EP1782896B1 - Method for forming a workpiece and rolling machine - Google Patents

Method for forming a workpiece and rolling machine Download PDF

Info

Publication number
EP1782896B1
EP1782896B1 EP07004135.5A EP07004135A EP1782896B1 EP 1782896 B1 EP1782896 B1 EP 1782896B1 EP 07004135 A EP07004135 A EP 07004135A EP 1782896 B1 EP1782896 B1 EP 1782896B1
Authority
EP
European Patent Office
Prior art keywords
rollers
relative position
rotation axes
nominal
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP07004135.5A
Other languages
German (de)
French (fr)
Other versions
EP1782896A2 (en
EP1782896A3 (en
Inventor
Günter Dipl.-Ing. Hofmann
Stelios Dipl.-Ing. Katsibardis
Siegfried Dipl.-Ing. Hausdörfer
Henry Dipl.-Ing. Zwilling
Günther Dipl.-Ing. Vogler
Herbert Dipl.-Ing. Rüger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Langenstein and Schemann GmbH
Original Assignee
Langenstein and Schemann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Langenstein and Schemann GmbH filed Critical Langenstein and Schemann GmbH
Priority claimed from EP20040002972 external-priority patent/EP1454685B1/en
Publication of EP1782896A2 publication Critical patent/EP1782896A2/en
Publication of EP1782896A3 publication Critical patent/EP1782896A3/en
Application granted granted Critical
Publication of EP1782896B1 publication Critical patent/EP1782896B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/18Making articles shaped as bodies of revolution cylinders, e.g. rolled transversely cross-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/02Rolling stand frames or housings; Roll mountings ; Roll chocks
    • B21B31/04Rolling stand frames or housings; Roll mountings ; Roll chocks with tie rods in frameless stands, e.g. prestressed tie rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/08Interchanging rolls, roll mountings, or stand frames, e.g. using C-hooks; Replacing roll chocks on roll shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B35/00Drives for metal-rolling mills, e.g. hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B35/00Drives for metal-rolling mills, e.g. hydraulic drives
    • B21B35/14Couplings, driving spindles, or spindle carriers specially adapted for, or specially arranged in, metal-rolling mills
    • B21B35/141Rigid spindle couplings, e.g. coupling boxes placed on roll necks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/46Roll speed or drive motor control

Definitions

  • the invention relates to a method for hot working a workpiece and a rolling machine suitable for carrying out the method.
  • longitudinal rolling the workpiece is moved perpendicular to the axes of rotation of the rollers in a translatory movement and usually without rotation through the gap between the rollers (nip).
  • transverse rolling the workpiece does not translate with respect to the rollers or their axes of rotation, but rotates only about its own axis, which is usually a main axis of inertia, in particular the axis of symmetry in a rotationally symmetrical workpiece.
  • the rollers are usually at an angle to each other and to the workpiece, which is translationally and rotationally moved.
  • Profile transverse rolling machines in which two rollers with wedge-shaped profile tools arranged on the outer circumference rotate in the same direction about axes of rotation parallel to one another, are sometimes referred to as transverse wedge rolling.
  • the tools have a wedge-shaped or triangular in cross-section geometry and can increase along the circumference in its axial dimension in one direction and / or extend obliquely to the axis of rotation of the rollers.
  • cross wedge or cross-profile rollers allow a variety of forming workpieces in high precision or dimensional accuracy.
  • the wedge-shaped tools can create circumferential grooves and other tapers in the rotating workpiece.
  • the outer diameter of the tool wedges when passing around the axis of rotation can be generated in combination with the oblique arrangement axially extending slopes and continuous transitions between two tapers of different diameters in the workpiece.
  • the wedge shape of the tools allows the production of fine structures through the wedge outer edges or outer surfaces.
  • Particularly suitable are cross wedge rollers for producing elongate, rotationally symmetrical workpieces with constrictions or elevations such as cams or ribs.
  • the forming pressure and the forming temperature depend on the material of which the workpiece is made, as well as the dimensional accuracy and surface quality requirements after forming.
  • the forming is usually carried out at elevated temperatures during rolling in order to achieve the formability or flowability of the material required for forming.
  • These temperatures, occurring in particular during forging, can, in the case of a so-called cold forming in the range of room temperature, in a warm forging between 550 ° C and 750 ° C and in a so-called hot forming above 900 ° C.
  • Cross wedge rolling machines are known, in which the workpieces at the beginning of the rolling process by means of a positioning device comprising two positioning supports (so-called guide rulers), in an initial position between the two rollers, which usually corresponds to the geometric center or the center of the nip , positioned.
  • the position of the rollers and their distance from each other are fixed in advance.
  • the positioning carriers of the positioning device are withdrawn, so that the workpiece rotates freely between the rollers and is kneaded between the tools in the desired shape.
  • the workpiece is detected and ejected via a recess in the rotating rolling tool.
  • Out DE 1 477 088 C is a cross wedge rolling machine for the transverse rolling of bodies of revolution or flat workpieces with two rotating in the same direction of rotation work rolls on the roll surfaces wedge tools are arranged interchangeable.
  • the wedge tools each have wedge-shaped or triangular extending from the roll shell to a height adjusted to the produced workpiece end, by knurling or otherwise roughened reduction strips and extending at the same distance from the roll shell, wedge-shaped smooth form surfaces with calibration effect.
  • the wedge tools are formed as deformation segments and extend only over a partial circumference of the associated roll surface. On the workpiece, the mutually facing surfaces and tools of the two work rolls move in opposite directions or in opposite directions to each other.
  • the EP 1 256 399 A1 discloses a cross rolling machine with two parallel operated modules of two rollers rotating in the same direction of rotation, the half-shell-shaped tools having radially projecting tool wedges on its peripheral surface, wherein the deformation of a workpiece requires only the rotation of half the circumference of a pair of rollers. All four rollers are powered by just one drive motor driven in each case via an interposed gear unit and drive shaft.
  • DE 100 19 175 A1 a method for producing a strip-shaped starting material from metal by means of rolling of a roll stand, which delimit a nip, wherein this is variable.
  • the invention is based on the object, a new method for forming workpieces and a new rolling machine, with this method is feasible to specify.
  • forming is understood here as any conversion of the shape of a workpiece into another form, as also described above, including preforming and finish forming.
  • the axes of rotation of the rollers are to be understood as geometric or mathematical axes in the (Euclidean, three-dimensional) space around which the rollers rotate. Power transmitting or mechanical axes are referred to in this application, however, as waves.
  • the invention is based initially on the consideration of performing an automatic or automatic (or: automatic) adjustment of the relative position of the axes of rotation of the rolls of the rolling machine, wherein generally at least one actuator is used. It is thus carried out according to the invention, in particular a control, regulation or correction whose control, control or correction variable is the relative position of the axes of rotation of the rollers.
  • rollers or tools it is not the rotational position of the rollers or tools about their axes of rotation, which is relevant for the deformation of the workpiece, influenced, but the spatial position of the rollers or tools, which can be defined by the position of the axes of rotation of the rollers or a stationary or translationally invariant spatial point ,
  • the relative position of the roller rotation axes also determines the position of the rollers or the tools relative to the workpiece at predetermined rotational positions of the rollers.
  • the relative position is controlled according to a predetermined control course or algorithm without feedback or relative position determination, generally on the basis of preset manipulated variable values as setpoint values for the actuator.
  • the rolling machine contains in accordance with a control or correction in an independently claimable variant or in a dependent claimed embodiment in addition to the forming rollers, the or the rotary drive (s) and the at least one actuator also at least one means for determining the relative position of the axes of rotation the rollers to each other, in particular during the Umformphase, and at least one control device which is connected to the means for determining the relative position of the axes of rotation and with each actuator or is operatively connected to correct the relative position of the axes of rotation to a desired relative position by means of or the actuators (s).
  • control device compares the determined values or signals to the relative position of the axes of rotation with the desired relative position and changed upon detection of an impermissible deviation from the desired relative position, the relative position of the roller rotation axes via the actuator or (e) until the deviation again within a permissible tolerance range.
  • the measures described above are now used in a further step of thinking in a mode which will also be referred to below as a forming mode.
  • a mode which will also be referred to below as a forming mode. This is based on the idea to use the control or regulation of the relative position of the axes of rotation of the rollers for adjusting the deformation and / or the forming pressure on the workpiece.
  • the relative position (or: the position (s) or the distance or the distances) of the axes of rotation of the rollers during the or at least one Umformphase and / or in a Umformkraftbelasteten condition of the rollers to the desired relative position (or : the target position (s) or the target distance (s) are controlled, regulated or corrected.
  • the desired relative position (or the setpoint position (s) or the setpoint distance (s) during the forming phase is or will be determined according to, generally as a function of the angular or rotational position of the rollers (position-controlled) or of the time ( time-controlled) predetermined course, which is adapted to a desired, in particular position-dependent or temporal course of the desired during forming of the workpiece forming or the deformation of the workpiece.
  • the increasing radial extent of a wedge tool can be at least partially reproduced or replaced by a reduction of the roll spacing.
  • the predetermined course of the desired relative position can be determined in advance and stored.
  • deviations in the tool from a predetermined shape, for example, due to dimensional tolerances or wear, by adjusting the target relative position of the axes of rotation of the rollers can be at least approximately compensated.
  • the relative position of the axes of rotation of the rollers during the forming phase is determined, preferably at a predetermined angular position of at least one of the rollers and / or a predetermined force load of the roller (s) or forming force.
  • a rotation angle sensor device for determining the roll rotation angle and / or a force sensor device for determining the deformation force can then be provided.
  • the correction or adjustment of the relative position of the axes of rotation of the rollers can now be carried out in real time or directly during the forming phase, in particular in the context of a continuous or in small time intervals taking place regulation.
  • the desired relative position then corresponds to the desired roll position during the forming.
  • the actual position of the relative position of the roller axes of rotation determined, in particular during the forming phase, only after or even before the forming and / or after ejection of the workpiece from the gap between the tools or the rollers and / or in a state relieved of deformation of the rollers corrected a desired relative position.
  • the desired relative position is then optionally adjusted to a desired position in the loaded state or during the forming phase. It can then be omitted during the forming phase, a change in the relative position by the at least one actuator.
  • the rollers are generally rotatable or rotatably mounted in two storage facilities.
  • the position of the axis of rotation of one of the rollers can be controlled or controlled to a desired position and the position of the axis of rotation of the other roller (s) unchanged or stationary relative to the environment. especially to the ground, stay.
  • the lower roller can remain stationary and only the upper roller can be adjusted.
  • the positions of the axes of rotation of both rollers for correcting or changing the relative position of their axes of rotation are adjustable or variable and can be regulated or corrected to associated desired positions.
  • the rollers can now be either independently, i. without a coupling of their movement, with their own actuators or also dependent on each other, i. be with a control technology or mechanical coupling, be adjustable or adjusted.
  • Such a synchronous movement can be realized in particular with independent actuators by a common control or by a mechanical coupling with gear (s).
  • each determined distance can be compared for itself with an associated desired distance and corrected for a deviation from the desired distance outside a predetermined tolerance range to the desired distance.
  • the central axis (or: geometric center, central position) in the space provided between the rollers or tools for receiving the workpiece can in particular be positioned by a positioning device the workpiece may be defined between the rollers, wherein the central axis may lie within a movement plane or on a movement axis of two mutually movable positioning parts of the positioning device for holding the workpiece between the two positioning parts.
  • This determination of the roll positions or of the roll spacing relative to the workpiece has the advantage that a reliable reference position is established by the positioning device that is stationary in relation to the workpiece, which position defines the position of the workpiece.
  • the distances between the axes of rotation to the central axis are also in clear relation to the distances of the axes of rotation to each other.
  • the determination of the relative position of the axes of rotation to each other can thus take place in only one dimension or projection on a coordinate direction (spatial direction) or in two or even three dimensions or coordinate directions.
  • the rolling machine For measuring the position (s) or the distance / the distances of the axes of rotation of the rollers, the rolling machine generally comprises a measuring device, in particular at least one non-contact sensor, in particular an ultrasonic sensor and / or an optical sensor and / or an inductive sensor and / or a magnetic sensor, and / or a contacting sensor, such as a cable driver.
  • a measuring device in particular at least one non-contact sensor, in particular an ultrasonic sensor and / or an optical sensor and / or an inductive sensor and / or a magnetic sensor, and / or a contacting sensor, such as a cable driver.
  • the distances between the storage devices and the positioning device can be measured, wherein the sensors can be attached to their outer sides.
  • one of the two bearing devices or both bearing devices of at least one roller is moved via at least one actuator in an advantageous embodiment.
  • the adjustable roller (s) or their bearing device (s) for correcting or adjusting the relative position to the desired relative position or for adjusting the position (s) of its axis of rotation (s) or the distance of the axes of rotation Rolls moved linearly (or: straight, translationally).
  • a linear, purely translational Motion is easy to implement in terms of drive technology.
  • the direction of movement of the linear movement or displacement of the roller (s) is preferably directed substantially perpendicularly (or orthogonally) to the axes of rotation of the rollers. Furthermore, the movement can take place in particular in a vertical direction, ie parallel to the gravitational force.
  • Another type of movement for the rolls may also be advantageous, especially in the case of asymmetric thermal or mechanical changes in shape or volume in the rolling machine, such as a rotational or tilting movement or a compound composed of translational and rotational movement or along a predetermined, non-rectilinear trajectory (or : Movement path) taking place movement of the rotary axes.
  • the movement of the axes of rotation of the rollers can thus be done with one, two or even three degrees of freedom of movement.
  • an axis of rotation to be adjusted is preferably moved in two points of attack outside the roller, which can lie in particular in storage facilities of the roller.
  • the axes of rotation of the rollers are generally adjusted to an at least approximately parallel position to each other and are usually also main axes of inertia of the rollers, in particular cylindrical or central axes in cylindrical rollers.
  • the rollers and their axes of rotation viewed in the direction of gravity, are arranged one above the other or vertically relative to one another. But it is also a horizontal or oblique arrangement of the rollers and their axes of rotation possible.
  • the desired relative position, desired position (s) or desired distances of the axes of rotation of the rollers are dependent on the material and / or shape (or: geometry) of the workpiece to be reshaped or of the desired shape or desired Dimensions of the workpiece adjusted after forming.
  • shape of the current workpiece can be measured before the forming phase.
  • parameters of a workpiece can also be entered in advance by means of a pattern.
  • Another, particularly advantageous application of the invention is based on the recognition that during the forming process of a workpiece or a process with several successive forming processes when machining multiple workpieces expansions or contractions within the rolling machine, especially in the Carrier device of the rollers or even within the rollers and tools themselves, occur.
  • These changes in shape and volume are caused in particular by the forces acting upon forming (mechanical expansion or contraction) and by introducing the workpiece, which is at relatively high temperatures during hot or hot forming, and the associated temporal and spatial temperature changes that lead to thermal expansion or expansion Cause contraction.
  • These changes in shape or volume in the rolling machine are thus disturbances of the process and adversely affect the optimal or preset relative positions of the rolls or tools for the forming process.
  • the The invention provided correction or regulation of the relative position of the axes of rotation of the rollers to the desired relative position substantially compensated or compensated.
  • the compensation (or compensation or correction) of said thermal and mechanical shape or volume changes in other words, determines (or: determines) the relative position of the rollers or tools in space relative to each other , and adapted in an adjustment or correction step, if impermissible or intolerable deviations from a predetermined or optimal for the forming process or relative position of the rotational axes occur.
  • the forming process performed by the method and the rolling machine may be a cold forming process, but is preferably a hot working process or a hot forming process.
  • the correction of the roll positions according to the invention to compensate for or compensate for thermal changes is particularly advantageous.
  • the material of the workpiece may be ferrous, such as iron itself or a steel, or may be a non-ferrous metal material, such as aluminum or an aluminum alloy.
  • the rolling machine is designed as a profile cross rolling machine or cross wedge rolling machine whose basic structure has been described in the introduction.
  • the rollers have corresponding profile or wedge tools and rotate in the same direction with each other, wherein the workpiece rotates only about its own axis and is not transported translationally by the rollers.
  • the tools on the rollers are in particular wedge-shaped or triangular in cross-section and increase in their radial dimension in one direction along the circumference and / or extend obliquely to the axis of rotation of the associated roller.
  • the invention is also applicable to longitudinal rolling methods and machines, for example for stretch rolling, except in the case of cross rolling methods and machines.
  • At least one actuator can now be a hydraulic drive.
  • at least one or each actuator is an electric motor drive, in particular a spindle drive.
  • the accuracy of the adjusting movement of the actuators is preferably in the range of a few tenths of mm or even a few hundredths of a mm, preferably at least 0.1 mm, and / or one-thousandth of Verstellweges or -hubs.
  • the tolerance range for the correction or deviation of the relative position of the axes of rotation can be selected to the desired relative position in this order of magnitude.
  • the rolling machine is a stationary, not co-rotating with the rollers or non-rotatable carrier device (or: roll stand, Rolling rack) provided on the or the actuator (s) is stored or carried or are.
  • two respective holding devices which can be connected or connected to the roller with end faces of the roller and rotatable or co-rotating with the roller are provided for each roller.
  • the connection of the holding means with the rollers is preferably releasable to allow or facilitate a change of the tools or the rollers.
  • a bearing device in which the holding device is rotatably mounted is provided for each holding device.
  • the bearing devices with the retaining devices of at least one roller mounted in them are coupled or couplable to the actuator (s) associated with this roller and can be moved via the actuator (s) to change the position of the axis of rotation of the associated roller.
  • each bearing device is connected to an actuator and the control device controls the actuators of both storage facilities of a roller according to the desired movement of the axis of rotation of the roller.
  • the carrier device has guide regions for guiding the bearing devices during their movement.
  • the leadership of the storage facilities can be supported by plain bearings or bearings.
  • the rollers with the associated rotary drives each form a unit which is adjustable together by the actuators.
  • the relative arrangement or position of the rotary drive associated with the roller with respect to the roller thus remains unchanged or translationally invariant.
  • the non-rotating or rotatable parts of the associated rotary drive for rotating this roller are attached to one of the bearing devices of each roller and the co-rotating or mitrotierbaren drive parts of the rotary drive are rotatably mounted on or in the bearing device.
  • the carrier device comprises in a special structural design four carrier elements, wherein between two of the four carrier elements one of the bearing means of a first of the two rollers and one of Bearing means of the second of the two rolls and between the other two of the four support elements, the other bearing means of the first roller and the other bearing means of the second roller are arranged and preferably guided movably.
  • the actuators for the rollers are generally arranged on opposite sides of the rollers in order to leave space between the rollers and laterally for the workpieces and other machine parts.
  • the illustrated rolling machine according to 1 to 5 is designed as a cross wedge roller or cross wedge rolling machine and comprises a first work roll 2, which is rotatable or rotating about a rotation axis A, and a second work roll 3, which is rotatable about a rotation axis B or rotating.
  • the sense of rotation of both work rolls 2 and 3 is illustrated and the same with the arrows shown.
  • the axes of rotation A and B are essentially arranged parallel to each other and perpendicular to the arrowed direction of gravitational or gravitational force (gravitational force), so that the work rolls 2 and 3 are arranged one above the other.
  • the work rolls have a substantially cylindrical outer surface.
  • the distance W between the two axes of rotation A and B of the work rolls 2 and 3 is referred to below as the roll spacing.
  • the distance between the cylindrical outer surfaces of the two work rolls 2 and 3 is clearly linked to the distance W via the roll diameter.
  • a center axis (or center position) running parallel to the axes of rotation A and B between the two work rolls 2 and 3 and defining the geometric center is denoted by M.
  • M In symmetrical position of the two axes of rotation A and B to the central axis M, the distance between the two axes of rotation A and B to the central axis M is equal to W / 2.
  • wedge-shaped tools 20 and 21 or 30 and 31 are respectively fixed in cross-section, in particular braced or screwed.
  • the tools 20 and 21 of the first work roll 2 and the tools 30 and 31 of the second work roll 3 are each arranged obliquely and at an angle to the respective rotation axis A and B, wherein the tools 20 and 21 of the work roll 2 with respect to the central axis M axially in are arranged in substantially the same positions.
  • FIG. 2 shown position of the work rolls 2 and 3 are the tools 20 and 21 or 30 and 31 closer to each other on the inside facing each other than on the opposite outer side.
  • the tools 20 and 21 and 30 and 31 also increase in cross-section as viewed in the circumferential direction, with the increase in cross-section in the tools 20 and 21 being in the same direction of rotation or orientation and opposite in the tools 30 and 31 of the second working roller 3 or in the opposite direction to that of the tools 20 and 21 of the first work roll 2.
  • Each of the two work rolls 2 and 3 is now at its two ends on each one wave extension in two storage facilities 16 and 17 and 18 and 19 rotatably supported about the respective axis of rotation A and B respectively.
  • Distance sensors are arranged on the bearing devices, specifically a first distance sensor 51 for measuring the distance w1 substantially between the bearing device 16 and the center axis M (or else one arranged in the region of the center axis M) FIG. 1 not shown positioning means for positioning the workpiece), a second distance sensor 52 for measuring the distance w2 substantially between the bearing means 17 and the central axis M, a third distance sensor 53 for measuring the distance w3 substantially between the bearing means 18 and the central axis M and a Fourth distance sensor 54 for measuring the distance w4 substantially between the bearing means 19 and the center axis M.
  • the distance sensors 51 to 54 may be in particular ultrasonic sensors, optical, magnetic or inductive sensors or other known distance sensors.
  • the storage devices 16 to 19 are also each adjustable in position or position and that the bearing means 16 of an associated actuator 22, the bearing means 17 of an associated actuator 23, the bearing means 18 of an associated actuator 32 and the bearing means 19 of an associated actuator 33rd
  • the position (s) of the bearing device (s) 16 and / or 17 or 18 and / or 19 is now adjusted in their position.
  • the axis of rotation A is moved parallel. The distances w1 and w2 thus both increase by the same amount.
  • control device 55 is provided, which is connected via, preferably electrical, control lines to the actuators 22, 23, 32 and 33 and via, generally electrical, measuring lines for transmitting the measurement signals or measured values with the distance sensors 51, 52, 53 and 54 is connected.
  • the control device 55 now holds the axes of rotation A and B of the work rolls 2 and 3 in a predetermined relative position to each other, in particular the parallel position at the predetermined distance W, by the measured distances w1 to w4 with predetermined target intervals, preferably all equal to a common Desired distance are, compares and regulates to the desired distances or corrected by driving the actuators 22, 23, 32 and / or 34.
  • the control device 55 preferably includes at least one digital microprocessor or signal processor and at least one memory with a stored control or regulating algorithm for the Processor as well as stored or re-storable setpoints or command values for the control or regulation.
  • the FIGS. 2 to 5 show an embodiment of a rolling machine 1 in various representations.
  • the FIG. 2 shows a longitudinal section along a cutting plane containing the longitudinal direction of the rolling machine and the direction of gravity.
  • the FIG. 3 and 4 show side views of the rolling machine on the two front or narrow sides.
  • the cut of the FIG. 5 is in FIG. 2 . 3 and 4 marked with the arrows VV.
  • Each work roll 2 and 3 is detachably held between two holding means 12A and 12B and 13A and 13B arranged axially to the respective rotation axis A and B, respectively, and can be taken out of the holding means 12A and 12B or 13A and 13B in their unlocked state for exchanging the tools 20 and 21 or 30 and 31 or the entire work rolls 2 and 3 with the tools 20 and 21 or 30 and 31.
  • the holding device 12A in the storage device sixteenth and the holding device 12B are rotatably supported in the bearing device 17 about the rotation axis A of the first work roll 2 and the holding device 13A in FIG the bearing device 18 and the holding device 13B are rotatably mounted in the bearing device 19 in each case about the axis of rotation B of the second work roll 3.
  • a first rotary drive 42 for the first work roll 2 and a second, independent of the first rotary drive 42 rotary drive 43 for the second work roll 3 are provided.
  • Each rotary drive 42 and 43 includes an associated rotary drive motor 44 and 45 and a - not shown - rotary drive gear 46 and 47, for example, one, in particular three-stage, gear transmission, for transmitting the torque of the rotary drive motor 44 and 45 to the associated work roll 2 and 3.
  • the rotation axis C of the output shaft of the rotation drive motor 44 of the first rotation drive 42 and the rotation axis D of the output shaft of the rotation drive motor 45 of the second rotation drive 43 are orthogonal to the rotation axes A and B of the respective work rolls 2 and 3.
  • left arranged holding means 12A for the upper work roll 2 and 13A for the lower work roll 3 are each as solid waves (or hollow shafts) axially to the axes of rotation A and B through the associated storage facilities 16 and 18 continued and are with the - not closer shown - rotary drive gears 46 and 47 of the associated rotary drives 42 and 43 coupled or engaged.
  • An operation of the rotary drive motors 44 and 45 thus leads to the transmission of a rotational movement via the rotary drive gear 46 and 47 on the holding device 12A and 13A and thus on the work roll 2 and 3 and the co-rotating second holding means 12B and 13B.
  • the rotary drive motors 44 and 45 are preferably permanent magnet motors, in particular so-called torque motors.
  • the high dynamics or rotational acceleration and the high torque of the torque motor allows a very dynamic control or regulation of the rotational speed of the rotating work rolls 2 and 3 in adaptation to the rolling process.
  • Each of the permanent magnet motors 44 and 45 is controlled electronically, in particular via a converter.
  • the rolling machine 1 further comprises a support means (or a rolling stand or frame) 6.
  • the support means 6 comprises four columnar support members 6A to 6D arranged in a rectangular arrangement and on a common floor panel 6E supported on the floor 50 , mounted or attached.
  • the support members 6A to 6D extend vertically or vertically in a longitudinal direction, i. parallel to the gravitational force G.
  • an associated tie rod 7A to 7B is vertically arranged in the longitudinal direction of the respective support member which is fixed to the bottom of the support plate 6E and is biased at the top by means of an associated locknut, not specified, preferably a hydraulically operated locknut ,
  • an associated locknut not specified, preferably a hydraulically operated locknut
  • a split Unterlagsringsegment is preferably placed under the hydraulic nut when the hydraulic nut is in the pressurized state, and then pressed by relaxing the hydraulic pressure, the nut on the Unterlagsringsegment.
  • the support members 6A to 6D can be set under a certain tension and stiffened. This leads to a stiffening of the roll stand of the rolling machine. 1
  • the bearing device 16 is height-adjustable via a drive spindle (or adjusting spindle) 26 from a first actuator 22 disposed above along a vertical, i.
  • the axis E is parallel to the direction of gravity G and the bearing device 17 is height-adjustable via a drive spindle 27 from a second actuator 23 arranged above a vertical axis F.
  • the bearing device 18 is vertically adjustable via a drive spindle 36 from a third actuator 32 disposed below Axis E and the bearing device 19 is height-adjustable via a drive spindle 37 from a below arranged fourth actuator 33 along the vertical axis F.
  • Each actuator 22, 23, 32, 33 includes a drive motor 24, 25, 34, 35, via a drive shaft 28, 29, 38, 39 and an unspecified check gear with high reduction the drive spindle 26, 27, 36, 37 and so that the bearing device 16, 17, 18, 19 drives.
  • the maximum adjustment paths or Verstellhübe the actuators 22, 23, 32, 33 are typically 50 mm to 150 mm, the adjustment accuracy or Verstell suitse are typically in adaptation to the thermal expansions in the rolling machine some 1/100 mm.
  • the drive motors 24, 25, 34, 35 may be gear motors and / or three-phase induction motors or synchronous motors and / or permanent magnet motors (eg servomotors) with an electronic control and are acted upon for the high adjustment accuracy when adjusting only current pulses in the millisecond range.
  • the two storage devices 16 and 18 are guided vertically for their adjustment via guides 8B of the support member 6B and 8C of the support member 6C in or on the two support members 6B and 6C.
  • the two further bearing devices 17 and 19 are guided vertically for their adjustment via guides 8A of the support member 6A and 8D of the support member 6D in or on the two support members 6A and 6D.
  • working units each consisting of a work roll 2 or 3, two holding devices 12A and 12B or 13A and 13B, two storage devices 16 and 17 or 18 and 19 and a rotary drive 42 and 43 formed on each of two on the support means 6 fastened actuators 22 and 23 or 32 and 33 are suspended in height adjustable and are movable towards one another or away from each other and in or on the support means 6.
  • the bearing means 16 and 17 - and thus the entire working unit including the associated work roll 2 - by means of the actuators 22 and 23 in the same direction and by the same amount, ie simultaneously by the same stroke up or simultaneously by the same stroke down, the axis of rotation A of the first work roll 2 is moved parallel up or down.
  • the bearing means 18 and 19 and associated work unit with work roll 3 via the actuators 32 and 33 in the same direction and by the same amount the axis of rotation B of the second work roll 3 is moved parallel up or down.
  • the roll spacing W between the axes of rotation A and B of the two work rolls 2 and 3 or the tool spacing w can be varied.
  • the three process phases form a work cycle.
  • a plurality of such work cycles are usually carried out in succession.
  • the workpiece 10 is positioned between the rollers 2 and 3.
  • the workpiece 10 is according to FIG. 3 by means of two guide rulers or positioning parts 61 and 62 one only in FIG. 3
  • Positioning device 60 shown brought into a position on the central axis M between the work rolls 2 and 3.
  • the two positioning parts 61 and 62 are movable along a positioning axis P perpendicular to the central axis M, as indicated by the double arrows, in particular by means of rollers.
  • the positioning members 61 and 62 can be moved back in a long guide so that the work roll 2 and / or 3 can be changed without the positioning parts 61 and 62 must be dismantled.
  • the workpiece 10 is detected by the tools of the work rolls 2 and 3 and formed between the rotating tools of the rolls.
  • the distances w1, w2, w3 and w4 are measured as a measure of the distances between the axes of rotation A and B and the center axis M.
  • the formed workpiece is removed from the space between the rollers or ejected.
  • the distances w1 and w2 as well as w3 and w4 are now compared in particular with a common setpoint distance, so that a parallel position of the rotation axes A and B is therefore desired. If too great a deviation of one of the distances w1 to w4 from the nominal distance, the axes of rotation A and B are changed in their position as described until the deviation is eliminated or within a tolerance range.
  • the distances w1, w2, w3 and w4 can also be varied during the forming phase in a targeted manner according to a predetermined or temporal progression depending on the angular position of the roll (n) in order to influence the deformation of the workpiece.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Rolling Contact Bearings (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Press Drives And Press Lines (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Control Of Metal Rolling (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Warmumformen eines Werkstückes und eine Walzmaschine, die zum Durchführen des Verfahrens geeignet ist.The invention relates to a method for hot working a workpiece and a rolling machine suitable for carrying out the method.

