EP1784213B1 - Improvements relating to meningococcal outer membrane vesicles - Google Patents

Improvements relating to meningococcal outer membrane vesicles Download PDF

Info

Publication number
EP1784213B1
EP1784213B1 EP05782411.2A EP05782411A EP1784213B1 EP 1784213 B1 EP1784213 B1 EP 1784213B1 EP 05782411 A EP05782411 A EP 05782411A EP 1784213 B1 EP1784213 B1 EP 1784213B1
Authority
EP
European Patent Office
Prior art keywords
omvs
meningococcal
ref
vaccine
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05782411.2A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1784213A2 (en
Inventor
Philipp Oster
Rino Rappuoli
Mariagrazia Pizza
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GSK Vaccines SRL
Original Assignee
Novartis Vaccines and Diagnostics SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novartis Vaccines and Diagnostics SRL filed Critical Novartis Vaccines and Diagnostics SRL
Publication of EP1784213A2 publication Critical patent/EP1784213A2/en
Application granted granted Critical
Publication of EP1784213B1 publication Critical patent/EP1784213B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/095Neisseria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers

Definitions

  • This invention is in the field of meningococcal outer membrane vesicles for immunisation purposes.
  • OMVs outer membrane vesicles
  • the 'RIVM' vaccine is based on OMVs containing six different PorA subtypes. It has been shown to be immunogenic in children in phase II clinical trials [2].
  • Reference 3 discloses a vaccine against different pathogenic serotypes of serogroup B meningococcus based on OMVs which retain a protein complex of 65-kDa.
  • Reference 4 discloses a vaccine comprising OMVs from genetically-engineered meningococcal strains, with the OMVs comprising: at least one Class 1 outer-membrane protein (OMP) but not comprising a Class 2/3 OMP.
  • Reference 5 discloses OMVs comprising OMPs which have mutations in their surface loops and OMVs comprising derivatives of meningococcal lipopolysaccharide (LPS).
  • Reference 6 discloses a process for preparing OMV-based vaccines for serogroup A meningococcus.
  • Reference 7 discloses compositions comprising OMVs supplemented with transferrin binding proteins (e.g. TbpA and TbpB) and/or Cu,Zn-superoxide dismutase.
  • Reference 8 discloses compositions comprising OMVs supplemented by various proteins.
  • Reference 9 discloses preparations of membrane vesicles obtained from N.meningitidis with a modified fur gene.
  • Reference 26 teaches that nspA expression should be up-regulated with concomitant porA and cps knockout. Further knockout mutants of N . meningitidis for OMV production are disclosed in references 26 to 28.
  • reference 29 focuses on changing the methods for OMV preparation, and teaches that antigens such as NspA can be retained during vesicle extraction by avoiding the use of detergents such as deoxycholate.
  • Reference 11 discloses vaccine comprising multivalent meningococcal bleb compositions, comprising a first bleb derived from a meningococcal strain with a serosubtype prevalent in a country of use, and a second bleb derived from a strain that need not have a serosubtype prevent in a country of use.
  • the invention provides a method for preparing a meningococcal outer membrane vesicle (OMV) vaccine, comprising the steps of: (i) identifying the serosubtype of a meningococcal strain associated with an outbreak of meningococcal meningitis; (ii) preparing OMVs from a meningococcal strain having the serosubtype identified in step (i) for use in vaccine manufacture.
  • OMV meningococcal outer membrane vesicle
  • the method may comprise one or both of the further steps of: (iii) formulating said OMVs as a vaccine; and (iv) distributing said vaccine in a geographical area affected by or likely to be affected by said outbreak.
  • the invention also provides the same method, but omitting step (i), for situations where the relevant serosubtype has already been identified.
  • the meningococcal strain will typically be in serogroup B, but may be instead by in serogroup A, C, W135, Y, etc.
  • the invention provides: (a) a composition comprising outer membrane vesicles from a serogroup C strain of meningococcus; (b) a composition comprising outer membrane vesicles from a serogroup W135 strain of meningococcus; (c) a composition comprising outer membrane vesicles from a serogroup Y strain of meningococcus; and (d) a composition comprising outer membrane vesicles from two or more of serogroups A, B, C, W135 and Y of meningococcus.
  • compositions include the following serogroup mixtures: A+B; A+C; A+W135; A+Y; B+C; B+W135; B+Y; C+W135; C+Y; W135+Y; A+B+C; A+B+W135; A+B+Y; A+C+W135; A+C+Y; A+W135+Y; B+C+W135; B+C+Y; C+W135+Y; A+B+C+W135+Y; A+B+C+Y; B+C+W135+Y; and A+B+C+W135+Y.
  • OMVs can protect against more than just the serogroup from which they are prepared.
  • the sub-capsular antigens from serogroup A and W135 strains seen in sub-saharan Africa are shred with serogroup C and Y strains seen elsewhere in the world.
  • the invention provides the use of OMVs from a meningococcal strain in a first serogroup for protecting against one or more meningococcal strains in a second serogroup, wherein said first and second serogroups are different.
  • the strains preferably share sub-capsular antigens, and may have the same subtype, serosubtype and/or immunotype, even though they have different serogroups.
  • a mixture of OMVs from serogroups A and W135 is preferred, as is a mixture of OMVs from serogroups C and Y.
  • the invention provides a composition comprising outer membrane vesicles from two or three of: (i) a serosubtype P1.7b,4 meningococcus; (ii) a serosubtype P1.7,16 meningococcus; and (iii) a serosubtype P1.9,15 meningococcus.
  • the different OMVs are preferably in admixture but, alternatively, they may be in separate containers within a kit.
  • the inventors In combining OMVs from different serosubtypes, the inventors have found that doses for individual serosubtypes can be reduced without loss of efficacy. Whereas VA-MENGOC-BTM contains 50 ⁇ g of OMVs (0.5ml volume), HexaMenTM includes around 1mg OMVs (0.3ml volume), and both MenBVacTM and MeNZBTM contain 25 ⁇ g OMVs (0.5ml volume), measured as total protein, the inventors have found that the dose of individual OMVs can be reduced when a mixture is used without loss of individual efficacy.
  • the invention provides a composition comprising outer membrane vesicles from a first meningococcal serosubtype and a second meningococcal serosubtype, wherein the concentration of OMVs from the first serosubtype is less than 45 ⁇ g/ml and the concentration of OMVs from the second serosubtype is less than 45 ⁇ g/ml.
  • the invention also provides a composition comprising outer membrane vesicles from at least two meningococcal serosubtypes, wherein the combined concentration of OMVs is less than 90 ⁇ g/ml.
  • the invention also provides a composition comprising outer membrane vesicles from n different meningococcal serosubtypes, wherein the concentration of OMVs from each of the n serosubtypes is less than 45 ⁇ g/ml (i.e. a total OMV dose of less than 45 n ⁇ g/ml).
  • the value of n may be 1, 2, 3, 4, 5, 6, etc.
  • the invention also provides a kit comprising OMVs prepared from n different serosubtypes.
  • the vesicles can be kept and stored separately in the kit until they are required to be used together e.g . as an admixture, or for simultaneous separate or sequential use.
  • the invention provides a process comprising: preparing n sets of OMVs, one from each of n different serosubtypes; and combining the n sets of vesicles. The different sets can be combined into a kit or into an admixture.
  • the invention also provides a composition comprising OMVs prepared from a serogroup B meningococcal strain having a P1.7b,4 serosubtype, wherein the concentration of OMVs in the composition is about 50 ⁇ g/ml.
  • the composition preferably includes an aluminium hydroxide adjuvant and a histidine buffer.
  • the composition may be given in a dose volume of about 0.5ml.
  • the invention is based on outer membrane vesicles (OMVs) prepared from Neisseria meningitidis.
  • OMV outer membrane vesicles
  • the term "OMV” includes any proteoliposomic vesicle obtained by disrupting a bacterial outer membrane to form vesicles of the outer membrane that include protein components of the outer membrane.
  • OMVs are prepared artificially from bacteria ( e.g. by detergent treatment, or by non-detergent means [29]).
  • the term also encompasses blebs, microvesicles (MVs [12]) and 'native OMVs' ('NOMVs' [13]),which are naturally-occurring membrane vesicles that form spontaneously during bacterial growth and are released into culture medium.
