EP1783371B1 - Elektropumpeneinheit - Google Patents

Elektropumpeneinheit Download PDF

Info

Publication number
EP1783371B1
EP1783371B1 EP06291732A EP06291732A EP1783371B1 EP 1783371 B1 EP1783371 B1 EP 1783371B1 EP 06291732 A EP06291732 A EP 06291732A EP 06291732 A EP06291732 A EP 06291732A EP 1783371 B1 EP1783371 B1 EP 1783371B1
Authority
EP
European Patent Office
Prior art keywords
pumps
pump unit
electric pump
manifold
motors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06291732A
Other languages
English (en)
French (fr)
Other versions
EP1783371A1 (de
Inventor
Nicaïse Lesther
François Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT HPI SAS
Original Assignee
JTEKT HPI SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT HPI SAS filed Critical JTEKT HPI SAS
Publication of EP1783371A1 publication Critical patent/EP1783371A1/de
Application granted granted Critical
Publication of EP1783371B1 publication Critical patent/EP1783371B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms

Definitions

  • the invention relates to an electric pump unit, of the type comprising two hydraulic pumps, in particular geared, driven in rotation by a motor device as described in JP 07-243393 disclosing the preamble of claim 1.
  • Electro-pumps of this type which are known and in particular used by the power steering of a motor vehicle, have the major disadvantage that the power of the group is limited although the vehicles to be equipped with a power steering are becoming heavier and the powers necessary to ensure the power steering are higher and higher.
  • the power of the electric pump units is limited for technological reasons, in particular because the power supply and the connectors do not accept a sufficient intensity, as the technology of high power engines (> 1.5 kW ) is almost non-existent for a voltage of 12V and that the development of such motors is limited to low series and has a high cost.
  • the invention aims to overcome the drawback of known systems.
  • the electro-pump unit according to the invention is characterized in that it comprises two hydraulic pumps and two electric motors which are arranged so that the power of the group can be obtained by adding the powers of the two. engines.
  • the electropump is characterized in that it comprises a discharge manifold which comprises a discharge channel common to both pumps.
  • the electric pump unit is characterized in that the two pumps are integrated in a common pump body.
  • the electro-pump unit is characterized in that comprises a suction manifold having a suction channel common to both pumps.
  • the electric pump unit is characterized in that the pump body is sandwiched between the suction manifold and the discharge manifold, each manifold bearing on its outer face one of the two motors.
  • the electric pump unit is characterized in that the pump body comprises, inside an outer casing wall, a high pressure volume common to the two pumps, which communicates with the working chambers of the two pumps and a common high pressure volume provided in the discharge manifold, which is in communication with the common discharge channel.
  • the electro-pump unit is characterized in that at least one of the pumps comprises, in its discharge path a non-return valve so that this pump can be selectively stopped.
  • the electric pump unit is characterized in that it comprises an engine control device adapted to control one engine from the outside and that engine controls the speed of the other.
  • the electric pump unit is characterized in that the two motors rotate in the same direction or in opposite directions.
  • the electro-pump unit is characterized in that the two pumps are adapted to rotate with an angular offset of a few degrees to provide a decrease in the pressure pulsations produced by the electro-pump unit.
  • the electric pump unit is characterized in that the two pumps are capable of operating in phase opposition.
  • the electric pump unit is characterized in that the pumps operate at different speeds of rotation.
  • the electric pump unit is characterized in that the presence of two motors constitutes a redundancy security means.
  • the figure 1 is the overview of an electric pump unit according to the invention, which comprises two electric motors and two hydraulic pumps, each driven by one of the two motors.
  • references 1 and 2 designate the two electric motors
  • the reference B the pump body which encloses two hydraulic gear pumps, A manifold inlet or suction pumps and C the manifold outlet or discharge.
  • the pump body B is sandwiched between the inlet manifolds A and outlet C.
  • Each motor has a base portion respectively 4 and 5 which carries the electrical connections 6 of the motors and encloses the electrical circuits.
  • the figure 15 gives the synoptic diagram of the system according to the figure 1 .
  • the engine 1 drives a first pump designated by the reference 8 and the second the engine 2 a second pump 9.
  • the two pumps 8 and 9 draw the hydraulic fluid into a reservoir 10.
  • the discharge paths of the two pumps are met at the junction point 14 and thus supply the user with high-pressure hydraulic fluid, generally in oil.
  • a check valve 12 In the discharge line of each pump upstream of the junction point 14 is provided a check valve 12.
  • a pressure limiter 11 and a feed valve 13 are mounted in parallel between the junction point 14 and the reservoir.
  • the figure 3 illustrates the structure of the suction manifold A and also shows the gears of the gear trains of the two pumps 8 and 9, noted for the pump 8 and 16 for the pump 9, the gears being shown with their lower bearings 17 and higher 18.
  • the presentation of the manifold or suction support A is supplemented by the two views in section 6 and 7 which are taken along the lines VI-VI and VII-VII indicated on the figure 2 .
  • the suction manifold A has a suction channel 20 which opens out into the side face 21.
  • This channel 20 which is straight as seen on the Figures 6 and 7 communicates with low pressure capacitive cavities 23, 24 dug in the manifold from the inner face 25 intended to receive the pump body B.
  • This suction channel 20 is connected to a reservoir 10 according to Figure 19, outside the group electro-pump.
  • the cavity 23 near the pinions 16 of the pump 9 is wider and deeper than the cavity 24 on the side of the other pump, which is in the form of an arcuate groove.
  • the cavity 23 has a raised bottom intermediate zone 23 'which delimits a cavity 26 for receiving the spring 27 of the pressure limiter 11 (FIG. 19).
  • the suction channel 20 opens directly into the cavity 23 and communicates with the cavity 24 by a vertical channel 28, that is to say perpendicular to the section plane.
  • the figure 7 further indicates at 30 grooves in which are placed unrepresented seals.
  • the reference 25 designates the installation face of the pump body B.
