EP1782502B1 - Antennenstruktur mit patch-elementen - Google Patents

Antennenstruktur mit patch-elementen Download PDF

Info

Publication number
EP1782502B1
EP1782502B1 EP05758394A EP05758394A EP1782502B1 EP 1782502 B1 EP1782502 B1 EP 1782502B1 EP 05758394 A EP05758394 A EP 05758394A EP 05758394 A EP05758394 A EP 05758394A EP 1782502 B1 EP1782502 B1 EP 1782502B1
Authority
EP
European Patent Office
Prior art keywords
antenna
patch
feed line
elements
patch element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05758394A
Other languages
English (en)
French (fr)
Other versions
EP1782502A1 (de
Inventor
Thomas Hansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1782502A1 publication Critical patent/EP1782502A1/de
Application granted granted Critical
Publication of EP1782502B1 publication Critical patent/EP1782502B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • the invention relates to an antenna structure consisting of several series-fed patch elements.
  • radar sensor systems In the field of driver assistance functions with forward-looking detection systems, radar sensor systems are used which primarily operate in the frequency range 76-77 GHz. These are used, for example, to realize the assistance function "Adaptive Cruise Control” (ACC) in the speed range 50-180 km / h. Radar sensors are also used for low-speed applications and are designed for other comfort and safety functions, such as blind spot monitoring, reversing and parking assistance or pre-crash functions (triggering of reversible restraint systems, arming of airbags, etc., preconditioning the braking system, automatic emergency brake) advantageous.
  • ACC Adaptive Cruise Control
  • Radar sensors are also used for low-speed applications and are designed for other comfort and safety functions, such as blind spot monitoring, reversing and parking assistance or pre-crash functions (triggering of reversible restraint systems, arming of airbags, etc., preconditioning the braking system, automatic emergency brake) advantageous.
  • 77 GHz radar sensors operate with lens antennas. Via several feed antennas, which are located in the focal plane of the lens, a plurality of partially overlapping beam lobes are formed ("analog" beam forming). This principle illustrates FIG. 1 . Based on the signal amplitudes and / or phases in the individual beam lobes, the azimuthal angular position of the target object is determined. Characteristic of lens antennas is the relatively large depth of a few centimeters, which results from the required distance of the feed antennas (in the focal plane) of the lens.
  • An “analog” beam shaping can also be achieved with a planar structure with planar antennas, so that the depth is significantly reduced.
  • Corresponding circuit for beam shaping such as Butler matrix, pale matrix or planar lenses (Rotman lens) are known ( DE 199 51 123 C2 ).
  • the antenna is a planar array antenna.
  • a particularly simple and inexpensive construction of a planar antenna is based on the series feeding of the elements in one dimension of the antenna.
  • the series feed in the antenna columns is relevant.
  • the columns are arranged in the elevation direction of the radar sensor, ie vertically.
  • each required patch of the signal present at the input of this element can be set on each patch element of a planar series-fed antenna column. This is a variable beam shaping and side lobe suppression to reach in the plane of an antenna column.
  • advantageous developments are listed. This results in several degrees of freedom to optimize the desired radiation, which can be advantageously combined.
  • the radiation of individual patch elements in particular in the range 20 to 100% and thus vary the overall radiation profile of an antenna column in amplitude and / or angle much more than with a conventional patch structure.
  • This variation of the overall radiation profile can be used to optimize a series-fed antenna gap for a variety of possible uses, e.g. Wide radiation pattern at close range, narrow radiation pattern in the far field and strong side-lobe suppressed radiation pattern to reduce ground clutter and unwanted bridge detection etc.
  • An antenna column with series feed is characterized in that a plurality of antenna elements are coupled to a usually straight feed line.
  • An electromagnetic wave is fed to one end of the antenna column on the feed line (transmitting antenna) or tapped (receiving antenna). Infeed of the electromagnetic wave is also possible within the antenna column, usually in the middle. However, this has a complicated and therefore expensive construction of the antenna result.