  • MVs can be obtained by culturing Neisseria in broth culture medium, separating whole cells from the smaller MVs in the broth culture medium ( e.g. by filtration or by low-speed centrifugation to pellet only the cells and not the smaller vesicles), and then collecting the MVs from the cell-depleted medium ( e.g. by filtration, by differential precipitation or aggregation of MVs, by high-speed centrifugation to pellet the MVs).
  • Strains for use in production of MVs can generally be selected on the basis of the amount of MVs produced in culture e.g. refs. 14 & 15 describe Neisseria with high MV production.
  • OMVs can be prepared in various ways. Methods for obtaining suitable preparations are disclosed in, for instance, the references cited herein. Techniques for forming OMVs include treating bacteria with a bile acid salt detergent (e.g . salts of lithocholic acid, chenodeoxycholic acid, ursodeoxycholic acid, deoxycholic acid, cholic acid, ursocholic acid, etc., with sodium deoxycholate [16 & 17] being preferred for treating Neisseria) at a pH sufficiently high not to precipitate the detergent [6]. Other techniques may be performed substantially in the absence of detergent [29] using techniques such as sonication, homogenisation, microfluidisation, cavitation, osmotic shock, grinding, French press, blending, etc.
  • a bile acid salt detergent e.g . salts of lithocholic acid, chenodeoxycholic acid, ursodeoxycholic acid, deoxycholic acid, cholic acid, ursocholic acid
  • a preferred method for OMV preparation involves ultrafiltration [18] instead of high speed centrifugation on crude OMVs. This allows much larger amounts of OMV-containing supernatant to be processed in a much shorter time (typically >15 litres in 4 hours, compared to ⁇ 1.5 litres in 10 hours), and avoids the need to redisperse OMVs after centrifugation. Ultracentrifugation allows large quantities of OMVs to be prepared much more easily, and permits the rapid production of OMVs from a strain of choice, for use in vaccine preparation.
  • Identifying the serosubtype of a meningococcal strain of interest can be achieved using standard techniques, based on the class I porin outer membrane protein (PorA). Once a serosubtype has been determined then it is routine to search for other known strains that share the same serosubtype. The other strains may share serogroup and/or serotype (PorB) with the first strain, but this will not necessarily be the case. In general, however, it is preferred to match both serogroup and serosubtype.
  • Meningococcal strains used according to the invention will generally be in one of the following serogroups: A, B, C, W135, or Y.
  • Meningococcal strains used according to the invention will generally not be strains that express multiple serosubtypes ( i . e . multiple PorA alleles). Thus preferred bacteria for use with the invention will express a single PorA sequence i.e. they will be of a single serosubtype.
  • strains in which PorA has been down-regulated e.g. in which the amount of PorA has been reduced by at least 20% (e.g. ⁇ 30%, ⁇ 40%, ⁇ 50%, ⁇ 60%, ⁇ 70%, ⁇ 80%, ⁇ 90%, ⁇ 95%, etc.), or even knocked out, relative to wild-type levels (e.g. relative to strain H44/76, as disclosed in reference 11).
  • Meningococci used according to the invention may be of any serotype (e.g . 1, 2a, 2b, 4, 14, 15, 16, etc.) and/or of any immunotype (e.g. L1; L3,3,7; L10; etc.).
  • the meningococci may be from any suitable lineage, including hyperinvasive and hypervirulent lineages e.g. any of the following seven hypervirulent lineages: subgroup I; subgroup III; subgroup IV-1; ET-5 complex; ET-37 complex; A4 cluster; lineage 3.
  • These lineages have been defined by multilocus enzyme electrophoresis (MLEE), but multilocus sequence typing (MLST) has also been used to classify meningococci [ref. 19] e.g. the ET-37 complex is the ST-11 complex by MLST, the ET-5 complex is ST-32 (ET-5), lineage 3 is ST-41/44, etc.
  • MLEE multilocus enzyme electrophoresis
  • MLST multilocus sequence typing
  • Meningococci may have one or more knockout mutations of gene(s).
  • the bacterium should have low endotoxin (LPS) levels, and this can be achieved by knockout of enzymes involved in LPS biosynthesis.
  • LPS low endotoxin
  • Suitable mutant bacteria are already known e.g. mutant Neisseria [20,21] and mutant Helicobacter [22]. Processes for preparing LPS-depleted outer membranes from Gram-negative bacteria are disclosed in reference 23.
  • the bacterium may over-express (relative to the corresponding wild-type strain) immunogens such as NspA, protein 287 [8], protein 741 [30], TbpA [7], TbpB [7], superoxide dismutase [7], etc.
  • immunogens such as NspA, protein 287 [8], protein 741 [30], TbpA [7], TbpB [7], superoxide dismutase [7], etc.
  • the bacterium may express one or more genes that are not endogenous.
  • the invention may use a recombinant strain that expresses new genes relative to the corresponding wild-type strain. Expression of non-endogenous genes in this way can be achieved by various techniques e.g. chromosomal insertion (as used for introducing multiple PorA genes [24]), knockin mutations, expression from extra-chromosomal vectors (e.g. from plasmids), etc.
  • the bacterium may also include one or more of the knockout and/or over-expression mutations disclosed in references 25 to 30.
  • Preferred genes for down-regulation and/or knockout include: (a) Cps, CtrA, CtrB, CtrC, CtrD, FrpB, GalE, HtrB/MsbB, LbpA, LbpB, LpxK, Opa, Opc, PilC, PorB, SiaA, SiaB, SiaC, SiaD, TbpA, and/or TbpB [25]; (b) CtrA, CtrB, CtrC, CtrD, FrpB, GalE, HtrB/MsbB, LbpA, LbpB, LpxK, Opa, Opc, PhoP, PilC, PmrE, PmrF, SiaA, SiaB, SiaC, SiaD, TbpA, and/or TbpB
  • Example criteria include: serotype (PorB, class 2 or 3 OMP); immunotype (lipopolysaccharide or lipooligosaccharide); geographical origin of the strains; local prevalence of clinical strains; hypervirulent lineage e.g. two or more of subgroups I, III and IV-1, ET-5 complex, ET-37 complex, A4 cluster and lineage 3; multilocus sequence type (MLST) [19]; more than one of the three different NMB1870 variants [31].
  • serotype PorB, class 2 or 3 OMP
  • immunotype lipopolysaccharide or lipooligosaccharide
  • geographical origin of the strains e.g. two or more of subgroups I, III and IV-1, ET-5 complex, ET-37 complex, A4 cluster and lineage 3
  • multilocus sequence type MLST
  • VA-MENGOC-BCTM is an injectable suspension in 0.5ml that contains 50 ⁇ g OMV from strain Cu-385-83 and 50 ⁇ g serogroup C capsular polysaccharide, absorbed to 2mg of an aluminium hydroxide gel, plus 0.01% thiomersal and phosphate buffer.
  • MeNZBTM is also a 0.5ml suspension, and contains 25 ⁇ g OMV from strain NZ98/254 adsorbed on 1.65mg of an aluminium hydroxide adjuvant, with a histidine buffer and sodium chloride.
  • MenBvac is similar to MeNZBTM, but is prepared from strain 44/76.
  • the concentration of OMVs for each subtype will be high enough to provide protective immunity after administration to a patient.
  • the concentration of OMVs in compositions of the invention will generally be between 10 and 500 ⁇ g/ml, preferably between 25 and 200 ⁇ g/ml, and more preferably about 50 ⁇ g/ml or about 100 ⁇ g/ml (expressed in terms of total protein in the OMVs).
  • compositions include OMVs from more than one meningococcal serosubtype
  • the inventors have found that doses for individual serosubtypes can be reduced without loss of efficacy.
  • the dose of the New Zealand and Norwegian subtypes can be halved from 25 ⁇ g to 12.5 ⁇ g in a 0.5ml dose without loss of immunogenicity.
  • composition of the invention with outer membrane vesicles from more than one meningococcal subtype can include less than the 100 ⁇ g/ml that would a priori be expected based on simple mixing of MenBvacTM and MeNZBTM, and less than the 150 ⁇ g/ml that would a priori be expected based on simple mixing of VA-MENGOC-BCTM with either MenBvacTM or MeNZBTM.
  • compositions of the invention will have a combined OMV concentration of no more than 90 ⁇ g/ml ( e.g . no more than 80 ⁇ g/ml, 70 ⁇ g/ml, 60 ⁇ g/ml, 50 ⁇ g/ml, 40 ⁇ g/ml, 30 ⁇ g/ml, or even lower).
  • the concentration of OMVs from each of the subtype is less than 45 ⁇ g/ml (e.g. less than 40 ⁇ g/ml, 35 ⁇ g/ml, 30 ⁇ g/ml, 25 ⁇ g/ml, 20 ⁇ g/ml, or even lower). A concentration of about 25 ⁇ g/ml is preferred.
  • the amount of OMVs for each subtype is preferably within ⁇ 10% of each other i.e. the composition includes substantially equal masses of each OMV. In some circumstances, however, the amount of one subtype may be about x times greater than the amount of another subtype, where x is 2, 3 or 4 e.g. the composition could include a double dose of one subtype relative to other subtype(s) in the composition.
  • compositions containing OMVs are provided.
  • compositions of the invention may be pharmaceutical compositions that include a pharmaceutically acceptable carrier.