  • the figures 4 , 8 and 9 show that the pump body B has a bottom wall 32 which rests on the installation face 25 of the suction manifold A and on which rises an outer casing wall 33, and inside this casing there are presqu'Ilots 35, 36 which delimit chambers 37, 38 for housing the gear trains 15, 16 and bearings 17, 18, parts in the form of peduncles 39 for attaching the presqu'Ilots to the envelope wall 33 configured for producing two cylindrical housings 40, 41 of the two nonreturn valves 12 ( figure 15 ) and the housing 39 in alignment with the cavity 26 for receiving the pressure limiter 11 (Figure 19).
  • the envelope wall 33 has a boss which delimits a cavity 43 intended to receive the feedback valve 13 ( figure 15 ).
  • the remainder of the space inside the envelope wall 33 constitutes a capacitive volume comprising four cavities 45, 46, 47, 48 separated from each other only by the peduncle-shaped portions and two narrow ribs 49 of attachment of the penlets to the envelope wall.
  • the front face and the surfaces of the presqu'Ilots, peduncles and ribs constitute the exposure face 34 for manifold C.
  • FIG. 8 and 9 show the inlet channels 50 and 51 of the chambers 37 and 38 for housing the gear trains with the bearings of the two pumps and the outlet channels 53 and 54.
  • the inlet channel 51 communicates with the low pressure cavity 23 into which the suction channel 20 opens.
  • the inlet channel 50 is connected to the suction channel 20 in a corresponding manner, not shown specifically.
  • the figure 12 also shows that the outlet channel 54 communicates with the housing 41 of one of the two check valves 12, through the orifice 52 of the seat of the ball 55 of the valve.
  • the ball 55 is pushed back onto its seat by a return spring 57 resting at its other end on a bearing base 58 being guided by a member in the form of a rod 59 of the valve, disposed in the center of the housing 41.
  • the outlet channel 53 communicates in the same way with the housing 40 of the other non-return valve 12.
  • FIG. 5 and the sectional views of Figures 10 and 11 illustrate the structure of the manifold or pressure support C.
  • the discharge manifold C comprises a bottom wall 60 on which is raised perpendicularly an outer casing wall 61 which encloses a common capacitive volume 63.
  • the front face 62 of this wall is intended to bear on the front face of installation of the pump body 34.
  • the volume 63 surrounds two islands 65, 66 for supporting the upper bearings 18 of the two gear trains, these islands are connected to each other by a relatively thin bar 67 and, at the of this bar, to the casing wall 61 by a raised area 68.
  • This area has two circular projections 69 to the level of the laying plane of the manifold. These zones 69 are intended to serve as a bearing surface, each at the base of a base 58 of spring support of a nonreturn valve 12.
  • housing cavities 40, 41 of the pump body B communicate with the volume 63 of the discharge manifold C, by passages indicated at 72 on either side and around the projections 69 for supporting the anti-backflow valves. -return.
  • the sectional view of the figure 10 shows that the capacitive volume 63 is in communication with a high pressure outlet channel 75 which opens out into the side wall 76 of the discharge manifold C.
  • a high pressure outlet channel 75 which opens out into the side wall 76 of the discharge manifold C.
  • the opening towards the outside of the outlet channel that is to say of repression, is not visible, but one recognizes at the bottom of the volume 63 in 77 the opening of the channel 75 in the volume 63.
  • the discharge outlet manifold C comes, in the assembled state, by its upper face 62 bearing on the upper face 34 of the pump body B, the cavities 45, 46, 47 and 48 of the body B and the volume 63 of the discharge manifold C constitute a single volume filled with the high-pressure oil discharged by the pumps 8 and 9 through the discharge channels 53 and 54 ( figure 9 ) through the check valves 12 arranged in the chambers 40, 41.
  • the pressure limiter 11 ( figure 15 ) it is placed in the cavity 26 of the suction manifold A ( figures 3 , 6, 7 ) and the cavity 39 of the pump body B ( figures 4 , 8, 9 ).
  • the bottom of the cavity 26 is in communication with the low pressure suction space 23, by a not shown channel and the cavity 39 of the pump body B communicates via a visible channel 75 Figures 8 and 9 with the high pressure cavity 48 and thus with the discharge channel 75 via the volume 63 of the discharge manifold C.
  • the refilling valve 13 it is housed in the cavity 43 of the pump body B ( figures 4 , 8, 9 ) that communicates, as we see on the figure 13 with the low-pressure groove 24 of the suction manifold A on the one hand and the volume 63 of the discharge manifold C on the other hand.
  • the two motors 1 and 2 are arranged on either side of the assembly formed by the two pumps and comprising the suction manifolds A and discharge C and sandwiched between these two manifolds , the pump body B.
  • the driving shaft of the motor 2 which is intended to pass through the bore 81 visible in the island 66 of the delivery manifold C, is represented at 80.
  • Concerning the drive of the gear train 15 of the pump 8, it is driven by the engine 1 whose shaft will then cross the bottom wall of the suction manifold A.
  • the invention therefore consists in using two motors which are controlled to be able to add the available powers of the two pumps.
  • the invention also makes it possible to drive two different and uncoupled pumps to increase the difference between the minimum and maximum flow of the electropump. Pumps are generally limited in minimum flow because it is necessary to operate them at a minimum speed, the use of two pumps and two motors allows during low flow requests, not operate a motor and reduce power consumption. Thanks to the presence of a non-return valve at the outlet of the pumps, one of the two pumps can be stopped.
  • the invention makes it possible to use engines that are widely used in series and to provide redundancy between the two motors, which makes it possible to avoid stopping power assistance in the event of a failure of one of the engines.
  • the engine control it is performed from the instructions of the vehicle that the electro-pump group team.
  • the steering could be provided by one of the two engines which would then drive the speed of the second.
  • each pump generates pulsations of a frequency equal to the number of teeth multiplied by the rotation frequency of the pump.
  • the motor control could be carried out to obtain a functioning of the pumps in opposition of phase. We could also drive the engines at different speeds.
  • the invention makes it possible, by integrating the functions of the two pumps into a common pump body, to reduce the size of the group, while providing a large common high pressure volume, which provides, despite the presence of two pump units, a considerable improvement in damping pulsations produced by these pumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Claims (9)