  • the coupling of the elements takes place in such a way that the antenna element radiates only part of the power of the incident from one side of the electromagnetic wave or only a part of the power available on the feed line is coupled into the antenna element. To the other side of the element, the electromagnetic wave continues to travel with the remaining power on the feed line. In addition, mainly ohmic losses occur on the feed line and in the antenna elements.
  • the feed opposite end of the antenna column is usually completed either low-reflection or provided with an antenna element which is designed so that it emits all injected power in the transmission mode. In this case, one speaks of a "traveling wave antenna" ("traveling wave antenna", leaky-wave antenna). If a standing wave is formed on the antenna column, because e.g. the end of the column is not finished without reflection, e.g. with an open circuit or short circuit, this is called a "standing wave antenna". At such an antenna column, the elements are usually connected at the locations of the zeros of the current ("current nodes").
  • antenna elements in particular patches, dipoles, slots (“slots”) or short line pieces (“stubs”) in question. About connecting lines, these elements can be grouped into subgroups. To increase the bandwidth can several patches in multi-layered structures can be arranged one above the other so that they are electromagnetically coupled.
  • the antenna elements can be coupled, for example, directly, capacitively or via stubs with slot coupling.
  • antenna columns for example in a 77 GHz radar sensor, are to be arranged next to one another so that "digital" beamforming or "high-resolution” direction estimation methods are possible with the signals of the antenna columns, then a spacing of the columns is on the order of half the free space wavelength of the radar signal, approx 2 mm at 77 GHz, necessary.
  • a spacing of the columns is on the order of half the free space wavelength of the radar signal, approx 2 mm at 77 GHz, necessary.
  • the number of antenna elements in the column exceeds a certain number - order of magnitude of 5 - there is thus no space-saving alternative in a planar structure for series feeding. This alternative is usually circumvented in antenna systems for military or satellite applications in that a three-dimensional structure is chosen.
  • FIG. 2a shows a planar structure with series feed.
  • the individual columns are fed via a power divider from a signal source.
  • the main lobe of the radar antenna of a motor vehicle radar sensor is designed in elevation so that there is a good detection of vehicles over the distance covered by the sensor. If the working range of the sensor is limited to the far range (typical ACC), the main lobe in elevation can become quite narrow. If the working range of the sensor also extends into the vicinity, it may be necessary to provide a wider main lobe in order to cover vehicles in their height. Ideally, the main lobe is designed to avoid unwanted reflections from the ground or from targets above the vehicles to be detected.
  • the beam characteristic of the radar antenna should be designed so that the side lobes in elevation are as small as possible. Clutter becomes by irradiation or detection For example, generated by Bodenrauhtechniken, bumps, Gullideckeln, foreign bodies, etc., as well as bridges, gantries, tunnel ceilings, trees, etc.
  • the classical method for adjusting the sidelobe level is based on an amplitude distribution ("taper"), which usually drops to the edges of the column, of the electromagnetic wave mimicked by the individual elements.
  • Taper amplitude distribution
  • Corresponding distribution functions e.g. Chebyshev, Taylor, is found in the literature.
  • a constant distance of the elements of usually half the free space wavelength and a constant phase difference of the antenna elements is assumed, or in-phase, if the radiation in the direction of the antenna normal is to take place.
  • the width of the main lobe results from the chosen amplitude distribution, the number of elements and their distance in the column.
  • this amplitude distribution can be done on the one hand by a corresponding power divider, via which the generally identical constructed antenna elements are supplied, see. Feeding within the columns in FIG. 2a , On the other hand, the antenna elements or their coupling to the feed and thus their radiation within the antenna can be varied.
  • the first method is generally incompatible with a series feed for space reasons. The latter method can in principle also be used in a series feed.
  • the latter method is subject to limitations.