Zum Umformen von Werkstücken aus einer Ausgangsform in eine gewünschte Zwischenform (Halbzeug, Vorformen) oder Endform (Fertigprodukt, Fertigformen) sind neben vielen anderen Verfahren auch Walzverfahren bekannt, die zu den Druckumformverfahren gezählt werden. Beim Walzen wird das Werkstück (Walzgut) zwischen zwei rotierenden Walzen angeordnet und durch Ausüben eines Umformdrucks durch die rotierenden Walzen in seiner Form verändert. Beim Profilwalzverfahren sind Werkzeugprofile am Umfang der Walzen angeordnet, die die Erzeugung entsprechender Profile im Werkstück ermöglichen. Beim Flachwalzen wirken die zylindrischen oder kegeligen Außenflächen der Walzen unmittelbar auf das Werkstück.For forming workpieces from a starting shape into a desired intermediate shape (semifinished product, preforming) or final shape (finished product, finished forms), there are, among many other processes, also rolling processes which are counted among the pressure forming processes. During rolling, the workpiece (rolling stock) is placed between two rotating rolls and changed in shape by exerting a forming pressure by the rotating rolls. When profile rolling process tool profiles are arranged on the circumference of the rollers, which allow the production of corresponding profiles in the workpiece. In flat rolling, the cylindrical or tapered outer surfaces of the rollers act directly on the workpiece.

Bezüglich der Relativbewegung der Werkzeuge oder Walzen einerseits und des Werkstückes andererseits unterteilt man Walzverfahren in Längswalzen, Querwalzen und Schrägwalzen. Beim Längswalzen wird das Werkstück senkrecht zu den Drehachsen der Walzen in einer translatorischen Bewegung und meist ohne Drehung durch den Zwischenraum zwischen den Walzen (Walzenspalt) bewegt. Beim Querwalzen bewegt sich das Werkstück nicht translatorisch bezüglich der Walzen oder deren Drehachsen, sondern dreht sich nur um seine eigene Achse, die üblicherweise eine Hauptträgheitsachse, insbesondere die Symmetrieachse bei einem rotationssymmetrischen Werkstück, ist. Bei Kombination beider Bewegungsarten beim Längswalzen und beim Querwalzen spricht man von Schrägwalzen. Die Walzen stehen dabei in der Regel schräg zueinander und zum Werkstück, das translatorisch und rotatorisch bewegt wird.With regard to the relative movement of the tools or rollers on the one hand and the workpiece on the other hand, one divides rolling processes in longitudinal rolls, transverse rolls and oblique rolls. During longitudinal rolling, the workpiece is moved perpendicular to the axes of rotation of the rollers in a translatory movement and usually without rotation through the gap between the rollers (nip). During transverse rolling, the workpiece does not translate with respect to the rollers or their axes of rotation, but rotates only about its own axis, which is usually a main axis of inertia, in particular the axis of symmetry in a rotationally symmetrical workpiece. When combining both types of movement during longitudinal rolling and cross rolling, one speaks of inclined rolls. The rollers are usually at an angle to each other and to the workpiece, which is translationally and rotationally moved.

Profilquerwalzmaschinen, bei denen zwei Walzen mit am Außenumfang angeordneten keilförmigen Profilwerkzeugen um zueinander parallele Drehachsen gleichsinnig rotieren, bezeichnet man mitunter auch als Querkeilwalzen. Die Werkzeuge weisen dabei eine keilförmige oder im Querschnitt dreieckförmige Geometrie auf und können entlang des Umfangs in ihrer axialen Abmessung in einer Richtung zunehmen und/oder schräg zur Drehachse der Walzen verlaufen.Profile transverse rolling machines, in which two rollers with wedge-shaped profile tools arranged on the outer circumference rotate in the same direction about axes of rotation parallel to one another, are sometimes referred to as transverse wedge rolling. The tools have a wedge-shaped or triangular in cross-section geometry and can increase along the circumference in its axial dimension in one direction and / or extend obliquely to the axis of rotation of the rollers.

Diese Querkeilwalzen oder Profilquerwalzen erlauben ein vielfältiges Umformen von Werkstücken in hoher Präzision oder Maßgenauigkeit. Infolge der von den keilförmigen Werkzeugen auf das Werkstück ausgeübten Druckkraft wird dabei die Materialverteilung im Werkstück während des Umlaufs der Walzen durch einen Fließvorgang im Werkstück verändert. Die keilförmigen Werkzeuge können umlaufende Nuten und andere Verjüngungen in dem rotierenden Werkstück erzeugen. Durch den axialen Versatz in Umfangsrichtung oder die schräge Anordnung der Werkzeugkeile relativ zur Drehachse können beispielsweise axial zur Drehachse sich ändernde Strukturen und Verjüngungen im Werkstück erzeugt werden. Durch die Zunahme oder Abnahme des Außendurchmessers der Werkzeugkeile beim Verlauf um die Drehachse können in Kombination mit der schrägen Anordnung axial verlaufende Schrägen und kontinuierliche Übergänge zwischen zwei Verjüngungen unterschiedlichen Durchmessers im Werkstück erzeugt werden. Die Keilform der Werkzeuge erlaubt die Herstellung feiner Strukturen durch die Keilaußenkanten oder -außenflächen. Besonders geeignet sind Querkeilwalzen zum Herstellen von langgestreckten, rotationssymmetrischen Werkstücken mit Einschnürungen oder Erhöhungen wie Nocken oder Rippen.These cross wedge or cross-profile rollers allow a variety of forming workpieces in high precision or dimensional accuracy. As a result of the compressive force exerted by the wedge-shaped tools on the workpiece while the material distribution in the workpiece during the rotation of the rollers is changed by a flow in the workpiece. The wedge-shaped tools can create circumferential grooves and other tapers in the rotating workpiece. By the axial offset in the circumferential direction or the oblique arrangement of the tool wedges relative to the axis of rotation, for example, axially changing structures and tapers can be produced in the workpiece to the rotation axis. By the increase or decrease of the outer diameter of the tool wedges when passing around the axis of rotation can be generated in combination with the oblique arrangement axially extending slopes and continuous transitions between two tapers of different diameters in the workpiece. The wedge shape of the tools allows the production of fine structures through the wedge outer edges or outer surfaces. Particularly suitable are cross wedge rollers for producing elongate, rotationally symmetrical workpieces with constrictions or elevations such as cams or ribs.