  1. Elektropumpeneinheit, von der Art umfassend zwei Hydraulikpumpen (8, 9), insbesondere Zahnradpumpen, und zwei Elektromotoren (1, 2) zum Antreiben der Pumpen, dadurch gekennzeichnet, dass die Pumpen (8, 9) derart angeordnet sind, dass die Leistung der Einheit durch Addieren der Leistungen der beiden Motoren erzielt werden kann, dass die beiden Pumpen (8, 9) in einem gemeinsamen Pumpengehäuse (B) integriert sind, und dass die Elektropumpeneinheit einen Druckverteiler (C, 3), der mit einem Druckkanal (75) versehen ist, den die beiden Pumpen (8, 9) gemeinsam haben, und einen Ansaugverteiler (A), der einen Ansaugkanal (20) umfasst, den die beiden Pumpen gemeinsam haben, umfasst, und dass das Pumpengehäuse (B) zwischen dem Ansaugverteiler (A) und dem Druckverteiler (C) eingeschoben ist, wobei jeder Verteiler auf seiner Außenseite einen der beiden Motoren trägt.
  2. Elektropumpeneinheit nach Anspruch 1, dadurch gekennzeichnet, dass das Pumpengehäuse (B) innerhalb einer Außenverkleidungswand (33) ein Hochdruckvolumen, das die beiden Pumpen gemeinsam haben und das mit den Druckluftkammern der beiden Pumpen in Verbindung steht, und ein gemeinsames Hochdruckvolumen, das in dem Druckverteiler (C) vorgesehen ist und das mit dem gemeinsamen Druckkanal (75) in Verbindung steht, aufweist.
  3. Elektropumpeneinheit nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass mindestens eine der Pumpen auf ihrer Druckstrecke ein Rückschlagventil (12) umfasst, so dass diese Pumpe selektiv angehalten werden kann.
  4. Elektropumpeneinheit nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie eine Vorrichtung zum Ansteuern der Motoren (1, 2) umfasst, die dazu geeignet ist, die Ansteuerung eines Motors von außen sicherzustellen, und dass dieser Motor die Geschwindigkeit des anderen Motors ansteuert.
  5. Elektropumpeneinheit nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die beiden Motoren in die gleiche Richtung oder in entgegengesetzte Richtungen drehen.
  6. Elektropumpeneinheit nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die beiden Pumpen (8, 9) dazu geeignet sind, mit einer Winkelverschiebung von mehreren Graden zu funktionieren, um eine Verringerung der Druckschwingungen, die von der Elektropumpeneinheit erzeugt werden, zu bewerkstelligen.
  7. Elektropumpeneinheit nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die beiden Pumpen (8, 9) gegenphasig funktionieren können.
  8. Elektropumpeneinheit nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Pumpen mit verschiedenen Drehgeschwindigkeiten funktionieren.
  9. Elektropumpeneinheit nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Vorhandensein von zwei Motoren (1, 2) eine Sicherheitsmaßnahme durch Redundanz ist.
EP06291732A 2005-11-08 2006-11-07 Elektropumpeneinheit Active EP1783371B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0511333A FR2893092B1 (fr) 2005-11-08 2005-11-08 Groupe electro-pompe, du type comprenant au moins une pompe hydraulique, notamment a engrenage, entrainee en rotation par un dispositif moteur