  • the radiation of the elements can only be adjusted within certain limits. These limits are primarily determined by the maximum width of the antenna elements, which, on the one hand, is due to the electromagnetic coupling of the antenna columns and, on the other hand, to the oscillation of the first transverse mode in a patch element when the width of the patch reaches the order of half the line wavelength. is determined.
  • the present invention describes an antenna structure, in particular for a motor vehicle radar sensor with planar antenna whose antenna columns are constructed with series feed, wherein individual patch elements have increased radiation and thus provide improved possibilities of beam shaping or side lobe suppression.
  • the inventive antenna structure with slotted coupling of the patch elements with respect to the secondary feed line for use in planar series-fed antenna columns, in particular in a Kraflhus radar sensor, allows variable beam shaping and side lobe suppression in the plane of the antenna column.
  • the antenna columns in an automotive radar sensor are arranged in the elevation direction and said plane is the elevation plane.
  • Planar series-fed antennas in automotive radar sensors are commonly constructed in stripline technology.
  • a single- or multi-layered microwave substrate is coated on both sides with metal. At least one of the two metal layers is structured and forms the signal line plane.
  • the other metal level is the ground level. Below the ground plane, further substrate and metal planes may be arranged, in which e.g. the low frequency / baseband and digital electronics are designed for processing the low frequency / baseband signals and for driving and in particular digital signal processing.
  • other microwave substrate levels may also be used on which, for example, e.g. the transmission and reception modules are set up.
  • FIG. 3 schematically shows various embodiments of an antenna column 1 with series feed.
  • the feed lines 50 of the antenna column are arranged. These are usually designed as microstrip lines, wherein several sections with different impedances for impedance matching can occur.
  • the patch elements in the form of widened line sections 20 are coupled.
  • a patch element 10 can be used, which radiates all incident power, so that no reflection occurs.
  • an absorptive termination for example, an absorber bonded to the continued feed line 50 or an adapted termination with resistance, can be used, but these further complicate the manufacture of the antenna and are therefore usually not the first choice.
  • Characteristic of the series-fed antenna column 1 is the power available from the feed 60 or 70, in the case of a central feed, to the end of the column, which continuously drops.
  • Each patch element 20 emits a fraction of the power available at the location of the patch element or at the point of attachment of the element. In the patch elements and on the feed line between the patch elements also occur losses, especially ohmic losses on. If all the patch elements 20, patch p spacings and feed line 50 between the patch elements are the same, then the power distribution from the feed to the end of the column will be approximately exponentially decreasing, with the patch element 10 at the end of the column Column can radiate a deviating from this course performance. This power distribution determines the beamforming of the beam lobe produced by the column, with sidelobe suppression usually being worse than 14 dB (13.6 dB being achieved in an even distribution of power). This value is usually insufficient for applications in automotive radar systems ,
  • a good sidelobe suppression supply especially power distributions, which have a maximum in the middle of the antenna gaps and fall continuously to the edges.
  • Such functions are e.g. known as Chebbyscheff- or Taylor assignment, where in general a constant distance of the antenna elements is assumed.
  • the prior art patch element 20 consists essentially of a widened line section which is typically about half as long as the wavelength on a comparatively wide line to maximize radiation and minimize reflection. Over the width of the line section is usually set the radiated power of the available power at the input of the element.
  • the patch element 20 from the prior art is also referred to simply as a common line section or only as a line section.
  • the patch element 30 (FIG. FIG. 5 In contrast to the prior art, contains two slots 31 in the exit region of the patch element, which extend in particular above and below the continuing supply line 50b. As a result, the additional feed line 50b is set into the line section 20 at the output of the patch element. This modifies the impedance ratios within the patch element to radiate more power than the prior art and thus provide less power at the output of the patch element 30 on the feed line 50b for routing.
  • the radiated power or the power carried on the signal line 50b is set substantially by the length of the slits 31 as well as the width of the line section 20. *** " The shape of the slots 31 as well as the course of the feed line 50b in the region of the slots 31 can from the sketch in FIG. 5 differ.
