A1 (en) 2006-10-03 2008-04-03 H.C. Starck Inc. Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof
US20080145688A1 (en) 2006-12-13 2008-06-19 H.C. Starck Inc. Method of joining tantalum clade steel structures
US8197894B2 (en) 2007-05-04 2012-06-12 H.C. Starck Gmbh Methods of forming sputtering targets
DE102008006112A1 (de) * 2008-01-25 2009-07-30 BSH Bosch und Siemens Hausgeräte GmbH Heizeinrichtung für ein Hausgerät zur Pflege von Wäschestücken und Verfahren zum Betreiben einer derartigen Heizeinrichtung
US8246903B2 (en) 2008-09-09 2012-08-21 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
DE102008058141A1 (de) * 2008-11-20 2010-05-27 Mtu Aero Engines Gmbh Verfahren zum Herstellen einer Schaufel für einen Rotor einer Strömungsmaschine
DE102008058142A1 (de) * 2008-11-20 2010-05-27 Mtu Aero Engines Gmbh Verfahren zum Herstellen und/oder Reparieren eines Rotors einer Strömungsmaschine und Rotor hierzu
US20100170937A1 (en) * 2009-01-07 2010-07-08 General Electric Company System and Method of Joining Metallic Parts Using Cold Spray Technique
DE102009009474B4 (de) * 2009-02-19 2014-10-30 Sulzer Metco Ag Gasspritzanlage und Verfahren zum Gasspritzen
DE102009048659B3 (de) * 2009-09-29 2011-04-28 Siemens Aktiengesellschaft Transformatorkern
JP5712054B2 (ja) * 2011-05-31 2015-05-07 日本発條株式会社 シャフト付きヒータユニットおよびシャフト付きヒータユニットの製造方法
US8734896B2 (en) 2011-09-29 2014-05-27 H.C. Starck Inc. Methods of manufacturing high-strength large-area sputtering targets
US9335296B2 (en) 2012-10-10 2016-05-10 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
US10441962B2 (en) 2012-10-29 2019-10-15 South Dakota Board Of Regents Cold spray device and system
US10099322B2 (en) * 2012-10-29 2018-10-16 South Dakota Board Of Regents Methods for cold spray repair
JP6122666B2 (ja) * 2013-03-07 2017-04-26 東京エレクトロン株式会社 ホッパー及び溶射装置
JP6885865B2 (ja) 2014-04-25 2021-06-16 サウス ダコタ ボード オブ リージェンツ 大容量電極
JP6488559B2 (ja) * 2014-05-30 2019-03-27 東洋製罐グループホールディングス株式会社 紙成形体
CN106414252B (zh) * 2014-05-30 2019-01-25 东洋制罐集团控股株式会社 纸成型体及局部区域被覆方法和被覆装置
US10315218B2 (en) 2017-07-06 2019-06-11 General Electric Company Method for repairing turbine component by application of thick cold spray coating
JP6967954B2 (ja) * 2017-12-05 2021-11-17 東京エレクトロン株式会社 排気装置、処理装置及び排気方法
US10468674B2 (en) 2018-01-09 2019-11-05 South Dakota Board Of Regents Layered high capacity electrodes
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
CA3151605C (fr) 2019-09-19 2023-04-11 Westinghouse Electric Company Llc Appareil pour effectuer un test d'adherence in situ de depots de pulverisation a froid et procede d'utilisation
CA3169861A1 (fr) * 2020-02-04 2021-08-12 1188511 Canada Ltd. Realisation d'actions sur une piece a l'aide de forces electromagnetiques

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142089A (en) * 1977-03-22 1979-02-27 Canadian Patents And Development Limited Pulsed coaxial thermal plasma sprayer
US5302414A (en) 1990-05-19 1994-04-12 Anatoly Nikiforovich Papyrin Gas-dynamic spraying method for applying a coating
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
US6124563A (en) 1997-03-24 2000-09-26 Utron Inc. Pulsed electrothermal powder spray
EP1132497A1 (fr) 1998-11-05 2001-09-12 Jury Veniaminovich Dikun Procede de production d'un revetement se composant de materiaux en poudre et dispositif de mise en oeuvre de ce procede
US6502767B2 (en) 2000-05-03 2003-01-07 Asb Industries Advanced cold spray system
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
WO2003041868A2 (fr) 2001-05-29 2003-05-22 Linde Aktiengesellschaft Procede et dispositif de projection par gaz froid
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
US6630207B1 (en) 2001-07-17 2003-10-07 Science Applications International Corporation Method and apparatus for low-pressure pulsed coating
US20040037954A1 (en) 2002-06-04 2004-02-26 Linde Aktiengesellschaft Process and device for cold gas spraying
EP0924315B1 (fr) 1997-12-18 2004-03-10 Linde AG Production de gaz chaud pour la pulvérisation thermique
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
DE10319481A1 (de) 2003-04-30 2004-11-18 Linde Ag Lavaldüse für das thermische Spritzen und das kinetische Spritzen
WO2005061116A1 (fr) * 2003-12-24 2005-07-07 Research Institute Of Industrial Science & Technology Appareil de pulverisation de liquide refroidisseur presentant un dispositif de prechauffage de poudre