Publications (2)

Publication Number Publication Date
EP1783371A1 EP1783371A1 (de) 2007-05-09
EP1783371B1 true EP1783371B1 (de) 2009-08-05

Family

ID=36726582

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06291732A Active EP1783371B1 (de) 2005-11-08 2006-11-07 Elektropumpeneinheit

Country Status (4)

Country Link
US (1) US7942649B2 (de)
EP (1) EP1783371B1 (de)
DE (1) DE602006008244D1 (de)
FR (1) FR2893092B1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6137780B2 (ja) * 2012-04-26 2017-05-31 株式会社Ihiエアロスペース 流体供給装置
US9562534B2 (en) 2012-05-04 2017-02-07 Ghsp, Inc. In-line dual pump and motor with control device
US9115720B2 (en) 2012-05-04 2015-08-25 Ghsp, Inc. Dual pump and motor with control device
US9752590B2 (en) 2013-03-13 2017-09-05 Ghsp, Inc. Two pump design with coplanar interface surface
US11015585B2 (en) 2014-05-01 2021-05-25 Ghsp, Inc. Submersible pump assembly
US10087927B2 (en) 2014-05-01 2018-10-02 Ghsp, Inc. Electric motor with flux collector
FR3041045B1 (fr) * 2015-09-16 2020-11-27 Jtekt Hpi Agencement d'au moins deux dispositifs de pompes hydrauliques
DE102016107447A1 (de) * 2016-04-21 2017-11-09 Schwäbische Hüttenwerke Automotive GmbH Rotationspumpe mit Schmiernut im Dichtsteg
DE102016113366A1 (de) * 2016-07-20 2018-01-25 Weber-Hydraulik Gmbh Hydraulikaggregat
DE102017208373A1 (de) * 2017-05-18 2018-11-22 Continental Teves Ag & Co. Ohg Druckbereitstellunganordnung sowie korrespondierendes Verfahren und Verwendung
JP6594381B2 (ja) * 2017-08-10 2019-10-23 本田技研工業株式会社 油圧制御装置
US10557480B1 (en) * 2018-12-06 2020-02-11 Razmik David Gharakhanian Pumping systems and methods
DE102019111980A1 (de) * 2019-05-08 2020-11-12 Rapa Automotive Gmbh & Co. Kg Energieversorgungseinheit für aktives fahrwerksystem
DE102019118384A1 (de) 2019-07-08 2021-01-14 Rapa Automotive Gmbh & Co. Kg Mpe-achssatz mit gemeinsamer ecu
EP3865658B1 (de) * 2020-02-13 2023-12-20 Entecnia Consulting, S.L. Flanschverbindung für vakuumpumpen