Die Umformdruckkraft sowie die Umformtemperatur sind abhängig von dem Werkstoff, aus dem das Werkstück besteht, sowie von den Anforderungen an die Maßgenauigkeit und Oberflächenqualität nach der Umformung. Insbesondere bei Eisen- oder Stahlwerkstoffen wird üblicherweise die Umformung beim Walzen bei erhöhten Temperaturen durchgeführt, um die zum Umformen erforderliche Umformbarkeit oder Fließfähigkeit des Werkstoffes zu erreichen. Diese, insbesondere beim Schmieden auftretenden, Temperaturen können bei einer sogenannten Kaltumformung im Bereich von Raumtemperatur, bei einer Halbwarmumformung zwischen 550°C und 750°C und bei einer sogenannten Warmumformung oberhalb 900°C liegen.The forming pressure and the forming temperature depend on the material of which the workpiece is made, as well as the dimensional accuracy and surface quality requirements after forming. In particular, in iron or steel materials, the forming is usually carried out at elevated temperatures during rolling in order to achieve the formability or flowability of the material required for forming. These temperatures, occurring in particular during forging, can, in the case of a so-called cold forming in the range of room temperature, in a warm forging between 550 ° C and 750 ° C and in a so-called hot forming above 900 ° C.

Es sind Querkeilwalzmaschinen (oder: Profilquerwalzmaschinen) bekannt, bei denen die Werkstücke zu Beginn des Walzprozesses mittels einer Positioniereinrichtung, die zwei Positionierträger (sogenannte Leitlineale) umfasst, in eine Ausgangsposition zwischen den beiden Walzen, die üblicherweise der geometrischen Mitte oder der Mitte des Walzenspaltes entspricht, positioniert. Die Position der Walzen und ihr Abstand zueinander werden dabei vorab fest eingestellt. Nun werden die Positionierträger der Positioniereinrichtung zurückgezogen, so dass sich das Werkstück frei zwischen den Walzen dreht und zwischen den Werkzeugen in die gewünschte Form geknetet wird. Nach diesem Walz- oder Knetvorgang und der entsprechenden Fertigstellung des Werkstückes wird das Werkstück über eine Aussparung im rotierenden Walzwerkzeug erfasst und ausgeworfen.Cross wedge rolling machines are known, in which the workpieces at the beginning of the rolling process by means of a positioning device comprising two positioning supports (so-called guide rulers), in an initial position between the two rollers, which usually corresponds to the geometric center or the center of the nip , positioned. The position of the rollers and their distance from each other are fixed in advance. Now, the positioning carriers of the positioning device are withdrawn, so that the workpiece rotates freely between the rollers and is kneaded between the tools in the desired shape. After this rolling or kneading process and the corresponding completion of the workpiece, the workpiece is detected and ejected via a recess in the rotating rolling tool.

Aus DE 1 477 088 C ist eine Querkeilwalzmaschine bekannt zum Querwalzen von Rotationskörpern oder flachen Werkstücken mit zwei in gleicher Drehrichtung rotierenden Arbeitswalzen, auf deren Walzenflächen Keilwerkzeuge austauschbar angeordnet sind. Die Keilwerkzeuge weisen jeweils keil- oder dreieckförmig verlaufende, vom Walzenmantel aus bis zu einer dem herzustellenden Werkstück angepassten Höhenendlage ansteigende, durch Rändelung oder auf andere Weise aufgeraute Reduktionsleisten und im gleichen Abstand zum Walzenmantel verlaufende, keilförmige glatte Formflächen mit Kalibriereffekt auf. Die Keilwerkzeuge sind als Verformungssegmente ausgebildet und verlaufen nur über einen Teilumfang der zugehörigen Walzenoberfläche. Am Werkstück bewegen sich die einander zugewandten Oberflächen und Werkzeuge der beiden Arbeitswalzen gegenläufig oder gegensinnig zueinander.Out DE 1 477 088 C is a cross wedge rolling machine for the transverse rolling of bodies of revolution or flat workpieces with two rotating in the same direction of rotation work rolls on the roll surfaces wedge tools are arranged interchangeable. The wedge tools each have wedge-shaped or triangular extending from the roll shell to a height adjusted to the produced workpiece end, by knurling or otherwise roughened reduction strips and extending at the same distance from the roll shell, wedge-shaped smooth form surfaces with calibration effect. The wedge tools are formed as deformation segments and extend only over a partial circumference of the associated roll surface. On the workpiece, the mutually facing surfaces and tools of the two work rolls move in opposite directions or in opposite directions to each other.

Die EP 1 256 399 A1 offenbart eine Querwalzmaschine mit zwei parallel betriebenen Modulen von jeweils zwei in gleicher Drehrichtung rotierenden Walzen, die halbschalenförmig ausgebildete Werkzeuge mit radial vorstehenden Werkzeugkeilen auf ihrer Umfangsfläche aufweisen, wobei die Umformung eines Werkstücks nur die Drehung um den halben Umfang eines Walzenpaares erfordert. Alle vier Walzen werden von nur einem Antriebsmotor über jeweils eine dazwischengeschaltete Getriebeeinheit und Antriebswelle angetrieben.The EP 1 256 399 A1 discloses a cross rolling machine with two parallel operated modules of two rollers rotating in the same direction of rotation, the half-shell-shaped tools having radially projecting tool wedges on its peripheral surface, wherein the deformation of a workpiece requires only the rotation of half the circumference of a pair of rollers. All four rollers are powered by just one drive motor driven in each case via an interposed gear unit and drive shaft.

Aus RU 2 106 223 C1 ist ferner eine Querwalzmaschine zur Erzeugung ungleicher Oberflächen bekannt mit einer Regulierung des Walzenspalts über einen Mikroprozessor mit korrespondierenden Sensoren.Out RU 2 106 223 C1 Further, a cross rolling machine for producing uneven surfaces is known with a regulation of the nip via a microprocessor with corresponding sensors.

Weiterhin offenbart DE 100 19 175 A1 ein Verfahren zum Herstellen eines bandförmigen Vormaterials aus Metall mittels Walzen eines Walzgerüstes, welche einen Walzenspalt begrenzen, wobei dieser veränderlich ist.Further disclosed DE 100 19 175 A1 a method for producing a strip-shaped starting material from metal by means of rolling of a roll stand, which delimit a nip, wherein this is variable.

Der Erfindung liegt nun die Aufgabe zugrunde, ein neues Verfahren zum Umformen von Werkstücken und eine neue Walzmaschine, mit der dieses Verfahren durchführbar ist, anzugeben.The invention is based on the object, a new method for forming workpieces and a new rolling machine, with this method is feasible to specify.

Diese Aufgabe wird gemäß der Erfindung hinsichtlich des Verfahrens durch die Merkmale des Anspruchs 1 und hinsichtlich der Walzmaschine durch die Merkmale des Anspruchs 7 gelöst.This object is achieved according to the invention with regard to the method by the features of claim 1 and with respect to the rolling machine by the features of claim 7.

Vorteilhafte Ausgestaltung des Verfahrens bzw. der Walzmaschine sind in den Unteransprüchen angegeben.Advantageous embodiment of the method or the rolling machine are specified in the subclaims.

Unter dem Begriff "Umformen" wird dabei jede Umwandlung der Form eines Werkstückes in eine andere Form verstanden, wie auch eingangs beschrieben, einschließlich Vorformen und Fertigformen. Die Drehachsen der Walzen sind als geometrische oder mathematische Achsen im (euklidischen, dreidimensionalen) Raum zu verstehen, um die sich die Walzen drehen. Kraftübertragende oder mechanische Achsen werden in dieser Anmeldung dagegen als Wellen bezeichnet.The term "forming" is understood here as any conversion of the shape of a workpiece into another form, as also described above, including preforming and finish forming. The axes of rotation of the rollers are to be understood as geometric or mathematical axes in the (Euclidean, three-dimensional) space around which the rollers rotate. Power transmitting or mechanical axes are referred to in this application, however, as waves.

Die Erfindung beruht dabei zunächst auf der Überlegung, eine automatisierte oder automatische (oder: selbsttätige) Einstellung der relativen Lage der Drehachsen der Walzen der Walzmaschine vorzunehmen, wobei im Allgemeinen wenigstens ein Stellantrieb verwendet wird. Es wird also gemäß der Erfindung insbesondere eine Steuerung, Regelung oder Korrektur durchgeführt, deren Steuer-, Regel bzw. Korrekturgröße die relative Lage der Drehachsen der Walzen ist.The invention is based initially on the consideration of performing an automatic or automatic (or: automatic) adjustment of the relative position of the axes of rotation of the rolls of the rolling machine, wherein generally at least one actuator is used. It is thus carried out according to the invention, in particular a control, regulation or correction whose control, control or correction variable is the relative position of the axes of rotation of the rollers.

Dabei wird nicht die Drehposition der Walzen oder Werkzeuge um ihre Drehachsen, die für die Umformung des Werkstücks maßgeblich ist, beeinflusst, sondern die Raumposition der Walzen oder Werkzeuge, die durch die Position der Drehachsen der Walzen oder eines dazu ortsfesten oder translationsinvarianten Raumpunktes definiert werden kann. Die relative Lage der Walzendrehachsen bestimmt auch die Position der Walzen oder der Werkzeuge relativ zum Werkstück bei vorgegebenen Drehpositionen der Walzen.It is not the rotational position of the rollers or tools about their axes of rotation, which is relevant for the deformation of the workpiece, influenced, but the spatial position of the rollers or tools, which can be defined by the position of the axes of rotation of the rollers or a stationary or translationally invariant spatial point , The relative position of the roller rotation axes also determines the position of the rollers or the tools relative to the workpiece at predetermined rotational positions of the rollers.

Bei einer reinen Steuerung (oder: open-loop control im Englischen) wird die relative Lage gemäß einem vorgegebenen Steuerverlauf oder -algorithmus ohne Rückkopplung oder Bestimmung der relativen Lage gesteuert, im Allgemeinen aufgrund voreingestellter Stellgrößenwerte als Sollwerte für den Stellantrieb.In a pure control (or: open-loop control in English), the relative position is controlled according to a predetermined control course or algorithm without feedback or relative position determination, generally on the basis of preset manipulated variable values as setpoint values for the actuator.

Bei einer Regelung (closed-loop control) oder auch Korrektur wird dagegen eine Rückkopplung vorgesehen, d.h. die relative Lage wird gemessen und dann wird durch Verringerung der Abweichung von der Soll-Relativlage die aktuelle relative Lage immer möglichst nahe an dem Sollwert gehalten. Soweit in dieser Anmeldung von Sollwerten oder Sollgrößen gesprochen wird, wird darunter neben einer Konstanten auch eine Variable oder eine Führungsgröße verstanden, die während des Steuer-, Regel- oder Korrekturprozesses nachgeführt oder gemäß einem vorgegebenen oder vorgebbaren Verlauf verändert werden kann oder wird.In closed-loop control, however, feedback is provided, i. E. the relative position is measured and then, by reducing the deviation from the desired relative position, the current relative position is always kept as close as possible to the desired value. As far as reference is made in this application of setpoint values or setpoint variables, this is understood not only to include a constant but also a variable or a reference variable which can be tracked during the control, regulation or correction process or changed according to a predefined or specifiable course.

In der Ausführungsform einer Regelung oder Korrektur kann das Umformverfahren gemäß der Erfindung auch alternativ und unabhängig oder abhängig (hier in Anspruch 2) beanspruchbar durch die folgenden Verfahrensschritte charakterisiert werden:

  1. a) Umformen des Werkstücks während einer Umformphase zwischen den Oberflächen oder Werkzeugen wenigstens zweier um jeweils eine Drehachse rotierender Walzen,
  2. b) Ermitteln (oder: Erfassen, Bestimmen), insbesondere Messen, der relativen Lage der Drehachsen der Walzen zueinander,
  3. c) Vergleich der ermittelten relativen Lage (oder: Ist-Relativposition, Istwert der relativen Lage) mit wenigstens einer vorgegebenen konstanten oder variablen Soll-Relativlage (oder: Sollwert(e) der relativen Lage),
  4. d) Kompensation oder Ausgleich einer außerhalb eines Toleranzbereiches liegenden (oder: unzulässigen) Abweichung (oder: Differenz) der ermittelten relativen Lage von der Soll-Relativlage durch Stellen (oder: Korrigieren, Steuern) der relativen (Ist-)Lage der Drehachsen.
In the embodiment of a regulation or correction, the forming process according to the invention may also be characterized, alternatively and independently or as claimed (claim 2), by the following process steps:
  1. a) forming the workpiece during a forming phase between the surfaces or tools of at least two rollers rotating about a respective axis of rotation,
  2. b) determining (or: detecting, determining), in particular measuring, the relative position of the axes of rotation of the rollers relative to each other,
  3. c) Comparison of the determined relative position (or: actual relative position, actual value of the relative position) with at least one predetermined constant or variable desired relative position (or: setpoint (s) of the relative position),
  4. d) compensation or compensation of an out-of-tolerance (or impermissible) deviation (or difference) of the determined relative position from the desired relative position by setting (or: correcting, controlling) the relative (actual) position of the axes of rotation.

Die Walzmaschine enthält entsprechend bei einer Regelung oder Korrektur in einer unabhängig beanspruchbaren Variante oder auch in einer abhängig beanspruchten Ausführungsform zusätzlich zu den Umformwalzen, dem oder den Rotationsantrieb(en) und dem wenigstens einen Stellantrieb auch noch wenigstens eine Einrichtung zum Ermitteln der relativen Lage der Drehachsen der Walzen zueinander, insbesondere während der Umformphase, und wenigstens eine Kontrolleinrichtung, die mit der Einrichtung zum Ermitteln der relativen Lage der Drehachsen und mit jedem Stellantrieb verbunden ist oder in Wirkverbindung steht zum Korrigieren der relativen Lage der Drehachsen auf eine Soll-Relativlage mittels des oder der Stellantriebe(s). Insbesondere vergleicht die Kontrolleinrichtung dann die ermittelten Werte oder Signale zur relativen Lage der Drehachsen mit der Soll-Relativlage und verändert bei Feststellung einer unzulässigen Abweichung von der Soll-Relativlage die relative Lage der Walzendrehachsen über den oder die Stellantrieb(e) solange, bis die Abweichung wieder in einem zulässigen Toleranzbereich liegt.The rolling machine contains in accordance with a control or correction in an independently claimable variant or in a dependent claimed embodiment in addition to the forming rollers, the or the rotary drive (s) and the at least one actuator also at least one means for determining the relative position of the axes of rotation the rollers to each other, in particular during the Umformphase, and at least one control device which is connected to the means for determining the relative position of the axes of rotation and with each actuator or is operatively connected to correct the relative position of the axes of rotation to a desired relative position by means of or the actuators (s). In particular, the control device then compares the determined values or signals to the relative position of the axes of rotation with the desired relative position and changed upon detection of an impermissible deviation from the desired relative position, the relative position of the roller rotation axes via the actuator or (e) until the deviation again within a permissible tolerance range.

Gemäß der Erfindung kommen die vorbeschriebenen Maßnahmen nun in einem weiteren Gedankenschritt in einem Modus zur Anwendung, der im Folgenden auch als Umformmodus bezeichnet wird. Dies beruht auf dem Gedanken, die Steuerung oder Regelung der relativen Lage der Drehachsen der Walzen zum Einstellen der Umformung und/oder des Umformdruckes am Werkstück zu verwenden.According to the invention, the measures described above are now used in a further step of thinking in a mode which will also be referred to below as a forming mode. This is based on the idea to use the control or regulation of the relative position of the axes of rotation of the rollers for adjusting the deformation and / or the forming pressure on the workpiece.

Im Umformmodus wird bzw. werden die relative Lage (oder: die Position(en) oder der Abstand oder die Abstände) der Drehachsen der Walzen während der oder wenigstens einer Umformphase und/oder in einem umformkraftbelasteten Zustand der Walzen auf die Soll-Relativlage (oder: die Sollposition(en) oder den Sollabstand/die Sollabstände) gesteuert, geregelt oder korrigiert. Dabei wird bzw. werden die Soll-Relativlage (oder: die Sollposition(en) oder der Sollabstand oder die Sollabstände) während der Umformphase gemäß einem, im Allgemeinen in Anhängigkeit von der Winkel- oder Drehposition der Walzen (positionsgesteuert) oder von der Zeit (zeitgesteuert) vorgegebenen, Verlauf geführt, der einem gewünschten, insbesondere positionsabhängigen oder zeitlichen, Verlauf des beim Umformen des Werkstücks gewünschten Umformdruckes oder der Umformung des Werkstücks angepasst ist. Somit können im Umformmodus aufgrund der variablen Walzenposition mit demselben wenigstens einen Werkzeug oder denselben Oberflächen der Walzen durch Einstellen unterschiedlicher Verläufe der Soll-Relativlage oder Sollposition(en) oder des Sollabstandes oder der Sollabstände in unterschiedlichen Umformphasen unterschiedliche Umformungen derselben oder unterschiedlicher Werkstücke erzeugt werden, insbesondere durch Verringern des Abstandes der Drehachsen während zumindest eines Teils der Umformphase.In the forming mode, the relative position (or: the position (s) or the distance or the distances) of the axes of rotation of the rollers during the or at least one Umformphase and / or in a Umformkraftbelasteten condition of the rollers to the desired relative position (or : the target position (s) or the target distance (s) are controlled, regulated or corrected. In this case, the desired relative position (or the setpoint position (s) or the setpoint distance (s) during the forming phase is or will be determined according to, generally as a function of the angular or rotational position of the rollers (position-controlled) or of the time ( time-controlled) predetermined course, which is adapted to a desired, in particular position-dependent or temporal course of the desired during forming of the workpiece forming or the deformation of the workpiece. Thus, in the forming mode due to the variable roller position with the same at least one tool or the same surfaces of the rollers by setting different profiles of the desired relative position or desired position (s) or the desired distance or distances in different Umformphasen different transformations of the same or different workpieces can be generated, in particular by reducing the distance of the axes of rotation during at least part of the forming phase.