  • Such compositions can be prepared using a process comprising the step of admixing OMVs with the pharmaceutically acceptable carrier.
  • Typical 'pharmaceutically acceptable carriers' include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition.
  • Suitable carriers are typically large, slowly metabolised macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and lipid aggregates (such as oil droplets or liposomes).
  • the vaccines may also contain diluents, such as water, saline, glycerol, etc.
  • auxiliary substances such as wetting or emulsifying agents, pH buffering substances, sucrose, and the like, may be present.
  • Sterile pyrogen-free, phosphate-buffered physiologic saline is a typical carrier (e.g . based on water for injection). A thorough discussion of pharmaceutically acceptable excipients is available in reference 32.
  • compositions of the invention will typically be in aqueous form (e.g . solutions or suspensions) rather than in a dried form ( e.g . lyophilised).
  • Aqueous compositions are also suitable for reconstituting other vaccines from a lyophilised form (e.g. a lyophilised Hib conjugate vaccine, a lyophilised meningococcal conjugate vaccine, etc.).
  • the invention provides a kit, which may comprise two vials, or may comprise one ready-filled syringe and one vial, with the aqueous contents of the syringe being used to reactivate the dried contents of the vial prior to injection.
  • compositions of the invention may be presented in vials, or they may be presented in ready-filled syringes.
  • the syringes may be supplied with or without needles.
  • Compositions may be packaged in unit dose form or in multiple dose form.
  • a syringe will generally include a single dose of the composition, whereas a vial may include a single dose or multiple doses. For multiple dose forms, therefore, vials are preferred to pre-filled syringes.
  • Effective dosage volumes can be routinely established, but a typical human dose of the composition has a volume of about 0.5ml e.g. for intramuscular injection.
  • the RIVM OMV-based vaccine was administered in a 0.5ml volume [33] by intramuscular injection to the thigh or upper arm.
  • MeNZBTM is administered in a 0.5ml by intramuscular injection to the anterolateral thigh or the deltoid region of the arm.
  • Similar doses may be used for other delivery routes e.g. an intranasal OMV-based vaccine for atomisation may have a volume of about 100 ⁇ l or about 130 ⁇ l per spray [13], with four sprays administered to give a total dose of about 0.5ml.
  • the pH of the composition is preferably between 6 and 8, and more preferably between 6.5 and 7.5 ( e.g . about 7).
  • the pH of the RIVM OMV-based vaccine is 7.4 [34], and a pH ⁇ 7.5 is preferred for compositions of the invention.
  • Stable pH may be maintained by the use of a buffer e.g. a Tris buffer, a phosphate buffer, or a histidine buffer.
  • Compositions of the invention will generally include a buffer. If a composition comprises an aluminium hydroxide salt, it is preferred to use a histidine buffer [35] e.g. at between 1-10mM, preferably about 5mM.
  • the RIVM OMV-based vaccine maintains pH by using a 10mM Tris/HCl buffer.
  • the composition may be sterile and/or pyrogen-free.
  • Compositions of the invention may be isotonic with respect to humans.
  • compositions of the invention are immunogenic, and are more preferably vaccine compositions.
  • Vaccines according to the invention may either be prophylactic (i.e. to prevent infection) or therapeutic (i.e. to treat infection), but will typically be prophylactic.
  • Immunogenic compositions used as vaccines comprise an immunologically effective amount of antigen(s), as well as any other components, as needed.
  • 'immunologically effective amount' it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, age, the taxonomic group of individual to be treated ( e.g .
  • compositions of the invention will generally be expressed in terms of the amount of protein per dose.
  • a dose of about 0.9 mg protein per ml is typical for OMV-based intranasal vaccines [13].
  • compositions of the invention may be prepared in various forms.
  • the compositions may be prepared as injectables, either as liquid solutions or suspensions.
  • the composition may be prepared for pulmonary administration e.g. as an inhaler, using a fine powder or a spray.
  • the composition may be prepared as a suppository or pessary.
  • the composition may be prepared for nasal, aural or ocular administration e.g. as spray, drops, gel or powder [ e.g . refs 36 & 37].
  • Injectables for intramuscular administration are typical.
  • compositions of the invention may include an antimicrobial, particularly when packaged in multiple dose format.
  • Antimicrobials such as thiomersal and 2-phenoxyethanol are commonly found in vaccines, but it is preferred to use either a mercury-free preservative or no preservative at all.
  • compositions of the invention may comprise detergent e.g. a Tween (polysorbate), such as Tween 80.
  • Detergents are generally present at low levels e.g. ⁇ 0.01%.
  • compositions of the invention may include residual detergent (e.g . deoxycholate) from OMV preparation.
  • the amount of residual detergent is preferably less than 0.4 ⁇ g (more preferably less than 0.2 ⁇ g) for every ⁇ g of protein.
  • compositions of the invention may include LPS from meningococcus.
  • the amount of LPS is preferably less than 0.12 ⁇ g (more preferably less than 0.05 ⁇ g) for every ⁇ g of protein.
  • Compositions of the invention may include sodium salts (e.g . sodium chloride) to give tonicity.
  • a concentration of 10 ⁇ 2 mg/ml NaCl is typical.
  • the concentration of sodium chloride is preferably about 9 mg/ml.
  • compositions of the invention will generally be administered in conjunction with other immunoregulatory agents.
  • compositions will usually include one or more adjuvants, and the invention provides a process for preparing a composition of the invention, comprising the step of admixing vesicles of the invention with an adjuvant e.g. in a pharmaceutically acceptable carrier.
  • adjuvants include, but are not limited to:
  • Mineral containing compositions suitable for use as adjuvants in the invention include mineral salts, such as aluminium salts and calcium salts.
  • the invention includes mineral salts such as hydroxides (e.g. oxyhydroxides), phosphates (e.g. hydroxyphosphates, orthophosphates), sulphates, etc. [ e.g. see chapters 8 & 9 of ref. 38], or mixtures of different mineral compounds, with the compounds taking any suitable form (e.g. gel, crystalline, amorphous, etc.), and with adsorption being preferred.
  • the mineral containing compositions may also be formulated as a particle of metal salt [39].
  • a typical aluminium phosphate adjuvant is amorphous aluminium hydroxyphosphate with PO 4 /Al molar ratio between 0.84 and 0.92, included at 0.6mg Al 3+ /ml.
  • Adsorption with a low dose of aluminium phosphate may be used e.g. between 50 and 100 ⁇ g Al 3+ per dose.
  • an aluminium phosphate it used and it is desired not to adsorb an antigen to the adjuvant, this is favoured by including free phosphate ions in solution ( e.g. by the use of a phosphate buffer).
  • the RIVM vaccine was tested with adsorption to either an aluminium phosphate or an aluminium hydroxide adjuvant, and the aluminium phosphate adjuvant was found to give superior results [34].
  • the MeNZBTM, MenBvacTM and VA-MENINGOC-BCTM products all include an aluminium hydroxide adjuvant.
  • a typical dose of aluminium adjuvant is about 3.3 mg/ml (expressed as Al 3+ concentration).
  • Oil emulsion compositions suitable for use as adjuvants in the invention include squalene-water emulsions, such as MF59 [Chapter 10 of ref. 38; see also ref. 40] (5% Squalene, 0.5% Tween 80, and 0.5% Span 85, formulated into submicron particles using a microfluidizer). Complete Freund's adjuvant (CFA) and incomplete Freund's adjuvant (IFA) may also be used.
  • CFA Complete Freund's adjuvant
  • IFA incomplete Freund's adjuvant
  • Saponin formulations may also be used as adjuvants in the invention.
  • Saponins are a heterologous group of sterol glycosides and triterpenoid glycosides that are found in the bark, leaves, stems, roots and even flowers of a wide range of plant species. Saponin from the bark of the Quillaia saponaria Molina tree have been widely studied as adjuvants. Saponin can also be commercially obtained from Smilax ornata (sarsaprilla), Gypsophilla paniculata (brides veil), and Saponaria officianalis (soap root).
  • Saponin adjuvant formulations include purified formulations, such as QS21, as well as lipid formulations, such as ISCOMs. QS21 is marketed as StimulonTM.
  • Saponin compositions have been purified using HPLC and RP-HPLC. Specific purified fractions using these techniques have been identified, including QS7, QS17, QS18, QS21, QH-A, QH-B and QH-C.