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2811930A (en) * 1952-06-18 1957-11-05 Borg Warner Air motor governor
US2812715A (en) * 1954-06-23 1957-11-12 Westinghouse Electric Corp Fuel system
DE1808411C3 (de) * 1968-11-12 1973-08-16 Jochen Dipl Ing Oplaender Pumpenaggregat aus zwei in einem gehaeuse angeordneten kreiselpumpen
DD136759A1 (de) * 1978-05-29 1979-07-25 Hans Spengler Hochdruckkreiselpumpenaggregat
DE4021410A1 (de) * 1990-07-06 1992-01-16 Oplaender Wilo Werk Gmbh Doppel-kreiselpumpe
CA2107523C (en) * 1993-10-01 2004-05-04 Gary D. Langeman Plural component delivery system
JPH07243392A (ja) * 1994-03-01 1995-09-19 Ebara Corp ポンプユニット
JPH07243393A (ja) * 1994-03-01 1995-09-19 Ebara Corp ポンプユニット
US6726465B2 (en) * 1996-03-22 2004-04-27 Rodney J. Groleau Injection molding machine employing a flow path gear pump and method of use
FR2789446B1 (fr) 1999-02-04 2002-03-08 Hydroperfect Internat Hpi Pompe hydraulique du type a engrenage et groupe electro-pompe equipe d'une telle pompe
DE10020162C2 (de) * 2000-04-25 2002-04-25 Hennecke Gmbh Verfahren und Vorrichtung zum Herstellen eines Massivstoff oder Schaumstoff bildenden, fließfähigen Reaktionsgemisches
US7517200B2 (en) * 2004-06-24 2009-04-14 Caterpillar Inc. Variable discharge fuel pump

Also Published As

Publication number Publication date
FR2893092B1 (fr) 2008-10-10
US20070122298A1 (en) 2007-05-31
US7942649B2 (en) 2011-05-17
EP1783371A1 (de) 2007-05-09
FR2893092A1 (fr) 2007-05-11
DE602006008244D1 (de) 2009-09-17

Similar Documents

Publication Publication Date Title
EP1783371B1 (de) Elektropumpeneinheit
EP2486262B1 (de) Schaltung zur zuführung von kraftstoff an ein flugzeugtriebwerk
FR2887921A1 (fr) Pompe a huile pour moteur a combustion interne
EP3892484A1 (de) Antriebssystem für elektrofahrzeug
FR2689185A1 (fr) Ensemble à pompe à huile pour moteur.
FR2546981A1 (fr) Machine hydraulique comprenant deux pompes ou moteurs a engrenages
EP2376769B1 (de) Hydraulikgetriebekreis
FR2826063A1 (fr) Pompe a haute pression de carburant pour un moteur a combustion interne a charge partielle amelioree
EP0761970A1 (de) Kompakte elektrohydraulische Einheit
FR2522739A1 (fr) Transducteur de puissance hydraulique
EP3144472B1 (de) Anordnung von mindestens zwei vorrichtungen von hydraulischen pumpen
FR2769954A1 (fr) Systeme d'injection, notamment pour moteur a combustion interne
EP3685075B1 (de) Versorgungseinheit für mindestens eine hydraulische maschine
FR2813652A1 (fr) Dispositif d'entrainement comprenant un moteur hydraulique et un reducteur
EP1820969B1 (de) Hydraulische Pumpe, insbesondere einer Elektropumpeneinheit, speziell für die Servolenkung eines Kraftfahrzeugs
FR2547621A1 (fr) Machine a engrenages pour des milieux autolubrifiants
US9423025B1 (en) Drive system having a variable output pump
EP0993972B1 (de) Steuersystem für hydropneumatische Federung in Autos
EP0852306A1 (de) Regelbarer, hydraulischer Getriebemotor
EP1055844A1 (de) Stufenloses hydromechanisches Verzweigungsgetriebe für Kraftfahrzeuge
EP1387776A1 (de) Schaltung für hydrostatisches fahrzeuggetriebe
EP0174889B1 (de) Schmierungsanlage für eine Getriebeeinheit für Kraftwagen mit zwei Antriebswellen
FR3117176A1 (fr) Pompe à vide
FR3107737A1 (fr) Sélecteur hydraulique utilisable dans un circuit de lubrification de moteur d’aéronef
EP3942199A1 (de) Hydromechanische leistungsverstärkeranordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071109

17Q First examination report despatched

Effective date: 20071213

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602006008244

Country of ref document: DE

Date of ref document: 20090917

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100507

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110501

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221130

Year of fee payment: 17

Ref country code: GB

Payment date: 20221124

Year of fee payment: 17

Ref country code: FR

Payment date: 20221115

Year of fee payment: 17

Ref country code: DE

Payment date: 20221128

Year of fee payment: 17