  • a first embodiment 30-1 ( FIG. 6 ) of the patch element according to the invention contains an additional slot 33 at the beginning of the secondary feed line 50b, which electrically separates them from the line section 20. This achieves a further increase in the radiation of the power available at the input of the patch element. The power carried on the signal line 50b is reduced accordingly.
  • a further second embodiment of the patch element 30 according to the invention shows FIG. 7 ,
  • the essential setting parameter is the length of the slots.
  • the shape of the slots 32 as well as the course of the feed line 50a in the region of the slots can from the sketch in FIG. 7 differ.
  • FIG. 8 shows a third embodiment based on the first embodiment, in which the slots 31 are extended beyond the position of the additional slot 33 in the line section. This can be adjusted in addition to both the adaptation and the radiation.
  • the additional slot 33 is thus in the course of the continuing feed line 50b.
  • FIG. 9 is a special case of the first embodiment of FIG. 6 if one assumes the length of the slots 31 to 0 and only the additional slot 33 is present.
  • the coupling between further signal line 50b at the output of the patch element and the line section 20 can be achieved in the region of the additional slot via wider structures on the signal line 50b. Show examples FIG. 10 and FIG. 11 with the structures 34 and 34a. Other shapes and lengths of these widened coupling structures can be realized.
  • the use of common matching structures from the microwave stripline technology is possible to optimize reflections and radiation.
  • FIGS. 12a to d Various embodiments of the combinations of patch elements according to the prior art and patch elements according to the invention to planar series-fed antenna columns.
  • antenna structures can be used for transmitting antennas as well as for receiving antennas or combinations thereof.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft eine Antennenstruktur bestehend aus mehreren seriengespeisten Patch-Elementen.
  • Im Bereich der Fahrerassistenzfunktionen mit vorausschauenden Erfassungssystemen sind Radarsensoriken im Einsatz, die primär im Frequenzbereich 76 - 77 GHz arbeiten. Diese werden beispielsweise zur Realisierung der Assistenzfunktion "adaptiver Tempomat" (ACC = Adaptive Cruise Control) im Geschwindigkeitsbereich 50 - 180 km/h verwendet. Radarsensoren werden auch für Anwendungen im unteren Geschwindigkeitsbereich verwendet und sind für andere Komfort- und Sicherheitsfunktionen, wie Tote-Winkel-Überwachung, Rückfahr- und Einparkhilfe oder "Pre-Crash"-Funktionen (Auslösen von reversiblen Rückhaltesystemen, Scharfschalten von Airbags usw., Prekonditionierung des Bremssystems, automatische Notbremse) vorteilhaft.
  • Üblicherweise arbeiten 77 GHz-Radarsensoren mit Linsenantennen. Über mehrere Speiseantennen, die sich in der Brennebene der Linse befinden, werden mehrere sich partiell überlappende Strahlkeulen ausgebildet ("analoge" Strahlformung). Dieses Prinzip illustriert Figur 1. Anhand der Signalamplituden und/oder -phasen in den einzelnen Strahlkeulen wird die azimutale Winkelposition des Zielobjekts bestimmt. Charakteristisch für Linsenantennen ist die relativ große Bautiefe von einigen Zentimetern, die sich durch den erforderlichen Abstand der Speiseantennen (in der Brennebene) von der Linse ergibt.
  • Eine "analoge" Strahlformung kann aber auch mit einem planaren Aufbau mit planaren Antennen erreicht werden, so dass die Bautiefe erheblich reduziert wird. Entsprechende Schaltung zur Strahlformung, wie Butler-Matrix, Blass-Matrix oder planare Linsen (Rotman-Linse) sind bekannt ( DE 199 51 123 C2 ). Als Antenne dient eine planare Gruppenantenne.