So kann beispielsweise die zunehmende radiale Ausdehnung eines Keilwerkzeuges durch eine Verringerung des Walzenabstandes zumindest teilweise nachgebildet oder ersetzt werden. Der vorgegebene Verlauf der Soll-Relativlage kann vorab ermittelt und gespeichert sein. Außerdem können auch Abweichungen beim Werkzeug von einer vorgegebenen Form, zum Beispiel aufgrund Maßtoleranzen oder Verschleiß, durch Anpassen der Soll-Relativlage der Drehachsen der Walzen wenigstens annähernd ausgeglichen werden.Thus, for example, the increasing radial extent of a wedge tool can be at least partially reproduced or replaced by a reduction of the roll spacing. The predetermined course of the desired relative position can be determined in advance and stored. In addition, deviations in the tool from a predetermined shape, for example, due to dimensional tolerances or wear, by adjusting the target relative position of the axes of rotation of the rollers can be at least approximately compensated.

Vorteilhafte Ausgestaltungen und Weiterbildungen des Verfahrens sowie der Walzmaschine ergeben sich aus den vom Anspruch 1 bzw. Anspruch 8 jeweils abhängigen Ansprüchen.Advantageous embodiments and further developments of the method and of the rolling machine result from the claims dependent respectively from claim 1 and claim 8.

In einer ersten vorteilhaften Ausführungsform wird die relative Lage der Drehachsen der Walzen während der Umformphase ermittelt, vorzugsweise bei einer vorgegebenen Drehwinkelstellung wenigstens einer der Walzen und/oder einer vorgegebenen Kraftbelastung der Walze(n) oder Umformkraft. Es kann dann insbesondere eine Drehwinkelsensoreinrichtung zum Bestimmen des Walzendrehwinkels und/oder eine Kraftsensoreinrichtung zur Bestimmung der Umformkraft vorgesehen sein.In a first advantageous embodiment, the relative position of the axes of rotation of the rollers during the forming phase is determined, preferably at a predetermined angular position of at least one of the rollers and / or a predetermined force load of the roller (s) or forming force. In particular, a rotation angle sensor device for determining the roll rotation angle and / or a force sensor device for determining the deformation force can then be provided.

Die Korrektur oder Einstellung der relativen Lage der Drehachsen der Walzen kann nun in Echtzeit oder unmittelbar während der Umformphase, insbesondere im Rahmen einer kontinuierlichen oder in kleinen Zeitintervallen erfolgenden Regelung, vorgenommen werden. Die Soll-Relativlage entspricht dann der gewünschten Walzenlage während der Umformung.The correction or adjustment of the relative position of the axes of rotation of the rollers can now be carried out in real time or directly during the forming phase, in particular in the context of a continuous or in small time intervals taking place regulation. The desired relative position then corresponds to the desired roll position during the forming.

Vorzugsweise wird jedoch die, insbesondere während der Umformphase, bestimmte Istlage der relativen Lage der Walzendrehachsen erst nach oder auch vor der Umformung und/oder nach Auswerfen des Werkstücks aus dem Zwischenraum zwischen den Werkzeugen oder den Walzen und/oder in einem umformkraftentlasteten Zustand der Walzen auf eine Soll-Relativlage korrigiert. Die Soll-Relativlage ist dann gegebenenfalls auf eine Solllage im belasteten Zustand oder während der Umformphase abgestimmt. Es kann dann während der Umformphase eine Änderung der relativen Lage durch den wenigstens einen Stellantrieb unterbleiben.Preferably, however, the actual position of the relative position of the roller axes of rotation determined, in particular during the forming phase, only after or even before the forming and / or after ejection of the workpiece from the gap between the tools or the rollers and / or in a state relieved of deformation of the rollers corrected a desired relative position. The desired relative position is then optionally adjusted to a desired position in the loaded state or during the forming phase. It can then be omitted during the forming phase, a change in the relative position by the at least one actuator.

In einem typischen Umformprozess werden mehrere Werkstücke in aufeinanderfolgenden Umformphasen nacheinander zwischen den Walzen oder den Werkzeugen der Walzen umgeformt und nach den zugehörigen Umformphasen aus dem Zwischenraum zwischen den Walzen oder den Werkzeugen ausgeworfen. Es wird nun vorzugsweise in jeder oder jeder n-ten (mit einer natürlichen Zahl n größer 1) Umformphase die relative Lage der Drehachsen der Walzen ermittelt und nach jeder oder jeder n-ten Umformphase und/oder nach Auswerfen des jeweiligen Werkstücks die Korrektur der relativen Lage der Drehachsen der Walzen durchgeführt.In a typical forming process several workpieces are successively formed in successive forming phases between the rolls or the tools of the rolls and ejected from the space between the rolls or the tools after the associated forming phases. It is now preferably in each or every n-th (with a natural number n greater than 1) forming the relative position of the axes of rotation of the rollers determined and after each or every n-th forming phase and / or after ejection of the respective workpiece, the correction of the relative Position of the axes of rotation of the rollers performed.

Die Walzen sind im Allgemeinen in jeweils zwei Lagereinrichtungen rotierbar oder rotierend gelagert.The rollers are generally rotatable or rotatably mounted in two storage facilities.

Es kann nun zur Korrektur oder Einstellung der relativen Lage der Walzen zueinander in einer einfachen Ausführungsform nur die Position der Drehachse einer der Walzen auf eine Sollposition geregelt oder gesteuert werden und die Position der Drehachse der anderen Walze(n) dagegen unverändert oder ortsfest zur Umgebung, insbesondere zum Erdboden, bleiben. Hier kann insbesondere die untere Walze ortsfest bleiben und nur die obere Walze verstellt werden.In order to correct or adjust the relative position of the rollers relative to each other in a simple embodiment, only the position of the axis of rotation of one of the rollers can be controlled or controlled to a desired position and the position of the axis of rotation of the other roller (s) unchanged or stationary relative to the environment. especially to the ground, stay. Here In particular, the lower roller can remain stationary and only the upper roller can be adjusted.

Vorzugsweise sind aber die Positionen der Drehachsen beider Walzen zur Korrektur oder Änderung der Relativposition ihrer Drehachsen verstellbar oder veränderbar und auf zugehörige Sollpositionen regelbar oder korrigierbar. Es können die Walzen nun entweder unabhängig voneinander, d.h. ohne eine Kopplung ihrer Bewegung, mit eigenen Stellantrieben oder auch abhängig voneinander, d.h. mit einer steuerungstechnischen oder mechanischen Kopplung, einstellbar sein oder eingestellt werden. Es können aber auch die Bewegungen und Positionen der Drehachsen beider Walzen derart miteinander gekoppelt sein, dass die Drehachsen beider Walzen gleichzeitig, vorzugsweise auch mit der gleichen Geschwindigkeit, auf eine zwischen den Walzen liegende Referenzposition, vorzugsweise die Mittelachse, zu oder von dieser weg bewegbar sind oder bewegt werden. Eine solche synchrone Bewegung kann insbesondere mit unabhängigen Stellantrieben durch eine gemeinsame Ansteuerung oder auch durch eine mechanische Kopplung mit Getriebe(n) realisiert werden.Preferably, however, the positions of the axes of rotation of both rollers for correcting or changing the relative position of their axes of rotation are adjustable or variable and can be regulated or corrected to associated desired positions. The rollers can now be either independently, i. without a coupling of their movement, with their own actuators or also dependent on each other, i. be with a control technology or mechanical coupling, be adjustable or adjusted. However, it is also possible for the movements and positions of the axes of rotation of the two rollers to be coupled to one another in such a way that the axes of rotation of both rollers are simultaneously movable, preferably also at the same speed, to a reference position lying between the rollers, preferably the central axis, to or away from said rollers or be moved. Such a synchronous movement can be realized in particular with independent actuators by a common control or by a mechanical coupling with gear (s).

In einer weiteren vorteilhaften Ausführungsform werden zur Ermittlung der relativen Lage der Drehachsen der Walzen ein Abstand an einer Stelle oder zwei Abstände an unterschiedlichen Stellen der Drehachsen von wenigstens zwei Walzen voneinander oder jeweils ein oder zwei Abstände jeder Drehachse zu einer Mittelachse zwischen den beiden Walzen ermittelt und diese(r) ermittelte Abstand/Abstände zur Korrektur der relativen Lage der Drehachsen auf die Soll-Relativlage herangezogen. Insbesondere kann jeder ermittelte Abstand für sich mit einem zugehörigen Sollabstand verglichen werden und bei einer Abweichung von dem Sollabstand außerhalb eines vorgegebenen Toleranzbereiches auf den Sollabstand korrigiert werden. Es ist aber auch möglich, aus den einzelne Abständen (oder Positionen) eine geometrische Relativlage der Drehachsen rechnerisch zu ermitteln und diese zu korrigieren.In a further advantageous embodiment, to determine the relative position of the axes of rotation of the rollers a distance at one point or two distances at different locations of the axes of rotation of at least two rollers from each other or one or two distances of each axis of rotation to a central axis between the two rollers determined and this (r) determined distance / distances used to correct the relative position of the axes of rotation to the desired relative position. In particular, each determined distance can be compared for itself with an associated desired distance and corrected for a deviation from the desired distance outside a predetermined tolerance range to the desired distance. However, it is also possible to mathematically determine from the individual distances (or positions) a geometric relative position of the axes of rotation and to correct them.

Die Mittelachse (oder: geometrischen Mitte, Mittellage) im zur Aufnahme des Werkstücks vorgesehenen Zwischenraum zwischen den Walzen oder Werkzeugen kann insbesondere durch eine Positioniereinrichtung zum Positionieren des Werkstücks zwischen den Walzen definiert sein, wobei die Mittelachse innerhalb einer Bewegungsebene oder auf einer Bewegungsachse zweier zueinander beweglicher Positionierteile der Positioniereinrichtung zum Festhalten des Werkstücks zwischen den beiden Positionierteilen liegen kann. Diese Bestimmung der Walzenpositionen oder des Walzenabstandes relativ zum Werkstück hat den Vorteil, dass durch die in der Lage relativ zum Werkstück ortsfesten Positioniereinrichtung eine zuverlässige Referenzposition begründet ist, die die Lage des Werkstücks definiert. Die Abstände der Drehachsen zu der Mittelachse stehen überdies in eindeutigem Zusammenhang zu den Abständen der Drehachsen zueinander.The central axis (or: geometric center, central position) in the space provided between the rollers or tools for receiving the workpiece can in particular be positioned by a positioning device the workpiece may be defined between the rollers, wherein the central axis may lie within a movement plane or on a movement axis of two mutually movable positioning parts of the positioning device for holding the workpiece between the two positioning parts. This determination of the roll positions or of the roll spacing relative to the workpiece has the advantage that a reliable reference position is established by the positioning device that is stationary in relation to the workpiece, which position defines the position of the workpiece. The distances between the axes of rotation to the central axis are also in clear relation to the distances of the axes of rotation to each other.

Die Ermittlung der relativen Lage der Drehachsen zueinander kann also in nur einer Dimension oder Projektion auf eine Koordinatenrichtung (Raumrichtung) oder in zwei oder sogar drei Dimensionen oder Koordinatenrichtungen erfolgen.The determination of the relative position of the axes of rotation to each other can thus take place in only one dimension or projection on a coordinate direction (spatial direction) or in two or even three dimensions or coordinate directions.

Zum Messen der Position(en) oder des Abstandes/der Abstände der Drehachsen der Walzen umfasst die Walzmaschine im Allgemeinen eine Messeinrichtung, die insbesondere wenigstens einen berührungslosen Sensor, insbesondere einen Ultraschallsensor und/oder einen optischen Sensor und/oder einen induktiven Sensor und/oder einen magnetischen Sensor, und/oder einen berührenden Sensor, beispielsweise einen Seilzuggeber, umfasst. Insbesondere können die Abstände zwischen den Lagereinrichtungen und der Positioniereinrichtung gemessen werden, wobei die Sensoren an deren Außenseiten angebracht werden können.For measuring the position (s) or the distance / the distances of the axes of rotation of the rollers, the rolling machine generally comprises a measuring device, in particular at least one non-contact sensor, in particular an ultrasonic sensor and / or an optical sensor and / or an inductive sensor and / or a magnetic sensor, and / or a contacting sensor, such as a cable driver. In particular, the distances between the storage devices and the positioning device can be measured, wherein the sensors can be attached to their outer sides.

Zur Einstellung der relativen Lage der Drehachsen der Walzen zueinander werden in einer vorteilhaften Ausführungsform eine der beiden Lagereinrichtungen oder beide Lagereinrichtungen wenigstens einer Walze über wenigstens einen Stellantrieb bewegt.In order to adjust the relative position of the axes of rotation of the rollers relative to one another, one of the two bearing devices or both bearing devices of at least one roller is moved via at least one actuator in an advantageous embodiment.

In einer bevorzugten Ausführungsform wird oder werden die verstellbaren Walze(n) oder deren Lagereinrichtung(en) zur Korrektur oder Einstellung der relativen Lage auf die Soll-Relativlage oder zur Einstellung der Position(en) ihrer Drehachse(n) oder des Abstandes der Drehachsen der Walzen linear (oder: geradlinig, translatorisch) bewegt. Eine lineare, rein translatorische Bewegung ist antriebstechnisch einfach zu realisieren. Die Bewegungsrichtung der linearen Bewegung oder Verschiebung der Walze(n) ist vorzugsweise im Wesentlichen senkrecht (oder: orthogonal) zu den Drehachsen der Walzen gerichtet. Ferner kann die Bewegung insbesondere in einer vertikalen Richtung, d.h. parallel zur Gravitationskraft, erfolgen. Auch eine andere Bewegungsart für die Walzen kann vorteilhaft sein, besonders bei asymmetrischen thermischen oder mechanischen Form- oder Volumenänderungen in der Walzmaschine, so beispielsweise eine Rotations- oder Kippbewegung oder eine aus translatorischer und rotatorischer Bewegung zusammengesetzte oder entlang einer vorgegebenen, nicht geradlinigen Trajektorie (oder: Bewegungsweg) erfolgende Bewegung der Drehachsen. Die Bewegung der Drehachsen der Walzen kann also mit einem, zwei oder auch drei Bewegungsfreiheitsgraden erfolgen. Um grundsätzlich sowohl lineare Bewegungen als auch Schwenkbewegungen der Drehachse(n) zuzulassen, wird eine zu verstellende Drehachse vorzugsweise in zwei Angriffspunkten außerhalb der Walze bewegt, die insbesondere in Lagereinrichtungen der Walze liegen können.In a preferred embodiment, the adjustable roller (s) or their bearing device (s) for correcting or adjusting the relative position to the desired relative position or for adjusting the position (s) of its axis of rotation (s) or the distance of the axes of rotation Rolls moved linearly (or: straight, translationally). A linear, purely translational Motion is easy to implement in terms of drive technology. The direction of movement of the linear movement or displacement of the roller (s) is preferably directed substantially perpendicularly (or orthogonally) to the axes of rotation of the rollers. Furthermore, the movement can take place in particular in a vertical direction, ie parallel to the gravitational force. Another type of movement for the rolls may also be advantageous, especially in the case of asymmetric thermal or mechanical changes in shape or volume in the rolling machine, such as a rotational or tilting movement or a compound composed of translational and rotational movement or along a predetermined, non-rectilinear trajectory (or : Movement path) taking place movement of the rotary axes. The movement of the axes of rotation of the rollers can thus be done with one, two or even three degrees of freedom of movement. To allow in principle both linear movements and pivotal movements of the axis of rotation (s), an axis of rotation to be adjusted is preferably moved in two points of attack outside the roller, which can lie in particular in storage facilities of the roller.

Die Drehachsen der Walzen werden im Allgemeinen auf eine wenigstens annähernd parallele Stellung zueinander eingestellt und sind in der Regel auch Hauptträgheitsachsen der Walzen, insbesondere Zylinder- oder Mittelachsen bei zylindrischen Walzen. In einer vorteilhaften Ausführungsform sind die Walzen und ihre Drehachsen, in Schwerkraftrichtung gesehen, übereinander oder vertikal zueinander angeordnet. Es ist aber auch eine horizontale oder auch schräge Anordnung der Walzen und ihrer Drehachsen möglich.The axes of rotation of the rollers are generally adjusted to an at least approximately parallel position to each other and are usually also main axes of inertia of the rollers, in particular cylindrical or central axes in cylindrical rollers. In an advantageous embodiment, the rollers and their axes of rotation, viewed in the direction of gravity, are arranged one above the other or vertically relative to one another. But it is also a horizontal or oblique arrangement of the rollers and their axes of rotation possible.

In einer besonderen Weiterbildung des Verfahrens und der Walzmaschine sind die Soll-Relativlage, Sollposition(en) oder Sollabstände der Drehachsen der Walzen abhängig von dem Material und/oder der Gestalt (oder: Geometrie) des umzuformenden Werkstück oder von der gewünschten Gestalt oder den gewünschten Abmessungen des Werkstücks nach der Umformung eingestellt. Dazu kann insbesondere die Gestalt des aktuellen Werkstücks vor der Umformphase vermessen werden. Es können aber auch die Parameter eines Werkstücks vorab anhand eines Musters eingegeben werden.In a particular development of the method and the rolling machine, the desired relative position, desired position (s) or desired distances of the axes of rotation of the rollers are dependent on the material and / or shape (or: geometry) of the workpiece to be reshaped or of the desired shape or desired Dimensions of the workpiece adjusted after forming. For this purpose, in particular the shape of the current workpiece can be measured before the forming phase. However, the parameters of a workpiece can also be entered in advance by means of a pattern.