  • the saponin is QS21.
  • a method of production of QS21 is disclosed in ref. 41.
  • Saponin formulations may also comprise a sterol, such as cholesterol [42].
  • ISCOMs immunostimulating complexes
  • phospholipid such as phosphatidylethanolamine or phosphatidylcholine.
  • Any known saponin can be used in ISCOMs.
  • the ISCOM includes one or more of QuilA, QHA and QHC.
  • ISCOMs are further described in refs. 42-44.
  • the ISCOMS may be devoid of extra detergent [45].
  • Virosomes and virus-like particles can also be used as adjuvants in the invention.
  • These structures generally contain one or more proteins from a virus optionally combined or formulated with a phospholipid. They are generally non-pathogenic, non-replicating and generally do not contain any of the native viral genome.
  • the viral proteins may be recombinantly produced or isolated from whole viruses.
  • viral proteins suitable for use in virosomes or VLPs include proteins derived from influenza virus (such as HA or NA), Hepatitis B virus (such as core or capsid proteins), Hepatitis E virus, measles virus, Sindbis virus, Rotavirus, Foot-and-Mouth Disease virus, Retrovirus, Norwalk virus, human Papilloma virus, HIV, RNA-phages, Qß-phage (such as coat proteins), GA-phage, fr-phage, AP205 phage, and Ty (such as retrotransposon Ty protein p1).
  • influenza virus such as HA or NA
  • Hepatitis B virus such as core or capsid proteins
  • Hepatitis E virus measles virus
  • Sindbis virus Rotavirus
  • Foot-and-Mouth Disease virus Retrovirus
  • Norwalk virus Norwalk virus
  • human Papilloma virus HIV
  • RNA-phages Qß-phage (such as coat proteins)
  • GA-phage f-phage
  • Adjuvants suitable for use in the invention include bacterial or microbial derivatives such as non-toxic derivatives of enterobacterial lipopolysaccharide (LPS), Lipid A derivatives, immunostimulatory oligonucleotides and ADP-ribosylating toxins and detoxified derivatives thereof.
  • LPS enterobacterial lipopolysaccharide
  • Lipid A derivatives Lipid A derivatives
  • immunostimulatory oligonucleotides and ADP-ribosylating toxins and detoxified derivatives thereof.
  • Non-toxic derivatives of LPS include monophosphoryl lipid A (MPL) and 3-O-deacylated MPL (3dMPL).
  • 3dMPL is a mixture of 3 de-O-acylated monophosphoryl lipid A with 4, 5 or 6 acylated chains.
  • a preferred "small particle" form of 3 De-O-acylated monophosphoryl lipid A is disclosed in ref. 55. Such "small particles" of 3dMPL are small enough to be sterile filtered through a 0.22 ⁇ m membrane [55].
  • Other non-toxic LPS derivatives include monophosphoryl lipid A mimics, such as aminoalkyl glucosaminide phosphate derivatives e.g. RC-529 [56,57].
  • Lipid A derivatives include derivatives of lipid A from Escherichia coli such as OM-174.
  • OM-174 is described for example in refs. 58 & 59.
  • Immunostimulatory oligonucleotides suitable for use as adjuvants in the invention include nucleotide sequences containing a CpG motif (a dinucleotide sequence containing an unmethylated cytosine linked by a phosphate bond to a guanosine). Double-stranded RNAs and oligonucleotides containing palindromic or poly(dG) sequences have also been shown to be immunostimulatory.
  • the CpG's can include nucleotide modifications/analogs such as phosphorothioate modifications and can be double-stranded or single-stranded.
  • References 60, 61 and 62 disclose possible analog substitutions e.g. replacement of guanosine with 2'-deoxy-7-deazaguanosine.
  • the adjuvant effect of CpG oligonucleotides is further discussed in refs. 63-68.
  • the CpG sequence may be directed to TLR9, such as the motif GTCGTT or TTCGTT [69].
  • the CpG sequence may be specific for inducing a Th1 immune response, such as a CpG-A ODN, or it may be more specific for inducing a B cell response, such a CpG-B ODN.
  • CpG-A and CpG-B ODNs are discussed in refs. 70-72.
  • the CpG is a CpG-A ODN.
  • the CpG oligonucleotide is constructed so that the 5' end is accessible for receptor recognition.
  • two CpG oligonucleotide sequences may be attached at their 3' ends to form "immunomers". See, for example, refs. 69 & 73-75.
  • Bacterial ADP-ribosylating toxins and detoxified derivatives thereof may be used as adjuvants in the invention.
  • the protein is derived from E.coli (E.coli heat labile enterotoxin "LT"), cholera ("CT"), or pertussis ("PT").
  • LT E.coli heat labile enterotoxin
  • CT cholera
  • PT pertussis
  • the use of detoxified ADP-ribosylating toxins as mucosal adjuvants is described in ref. 76 and as parenteral adjuvants in ref. 77.
  • the toxin or toxoid is preferably in the form of a holotoxin, comprising both A and B subunits.
  • the A subunit contains a detoxifying mutation; preferably the B subunit is not mutated.
  • the adjuvant is a detoxified LT mutant such as LT-K63, LT-R72, and LT-G192.
  • LT-K63 LT-K63
  • LT-R72 LT-G192.
  • ADP-ribosylating toxins and detoxified derivatives thereof, particularly LT-K63 and LT-R72, as adjuvants can be found in refs. 78-85.
  • Numerical reference for amino acid substitutions is preferably based on the alignments of the A and B subunits of ADP-ribosylating toxins set forth in ref. 86, specifically incorporated herein by reference in its entirety.
  • Human immunomodulators suitable for use as adjuvants in the invention include cytokines, such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12 [87], etc.) [88], interferons (e.g. interferon-?), macrophage colony stimulating factor, and tumor necrosis factor.
  • cytokines such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12 [87], etc.) [88], interferons (e.g. interferon-?), macrophage colony stimulating factor, and tumor necrosis factor.
  • Bioadhesives and mucoadhesives may also be used as adjuvants in the invention.
  • Suitable bioadhesives include esterified hyaluronic acid microspheres [89] or mucoadhesives such as cross-linked derivatives of poly(acrylic acid), polyvinyl alcohol, polyvinyl pyrollidone, polysaccharides and carboxymethylcellulose. Chitosan and derivatives thereof may also be used as adjuvants in the invention [90].
  • Microparticles may also be used as adjuvants in the invention.
  • Microparticles i.e . a particle of ⁇ 100nm to ⁇ 150 ⁇ m in diameter, more preferably ⁇ 200nm to ⁇ 30 ⁇ m in diameter, and most preferably ⁇ 500nm to ⁇ 10 ⁇ m in diameter
  • materials that are biodegradable and non-toxic e.g. a poly(a-hydroxy acid), a polyhydroxybutyric acid, a polyorthoester, a polyanhydride, a polycaprolactone, etc.
  • a negatively-charged surface e.g. with SDS
  • a positively-charged surface e.g. with a cationic detergent, such as CTAB
  • liposome formulations suitable for use as adjuvants are described in refs. 91-93.
  • Adjuvants suitable for use in the invention include polyoxyethylene ethers and polyoxyethylene esters [94]. Such formulations further include polyoxyethylene sorbitan ester surfactants in combination with an octoxynol [95] as well as polyoxyethylene alkyl ethers or ester surfactants in combination with at least one additional non-ionic surfactant such as an octoxynol [96].
  • Preferred polyoxyethylene ethers are selected from the following group: polyoxyethylene-9-lauryl ether (laureth 9), polyoxyethylene-9-steoryl ether, polyoxytheylene-8-steoryl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether.
  • PCPP Polyphosphazene
  • PCPP formulations are described, for example, in refs. 97 and 98.
  • muramyl peptides suitable for use as adjuvants in the invention include N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), and N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2-dipalmitoyl- sn -glycero-3-hydroxyphosphoryloxy)-ethylamine MTP-PE).
  • thr-MDP N-acetyl-muramyl-L-threonyl-D-isoglutamine
  • nor-MDP N-acetyl-normuramyl-L-alanyl-D-isoglutamine
  • imidazoquinolone compounds suitable for use adjuvants in the invention include Imiquamod and its homologues (e,g . "Resiquimod 3M"), described further in refs. 99 and 100.
  • the invention may also comprise combinations of aspects of one or more of the adjuvants identified above.
  • the following adjuvant compositions may be used in the invention: (1) a saponin and an oil-in-water emulsion [101]; (2) a saponin (e.g. QS21) + a non-toxic LPS derivative (e.g. 3dMPL) [102]; (3) a saponin (e.g. QS21) + a non-toxic LPS derivative (e.g. 3dMPL) + a cholesterol; (4) a saponin ( e.g .
  • RibiTM adjuvant system (RAS), (Ribi Immunochem) containing 2% squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (DetoxTM); and (8) one or more mineral salts (such as an aluminum salt) + a non-toxic derivative of LPS (such as 3dMPL).
  • MPL monophosphorylipid A
  • TDM trehalose dimycolate
  • CWS cell wall skeleton
  • LPS such as 3dMPL