  • Es sind aber auch andere Verfahren zur Signalauswertung, insbesondere zur Winkelbestimmung des Radarziels bekannt, die keine "analoge" Strahlformung benötigen. Die Empfangssignale werden für jedes der Antennenelemente separat verarbeitet und digitalisiert und die Strahlformung wird auf der digitalen Ebene durchgeführt ("digitale" Strahlformung"). Neben der "digitalen" Strahlformung gibt es außerdem Verfahren, mit denen die azimutale Winkelposition des Zielobjekts bestimmt werden kann, wobei auf eine Strahlformung ganz verzichtet wird, z.B. sogenannter hochauflösende Richtungsschätzverfahren.
  • Ein besonders einfacher und kostengünstiger Aufbau einer planaren Antenne basiert auf der Serienspeisung der Elemente in einer Dimension der Antenne. Für Kraftfahrzeug-Radarsensoren ist insbesondere die Serienspeisung in den Antennenspalten relevant. Die Spalten sind hierbei in der Elevationsrichtung des Radarsensors, also vertikal, angeordnet.
  • Schlitzkopplungen in Verbindung mit Patch-Elementen sind an sich bekannt ( US-2003 010 75 18 -A1 , WO-2002 07 1535 - A1 , EP-1199772 - A2 ). Solche Schlitze dienen zur Anpassung und zur Beeinflussung der Bandbreite.
  • Aus der US 3,995,277 zeigt eine Zuleitung, bestehend aus ähnlichen, in Reihe geschalteten, semiresonanten und etwa eine halbe Wellenlänge langen Abschnitten, über die Energie auf Antennenelemente in gewünschter Phase verteilt wird und von diesen abgestrahlt wird. Die Strahlerelemente sind abwechselnd beidseitig der Speiseleitung angeordnet und mit dieser leitend verbunden sind, wobei aufeinanderfolgende Abzweigungen etwas eine halbe Wellenlänge voneinander entfernt sind.
  • Aus der US 4,079,268 ist eine Struktur eines zirkular polarisierten Antennen-Arrays bekannt, das integral mit der Hülle eines Flugzeugs mitmontiert werden kann und eine Mikrostreifenleitung mit elliptischen Elementen sowie dazwischen befindliche Speiseleitungen verwendet, die mittels einer dielektrischen Schicht von einer Masseebene der Schaltung beabstandet ist. Die Speiseleitungen sind in ihrer Impedanz an die elliptischen Antennen angepaßt, indem ein geeigneter Speisepunkt innerhalb des Randbereichs der elliptischen Antenne gewählt wird.
  • Aus dem nicht vorveröffentlichten Artikel "Compact Low-Cost 3 elements microstrip antenna array for WLAN", veröffentlicht 2004 auf der European Conference on Wireless Technology in Amsterdam, ist eine WLAN-Antenne bekannt, die aus 4 Patchelementen besteht.
  • Vorteile der Erfindung
  • Mit den Maßnahmen des Anspruchs 1 können einzelne Patch-Elemente, insbesondere in einem Serienspeisungszug, eine erhöhte Abstrahlung aufweisen und somit verbesserte Möglichkeiten der Strahlformung bzw. Nebenkeulen-Unterdrückung bieten. Durch eine Kombination von herkömmlichen Patch-Elementen mit den Patch-Elementen gemäß Anspruch 1 lässt sich an jedem Patch-Element einer planaren seriengespeisten Antennenspalte jede benötigte Abstrahlung des am Eingang dieses Elements anliegenden Signals einstellen. Damit ist eine variable Strahlformung und Nebenkeulen-Unterdrückung in der Ebene einer Antennenspalte zu erreichen. In den Unteransprüchen sind vorteilhafte Weiterbildungen aufgeführt. Damit ergeben sich mehrere Freiheitsgrade zur Optimierung der gewünschten Abstrahlung, die vorteilhaft miteinander kombinierbar sind.