Eine weitere, besonders vorteilhafte Anwendung der Erfindung, die im Folgenden auch als Kompensationsmodus bezeichnet wird, beruht auf der Erkenntnis, dass während des Umformprozesses eines Werkstückes oder eines Prozesses mit mehreren aufeinanderfolgenden Umformprozessen beim Bearbeiten mehrerer Werkstücke Ausdehnungen oder Kontraktionen innerhalb der Walzmaschine, insbesondere in der Trägereinrichtung der Walzen oder auch innerhalb der Walzen und Werkzeuge selbst, auftreten. Verursacht werden diese Form- und Volumenänderungen insbesondere durch die beim Umformen wirkenden Kräfte (mechanische Ausdehnung oder Kontraktion) und durch das Einbringen des bei Warm- oder Heißumformung auf relativ hohen Temperaturen befindlichen Werkstückes und die damit verbundenen zeitlichen und räumlichen Temperaturänderungen, die zu thermischer Ausdehnung oder Kontraktion führen. Diese Veränderungen der Form oder des Volumens in der Walzmaschine sind somit Störgrößen des Prozesses und verändern nachteilig die für den Umformprozess optimalen oder voreingestellten Relativpositionen der Walzen oder Werkzeuge zueinander.Another, particularly advantageous application of the invention, which is also referred to below as the compensation mode, is based on the recognition that during the forming process of a workpiece or a process with several successive forming processes when machining multiple workpieces expansions or contractions within the rolling machine, especially in the Carrier device of the rollers or even within the rollers and tools themselves, occur. These changes in shape and volume are caused in particular by the forces acting upon forming (mechanical expansion or contraction) and by introducing the workpiece, which is at relatively high temperatures during hot or hot forming, and the associated temporal and spatial temperature changes that lead to thermal expansion or expansion Cause contraction. These changes in shape or volume in the rolling machine are thus disturbances of the process and adversely affect the optimal or preset relative positions of the rolls or tools for the forming process.

Im Kompensationsmodus werden nun diese, insbesondere während der Umformphase auftretenden, thermischen und/oder mechanischen Form- oder Volumenänderungen in den Walzen oder deren Werkzeugen oder anderen Bereichen einer die Walzen umfassenden Walzmaschine, insbesondere Lagereinrichtungen für die Walzen und Trägereinrichtungen für die Lagereinrichtungen, durch die gemäß der Erfindung vorgesehene Korrektur oder Regelung der relativen Lage der Drehachsen der Walzen auf die Soll-Relativlage im Wesentlichen kompensiert oder ausgeglichen. Gemäß der Erfindung wird also mit anderen Worten zum automatisch oder selbsttätig durchführbaren Ausgleich (oder: zur Kompensation oder Korrektur) der genannten thermischen und mechanischen Form- oder Volumenveränderungen die relative Lage der Walzen oder Werkzeuge im Raum zueinander bestimmt (oder: ermittelt), insbesondere gemessen, und in einem Anpass- oder Korrekturschritt angepasst, wenn unzulässige oder nicht tolerierbare Abweichungen von einer für den Umformprozess vorgegebenen oder optimalen Soll-Relativlage der Drehachsen auftreten.In the compensation mode these, in particular during the Umformphase occurring, thermal and / or mechanical changes in shape or volume in the rolls or their tools or other areas of a rolling machine comprising the rolls, in particular storage facilities for the rollers and support means for the storage facilities, by the The invention provided correction or regulation of the relative position of the axes of rotation of the rollers to the desired relative position substantially compensated or compensated. In other words, according to the invention, in other words, the compensation (or compensation or correction) of said thermal and mechanical shape or volume changes, in other words, determines (or: determines) the relative position of the rollers or tools in space relative to each other , and adapted in an adjustment or correction step, if impermissible or intolerable deviations from a predetermined or optimal for the forming process or relative position of the rotational axes occur.

Der mit dem Verfahren und der Walzmaschine durchgeführte Umformprozess kann ein Kaltumformprozess sein, ist jedoch vorzugsweise ein Warmumformprozess oder ein Heißumformprozess. Bei Warm- und Heißumformung ist die Korrektur der Walzenpositionen gemäß der Erfindung zum Ausgleich oder zur Kompensation thermischer Veränderungen besonders vorteilhaft.The forming process performed by the method and the rolling machine may be a cold forming process, but is preferably a hot working process or a hot forming process. In hot and hot forming, the correction of the roll positions according to the invention to compensate for or compensate for thermal changes is particularly advantageous.

Das Material des Werkstücks kann eisenhaltig sein, beispielsweise Eisen selbst oder ein Stahl sein, oder auch ein nicht eisenhaltiger metallischer Werkstoff sein, beispielsweise Aluminium oder eine Aluminiumlegierung.The material of the workpiece may be ferrous, such as iron itself or a steel, or may be a non-ferrous metal material, such as aluminum or an aluminum alloy.

In einer besonders bevorzugten Ausführungsform ist die Walzmaschine als Profilquerwalzmaschine oder Querkeilwalzmaschine ausgebildet, deren grundsätzlicher Aufbau eingangs beschrieben wurde. Insbesondere weisen die Walzen also entsprechende Profil- oder Keilwerkzeuge auf und rotieren gleichsinnig zueinander, wobei das Werkstück sich nur um eine eigene Achse dreht und nicht von den Walzen translatorisch transportiert wird. Die Werkzeuge auf den Walzen sind insbesondere im Querschnitt keilförmig oder dreieckförmig und nehmen entlang des Umfangs in ihrer radialen Abmessung in einer Richtung zu und/oder verlaufen schräg zur Drehachse der zugehörigen Walze.In a particularly preferred embodiment, the rolling machine is designed as a profile cross rolling machine or cross wedge rolling machine whose basic structure has been described in the introduction. In particular, therefore, the rollers have corresponding profile or wedge tools and rotate in the same direction with each other, wherein the workpiece rotates only about its own axis and is not transported translationally by the rollers. The tools on the rollers are in particular wedge-shaped or triangular in cross-section and increase in their radial dimension in one direction along the circumference and / or extend obliquely to the axis of rotation of the associated roller.

Selbstverständlich ist die Erfindung außer bei Querwalzverfahren und - maschinen auch bei Längswalzverfahren und -maschinen anwendbar, beispielsweise zum Reckwalzen.Of course, the invention is also applicable to longitudinal rolling methods and machines, for example for stretch rolling, except in the case of cross rolling methods and machines.

Wenigstens ein Stellantrieb kann nun ein hydraulischer Antrieb sein. Vorzugsweise ist jedoch wenigstens ein oder jeder Stellantrieb ein elektromotorischer Antrieb, insbesondere ein Spindelantrieb. Die Genauigkeit der Stellbewegung der Stellantriebe liegt vorzugsweise im Bereich von einigen Zehntel mm oder sogar einigen Hunderstel mm, vorzugsweise wenigstens 0,1 mm, und/oder einem Tausendstel des Verstellweges oder -hubs. Damit kann auch der Toleranzbereich für die Korrektur oder Abweichung der relativen Lage der Drehachsen auf die Soll-Relativlage in dieser Größenordnung gewählt werden.At least one actuator can now be a hydraulic drive. Preferably, however, at least one or each actuator is an electric motor drive, in particular a spindle drive. The accuracy of the adjusting movement of the actuators is preferably in the range of a few tenths of mm or even a few hundredths of a mm, preferably at least 0.1 mm, and / or one-thousandth of Verstellweges or -hubs. Thus, the tolerance range for the correction or deviation of the relative position of the axes of rotation can be selected to the desired relative position in this order of magnitude.

In einer Weiterbildung der Walzmaschine ist eine ortsfeste, nicht mit den Walzen mitrotierende oder nicht mitrotierbare Trägereinrichtung (oder: Walzengerüst, Walzengestell) vorgesehen, an der der oder die Stellantrieb(e) gelagert oder getragen ist bzw. sind.In a further development of the rolling machine is a stationary, not co-rotating with the rollers or non-rotatable carrier device (or: roll stand, Rolling rack) provided on the or the actuator (s) is stored or carried or are.

In einer Ausgestaltung der Walzmaschine sind für jede Walze jeweils zwei an Stirnseiten der Walze mit der Walze verbindbare oder verbundene und mit der Walze mitrotierbare oder mitrotierende Halteeinrichtungen vorgesehen. Die Verbindung der Halteeinrichtungen mit den Walzen ist vorzugsweise lösbar, um einen Wechsel der Werkzeuge oder der Walzen zu ermöglichen oder zu erleichtern. Für jede Halteeinrichtung ist ferner jeweils eine Lagereinrichtung, in der die Halteeinrichtung drehbar gelagert ist, vorgesehen. Die Lagereinrichtungen mit den in ihnen gelagerten Halteeinrichtungen wenigstens einer Walze sind mit dem oder den dieser Walze zugeordneten Stellantrieb(en) gekoppelt oder koppelbar ist und über den oder die Stellantrieb(e) bewegbar zum Verändern der Position der Drehachse der zugehörigen Walze. Insbesondere ist jede Lagereinrichtung jeweils mit einem Stellantrieb verbunden und die Regeleinrichtung steuert die Stellantriebe beider Lagereinrichtungen einer Walze entsprechend der gewünschten Bewegung der Drehachse der Walze an. Die Trägereinrichtung weist insbesondere Führungsbereiche zum Führen der Lagereinrichtungen bei deren Bewegung auf. Die Führung der Lagereinrichtungen kann durch Gleitlager oder Wälzlager unterstützt werden.In one embodiment of the rolling machine, two respective holding devices which can be connected or connected to the roller with end faces of the roller and rotatable or co-rotating with the roller are provided for each roller. The connection of the holding means with the rollers is preferably releasable to allow or facilitate a change of the tools or the rollers. For each holding device is also in each case a bearing device in which the holding device is rotatably mounted, is provided. The bearing devices with the retaining devices of at least one roller mounted in them are coupled or couplable to the actuator (s) associated with this roller and can be moved via the actuator (s) to change the position of the axis of rotation of the associated roller. In particular, each bearing device is connected to an actuator and the control device controls the actuators of both storage facilities of a roller according to the desired movement of the axis of rotation of the roller. In particular, the carrier device has guide regions for guiding the bearing devices during their movement. The leadership of the storage facilities can be supported by plain bearings or bearings.

In einer bevorzugten Ausgestaltung bilden die Walzen mit den zugehörigen Rotationsantrieben jeweils eine Einheit, die gemeinsam von den Stellantrieben verstellbar ist. Bei Bewegung einer Walze durch den oder die zugehörigen Stellantrieb(e) bleibt somit die relative Anordnung oder Position des der Walze zugeordneten Rotationsantriebs zur Walze unverändert oder translationsinvariant. Insbesondere sind an einer der Lagereinrichtungen jeder Walze die nicht rotierenden oder rotierbaren Teile des zugehörigen Rotationsantriebs zum Rotieren dieser Walze befestigt und die mitrotierenden oder mitrotierbaren Antriebsteile des Rotationsantriebs an oder in der Lagereinrichtung drehbar gelagert sind.In a preferred embodiment, the rollers with the associated rotary drives each form a unit which is adjustable together by the actuators. When moving a roller through the associated actuator or actuators, the relative arrangement or position of the rotary drive associated with the roller with respect to the roller thus remains unchanged or translationally invariant. In particular, the non-rotating or rotatable parts of the associated rotary drive for rotating this roller are attached to one of the bearing devices of each roller and the co-rotating or mitrotierbaren drive parts of the rotary drive are rotatably mounted on or in the bearing device.

Die Trägereinrichtung umfasst in einer besonderen konstruktiven Ausgestaltung vier Trägerelemente, wobei zwischen zwei der vier Trägerelementen eine der Lagereinrichtungen einer ersten der beiden Walzen und eine der Lagereinrichtungen der zweiten der beiden Walzen und zwischen den anderen zwei der vier Trägerelemente die andere Lagereinrichtung der ersten Walze und die andere Lagereinrichtung der zweiten Walze angeordnet und vorzugsweise beweglich geführt sind.The carrier device comprises in a special structural design four carrier elements, wherein between two of the four carrier elements one of the bearing means of a first of the two rollers and one of Bearing means of the second of the two rolls and between the other two of the four support elements, the other bearing means of the first roller and the other bearing means of the second roller are arranged and preferably guided movably.

Die Stellantriebe für die Walzen sind im Allgemeinen an voneinander abgewandten Seiten der Walzen angeordnet, um zwischen den Walzen und seitlich davon Platz für die Werkstücke und weitere Maschinenteile zu lassen sind.The actuators for the rollers are generally arranged on opposite sides of the rollers in order to leave space between the rollers and laterally for the workpieces and other machine parts.

Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen weiter erläutert. Dabei wird auf die Zeichnungen Bezug genommen, in deren

FIG 1
eine Walzmaschine mit zwei Walzen und einer Kontrolleinrichtung zum Überwachen und Korrigieren des Walzenabstandes in einer Prinzipskizze,
FIG 2
eine Walzmaschine mit zwei Walzen mit zugeordneten unabhängigen Rotationsantrieben zum Rotieren der Walzen und Stellantrieben zum Verstellen der Walzen in einem Längsschnitt,
FIG 3
die Walzmaschine gemäß FIG 2 in einer um 90° nach einer Seite gedrehten Seitenansicht,
FIG 4
die Walzmaschine gemäß FIG 2 in einer um 90° nach der anderen Seite gedrehten Seitenansicht und
FIG 5
die Walzmaschine gemäß FIG 2 bis 4 in einer quer zum Längsschnitt gemäß FIG 2 vorgenommenen Schnittdarstellung
jeweils schematisch dargestellt sind. Einander entsprechende Teile und Größen sind in den FIG 1 bis 5 mit denselben Bezugszeichen versehen.The invention will be explained below with reference to exemplary embodiments. Reference is made to the drawings, in which
FIG. 1
a rolling machine with two rolls and a control device for monitoring and correcting the roll spacing in a schematic diagram,
FIG. 2
a rolling machine with two rollers with associated independent rotary drives for rotating the rollers and actuators for adjusting the rollers in a longitudinal section,
FIG. 3
the rolling machine according to FIG. 2 in a side view turned 90 ° to one side,
FIG. 4
the rolling machine according to FIG. 2 in a rotated by 90 ° to the other side and side view
FIG. 5
the rolling machine according to FIGS. 2 to 4 in a transverse to the longitudinal section according to FIG. 2 made sectional representation
are each shown schematically. Corresponding parts and sizes are in the 1 to 5 provided with the same reference numerals.

Die dargestellte Walzmaschine gemäß FIG 1 bis 5 ist als Querkeilwalze oder Querkeilwalzmaschine ausgebildet und umfasst eine erste Arbeitswalze 2, die um eine Rotationsachse A rotierbar oder rotierend ist, und eine zweite Arbeitswalze 3, die um eine Rotationsachse B rotierbar oder rotierend ist. Der Drehsinn beider Arbeitswalzen 2 und 3 ist mit den dargestellten Pfeilen veranschaulicht und gleich. Die Rotationsachsen A und B sind im Wesentlichen parallel zueinander und senkrecht zur mit dem Pfeil gekennzeichneten Richtung der Gravitations- oder Schwerkraft (Erdanziehungskraft) angeordnet, so dass die Arbeitswalzen 2 und 3 übereinander angeordnet sind. Die Arbeitswalzen weisen eine im Wesentlichen zylindrische Außenfläche auf.The illustrated rolling machine according to 1 to 5 is designed as a cross wedge roller or cross wedge rolling machine and comprises a first work roll 2, which is rotatable or rotating about a rotation axis A, and a second work roll 3, which is rotatable about a rotation axis B or rotating. The sense of rotation of both work rolls 2 and 3 is illustrated and the same with the arrows shown. The axes of rotation A and B are essentially arranged parallel to each other and perpendicular to the arrowed direction of gravitational or gravitational force (gravitational force), so that the work rolls 2 and 3 are arranged one above the other. The work rolls have a substantially cylindrical outer surface.

Der Abstand W zwischen den beiden Drehachsen A und B der Arbeitswalzen 2 und 3 ist im Folgenden als Walzenabstand bezeichnet. Der Abstand zwischen den zylindrischen Außenflächen der beiden Arbeitswalzen 2 und 3 ist über die Walzendurchmesser eindeutig mit dem Abstand W verknüpft. Eine zwischen den beiden Arbeitswalzen 2 und 3 parallel zu den Drehachsen A und B verlaufende, die geometrische Mitte definierende Mittelachse (oder: Mittellage) ist mit M bezeichnet. Bei symmetrischer Lage der beiden Drehachsen A und B zu der Mittelachse M ist der Abstand beider Drehachsen A und B zur Mittelachse M gleich W/2.The distance W between the two axes of rotation A and B of the work rolls 2 and 3 is referred to below as the roll spacing. The distance between the cylindrical outer surfaces of the two work rolls 2 and 3 is clearly linked to the distance W via the roll diameter. A center axis (or center position) running parallel to the axes of rotation A and B between the two work rolls 2 and 3 and defining the geometric center is denoted by M. In symmetrical position of the two axes of rotation A and B to the central axis M, the distance between the two axes of rotation A and B to the central axis M is equal to W / 2.