  • aluminium salt adjuvants is particularly preferred, and antigens are generally adsorbed to such salts. It is possible in compositions of the invention to adsorb some antigens to an aluminium hydroxide but to have other antigens in association with an aluminium phosphate. In general, however, it is preferred to use only a single salt e.g. a hydroxide or a phosphate, but not both. Not all vesicles need to be adsorbed i.e. some or all can be free in solution.
  • the invention also provides a method for raising an immune response in a mammal, comprising administering a pharmaceutical composition of the invention to the mammal.
  • the immune response is preferably protective and preferably involves antibodies.
  • the method may raise a booster response in a patient that has already been primed against N.meningitidis.
  • Subcutaneous and intranasal prime/boost regimes for OMVs are disclosed in ref. 105.
  • the mammal is preferably a human.
  • the human is preferably a child (e . g. a toddler or infant) or a teenager; where the vaccine is for therapeutic use, the human is preferably an adult.
  • a vaccine intended for children may also be administered to adults e.g. to assess safety, dosage, immunogenicity, etc.
  • the invention also provides OMV compositions and mixtures of the invention for use as a medicament.
  • the medicament is preferably able to raise an immune response in a mammal (i.e. it is an immunogenic composition) and is more preferably a vaccine.
  • the invention also provides the use of OMV compositions and mixtures of the invention in the manufacture of a medicament for raising an immune response in a mammal.
  • N.meningitidis e.g. bacterial (or, more specifically, meningococcal) meningitis, or septicemia.
  • One way of checking efficacy of therapeutic treatment involves monitoring Neisserial infection after administration of the composition of the invention.
  • One way of checking efficacy of prophylactic treatment involves monitoring immune responses against OMV antigens after administration of the composition.
  • Immunogenicity of compositions of the invention can be determined by administering them to test subjects (e.g. children 12-16 months age, or animal models [106]) and then determining standard parameters including serum bactericidal antibodies (SBA) and ELISA titres (GMT). These immune responses will generally be determined around 4 weeks after administration of the composition, and compared to values determined before administration of the composition.
  • SBA serum bactericidal antibodies
  • GTT ELISA titres
  • a SBA increase of at least 4-fold or 8-fold is preferred. Where more than one dose of the composition is administered, more than one post-administration determination may be made.
  • compositions of the invention can confer an antibody titre in a patient that is superior to the criterion for seroprotection for an acceptable percentage of human subjects.
  • Antigens with an associated antibody titre above which a host is considered to be seroconverted against the antigen are well known, and such titres are published by organisations such as WHO.
  • Preferably more than 80% of a statistically significant sample of subjects is seroconverted, more preferably more than 90%, still more preferably more than 93% and most preferably 96-100%.
  • compositions of the invention will generally be administered directly to a patient.
  • Direct delivery may be accomplished by parenteral injection (e.g. subcutaneously, intraperitoneally, intravenously, intramuscularly, or to the interstitial space of a tissue), or by rectal, oral, vaginal, topical, transdermal, intranasal, ocular, aural, pulmonary or other mucosal administration.
  • Intramuscular administration to the thigh or the upper arm is preferred.
  • Injection may be via a needle (e.g. a hypodermic needle), but needle-free injection may alternatively be used.
  • a typical intramuscular dose is 0.5 ml.
  • Dosage treatment can be a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunisation schedule and/or in a booster immunisation schedule. A primary dose schedule may be followed by a booster dose schedule. Suitable timing between priming doses (e.g. between 4-16 weeks), and between priming and boosting, can be routinely determined.
  • the OMV-based RIVM vaccine was tested using a 3- or 4-dose primary schedule, with vaccination at 0. 2 & 8 or 0, 1, 2 & 8 months. MeNZBTM is administered as three doses at six week intervals.
  • the invention may involve administration of vesicles from more than one serosubtype of N.meningitidis, either separately or in admixture.
  • the invention may be used to elicit systemic and/or mucosal immunity.
  • compositions of the invention are able to induce serum bactericidal antibody responses after being administered to a subject. These responses are conveniently measured in mice and are a standard indicator of vaccine efficacy [ e.g . see end-note 14 of reference 166].
  • Serum bactericidal activity measures bacterial killing mediated by complement, and can be assayed using human or baby rabbit complement. WHO standards require a vaccine to induce at least a 4-fold rise in SBA in more than 90% of recipients.
  • MeNZBTM elicits a 4-fold rise in SBA 4-6 weeks after administration of the third dose.
  • compositions of the invention may induce bactericidal antibody responses against more than one hypervirulent lineage of meningococcus.
  • they can preferably induce bactericidal responses against two or three of the following three hypervirulent lineages: (i) cluster A4; (ii) ET5 complex; and (iii) lineage 3.
  • They may additionally induce bactericidal antibody responses against one or more of hypervirulent lineages subgroup I, subgroup III, subgroup IV-1 or ET-37 complex, and against other lineages e.g. hyperinvasive lineages.
  • the antibodies induced by the composition are bactericidal against at least 50% (e.g. 60%, 70%, 80%, 90% or more) of the group.
  • Preferred groups of strains will include strains isolated in at least four of the following countries: GB, AU, CA, NO, IT, US, NZ, NL, BR, and CU.
  • the serum preferably has a bactericidal titre of at least 1024 ( e.g. 2 10 , 2 11 , 2 12 , 2 13 , 2 14 , 2 15 , 2 16 , 2 17 , 2 18 or higher, preferably at least 2 14 ) e.g. the serum is able to kill at least 50% of test bacteria of a particular strain when diluted 1/1024, as described in reference 166.
  • compositions can induce bactericidal responses against the following strains of serogroup B meningococcus: (i) from cluster A4, strain 961-5945 (B:2b:P1.21,16) and/or strain G2136 (B:-); (ii) from ET-5 complex, strain MC58 (B:15:P1.7,16b) and/or strain 44/76 (B:15:P1.7,16); (iii) from lineage 3, strain 394/98 (B:4:P1.4) and/or strain BZ198 (B:NT:-). More preferred compositions can induce bactericidal responses against strains 961-5945, 44/76 and 394/98.
  • Strains 961-5945 and G2136 are both Neisseria MLST reference strains [ids 638 & 1002 in ref. 107].
  • Strain MC58 is widely available ( e.g . ATCC BAA-335) and was the strain sequenced in reference 108.
  • Strain 44/76 has been widely used and characterised (e.g. ref. 109) and is one of the Neisseria MLST reference strains [id 237 in ref. 107; row 32 of Table 2 in ref. 19].
  • Strain 394/98 was originally isolated in New Zealand in 1998, and there have been several published studies using this strain ( e.g . refs. 110 & 111).
  • Strain BZ198 is another MLST reference strain [id 409 in ref. 107; row 41 of Table 2 in ref. 19].
  • compositions of the invention may include further non-vesicular antigens.
  • the composition may comprise one or more of the following further antigens:
  • a saccharide or carbohydrate antigen is used, it is preferably conjugated to a carrier in order to enhance immunogenicity. Conjugation of H.influenzae B, meningococcal and pneumococcal saccharide antigens is well known.
  • Toxic protein antigens may be detoxified where necessary (e . g . detoxification of pertussis toxin by chemical and/or genetic means [122]).
  • diphtheria antigen is included in the composition it is preferred also to include tetanus antigen and pertussis antigens. Similarly, where a tetanus antigen is included it is preferred also to include diphtheria and pertussis antigens. Similarly, where a pertussis antigen is included it is preferred also to include diphtheria and tetanus antigens. DTP combinations are thus preferred.
  • Saccharide antigens are preferably in the form of conjugates.
  • Preferred carrier proteins for conjugates are bacterial toxins or toxoids, such as diphtheria toxoid or tetanus toxoid.
  • the CRM197 mutant of diphtheria toxin [143-145] is a particularly preferred carrier for, as is a diphtheria toxoid.