  • Gegenüber herkömmlichen Patch-Antennen lässt sich durch die Maßnahmen der Erfindung die Abstrahlung einzelner Patch-Elemente insbesondere im Bereich 20 bis 100% einstellen und damit das Gesamtabstrahlungsprofil einer Antennenspalte bezüglich Amplitude und/oder Winkel sehr viel stärker variieren als mit einer herkömmlichen Patch-Struktur. Durch diese Variation des Gesamtabstrahlungsprofils lässt sich eine seriengespeiste Antennenspalte für mannigfache Einsatzmöglichkeiten optimieren, z.B. breites Strahlungsdiagramm im Nahbereich, schmales Strahlungsdiagramm im Fernbereich und stark nebenkeulenunterdrücktes Strahlungsdiagramm zur Reduktion von Boden-Clutter und ungewollten Brückendetektion usw.
  • Zeichnungen
  • Anhand der Zeichnungen werden Ausführungsbeispiele der Erfindung näher erläutert. Es zeigen
    • Figur 1 die Ausbildung mehrerer Strahlkeulen durch mehrere Speisungen bei einer Linsenantenne,
    • Figur 2a ein dreidimensionaler Aufbau einer Gruppenantenne,
    • Figur 2b ein planarer Aufbau einer Gruppenantenne mit Serienspeisung,
    • Figur 3a bis d verschiedene Ausführungsformen von herkömmlichen planaren seriengespeisten Antennenspalten,
    • Figur 4a ein herkömmliches Patch-Element innerhalb einer planaren seriengespeisten Antennenspalte,
    • Figur 4b ein Patch-Endelement,
    • Figur 5 ein erfindungsgemäßes Patch-Element,
    • Figur 6 eine modifizierte Ausführungsform eines Patch-Elements,
    • Figur 7 und Figur 8 weitere Ausführungsvarianten für erfindungsgemäße Patch-Elemente, Figur 9 bis Figur 11 weitere Beispiele für Patch-Elemente,
    • Figur 12a bis d verschiedene Ausführungsformen von Kombinationen herkömmlicher Patch-Elemente mit erfindungsgemäßen Patch-Elementen.
    Beschreibung von Ausführungsbeispielen
  • Bevor auf die eigentliche Erfindung eingegangen wird, werden zum besseren Verständnis zuvor herkömmliche relevante Antennestrukturen erläutert.
  • Eine Antennespalte mit Serienspeisung ist dadurch gekennzeichnet, dass an eine üblicherweise gerade Speiseleitung mehrere Antennenelemente angekoppelt sind.
  • Eine elektromagnetische Welle wird an einem Ende der Antennenspalte auf die Speiseleitung eingespeist (Sendeantenne) bzw. abgegriffen (Empfangsantenne). Eine Einspeisung der elektromagnetischen Welle ist auch innerhalb der Antennenspalte, üblicherweise in der Mitte, möglich. Dies hat jedoch eine komplizierten und damit kostenintensiven Aufbau der Antenne zur Folge.
  • Die Ankopplung der Elemente geschieht in einer Weise, dass das Antennenelement nur einen Teil der Leistung der von der einen Seite einfallenden elektromagnetischen Welle abstrahlt oder nur ein Teil der auf der Speiseleitung verfügbaren Leistung in das Antennenelement eingekoppelt wird. Zur anderen Seite des Elements läuft die elektromagnetische Welle mit der verbleibenden Leistung auf der Speiseleitung weiter. Zusätzlich treten vor allem ohmsche Verluste auf der Speiseleitung und in den Antennenelementen auf. Das der Speisung gegenüber liegende Ende der Antennenspalte wird üblicherweise entweder reflexionsarm abgeschlossen oder mit einem Antennenelement versehen, das so ausgelegt ist, dass es im Sendebetrieb alle eingekoppelte Leistung abstrahlt. In diesem Fall spricht man auch von einer "travelling wave antenna" ("Wanderwellenantenne", Leckwellenantenne). Wenn sich auf der Antennenspalte eine stehende Welle ausbildet, weil z.B. das Ende der Spalte nicht reflexionsfrei abgeschlossen ist, z.B. mit einem Leerlauf oder Kurzschluss, dann spricht man von einer "standing wave antenna" (Stehwellenantenne). An einer solchen Antennenspalte sind die Elemente üblicherweise an den Orten der Nullstellen des Stromes ("current nodes") angeschlossen.