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070098912A1 (en) * 2005-10-27 2007-05-03 Honeywell International, Inc. Method for producing functionally graded coatings using cold gas-dynamic spraying

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142089A (en) * 1977-03-22 1979-02-27 Canadian Patents And Development Limited Pulsed coaxial thermal plasma sprayer
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
US5302414A (en) 1990-05-19 1994-04-12 Anatoly Nikiforovich Papyrin Gas-dynamic spraying method for applying a coating
US5302414B1 (en) 1990-05-19 1997-02-25 Anatoly N Papyrin Gas-dynamic spraying method for applying a coating
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
US6124563A (en) 1997-03-24 2000-09-26 Utron Inc. Pulsed electrothermal powder spray
EP0924315B1 (fr) 1997-12-18 2004-03-10 Linde AG Production de gaz chaud pour la pulvérisation thermique
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
EP1132497A1 (fr) 1998-11-05 2001-09-12 Jury Veniaminovich Dikun Procede de production d'un revetement se composant de materiaux en poudre et dispositif de mise en oeuvre de ce procede
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
US6502767B2 (en) 2000-05-03 2003-01-07 Asb Industries Advanced cold spray system
WO2003041868A2 (fr) 2001-05-29 2003-05-22 Linde Aktiengesellschaft Procede et dispositif de projection par gaz froid
US6630207B1 (en) 2001-07-17 2003-10-07 Science Applications International Corporation Method and apparatus for low-pressure pulsed coating
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
US20040037954A1 (en) 2002-06-04 2004-02-26 Linde Aktiengesellschaft Process and device for cold gas spraying
DE10319481A1 (de) 2003-04-30 2004-11-18 Linde Ag Lavaldüse für das thermische Spritzen und das kinetische Spritzen
WO2005061116A1 (fr) * 2003-12-24 2005-07-07 Research Institute Of Industrial Science & Technology Appareil de pulverisation de liquide refroidisseur presentant un dispositif de prechauffage de poudre

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010003396A1 (fr) * 2008-07-05 2010-01-14 Mtu Aero Engines Gmbh Procédé et dispositif de pulvérisation gazeuse à froid
DE102008057159A1 (de) 2008-11-13 2010-05-20 Mtu Aero Engines Gmbh Gasturbine
WO2010054643A1 (fr) 2008-11-13 2010-05-20 Mtu Aero Engines Gmbh Procédé de réparation du composant d'une turbine à gaz
DE102008057162A1 (de) 2008-11-13 2010-05-20 Mtu Aero Engines Gmbh Verfahren zur Reparatur des Bauteils einer Gasturbine
US8268237B2 (en) 2009-01-08 2012-09-18 General Electric Company Method of coating with cryo-milled nano-grained particles
EP2298962B1 (fr) * 2009-07-17 2014-06-04 MTU Aero Engines GmbH Pulverisation à froid de revêtements contenant des oxydes
WO2011036045A1 (fr) * 2009-09-25 2011-03-31 Siemens Aktiengesellschaft Aube pour une utilisation dans des flux diphasiques et procédé de production d'une telle aube
WO2011057612A1 (fr) * 2009-11-12 2011-05-19 Mtu Aero Engines Gmbh Procédé et dispositif de revêtement d'élément
US9040116B2 (en) 2009-11-12 2015-05-26 Mtu Aero Engines Gmbh Method and device for coating components
US8544769B2 (en) 2011-07-26 2013-10-01 General Electric Company Multi-nozzle spray gun
EP2564980A3 (fr) * 2011-08-29 2013-09-04 General Electric Company Système à l'état solide et procédé de réparation de pièces forgées
CN103521404A (zh) * 2013-10-25 2014-01-22 中国船舶重工集团公司第七二五研究所 一种便携式低压冷喷涂装置
CN103521404B (zh) * 2013-10-25 2015-12-02 中国船舶重工集团公司第七二五研究所 一种便携式低压冷喷涂装置
WO2019180190A1 (fr) * 2018-03-22 2019-09-26 Reinhold Riemensperger Dispositif de transport et de dosage de poudre, dispositif de fabrication d'une structure en couches sur une surface d'un élément de construction, élément chauffant plat et procédé de fabrication d'un élément chauffant plat
EP3789516A1 (fr) * 2019-09-09 2021-03-10 Siemens Aktiengesellschaft Installation de pulvérisation par gaz froid à rayon de particules réglable
WO2021047855A1 (fr) * 2019-09-09 2021-03-18 Siemens Aktiengesellschaft Système de pulvérisation de gaz froid ayant un jet de particules réglable
CN114375350A (zh) * 2019-09-09 2022-04-19 西门子股份公司 带有可调节粒子射束的冷气喷射设备