An der Außenfläche oder Mantelfläche der Arbeitswalzen 2 und 3 sind jeweils im Querschnitt keilförmige Werkzeuge 20 und 21 bzw. 30 und 31 befestigt, insbesondere verspannt oder verschraubt. In den dargestellten Ausführungsformen gemäß FIG 1 bis 5 sind die Werkzeuge 20 und 21 der ersten Arbeitswalze 2 und die Werkzeuge 30 und 31 der zweiten Arbeitswalze 3 jeweils schräg und unter einem Winkel zu der jeweiligen Drehachse A und B angeordnet, wobei die Werkzeuge 20 und 21 der Arbeitswalze 2 bezüglich der Mittelachse M axial in den im Wesentlichen gleichen Positionen angeordnet sind. In der in FIG 2 gezeigten Stellung der Arbeitswalzen 2 und 3 sind die Werkzeuge 20 und 21 bzw. 30 und 31 an der einander zugewandten Innenseite näher beieinander als an der abgewandten Außenseite. Vorzugsweise nehmen die Werkzeuge 20 und 21 sowie 30 und 31 in Umfangsrichtung gesehen auch in ihrem Querschnitt zu, wobei die Zunahme des Querschnittes bei den Werkzeugen 20 und 21 in der gleichen Drehrichtung oder Orientierung ist und bei den Werkzeugen 30 und 31 der zweiten Arbeitswalze 3 entgegengesetzt oder gegensinnig zu der zu den Werkzeugen 20 und 21 der ersten Arbeitswalze 2 ist.On the outer surface or lateral surface of the work rolls 2 and 3 wedge-shaped tools 20 and 21 or 30 and 31 are respectively fixed in cross-section, in particular braced or screwed. In the illustrated embodiments according to 1 to 5 the tools 20 and 21 of the first work roll 2 and the tools 30 and 31 of the second work roll 3 are each arranged obliquely and at an angle to the respective rotation axis A and B, wherein the tools 20 and 21 of the work roll 2 with respect to the central axis M axially in are arranged in substantially the same positions. In the in FIG. 2 shown position of the work rolls 2 and 3 are the tools 20 and 21 or 30 and 31 closer to each other on the inside facing each other than on the opposite outer side. Preferably, the tools 20 and 21 and 30 and 31 also increase in cross-section as viewed in the circumferential direction, with the increase in cross-section in the tools 20 and 21 being in the same direction of rotation or orientation and opposite in the tools 30 and 31 of the second working roller 3 or in the opposite direction to that of the tools 20 and 21 of the first work roll 2.

Jede der beiden Arbeitswalzen 2 und 3 ist nun an ihren beiden stirnseitigen Enden über jeweils einen Wellenfortsatz in jeweils zwei Lagereinrichtungen 16 und 17 bzw. 18 und 19 um die jeweilige Drehachse A bzw. B drehbar gelagert.Each of the two work rolls 2 and 3 is now at its two ends on each one wave extension in two storage facilities 16 and 17 and 18 and 19 rotatably supported about the respective axis of rotation A and B respectively.

An den Lagereinrichtungen sind Abstandssensoren angeordnet und zwar ein erster Abstandssensor 51 zum Messen des Abstandes w1 im Wesentlichen zwischen der Lagereinrichtung 16 und der Mittelachse M (oder auch einer im Bereich der Mittelachse M angeordneten, in FIG 1 nicht gezeigten Positioniereinrichtung zum Positionieren des Werkstücks), ein zweiter Abstandssensor 52 zum Messen des Abstandes w2 im Wesentlichen zwischen der Lagereinrichtung 17 und der Mittelachse M, ein dritter Abstandssensor 53 zum Messen des Abstandes w3 im Wesentlichen zwischen der Lagereinrichtung 18 und der Mittelachse M sowie ein vierter Abstandssensor 54 zum Messen des Abstandes w4 im Wesentlichen zwischen der Lagereinrichtung 19 und der Mittelachse M. Die Abstandsensoren 51 bis 54 können insbesondere Ultraschallsensoren, optische, magnetische oder induktive Sensoren oder andere bekannte Abstandssensoren sein.Distance sensors are arranged on the bearing devices, specifically a first distance sensor 51 for measuring the distance w1 substantially between the bearing device 16 and the center axis M (or else one arranged in the region of the center axis M) FIG. 1 not shown positioning means for positioning the workpiece), a second distance sensor 52 for measuring the distance w2 substantially between the bearing means 17 and the central axis M, a third distance sensor 53 for measuring the distance w3 substantially between the bearing means 18 and the central axis M and a Fourth distance sensor 54 for measuring the distance w4 substantially between the bearing means 19 and the center axis M. The distance sensors 51 to 54 may be in particular ultrasonic sensors, optical, magnetic or inductive sensors or other known distance sensors.

Die Lagereinrichtungen 16 bis 19 sind ferner jeweils in ihrer Lage oder Position verstellbar und zwar die Lagereinrichtung 16 von einem zugehörigen Stellantrieb 22, die Lagereinrichtung 17 von einem zugehörigen Stellantrieb 23 die Lagereinrichtung 18 von einem zugehörigen Stellantrieb 32 und die Lagereinrichtung 19 von einem zugehörigen Stellantrieb 33. Durch Verstellen der Position(en) der Lagereinrichtung(en) 16 und/oder 17 bzw. 18 und/oder 19 wird nun die Drehachse A bzw. B der Arbeitswalze 2 bzw. 3 in ihrer Lage verstellt. Beispielsweise wird bei Verstellen der beiden Lagereinrichtungen 16 und 17 der Arbeitswalze 2 parallel zueinander und senkrecht zur Drehachse A dieser Arbeitswalze 2 um den gleichen Verstellweg in der gleichen Richtung die Drehachse A parallel verschoben. Die Abstände w1 und w2 nehmen also beide um den gleichen Betrag zu. Bei gleichzeitigem Verstellen der Lagereinrichtungen 18 und 19 der anderen Arbeitswalze 3 parallel zueinander und senkrecht zur Drehachse B dieser Arbeitswalze 3 um den gleichen Verstellweg in der gleichen Richtung zueinander aber entgegengesetzt zur Richtung der Verstellung der Lagereinrichtungen 16 und 17 werden die Drehachse B parallel verschoben, die Abstände w1 bis w4 alle um den gleichen Betrag vergrößert und der Abstand W zwischen den Drehachsen A und B vergrößert. Bei Verstellen nur der Lagereinrichtung 16 der Arbeitswalze 2 beispielsweise nach oben werden der Abstand w1 vergrößert und der Abstand w2 im Wesentlichen gleich gehalten und somit die Drehachse A dieser Arbeitswalze 2 gedreht oder geschwenkt.The storage devices 16 to 19 are also each adjustable in position or position and that the bearing means 16 of an associated actuator 22, the bearing means 17 of an associated actuator 23, the bearing means 18 of an associated actuator 32 and the bearing means 19 of an associated actuator 33rd By adjusting the position (s) of the bearing device (s) 16 and / or 17 or 18 and / or 19, the rotational axis A or B of the work roll 2 and 3 is now adjusted in their position. For example, when adjusting the two storage facilities 16 and 17 of the work roll 2 parallel to each other and perpendicular to the axis of rotation A of this work roll 2 by the same displacement in the same direction, the axis of rotation A is moved parallel. The distances w1 and w2 thus both increase by the same amount. With simultaneous adjustment of the storage facilities 18 and 19 of the other work roll 3 parallel to each other and perpendicular to the rotation axis B of this work roll 3 by the same adjustment in the same direction to each other but opposite to the direction of adjustment of the storage facilities 16 and 17, the rotation axis B are moved in parallel, the Spaces w1 to w4 all increased by the same amount and the distance W between the axes of rotation A and B increased. When adjusting only the storage device 16 of the work roll 2, for example, the distance w1 are increased and the distance w2 kept substantially the same, and thus the axis of rotation A of this work roll 2 is rotated or pivoted.

Es ist nun eine Kontrolleinrichtung 55 vorgesehen, die über, vorzugsweise elektrische, Steuerleitungen mit den Stellantrieben 22, 23, 32 und 33 verbunden ist und über, im Allgemeinen elektrische, Messleitungen zum Übertragen der Messsignale oder Messwerte mit den Abstandssensoren 51, 52, 53 und 54 verbunden ist. Die Kontrolleinrichtung 55 hält nun die Drehachsen A und B der Arbeitswalzen 2 und 3 in einer vorbestimmten relativen Lage zueinander, insbesondere der parallelen Stellung unter dem vorbestimmten Abstand W, indem sie die gemessenen Abstände w1 bis w4 mit vorbestimmten Sollabständen, die vorzugsweise alle gleich einem gemeinsamen Sollabstand sind, vergleicht und auf die Sollabstände regelt oder korrigiert durch Ansteuern der Stellantriebe 22, 23, 32 und/oder 34. Die Kontrolleinrichtung 55 enthält dazu vorzugsweise wenigstens einen digitalen Mikroprozessor oder Signalprozessor und wenigstens einen Speicher mit einem hinterlegten Steuer- oder Regelalgorithmus für den Prozessor sowie gespeicherten oder neu speicherbaren Soll- oder Führungswerten für die Steuerung oder Regelung.
Die FIG 2 bis 5 zeigen eine Ausführungsform einer Walzmaschine 1 in verschiedenen Darstellungen. Die FIG 2 zeigt einen Längsschnitt entlang einer die Längsrichtung der Walzmaschine und die Schwerkraftrichtung enthaltenden Schnittebene. Die FIG 3 und 4 zeigen Seitenansichten der Walzmaschine auf die beiden Stirn- oder Schmalseiten. Der Schnitt der FIG 5 ist in FIG 2, 3 und 4 mit den Pfeilen V-V gekennzeichnet.
There is now a control device 55 is provided, which is connected via, preferably electrical, control lines to the actuators 22, 23, 32 and 33 and via, generally electrical, measuring lines for transmitting the measurement signals or measured values with the distance sensors 51, 52, 53 and 54 is connected. The control device 55 now holds the axes of rotation A and B of the work rolls 2 and 3 in a predetermined relative position to each other, in particular the parallel position at the predetermined distance W, by the measured distances w1 to w4 with predetermined target intervals, preferably all equal to a common Desired distance are, compares and regulates to the desired distances or corrected by driving the actuators 22, 23, 32 and / or 34. The control device 55 preferably includes at least one digital microprocessor or signal processor and at least one memory with a stored control or regulating algorithm for the Processor as well as stored or re-storable setpoints or command values for the control or regulation.
The FIGS. 2 to 5 show an embodiment of a rolling machine 1 in various representations. The FIG. 2 shows a longitudinal section along a cutting plane containing the longitudinal direction of the rolling machine and the direction of gravity. The FIG. 3 and 4 show side views of the rolling machine on the two front or narrow sides. The cut of the FIG. 5 is in FIG. 2 . 3 and 4 marked with the arrows VV.

Jede Arbeitswalze 2 und 3 ist zwischen zwei axial zur jeweiligen Drehachse A bzw. B an den Stirnseiten angeordneten Halteeinrichtungen 12A und 12B bzw. 13A und 13B lösbar gehalten und kann aus den Halteeinrichtungen 12A und 12B bzw. 13A und 13B in deren entriegelten Zustand herausgenommen werden zum Auswechseln der Werkzeuge 20 und 21 bzw. 30 und 31 oder der gesamten Arbeitswalzen 2 und 3 mit den Werkzeugen 20 und 21 bzw. 30 und 31. Es sind jeweils über nicht näher bezeichnete Drehlager, insbesondere Wälzlager, die Halteeinrichtung 12A in der Lagereinrichtung 16 und die Halteeinrichtung 12B in der Lagereinrichtung 17 jeweils um die Drehachse A der ersten Arbeitswalze 2 drehbar gelagert und die Halteeinrichtung 13A in der Lagereinrichtung 18 und die Halteeinrichtung 13B in der Lagereinrichtung 19 jeweils um die Drehachse B der zweiten Arbeitswalze 3 drehbar gelagert.Each work roll 2 and 3 is detachably held between two holding means 12A and 12B and 13A and 13B arranged axially to the respective rotation axis A and B, respectively, and can be taken out of the holding means 12A and 12B or 13A and 13B in their unlocked state for exchanging the tools 20 and 21 or 30 and 31 or the entire work rolls 2 and 3 with the tools 20 and 21 or 30 and 31. There are in each case unspecified pivot bearing, in particular rolling bearings, the holding device 12A in the storage device sixteenth and the holding device 12B are rotatably supported in the bearing device 17 about the rotation axis A of the first work roll 2 and the holding device 13A in FIG the bearing device 18 and the holding device 13B are rotatably mounted in the bearing device 19 in each case about the axis of rotation B of the second work roll 3.

Zum Drehen der Arbeitswalzen 2 und 3 um ihre jeweiligen Drehachsen A und B sind ein erster Rotationsantrieb 42 für die erste Arbeitswalze 2 und ein zweiter, vom ersten Rotationsantrieb 42 unabhängiger Rotationsantrieb 43 für die zweite Arbeitswalze 3 vorgesehen. Jeder Rotationsantrieb 42 und 43 umfasst einen zugehörigen Rotationsantriebsmotor 44 bzw. 45 und ein - nicht näher dargestelltes - Rotationsantriebsgetriebe 46 bzw. 47, beispielsweise ein, insbesondere dreistufiges, Zahnradgetriebe, zum Übertragen des Drehmoments des Rotationsantriebsmotors 44 bzw. 45 auf die zugehörige Arbeitswalze 2 bzw. 3. Es sind die Drehachse C der Abtriebswelle des Rotationsantriebsmotors 44 des ersten Rotationsantriebs 42 und die Drehachse D der Abtriebswelle des Rotationsantriebsmotors 45 des zweiten Rotationsantriebs 43 orthogonal zu den Drehachsen A und B der jeweiligen Arbeitswalzen 2 und 3 gerichtet.For rotating the work rolls 2 and 3 about their respective axes of rotation A and B, a first rotary drive 42 for the first work roll 2 and a second, independent of the first rotary drive 42 rotary drive 43 for the second work roll 3 are provided. Each rotary drive 42 and 43 includes an associated rotary drive motor 44 and 45 and a - not shown - rotary drive gear 46 and 47, for example, one, in particular three-stage, gear transmission, for transmitting the torque of the rotary drive motor 44 and 45 to the associated work roll 2 and 3. The rotation axis C of the output shaft of the rotation drive motor 44 of the first rotation drive 42 and the rotation axis D of the output shaft of the rotation drive motor 45 of the second rotation drive 43 are orthogonal to the rotation axes A and B of the respective work rolls 2 and 3.

Die in FIG 1 links angeordneten Halteeinrichtungen 12A für die obere Arbeitswalze 2 und 13A für die untere Arbeitswalze 3 setzen sich jeweils als Vollwellen (oder auch Hohlwellen) axial zu den Drehachsen A bzw. B durch die zugehörigen Lagereinrichtungen 16 bzw. 18 fort und sind mit den - nicht näher dargestellten - Rotationsantriebsgetrieben 46 bzw. 47 der zugehörigen Rotationsantriebe 42 bzw. 43 gekoppelt oder in Eingriff. Ein Betrieb der Rotationsantriebsmotoren 44 und 45 führt also zur Übertragung einer Rotationsbewegung über das Rotationsantriebsgetriebe 46 bzw. 47 auf die Halteeinrichtung 12A bzw. 13A und damit auf die Arbeitswalze 2 bzw. 3 und die mitrotierende zweite Halteeinrichtung 12B und 13B.In the FIG. 1 left arranged holding means 12A for the upper work roll 2 and 13A for the lower work roll 3 are each as solid waves (or hollow shafts) axially to the axes of rotation A and B through the associated storage facilities 16 and 18 continued and are with the - not closer shown - rotary drive gears 46 and 47 of the associated rotary drives 42 and 43 coupled or engaged. An operation of the rotary drive motors 44 and 45 thus leads to the transmission of a rotational movement via the rotary drive gear 46 and 47 on the holding device 12A and 13A and thus on the work roll 2 and 3 and the co-rotating second holding means 12B and 13B.

Die Rotationsantriebsmotoren 44 und 45 sind vorzugsweise Permanentmagnet-Motoren, insbesondere sogenannte Torque-Motoren. Die hohe Dynamik oder Drehbeschleunigung und das hohe Drehmoment des Torque-Motors erlaubt eine sehr dynamische Steuerung oder Regelung der Drehzahl der rotierenden Arbeitswalzen 2 und 3 in Anpassung an den Walzprozess. Jeder der Permanentmagnet-Motoren 44 und 45 wird elektronisch, insbesondere über einen Umrichter, angesteuert.The rotary drive motors 44 and 45 are preferably permanent magnet motors, in particular so-called torque motors. The high dynamics or rotational acceleration and the high torque of the torque motor allows a very dynamic control or regulation of the rotational speed of the rotating work rolls 2 and 3 in adaptation to the rolling process. Each of the permanent magnet motors 44 and 45 is controlled electronically, in particular via a converter.

Die Walzmaschine 1 umfasst ferner eine Trägereinrichtung (oder: ein Walzengerüst oder -gestell) 6. Die Trägereinrichtung 6 umfasst vier säulenartige Trägerelemente 6A bis 6D, die in einer rechteckigen Anordnung angeordnet sind und auf einer gemeinsamen Bodenplatte 6E, die auf dem Boden 50 abgestützt ist, montiert oder befestigt sind. Die Trägerelemente 6A bis 6D verlaufen in einer Längsrichtung vertikal oder senkrecht, d.h. parallel zur Gravitationskraft G.The rolling machine 1 further comprises a support means (or a rolling stand or frame) 6. The support means 6 comprises four columnar support members 6A to 6D arranged in a rectangular arrangement and on a common floor panel 6E supported on the floor 50 , mounted or attached. The support members 6A to 6D extend vertically or vertically in a longitudinal direction, i. parallel to the gravitational force G.