  • suitable carrier proteins include the N.meningitidis outer membrane protein [146], synthetic peptides [147,148], heat shock proteins [149,150], pertussis proteins [151,152], cytokines [153], lymphokines [153], hormones [153], growth factors [153], artificial proteins comprising multiple human CD4 + T cell epitopes from various pathogen-derived antigens [154], protein D from H.influenzae [155,156], pneumococcal surface protein PspA [157], pneumolysin [158], iron-uptake proteins [159], toxin A or B from C.difficile [160], etc.
  • Antigens in the composition will typically be present at a concentration of at least 1 ⁇ g/ml each. In general, the concentration of any given antigen will be sufficient to elicit an immune response against that antigen.
  • nucleic acid encoding the antigen may be used.
  • Protein components of the compositions of the invention may thus be replaced by nucleic acid (preferably DNA e.g. in the form of a plasmid) that encodes the protein.
  • compositions include meningococcal OMVs as described above, plus a conjugated capsular saccharide from one or more (i.e. 1, 2, 3 or 4) of meningococcal serogroups A, C, W135 and Y.
  • Specific meningococcal protein antigens may also be added to supplement the OMV compositions.
  • a protein antigen such as disclosed in refs. 30 & 161 to 169 may be added.
  • a small number of defined antigens may be added (a mixture of 10 or fewer ( e.g. 9, 8, 7, 6, 5, 4, 3, 2) purified antigens).
  • Preferred additional immunogenic polypeptides for use with the invention are those disclosed in reference 169: (1) a 'NadA' protein; (2) a '741' protein; (3) a '936' protein; (4) a '953' protein; and (5) a '287' protein.
  • meningococcal antigens include transferrin binding proteins (e.g . TbpA and TbpB) and/or Cu,Zn-superoxide dismutase [7].
  • Other possible supplementing meningococcal antigens include proteins comprising one of the following amino acid sequences: SEQ ID NO:650 from ref. 161; SEQ ID NO:878 from ref. 161; SEQ ID NO:884 from ref. 161; SEQ ID NO:4 from ref. 162; SEQ ID NO:598 from ref. 163; SEQ ID NO:818 from ref. 163; SEQ ID NO:864 from ref. 163; SEQ ID NO:866 from ref. 163; SEQ ID NO:1196 from ref.
  • polypeptide comprising an amino acid sequence which: (a) has 50% or more identity (e.g. 60%, 70%, 80%, 90%, 95%, 99% or more) to said sequences; and/or (b) comprises a fragment of at least n consecutive amino acids from said sequences, wherein n is 7 or more ( eg. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more).
  • Preferred fragments for (b) comprise an epitope from the relevant sequence. More than one (e.g. 2, 3, 4, 5, 6) of these polypeptides may be included.
  • the meningococcal antigens transferrin binding protein and/or Hsf protein may also be added [170].
  • Supplementation of the OMVs by defined meningococcal antigens in this way is particularly useful where the OMVs are from a serosubtype P1.7b,4 meningococcus or a serosubtype P1.7,16 meningococcus. Supplementation of a mixture of OMVs from both these serosubtypes is preferred.
  • the invention provides a composition comprising OMVs prepared from a meningococcus having one of the following subtypes: P1.2; P1.2,5; P1.4; P1.5; P1.5,2; P1.5,c; P1.5c,10; P1.7,16; P1.7,16b; P1.7h,4; P1.9; P1.15; P1.9,15; P1.12,13; P1.13; P1.14; P1.21,16; P1.22,14
  • the meningococcus is preferably in serogroup B.
  • OMVs are suitable for use with the invention, as described above.
  • the invention provides a method for administering a meningococcal OMV vaccine to a patient, wherein a first dose is given at time zero, a second and a third dose are given over the next two months, and a fourth dose is given between 11 and 13 months after time zero.
  • the invention also provides a method for administering meningococcal OMV vaccines to a patient, wherein a first dose is given at time zero, a second and a third dose are given over the next two months, and a fourth dose is given between 11 and 13 months after time zero, and wherein (a) the first, second and third doses comprise OMVs with the same serosubtype as each other, and (b) the fourth dose comprises OMVs with a different serosubtype from the first three doses.
  • the fourth dose may contain OMVs only with a different serosubtype from the first three doses, or it may contain two types of OMV, one with a different serosubtype from the first three doses and one with the same subtype.
  • the first, second and third doses are preferably given at intervals of between 6 and 8 weeks.
  • the fourth dose is preferably given about 1 year after time zero.
  • the patient preferably receives the same quantity of vaccine at each of the four doses.
  • the OMVs are preferably serosubtype P1.7b,4 and/or P1.7,16.
  • the invention also provides a method for administering a meningococcal vaccine to a patient, wherein: (a) the vaccine comprises meningococcal OMVs having a first serosubtype; (b) the patient has previously received a different OMV vaccine having a second serosubtype, with the first dose of the different OMV vaccine was given more than 11 months before this method.
  • the invention also the use of meningococcal OMVs having a first serosubtype in the manufacture of a medicament for immunising against meningococcal meningitis, wherein the medicament is for administration to a patient that has been pre-immunised with OMVs having a second serosubtype.
  • OMV administration may also follow immunisation with a meningococcal conjugate vaccine.
  • the invention provides the use of meningococcal OMVs from a first meningococcal serogroup in the manufacture of a medicament for immunising against at least meningococcal meningitis, wherein the medicament is for administration to a patient that has been pre-immunised with a conjugated capsular saccharide from a second meningococcal serosubtype.
  • a meningococcal vaccine to a patient, wherein: (a) the vaccine comprises meningococcal OMVs having a first serogroup; (b) the patient has previously received a conjugated capsular saccharide from a second meningococcal serogroup.
  • the pre-immunisation may have taken place more than 6 months before the OMVs are administered (e.g. more than 11 months).
  • a patient may receive conjugated saccharides at time zero, and then OMVs 11 months later.
  • the pre-immunisation with a meningococcal saccharide is preferably with at least serogroup C, but may be with more than one serogroup e.g. with both A+C, with A+C+Y, with A+C+W135+Y, etc.
  • the first serogroup is preferably serogroup B.
  • the OMVs may be administered at the same time as meningococcal conjugates i.e. the patient is receiving a further dose of meningococcal conjugate at the same time as receiving the OMVs.
  • the patient may or may not have been pre-immunised with OMVs from the first serogroup.
  • the patient may have been pre-immunised with a H.influenzae type b capsular saccharide conjugate.
  • the patient may have been pre-immunised with a diphtheria toxoid and a tetanus toxoid.
  • composition comprising X may consist exclusively of X or may include something additional e.g. X + Y.
  • MeNZBTM Dosing studies for the MeNZBTM product were performed on healthy adults. Adults received three doses of either 25 ⁇ g or 50 ⁇ g of OMV, given at 6 week intervals through a 25mm 23-gauge needle. A four-fold rise in SBA titre against the vaccine strain, measured 4 to 6 weeks after the third vaccination, was seen in 100% of patients receiving the 25 ⁇ g dose but, surprisingly, was seen in only 87% of patients receiving the higher dose. The proportion of responders was also higher at the lower dosage after the second dose (87% vs. 78%). The lower dose was therefore selected for further use, thereby permitting stocks of vaccine to provide for immunisation of twice as many patients.
  • OMVs prepared from Norwegian strain H44/76 have previously been described and administered to human patients in phase I, II and III clinical trials. They form the basis of the MenBvacTM product. Similarly, OMVs prepared from New Zealand strain HZ98/254 form the basis of the MeNZBTM product. Their safety and efficacy have been confirmed.
  • Both MeNZBTM and MenBvacTM include OMVs at a concentration of 50 ⁇ g/ml (measured as amount of protein) in a 0.5ml dose.
  • concentration of each OMV at 50 ⁇ g/ml.
  • the inventors chose to keep the total OMV dose the same as in the two monovalent products (50 ⁇ g/ml) and instead to halve the amount of each OMV i.e. to use 25 ⁇ g/ml of each serosubtype.
  • the combined vaccine is administered to patients who have previously received either MeNZBTM or MenBvacTM.
  • the combination is given 1 year after the initial dose of the monovalent OMVs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
EP05782411.2A 2004-09-03 2005-09-05 Improvements relating to meningococcal outer membrane vesicles Active EP1784213B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0419627.5A GB0419627D0 (en) 2004-09-03 2004-09-03 Immunogenic bacterial vesicles with outer membrane proteins
PCT/IB2005/002801 WO2006024946A2 (en) 2004-09-03 2005-09-05 Improvements relating to meningococcal outer membrane vesicles