Also Published As

Publication number Publication date
RU2426602C2 (ru) 2011-08-20
EP1806429B1 (fr) 2008-07-09
RU2007100423A (ru) 2008-08-10
ATE400674T1 (de) 2008-07-15
DE502006001063D1 (de) 2008-08-21
US7631816B2 (en) 2009-12-15
US20070187525A1 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
EP1806429B1 (fr) Appareil et procédé de pulverisation à froid avec écoulement gazeux module
EP1971443B1 (fr) Ensemble de buses et procédé de projection par gaz froid
EP1845171B1 (fr) Utilisation de poudres métalliques ayant des particles de taille diverse pour fabriquer un système de couches
EP2436798B1 (fr) Matériel de masquage, couche de masquage et procédé de masquage d'un substrat
EP2143520A1 (fr) Méthode de fabrication d'un trou
EP1974071B1 (fr) Élément à disposer dans un canal d'écoulement d'une turbomachine et procédé de pulvérisation pour réaliser un revêtement
WO2006061267A1 (fr) Systeme stratifie, utilisation et procede de realisation d'un systeme stratifie
EP1952931A1 (fr) Mechtrode ayant une alimentation en poudre et procédé d'utilisation de cette mechtrode
EP1816222A1 (fr) Système de revêtements de couches métalliques protectrices à double couche
EP1816316B1 (fr) Procédé de réparation de composants
EP1941965A1 (fr) Réouverture de trous à l'aide de la thermographie et d'un composant
EP1839801A1 (fr) Méthode de réparation pour la remise en état de pièces
EP2224039A1 (fr) Revêtement doté d'un procédé de revêtement thermique et non thermique
EP1707651A1 (fr) Système de revêtement et procédé de fabrication d'une système de revêtement
EP1666625A1 (fr) Procédé de revêtement d'un composant a l'interieur d'un aparat
EP1681374B1 (fr) Système de revêtement comprenant une couche barrière et procédé de fabrication
EP1806426A1 (fr) Dispositf de fixation pour composants métalliques d'une turbine
EP2341165A1 (fr) Élément de construction ceramique, massique ou revêmtement céramique ayant une haute porositée, leur utilisation et élément de construction comportant ladite revêtement
EP1586675B1 (fr) Procédé de revêtement de l'intérieur d'un corps creux
EP1674193A1 (fr) Procédé de fabrication d'un trou
EP1867749A1 (fr) Procédé de revêtement d'un matériau à une pièce
EP1812186A2 (fr) Procédé et pièce de coulée
EP1772533A1 (fr) Appareil pour revêter des surfaces interieures, retort et methode pour l'application du tel revêtement
EP1932935A1 (fr) Procédé de fabrication d'une aube de turbine avec une couche d'oxide, une aube de turbine et son utilisation, et procédé de fonctionnement d'une turbine
EP1818419A1 (fr) Alliage, couche de protection et composant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070720

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502006001063

Country of ref document: DE

Date of ref document: 20080821

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081009

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081020

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081209

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

26N No opposition filed

Effective date: 20090414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130318

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130415

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140103

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140115

Year of fee payment: 9

Ref country code: IT

Payment date: 20140130

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140110

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006001063

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006001063

Country of ref document: DE

Effective date: 20140801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140801

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150110

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150110