In jedem der Trägerelemente 6A bis 6D ist ein zugehöriger Zuganker 7A bis 7B vertikal in der Längsrichtung des jeweiligen Trägerelements angeordnet, der unten an der Trägerplatte 6E befestigt ist und oben mittels einer zugehörigen, nicht näher bezeichneten Gegenmutter, vorzugsweise einer hydraulisch betätigten Gegenmutter, vorgespannt ist. Dabei wird unter die Hydraulikmutter vorzugsweise ein geteiltes Unterlagsringsegment gelegt, wenn die Hydraulikmutter im druckbeaufschlagten Zustand ist, und dann durch Entspannen des hydraulischen Druckes die Mutter auf das Unterlagsringsegment gepresst. Dadurch können die Trägerelemente 6A bis 6D unter eine bestimmte Zugspannung gesetzt und versteift werden. Dies führt zu einer Versteifung des Walzengerüstes der Walzmaschine 1.In each of the support members 6A to 6D, an associated tie rod 7A to 7B is vertically arranged in the longitudinal direction of the respective support member which is fixed to the bottom of the support plate 6E and is biased at the top by means of an associated locknut, not specified, preferably a hydraulically operated locknut , In this case, a split Unterlagsringsegment is preferably placed under the hydraulic nut when the hydraulic nut is in the pressurized state, and then pressed by relaxing the hydraulic pressure, the nut on the Unterlagsringsegment. Thereby, the support members 6A to 6D can be set under a certain tension and stiffened. This leads to a stiffening of the roll stand of the rolling machine. 1

Die Lagereinrichtung 16 ist über eine Antriebsspindel (oder: Verstellspindel) 26 von einem oberhalb angeordneten ersten Stellantrieb 22 höhenverstellbar entlang einer vertikalen, d.h. parallel zur Gravitationsrichtung G verlaufenden, Achse E und die Lagereinrichtung 17 ist über eine Antriebsspindel 27 von einem oberhalb angeordneten zweiten Stellantrieb 23 höhenverstellbar entlang einer vertikalen Achse F. Die Lagereinrichtung 18 ist über eine Antriebsspindel 36 von einem unterhalb angeordneten dritten Stellantrieb 32 höhenverstellbar entlang der vertikalen Achse E und die Lagereinrichtung 19 ist über eine Antriebsspindel 37 von einem unterhalb angeordneten vierten Stellantrieb 33 höhenverstellbar entlang der vertikalen Achse F.The bearing device 16 is height-adjustable via a drive spindle (or adjusting spindle) 26 from a first actuator 22 disposed above along a vertical, i. The axis E is parallel to the direction of gravity G and the bearing device 17 is height-adjustable via a drive spindle 27 from a second actuator 23 arranged above a vertical axis F. The bearing device 18 is vertically adjustable via a drive spindle 36 from a third actuator 32 disposed below Axis E and the bearing device 19 is height-adjustable via a drive spindle 37 from a below arranged fourth actuator 33 along the vertical axis F.

Jeder Stellantrieb 22, 23, 32, 33 umfasst einen Antriebsmotor 24, 25, 34, 35, der über eine Antriebswelle 28, 29, 38, 39 und ein nicht näher bezeichnetes Scheckengetriebe mit hoher Untersetzung die Antriebsspindel 26, 27, 36, 37 und damit die Lagereinrichtung 16, 17, 18, 19 antreibt. Die maximalen Verstellwege oder Verstellhübe der Stellantriebe 22, 23, 32, 33 betragen typischerweise 50 mm bis 150 mm, die Verstellgenauigkeit oder Verstellschritte betragen typischerweise in Anpassung an die Wärmeausdehnungen in der Walzmaschine einige 1/100 mm. Die Antriebsmotoren 24, 25, 34, 35 können Getriebemotoren sein und/oder Drehstrom-Asynchronmotoren oder Synchronmotoren und/oder Permanentmagnetmotoren (z.B. Servomotoren) mit einer elektronischen Ansteuerung und werden für die hohe Verstellgenauigkeit beim Verstellen nur mit Stromimpulsen im Millisekundenbereich beaufschlagt.Each actuator 22, 23, 32, 33 includes a drive motor 24, 25, 34, 35, via a drive shaft 28, 29, 38, 39 and an unspecified check gear with high reduction the drive spindle 26, 27, 36, 37 and so that the bearing device 16, 17, 18, 19 drives. The maximum adjustment paths or Verstellhübe the actuators 22, 23, 32, 33 are typically 50 mm to 150 mm, the adjustment accuracy or Verstellschritte are typically in adaptation to the thermal expansions in the rolling machine some 1/100 mm. The drive motors 24, 25, 34, 35 may be gear motors and / or three-phase induction motors or synchronous motors and / or permanent magnet motors (eg servomotors) with an electronic control and are acted upon for the high adjustment accuracy when adjusting only current pulses in the millisecond range.

Die beiden Lagereinrichtungen 16 und 18 sind für ihre Verstellbewegung über Führungen 8B des Trägerelements 6B und 8C des Trägerelements 6C in oder an den beiden Trägerelementen 6B und 6C vertikal geführt. Die beiden weiteren Lagereinrichtungen 17 und 19 sind entsprechend für ihre Verstellbewegung über Führungen 8A des Trägerelements 6A und 8D des Trägerelements 6D in oder an den beiden Trägerelementen 6A und 6D vertikal geführt.The two storage devices 16 and 18 are guided vertically for their adjustment via guides 8B of the support member 6B and 8C of the support member 6C in or on the two support members 6B and 6C. The two further bearing devices 17 and 19 are guided vertically for their adjustment via guides 8A of the support member 6A and 8D of the support member 6D in or on the two support members 6A and 6D.

Es sind somit Arbeitseinheiten aus jeweils einer Arbeitswalze 2 bzw. 3, zwei Halteeinrichtungen 12A und 12B bzw. 13A und 13B, zwei Lagereinrichtungen 16 und 17 bzw. 18 und 19 und einem Rotationsantrieb 42 bzw. 43 gebildet, die an jeweils zwei an der Trägereinrichtung 6 befestigten Stellantrieben 22 und 23 bzw. 32 und 33 höhenverstellbar aufgehängt sind und aufeinander zu oder voneinander weg sowie in oder an der Trägereinrichtung 6 geführt bewegbar sind.There are thus working units each consisting of a work roll 2 or 3, two holding devices 12A and 12B or 13A and 13B, two storage devices 16 and 17 or 18 and 19 and a rotary drive 42 and 43 formed on each of two on the support means 6 fastened actuators 22 and 23 or 32 and 33 are suspended in height adjustable and are movable towards one another or away from each other and in or on the support means 6.

Durch Verstellen der Lagereinrichtungen 16 und 17 - und damit der gesamten Arbeitseinheit einschließlich der zugehörigen Arbeitswalze 2 - mittels der Stellantriebe 22 und 23 in der gleichen Richtung und um den gleichen Betrag, also gleichzeitig um denselben Hubweg nach oben oder gleichzeitig um denselben Hubweg nach unten, wird die Drehachse A der ersten Arbeitswalze 2 parallel nach oben bzw. unten verschoben. Ebenso wird durch Verstellen der Lagereinrichtungen 18 und 19 und zugehörigen Arbeitseinheit mit Arbeitswalze 3 über die Stellantriebe 32 und 33 in der gleichen Richtung und um den gleichen Betrag die Drehachse B der zweiten Arbeitswalze 3 parallel nach oben bzw. unten verschoben.By adjusting the bearing means 16 and 17 - and thus the entire working unit including the associated work roll 2 - by means of the actuators 22 and 23 in the same direction and by the same amount, ie simultaneously by the same stroke up or simultaneously by the same stroke down, the axis of rotation A of the first work roll 2 is moved parallel up or down. Likewise, by adjusting the bearing means 18 and 19 and associated work unit with work roll 3 via the actuators 32 and 33 in the same direction and by the same amount, the axis of rotation B of the second work roll 3 is moved parallel up or down.

Somit kann mittels der Stellantriebe 22 und 23 und/oder der Stellantriebe 32 und 33 der Walzenabstand W zwischen den Drehachsen A und B der beiden Arbeitswalzen 2 und 3 bzw. der Werkzeugabstand w variiert werden.Thus, by means of the actuators 22 and 23 and / or the actuators 32 and 33, the roll spacing W between the axes of rotation A and B of the two work rolls 2 and 3 or the tool spacing w can be varied.

Im Betrieb der Walzmaschine unterscheidet man wenigstens drei Verfahrensschritte oder Prozessphasen. Die drei Prozessphasen bilden einen Arbeitszyklus. In einer Serienfertigung zum Erzeugen mehrerer umgeformter Werkstücke werden in der Regel mehrere solcher Arbeitszyklen hintereinander durchgeführt.In the operation of the rolling machine, a distinction is made between at least three process steps or process phases. The three process phases form a work cycle. In a series production for producing a plurality of converted workpieces, a plurality of such work cycles are usually carried out in succession.

In einer ersten Prozessphase wird das Werkstück 10 zwischen den Walzen 2 und 3 positioniert. Das Werkstück 10 wird dazu gemäß FIG 3 mittels zweier Leitlineale oder Positionierteile 61 und 62 einer nur in FIG 3 dargestellten Positioniereinrichtung 60 in eine Position auf der Mittelachse M zwischen den Arbeitswalzen 2 und 3 gebracht. Die beiden Positionierteile 61 und 62 sind entlang einer Positionierachse P senkrecht zur Mittelachse M beweglich, wie durch die Doppelpfeile angedeutet, insbesondere mittels Rollen. Die Positionierteile 61 und 62 können in einer langen Führung derart zurückgefahren werden, dass die Arbeitswalze 2 und/oder 3 gewechselt werden kann, ohne dass die Positionierteile 61 und 62 demontiert werden müssen.In a first process phase, the workpiece 10 is positioned between the rollers 2 and 3. The workpiece 10 is according to FIG. 3 by means of two guide rulers or positioning parts 61 and 62 one only in FIG. 3 Positioning device 60 shown brought into a position on the central axis M between the work rolls 2 and 3. The two positioning parts 61 and 62 are movable along a positioning axis P perpendicular to the central axis M, as indicated by the double arrows, in particular by means of rollers. The positioning members 61 and 62 can be moved back in a long guide so that the work roll 2 and / or 3 can be changed without the positioning parts 61 and 62 must be dismantled.

In einer zweiten Prozessphase, der Umformphase, wird das Werkstück 10 von den Werkzeugen der Arbeitswalzen 2 und 3 erfasst und zwischen den drehenden Werkzeugen der Walzen umgeformt. In dieser Umformphase werden nun die Abstände w1, w2, w3 und w4 als Maß für die Abstände zwischen den Drehachsen A und B und der Mittelachse M gemessen.In a second process phase, the forming phase, the workpiece 10 is detected by the tools of the work rolls 2 and 3 and formed between the rotating tools of the rolls. In this forming phase, the distances w1, w2, w3 and w4 are measured as a measure of the distances between the axes of rotation A and B and the center axis M.

In einer dritten Prozessphase wird das umgeformte Werkstück wieder aus dem Zwischenraum zwischen den Walzen entnommen oder ausgeworfen. Es werden nun die Abstände w1 und w2 sowie w3 und w4 insbesondere mit einem gemeinsamen Sollabstand verglichen, so dass also eine parallele Stellung der Drehachsen A und B angestrebt wird. Bei zu großer Abweichung eines der Abstände w1 bis w4 von dem Sollabstand werden die Drehachsen A und B in der beschriebenen Weise in ihrer Lage verändert, bis die Abweichung beseitigt oder innerhalb eines Toleranzbereichs liegt.In a third process phase, the formed workpiece is removed from the space between the rollers or ejected. The distances w1 and w2 as well as w3 and w4 are now compared in particular with a common setpoint distance, so that a parallel position of the rotation axes A and B is therefore desired. If too great a deviation of one of the distances w1 to w4 from the nominal distance, the axes of rotation A and B are changed in their position as described until the deviation is eliminated or within a tolerance range.

Alternativ oder zusätzlich können die Abstände w1, w2, w3 und w4 auch während der Umformphase gezielt gemäß einem vorgegebenen von der Winkelposition der Walze(n) abhängigen oder zeitlichen Verlauf verändert werden, um die Umformung des Werkstücks zu beeinflussen.Alternatively or additionally, the distances w1, w2, w3 and w4 can also be varied during the forming phase in a targeted manner according to a predetermined or temporal progression depending on the angular position of the roll (n) in order to influence the deformation of the workpiece.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Walzmaschinerolling machine
2,32.3
ArbeitswalzeStripper
6A bis 6D6A to 6D
Trägerelementsupport element
6E6E
Bodenplattebaseplate
7A bis 7D7A to 7D
Zugankertie rods
8A bis 8D8A to 8D
Führungguide
1010
Werkstückworkpiece
12A, 12B12A, 12B
Halteeinrichtungholder
13A, 13B13A, 13B
Halteeinrichtungholder
16, 17, 18, 1916, 17, 18, 19
LagereinrichtungStorage facility
20, 2120, 21
WerkzeugTool
22, 2322, 23
Stellantriebactuator
24, 2524, 25
Getriebemotorgearmotor
26, 2726, 27
Verstellspindeladjusting spindle
28, 2928, 29
Antriebswelledrive shaft
30, 3130, 31
WerkzeugTool
32, 3332, 33
Stellantriebactuator
34, 3534, 35
Getriebemotorgearmotor
36, 3736, 37
Verstellspindeladjusting spindle
38, 3938, 39
Antriebswelledrive shaft
42, 4342, 43
Rotationsantriebrotary drive
44, 4544, 45
RotationsantriebsmotorRotary drive motor
46, 4746, 47
RotationsantriebsgetriebeRotary drive gear
5050
Bodenground
51, 5251, 52
Abstandssensordistance sensor
53, 5453, 54
Abstandssensordistance sensor
5555
Kontrolleinrichtungcontrol device
6060
Positioniereinrichtungpositioning
61, 6261, 62
Positionierteilepositioning parts
A, BA, B
Drehachseaxis of rotation
C, DC, D
Antriebsachsedrive axle
E, FE, F
Achseaxis
GG
Gravitationskraftgravitational force
MM
Mittelachsecentral axis
VV
Verstellachseadjustment axis
PP
Positionierachsepositioning
ww
Werkzeugabstandtool clearance
w1,w2w1, w2
Abstanddistance
w3,w4, Ww3, w4, W
Abstanddistance

Claims (13)