Publications (2)

Publication Number Publication Date
EP1784213A2 EP1784213A2 (en) 2007-05-16
EP1784213B1 true EP1784213B1 (en) 2014-10-29

Family

ID=33156002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05782411.2A Active EP1784213B1 (en) 2004-09-03 2005-09-05 Improvements relating to meningococcal outer membrane vesicles

Country Status (13)

Country Link
US (1) US8808711B2 (ru)
EP (1) EP1784213B1 (ru)
JP (2) JP2008511608A (ru)
CN (2) CN101115501A (ru)
AU (1) AU2005278896B2 (ru)
BR (1) BRPI0514883A (ru)
CA (1) CA2578588A1 (ru)
ES (1) ES2527859T3 (ru)
GB (1) GB0419627D0 (ru)
MX (1) MX2007002633A (ru)
NZ (1) NZ553521A (ru)
RU (1) RU2420312C2 (ru)
WO (1) WO2006024946A2 (ru)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9513371D0 (en) * 1995-06-30 1995-09-06 Biocine Spa Immunogenic detoxified mutant toxins
EP2270172B1 (en) 1999-05-19 2016-01-13 GlaxoSmithKline Biologicals SA Combination neisserial compositions
GB9928196D0 (en) 1999-11-29 2000-01-26 Chiron Spa Combinations of B, C and other antigens
GB0316560D0 (en) 2003-07-15 2003-08-20 Chiron Srl Vesicle filtration
GB0408977D0 (en) * 2004-04-22 2004-05-26 Chiron Srl Immunising against meningococcal serogroup Y using proteins
GB0424092D0 (en) 2004-10-29 2004-12-01 Chiron Srl Immunogenic bacterial vesicles with outer membrane proteins
US10828361B2 (en) * 2006-03-22 2020-11-10 Glaxosmithkline Biologicals Sa Regimens for immunisation with meningococcal conjugates
TR201807355T4 (tr) 2006-03-22 2018-06-21 Glaxosmithkline Biologicals Sa Meningokokkal konjugatlarla immünizasyon rejimleri.
BRPI0818545A2 (pt) 2007-10-19 2017-07-04 Novartis Ag formulações de vacinais meningocócicas
SI2268618T1 (sl) 2008-03-03 2015-09-30 Novartis Ag Spojine in sestavki kot modulatorji aktivnosti TLR
US9387239B2 (en) * 2008-05-30 2016-07-12 U.S. Army Medical Research And Materiel Command Meningococcal multivalent native outer membrane vesicle vaccine, methods of making and use thereof
GB0822634D0 (en) * 2008-12-11 2009-01-21 Novartis Ag Meningitis vaccines
CN102300585A (zh) 2008-12-17 2011-12-28 诺华有限公司 包含血红蛋白受体的脑膜炎球菌疫苗
CN102762226A (zh) 2009-06-10 2012-10-31 诺华有限公司 含苯并萘啶的疫苗
EP2470205A1 (en) 2009-08-27 2012-07-04 Novartis AG Adjuvant comprising aluminium, oligonucleotide and polycation
JO3257B1 (ar) 2009-09-02 2018-09-16 Novartis Ag مركبات وتركيبات كمعدلات لفاعلية tlr
NZ598654A (en) 2009-09-02 2014-05-30 Novartis Ag Immunogenic compositions including tlr activity modulators
WO2011057148A1 (en) 2009-11-05 2011-05-12 Irm Llc Compounds and compositions as tlr-7 activity modulators
WO2011084549A1 (en) 2009-12-15 2011-07-14 Novartis Ag Homogeneous suspension of immunopotentiating compounds and uses thereof
JP2013522287A (ja) 2010-03-18 2013-06-13 ノバルティス アーゲー 血清群b髄膜炎菌のためのアジュバント添加ワクチン
WO2011119759A1 (en) 2010-03-23 2011-09-29 Irm Llc Compounds (cystein based lipopeptides) and compositions as tlr2 agonists used for treating infections, inflammations, respiratory diseases etc.
US9259462B2 (en) 2010-09-10 2016-02-16 Glaxosmithkline Biologicals Sa Developments in meningococcal outer membrane vesicles
WO2012153302A1 (en) 2011-05-12 2012-11-15 Novartis Ag Antipyretics to enhance tolerability of vesicle-based vaccines
BR112014019166A2 (pt) 2012-02-02 2017-07-04 Novartis Ag promotores para expressão aumentada de proteína em meningococos
ES2750366T3 (es) 2012-03-08 2020-03-25 Glaxosmithkline Biologicals Sa Ensayo de potencia in vitro para vacunas meningocócicas basadas en proteína
CN105307673B (zh) 2012-04-06 2021-04-02 康奈尔大学 用于稳健的体液及细胞免疫应答的亚单位疫苗递送平台
RU2644340C2 (ru) 2012-06-14 2018-02-08 Новартис Аг Вакцины для менингококка серогруппы х
CA2882619A1 (en) 2012-09-06 2014-03-13 Novartis Ag Combination vaccines with serogroup b meningococcus and d/t/p
CN104602702B (zh) 2012-09-18 2021-08-27 葛兰素史密丝克莱恩生物有限公司 外膜囊泡
JP2016507543A (ja) 2013-02-07 2016-03-10 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム 小胞を含む医薬組成物
LT3110442T (lt) 2014-02-28 2020-12-28 Glaxosmithkline Biologicals Sa Modifikuoti meningokokinio fhbp polipeptidai
SG10201900041VA (en) * 2014-07-17 2019-02-27 Glaxosmithkline Biologicals Sa Meningococcus vaccines
AU2015289192A1 (en) 2014-07-17 2017-02-02 Glaxosmithkline Biologicals S.A. Modified meningococcal fHbp polypeptides
KR101742236B1 (ko) * 2014-10-29 2017-05-31 인하대학교 산학협력단 쯔쯔가무시병에 대한 면역 조성물 및 이의 제조방법
CN105669964B (zh) * 2016-03-04 2017-11-21 博瑞生物医药(苏州)股份有限公司 卵巢癌特异靶向的生物可降解双亲性聚合物、由其制备的聚合物囊泡及应用
EP3506933A2 (en) 2016-09-02 2019-07-10 GlaxoSmithKline Biologicals SA Vaccines for neisseria gonorrhoeae
GB202115077D0 (en) 2021-10-21 2021-12-08 Glaxosmithkline Biologicals Sa Assay