  1. Method for hot-forming a metallic workpiece,
    a) in which the workpiece (10) during at least one forming phase is formed between surfaces or tools (20, 21, 30, 31) of two rollers (2, 3), each rotating about one rotation axis,
    b) in which the relative mutual position of the rotation axes (A, B) of the rollers during the or at least one forming phase is controlled, regulated or corrected to a nominal relative position, in particular by means of at least one controller installation (55) and of at least one actuator (22, 23, 32, 33) which is assigned to at least one of the rollers and is actuated by the controller installation,
    c) in which the nominal relative position during the forming phase is guided according to a predefined profile which in particular depends on the angular position or the rotational position of at least one roller or depends on the time, and which profile is adapted to a desired profile of the forming pressure desired when forming the workpiece, or to the forming of the workpiece,
    d) in which by way of the same at least one tool or the same surfaces of the rollers, by setting dissimilar profiles of the nominal relative position in dissimilar forming phases, dissimilar forming of the same or of dissimilar workpieces is generated, in particular by reducing the spacing of the rotation axes during at least part of the forming phase, and/or deviations in the tool from a predefined shape are at least approximately equalized by adapting the nominal relative position of the rotation axes of the rollers,
    e) in which for controlling, regulating or correcting the relative position of the rotation axes of the rollers, in each case two spacings (w1, w2, w3, w4) of the rotation axes (A, B) of each of the two rollers (2, 3) from a predefined central axis (M) in the intermediate space provided for receiving the workpiece between the rollers or the tools are controlled, regulated or corrected to in each case an associated constant or variable nominal spacing, and/or are determined and are each compared to an associated constant or variable nominal spacing and, in the case of any deviation from the nominal spacing outside a predefined tolerance range, are corrected to the nominal spacing,
    f) wherein the central axis lies within a movement plane or on a movement axis of two mutually movable parts of a positioning installation for positioning the workpiece, or defines the axis on which the workpiece is positioned.
  2. Method according to Claim 1, in which
    a) the relative mutual position of the rotation axes (A, B) of the rollers (2, 3) is determined during the forming phase, in particular in the case of a predefined rotation-angle position of at least one of the rollers, and/or in the case of a predefined force load on the roller(s),
    b) the determined relative position of the rotation axes is compared to the nominal relative position and it is established whether a deviation in the determined relative position of the rotation axes from the nominal relative position that is outside a predefined tolerance range is present,
    c) and, when such a deviation in the determined relative position of the rotation axes from the nominal relative position that is outside the tolerance range is established, the relative position of the rotation axes of the rollers is modified or corrected in particular by means of the at least one actuator (22, 23, 32, 33) such that the deviation is again within the tolerance range.
  3. Method according to Claim 1 or Claim 2, in which
    a) for controlling, regulating or correcting the relative position of the rotation axes (A, B) of the rollers (2, 3)
    b) at least one position of at least one of the rotation axes of the rollers
    b1) is controlled, regulated or corrected to in each case an associated constant or variable nominal position, and/or
    b2) is determined and in each case is compared to an associated constant or variable nominal position and, in the case of any deviation from the nominal position that is outside a predefined tolerance range, is corrected to the nominal position,
    c) wherein optionally the position(s) of the rotation axis (axes) of the other roller(s) remain(s) or are/is assumed to be unmodified or locationally fixed in relation to the environment.
  4. Method according to one or a plurality of the preceding claims, in which for controlling, regulating or correcting the relative position of the rotation axes (A, B) of the rollers (2, 3) in each case at least two mutual spacings of the rotation axes of two rollers are referenced, on the one hand, and associated nominal spacings are referenced, on the other hand, wherein these spacings are preferably provided or determined at opposite sides of the rollers when viewed in the direction of the respective rotation axis.
  5. Method according to one or a plurality of the preceding claims, in which the rollers (2, 3) are each rotatably or rotatingly mounted in two mounting installations (16, 17, 18, 19), and for setting the relative mutual position of the rotation axes of the rollers one of the two mounting installations or both mounting installations of at least one roller is/are moved by at least one actuator (22, 23, 32, 33), and/or in which the rotation axis (axes) of the roller(s), or the mounting installation(s) of the roller(s), for controlling, regulating or correcting the relative position to the nominal relative position, is/are at least partially moved in a linear manner in a predefined movement direction, wherein the movement direction of the linear movement is preferably oriented so as to be substantially perpendicular to the rotation axes of the rollers and/or substantially parallel with the force of gravity (G), and/or is/are at least partially rotated or tilted.
  6. Method according to one or a plurality of the preceding claims, in which the nominal relative position or the nominal position(s), or the nominal spacing(s) of the rotation axes (A, B) of the rollers (2, 3) is/are set or chosen in a manner dependent on the material and/or the shape of the workpiece to be formed, or on the desired shape or the desired dimensions of the formed workpiece, wherein the shape of the workpiece is preferably measured prior to the forming phase, and the nominal relative position, the nominal position(s) or the nominal spacing(s) is/are set accordingly.
  7. Rolling machine (1) for carrying out a method according to one of the preceding claims, having
    a) at least two rollers (2, 3), each rotatable or rotating about one rotation axis (A, B) and in particular being equipped with or being capable of being equipped with tools (20, 21, 30, 31),
    b) at least one rotary drive (42, 43) for rotating the rollers about the rotation axes thereof at least during one forming phase for forming a workpiece which is disposable or disposed between the rollers,
    c) at least one actuator (22, 23, 32, 33) for setting the position(s) of the rotation axis (axes) of one of the rollers or of both rollers,
    d) a controller installation (55) which for controlling, regulating or correcting the relative position of the rotation axes of the rollers to a nominal relative position by means of the actuator(s) is operationally connected to each actuator,
    e) an installation for determining the relative mutual position of the rotation axes of the rollers, in particular during the forming phase,
    f) wherein the controller installation is operationally connected to the installation for determining the relative position of the rotation axes and
    f1) compares the relative position of the rotation axes, as determined by said installation, to the nominal relative position,
    f2) establishes whether any deviation in the determined relative position of the rotation axes from the nominal relative position that is outside a predefined tolerance range is present,
    f3) and, when such a deviation in the determined relative position of the rotation axes from the nominal relative position that is outside the tolerance range is present, in particular by means of the at least one actuator modifies the relative position of the rotation axes of the rollers in such a manner that the deviation is again within the tolerance range,
    g) wherein the installation for determining the relative mutual position of the rotation axes of the rollers comprises four spacing sensors (51, 52, 53, 54) for measuring the spacings (w1, w2, w3, w4) of each of the rotation axes of the rollers from the central axis as a measure for the position(s) or the spacing of the rotation axes of the rollers.
  8. Rolling machine (1) according to Claim 7, having a positioning installation (60) having two mutually movable positioning parts (61, 62) for positioning the workpiece in the region of a central axis (M) predefined between the two rollers.
  9. Rolling machine (1) according to Claim 7 or Claim 8, in which each roller (2, 3) is assigned at least one associated actuator (22, 23, 32, 33) for independently setting the positions of the rotation axes (A, B) of the rollers, wherein the actuators are preferably disposed on sides of the rollers that face away from one another,
    or
    in which the rollers are assigned a common actuator which in each case is coupleable or coupled to each of the rollers by way of one gear box, wherein the gear boxes are preferably configured such that the rotation axes of both rollers when driven by the common actuator are simultaneously, preferably also at the same speed, movable toward or away from a reference position, preferably the central axis, between the rollers, and/or
    in which at least one actuator comprises at least one electric actuator drive motor and a force-transmission installation, which is coupleable or coupled to the actuator drive motor, on the one hand, and to the associated roller, on the other hand, and which in particular comprises at least one drive spindle and/or one worm gear for transmitting the drive force or the drive torque of the actuator drive motor for moving the rollers.
  10. Rolling machine (1) according to one of Claims 7 to 9, which
    a) for each roller (2, 3) comprises two retaining installations (12A, 12B, 13A, 13B) which at end sides of the roller are preferably releasably connectable or connected to the roller and which are capable of conjointly rotating or conjointly rotate with the roller,
    b) for each retaining installation comprises one mounting installation (16, 17, 18, 19) in which the retaining installation is rotatably mounted,
    c) wherein the mounting installations, with the retaining installations mounted therein, of at least one roller are coupled or coupleable to the actuator(s) (22, 23, 32, 33) assigned to this roller, and by way of the actuator(s) are movable or are moved for modifying the position of the rotation axis of the associated roller, wherein each mounting installation is preferably connected to an associated actuator, and/or which
    d) comprises a support installation which does not conjointly rotate or is not capable of conjointly rotating with the rollers, on which the actuator(s) is or are carried or mounted,
    e) wherein the support installation preferably has guide regions for guiding the rollers or the mounting installations in the case of movement of the latter, and/or wherein the support installation preferably comprises four in particular column-type support elements (6A, 6B, 6C, 6D), wherein one of the mounting installations of a first of the two rollers and one of the mounting installations of the second of the two rollers are disposed and preferably guided in a movable manner between two of the four support elements, and the other mounting installation of the first roller and the other mounting installation of the second roller are disposed and preferably guided in a movable manner between the other two of the four support elements, wherein the support elements are biased in particular by means of tie rods (7A, 7B, 7C, 7D) and preferably hydraulic nuts.
  11. Rolling machine (1) according to one or a plurality of Claims 7 to 10, in which the rotation axes (A, B) of the rollers (2, 3) in the nominal relative position are oriented so as to be substantially mutually parallel, and/or, when viewed in the direction of the force of gravity, are disposed so as to be substantially on top of one another, and/or are disposed so as to be substantially perpendicular to the direction of the force of gravity.
  12. Rolling machine (1) according to Claim 7, in which the installation for determining the relative mutual position of the rotation axes (A, B) of the rollers (2, 3) comprises at least one non-contacting sensor and/or one ultrasonic sensor and/or one optical sensor and/or one inductive sensor and/or one magnetic sensor.
  13. Rolling machine (1) according to one or a plurality of Claims 7 to 12, which is configured as a cross-profile rolling machine or as a cross-wedge rolling machine, and/or in which the tools (20, 21, 30, 31) on the rollers in the cross section have wedge-shaped or triangular profiles or shapes and in the radial dimension thereof along the circumference increase in one direction and/or run obliquely to the rotation axis of the associated roller.
EP07004135.5A 2003-03-04 2004-02-11 Method for forming a workpiece and rolling machine Expired - Lifetime EP1782896B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10309536 2003-03-04
DE10316249A DE10316249B4 (en) 2003-03-04 2003-04-08 Method for forming a workpiece and a rolling machine
EP20040002972 EP1454685B1 (en) 2003-03-04 2004-02-11 Method for forming a workpiece

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP20040002972 Division EP1454685B1 (en) 2003-03-04 2004-02-11 Method for forming a workpiece
EP20040002972 Division-Into EP1454685B1 (en) 2003-03-04 2004-02-11 Method for forming a workpiece

Publications (3)

Publication Number Publication Date
EP1782896A2 EP1782896A2 (en) 2007-05-09
EP1782896A3 EP1782896A3 (en) 2014-02-12
EP1782896B1 true EP1782896B1 (en) 2016-12-14

Family

ID=32891870

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11162489.6A Expired - Lifetime EP2340898B1 (en) 2003-03-04 2004-01-29 Rolling machine
EP07004135.5A Expired - Lifetime EP1782896B1 (en) 2003-03-04 2004-02-11 Method for forming a workpiece and rolling machine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11162489.6A Expired - Lifetime EP2340898B1 (en) 2003-03-04 2004-01-29 Rolling machine

Country Status (3)

Country Link
EP (2) EP2340898B1 (en)
CN (1) CN100467146C (en)
DE (3) DE10316249B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017113503A1 (en) * 2017-06-20 2018-12-20 Profiroll Technologies Gmbh Forming machine and pressure forming process
DE102020132399A1 (en) 2020-12-07 2022-06-09 Langenstein & Schemann Gmbh Cross rolling device, in particular cross wedge rolling device, method for operating a cross rolling device and control device
DE202017007601U1 (en) 2017-06-20 2023-07-03 Profiroll Technologies GmbH forming machine

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005022378B4 (en) 2005-05-13 2007-04-05 F.B. Lehmann Maschinenfabrik Gmbh roll refiner
DE102005056649B3 (en) * 2005-11-25 2007-05-31 Langenstein & Schemann Gmbh Device for holding at least two rolls of a rolling machine and rolling machine
DE102010010269C5 (en) 2010-03-05 2023-11-16 Mercedes-Benz Group AG Method for producing a stator support
DE102013100302B4 (en) 2013-01-11 2017-02-02 Langenstein & Schemann Gmbh Method for forging, in particular stretch forging, of metallic workpieces
DE102013108451B4 (en) 2013-08-06 2022-09-22 Langenstein & Schemann Gmbh cross wedge rolling machine
DE102014101151B4 (en) 2014-01-30 2023-08-10 Langenstein & Schemann Gmbh Process for forging, in particular stretch forging, of metal workpieces
DE102014101150B4 (en) 2014-01-30 2024-02-01 Langenstein & Schemann Gmbh Process for forging, especially stretch forging, of metallic workpieces
CN108555030A (en) * 2018-01-31 2018-09-21 湖北环电磁装备工程技术有限公司 The cross wedge rolling mill roller that no frame permanent magnet synchronous motor directly drives
CN108246808A (en) * 2018-01-31 2018-07-06 湖北环电磁装备工程技术有限公司 The cross wedge rolling mill roller that rimless combination type permanent-magnet synchronous motor directly drives
CN109261716B (en) * 2018-09-29 2020-02-07 安阳复星合力新材料股份有限公司 Rolling process of cold-rolled ribbed steel bar
CN109926449A (en) * 2019-03-25 2019-06-25 浙江泽广泰精密科技有限公司 A kind of two roller rolling device of hydraulic servo horizontal

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2038783A (en) * 1932-10-27 1936-04-28 Schloemann Ag Rolling mill
US3208251A (en) * 1961-05-03 1965-09-28 Westinghouse Canada Ltd Rolling mill control system
CH425704A (en) * 1962-08-21 1966-12-15 Smeralovy Z Narodni Podnik Device for the deformation of workpieces by cross rolling
US3358485A (en) * 1965-02-15 1967-12-19 United States Steel Corp Measuring and controlling gap between rolls
FR1426815A (en) * 1965-03-24 1966-01-28 Zentrale Entwicklung Konstrukt Combined transverse and longitudinal rolling process
US3731510A (en) * 1970-06-25 1973-05-08 Mitsubishi Heavy Ind Ltd Cross-rolling machine having workpiece blank support
GB1329312A (en) * 1970-08-14 1973-09-05 British Steel Corp Taper rolling of metals
US4044580A (en) * 1975-07-02 1977-08-30 Marotta Scientific Controls, Inc. Rolling mill gap sensor
DE2736659A1 (en) * 1977-08-13 1979-02-22 Krupp Gmbh ROLLER LINE DRIVE SYSTEM
US4457155A (en) * 1982-03-03 1984-07-03 White Consolidated Industries, Inc. Overhung bar rolling mill stand and two-axis gauge control system
JPS58168452A (en) * 1982-03-30 1983-10-04 Sumitomo Metal Ind Ltd Method and apparatus for roughing-down in case of hot forging
ZA837038B (en) * 1982-10-26 1984-06-27 Kennecott Corp Hot mill hydraulic direct roll drive
JPS6082211A (en) * 1983-10-04 1985-05-10 Sumitomo Metal Ind Ltd Method for setting roll gap
LU86043A1 (en) * 1985-08-16 1987-03-06 Arbed METHOD AND DEVICE FOR ADJUSTING THE COUPLING OF A ROLLER PAIR
DE3619412A1 (en) * 1986-06-12 1987-12-17 Hoesch Stahl Ag METHOD AND DEVICE FOR ROLL GAP MEASUREMENT AND CONTROL
GB8822328D0 (en) * 1988-09-22 1988-10-26 Stoddard Sekers Int Pressure roller assembly
JPH02182339A (en) * 1989-01-10 1990-07-17 Kobe Steel Ltd Manufacture of rolled deformed bar stock
JPH0671636B2 (en) * 1989-11-09 1994-09-14 日本発条株式会社 Leaf spring manufacturing apparatus and leaf spring manufacturing method
JPH03189006A (en) * 1989-12-20 1991-08-19 Nkk Corp Flying thickness change control method of thick plate
JPH03226301A (en) * 1990-01-31 1991-10-07 Kobe Steel Ltd Method for controlling thickness of rolled sheet with reversing mill
CN2060698U (en) * 1990-02-15 1990-08-22 丹东五一八内燃机配件总厂 Forging rolls
DE4435935C3 (en) * 1994-10-07 2003-11-06 Rieter Werke Haendle Method of adjusting the nip of a rolling mill and rolling mill
DE19526071A1 (en) * 1995-07-18 1997-01-23 Rollwalztechnik Abele & Hoelti Process for rolling profiles into a workpiece
DE19544988C2 (en) * 1995-12-02 2000-09-07 Anton Breyer Ohg Positioning control in the smoothing unit
RU2106223C1 (en) * 1996-03-15 1998-03-10 Анатолий Федорович Косов Vacuum cross-wedge mill
JP3507645B2 (en) * 1997-02-26 2004-03-15 東芝Itコントロールシステム株式会社 Rolling device with built-in rolling motor and rolling device using this rolling device
EP0947258B1 (en) * 1998-04-02 2006-08-16 Nissei Co. Ltd. Round die type form rolling apparatus
DE10019175A1 (en) * 1999-05-12 2000-12-14 Hjb Rolling Mill Technology Gm Method for producing a strip-shaped primary material made of metal, in particular of such a primary material which is profiled in regularly recurring sections, and the use of a device therefor
DE10122595C2 (en) * 2001-05-10 2003-05-15 Sms Eumuco Gmbh Cross rolling machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017113503A1 (en) * 2017-06-20 2018-12-20 Profiroll Technologies Gmbh Forming machine and pressure forming process
DE202017007601U1 (en) 2017-06-20 2023-07-03 Profiroll Technologies GmbH forming machine
DE102020132399A1 (en) 2020-12-07 2022-06-09 Langenstein & Schemann Gmbh Cross rolling device, in particular cross wedge rolling device, method for operating a cross rolling device and control device
EP4011521A1 (en) 2020-12-07 2022-06-15 Langenstein & Schemann GmbH Cross-rolling device, in particular cross wedge rolling device, method for operating a cross-rolling device and control device
DE102020132399B4 (en) 2020-12-07 2024-05-16 Langenstein & Schemann Gmbh Cross rolling device, in particular cross wedge rolling device, method for operating a cross rolling device and control device

Also Published As

Publication number Publication date
DE10316249A1 (en) 2004-09-23
EP2340898A2 (en) 2011-07-06
EP2340898A3 (en) 2013-11-27
CN1806953A (en) 2006-07-26
EP1782896A2 (en) 2007-05-09
EP2340898B1 (en) 2016-11-02
CN100467146C (en) 2009-03-11
DE10316249B4 (en) 2010-04-15
DE10319258B4 (en) 2006-03-16
EP1782896A3 (en) 2014-02-12
DE10362061B4 (en) 2013-10-17
DE10319258A1 (en) 2004-09-23

Similar Documents

Publication Publication Date Title
EP3266543B1 (en) Method and apparatus for combining additive manufacture and shaping
DE69934251T2 (en) NC TOOL MACHINE AND METHOD FOR CONTROLLING THE NC TOOL MACHINE
EP1782896B1 (en) Method for forming a workpiece and rolling machine
DE102005004236A1 (en) Plastic deformation tool for spinning metal shape of non-circular cross-section uses tool wheel at 45 degrees to axis of rotation of workpiece and mold and incorporates crossed linear motors
DE69932765T2 (en) Round baking mold roller device
DE69936407T2 (en) Method for setting tools in a sheet metal forming machine
DE602004010293T2 (en) METHOD FOR INCREASING THE CONTROL ACCURACY OF THE WAY OF A PRODUCT IN A TREADMILL WITH INTERLOCKING ROLLERS AND DIRECTION TO USE THEREOF
EP1454684B1 (en) Method for forming a workpiece and rolling machine
EP0997260B1 (en) Device for covering workpieces
DE2856525A1 (en) METHOD AND DEVICE FOR PROCESSING WITH DIE ROLLERS OR PRINTING ROLLS
EP0275876A2 (en) Method and apparatus for aligning a work piece
EP1286794A1 (en) Cold rolling machine
DE3824856A1 (en) Apparatus for ring forming
DE102007039959A1 (en) Cold-rolling method for lengthwise teeth and profile of long wave-like workpiece e.g. gear wheel, involves reversing round rolling tool and advancing other rolling tool for rolling other profile section
EP1985387A1 (en) Profiling machine with several successive forming stations and stand for such a profiling machine
EP1454685B1 (en) Method for forming a workpiece
DE102010060627B4 (en) Forming machine with slide control
EP2489445B1 (en) Device with a number of cold rolling assemblies
EP3159068B1 (en) Forming machine for pressing/pressure rolling and method for pressing/pressure rolling
DE69812861T2 (en) ROLLING MILL FOR THE PRODUCTION OF AXIAL-SYMMETRICAL PARTS
DE102005018549B3 (en) Production method for metallic guide element involves implementation of milling operation by position-controlled mill-cutting body with cutting disk of large diameter and flow of material inside high-speed milling cutter system
DE102006006192A1 (en) Profiling hot rolling forge has two rollers bearing tools and powered by hydraulic motor
DE102008057484B4 (en) Brushing machine for continuous metal strips, in particular strips of copper alloys
DE19535547A1 (en) Appts. for producing reinforcement baskets
DE19513168A1 (en) Profile rolling machine with three spindles rotating in same plane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1454685

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CZ DE FR IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RIC1 Information provided on ipc code assigned before grant

Ipc: B21H 1/00 20060101ALI20140102BHEP

Ipc: B21B 37/58 20060101AFI20140102BHEP

Ipc: B21H 1/18 20060101ALI20140102BHEP

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CZ DE FR IT

17P Request for examination filed

Effective date: 20140806

RBV Designated contracting states (corrected)

Designated state(s): CZ DE FR IT

AKX Designation fees paid

Designated state(s): CZ DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B21B 31/08 20060101ALN20160428BHEP

Ipc: B21B 31/04 20060101ALN20160428BHEP

Ipc: B21B 37/46 20060101ALN20160428BHEP

Ipc: B21H 1/00 20060101ALI20160428BHEP

Ipc: B21B 37/58 20060101AFI20160428BHEP

Ipc: B21B 35/00 20060101ALN20160428BHEP

Ipc: B21B 35/14 20060101ALN20160428BHEP

Ipc: B21H 1/18 20060101ALI20160428BHEP

INTG Intention to grant announced

Effective date: 20160517

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1454685

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CZ DE FR IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015419

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015419

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170915

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230223

Year of fee payment: 20

Ref country code: CZ

Payment date: 20230213

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230220

Year of fee payment: 20

Ref country code: DE

Payment date: 20230227

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004015419

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240211