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2848965A1 (de) 1978-11-11 1980-05-22 Behringwerke Ag Verfahren zur herstellung von membranproteinen aus neisseria meningitidis und diese enthaltende vaccine
ES2145072T3 (es) 1993-05-13 2000-07-01 American Cyanamid Co Preparacion y usos de proteinas de membranas externas carentes de los de cocos gramnegativos.
DK0710118T3 (da) 1994-04-20 1999-08-09 Us Army Vaccine mod infektioner med gram-negative bakterier
US6180111B1 (en) 1995-05-18 2001-01-30 University Of Maryland Vaccine delivery system
PL338146A1 (en) 1997-07-17 2000-09-25 North American Vaccine Immunogenic complex combinations consisting of meningococcal porine of b group and h. influenzae polysaccharide
NZ508771A (en) 1998-05-29 2003-08-29 Chiron Corp Neisseria meningitidis vaccine comprising NmC oligosaccharides, NmB outer membrane proteins, and a carrier
EP1741443B1 (en) 1998-05-29 2014-05-21 Novartis Vaccines and Diagnostics, Inc. Combination meningitidis B/C vaccines
GB9918319D0 (en) * 1999-08-03 1999-10-06 Smithkline Beecham Biolog Vaccine composition
AU1917501A (en) 1999-11-12 2001-06-06 University Of Iowa Research Foundation, The Control of neisserial membrane synthesis
NO20002828D0 (no) 2000-06-02 2000-06-02 Statens Inst For Folkehelse Proteinholdig vaksine mot Neisseria meningtidis serogruppe samt fremgangsmÕte ved fremstilling derav
CA2416137C (en) * 2000-07-27 2013-01-29 Dan Granoff Vaccines for broad spectrum protection against diseases caused by neisseria meningitidis
CN100350972C (zh) * 2001-07-26 2007-11-28 启龙股份公司 含有铝佐剂和组氨酸的疫苗
GB0130123D0 (en) 2001-12-17 2002-02-06 Microbiological Res Agency Outer membrane vesicle vaccine and its preparation
GB0213622D0 (en) * 2002-06-13 2002-07-24 Glaxosmithkline Biolog Sa Vaccine Corporation
PT2255826E (pt) * 2002-08-02 2016-06-08 Glaxosmithkline Biologicals Sa Composições de vacina de neisseria compreendendo uma combinação de antigénios
GB0220194D0 (en) * 2002-08-30 2002-10-09 Chiron Spa Improved vesicles
GB0227346D0 (en) * 2002-11-22 2002-12-31 Chiron Spa 741
AU2003288558A1 (en) * 2002-12-16 2004-07-09 Nasjonalt Folkehelseinstitutt Meningococcal vaccine based on outer membrane proteins porb2 and pora
GB0316560D0 (en) 2003-07-15 2003-08-20 Chiron Srl Vesicle filtration
CA2550927A1 (en) 2003-12-23 2005-07-14 Glaxosmithkline Biologicals S.A. A gram negative bacterium with reduced lps level in the outer membrane and use thereof for treating gram negative bacterial infection
ATE450271T1 (de) * 2006-06-12 2009-12-15 Glaxosmithkline Biolog Sa Impfstoff

Also Published As

Publication number Publication date
CA2578588A1 (en) 2006-03-09
NZ553521A (en) 2010-01-29
CN101862451A (zh) 2010-10-20
MX2007002633A (es) 2007-05-15
JP2011236254A (ja) 2011-11-24
ES2527859T3 (es) 2015-01-30
AU2005278896A1 (en) 2006-03-09
US8808711B2 (en) 2014-08-19
WO2006024946A2 (en) 2006-03-09
BRPI0514883A (pt) 2008-06-24
EP1784213A2 (en) 2007-05-16
JP2008511608A (ja) 2008-04-17
CN101115501A (zh) 2008-01-30
AU2005278896B2 (en) 2011-12-22
RU2007111838A (ru) 2008-10-10
US20080063665A1 (en) 2008-03-13
RU2420312C2 (ru) 2011-06-10
WO2006024946A3 (en) 2006-11-30
GB0419627D0 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
EP1784213B1 (en) Improvements relating to meningococcal outer membrane vesicles
US10336794B2 (en) Immunogenic bacterial vesicles with outer membrane proteins
EP2245048B1 (en) Meningococcal fhbp polypeptides
US20130022633A1 (en) MENINGOCOCCAL fHBP POLYPEPTIDES
US20110262484A1 (en) Outer membrane vesicle prime-protein boost vaccine
AU2016273825A1 (en) Modified meningococcal fHBP polypeptides
ES2727798T3 (es) Polipéptidos de FHPP meningocócicos
MX2007004035A (es) Vesciculas bacterianas inmunogenicas con proteinas de membrana externa

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070315

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17Q First examination report despatched

Effective date: 20100617

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140623

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 693228

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005045049

Country of ref document: DE

Effective date: 20141204

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2527859

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 693228

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141029

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141029

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150228

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150302

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005045049

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150810

Year of fee payment: 11

Ref country code: GB

Payment date: 20150902

Year of fee payment: 11

Ref country code: IE

Payment date: 20150909

Year of fee payment: 11

Ref country code: DE

Payment date: 20150902

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20150911

Year of fee payment: 11

Ref country code: FR

Payment date: 20150811

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150925

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150905

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005045049

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050905

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160905

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160905

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160905

REG Reference to a national code

Ref country code: BE

Ref legal event code: FP

Effective date: 20150113

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160906

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181128