  • Als Antennenelemente kommen insbesondere Patches, Dipole, Schlitze ("Slots") oder kurze Leitungsstücke ("Stubs") in Frage. Über Verbindungsleitungen können diese Elemente zu Untergruppen gruppiert sein. Zur Vergrößerung der Bandbreite können mehrere Patches in mehrlagigen Aufbauten übereinander angeordnet sein, so dass sie elektromagnetisch verkoppelt sind. Die Antennenelemente können beispielsweise direkt, kapazitiv oder über Stubs mit Schlitzkopplung angekoppelt werden.
  • Wenn Antennenspalten, z.B. in einem 77 GHz-Radarsensor nebeneinander angeordnet werden sollen, so dass mit den Signalen der Antennenspalten "digitale" Strahlformung oder "hochauflösende" Richtungsschätzverfahren möglich ist, dann ist ein Abstand der Spalten in der Größenordnung der halben Freiraumwellenlänge des Radarsignals, ca. 2 mm bei 77 GHz, notwendig. Gleiches gilt für übliche "analoge" Strahlformungsverfahren, hierbei ist aber eine Modifikation auf größere Spaltenabstände innerhalb gewisser Grenzen prinzipiell möglich. Wenn die Anzahl der Antennenelemente in der Spalte eine gewisse Zahl - Größenordnung von 5 - übersteigt, gibt es damit aus Platzgründen in einem planaren Aufbau keine Alternative zur Serienspeisung. Diese Alternative wird in Antennensysteme für militärische oder Satelliten-Anwendungen meist dadurch umgangen, dass ein dreidimensionaler Aufbau gewählt wird. Ein solcher Aufbau ist in Figur 2a skizziert. Die Speisung oder auch z.B. Ansteuerung durch "analoge" Strahlformung der Spalte liegt hinter den Elementen, so dass sich die Baugruppen mit den Spalten in geringem Abstand nebeneinander anordnen lassen. Eine solche Anordnung verbietet sich für Kraftfahrzeug-Radarsensoren aufgrund der hohen Kosten und der erheblichen Baugröße. Figur 2b zeigt einen planaren Aufbau mit Serienspeisung. Die einzelnen Spalten werden über einen Leistungsteiler von einer Signalquelle aus gespeist.
  • Die Hauptkeule der Radarantenne eines Kraftfahrzeug-Radarsensors wird in Elevation so ausgelegt, dass über den vom Sensor abgedeckten Entfernungsbereich eine gute Detektion von Fahrzeugen erfolgt. Wenn sich der Arbeitsbereich des Sensors nur auf den Fernbereich beschränkt (typisches ACC), kann die Hauptkeule in Elevation ziemlich schmal werden. Soll sich der Arbeitsbereich des Sensors auch bis in den Nahbereich hin erstrecken, muss gegebenenfalls eine breitere Hauptkeule vorgesehen werden, um Fahrzeuge in ihrer Höhe abzudecken. Idealerweise ist die Hauptkeule so ausgelegt, dass unerwünschte Reflexionen vom Boden oder von Zielen oberhalb der zu detektierenden Fahrzeuge vermieden werden.
  • Um die Detektion von unerwünschten Radarzielen ("clutter") weiter zu verringern, sollte die Strahlcharakteristik der Radarantenne so ausgelegt werden, dass die Nebenkeulen in Elevation möglichst klein sind. Clutter wird durch Bestrahlung bzw. Detektion beispielweise von Bodenrauhigkeiten, Bodenunebenheiten, Gullideckeln, Fremdkörpern, usw. wie auch von Brücken, Schilderbrücken, Tunneldecken, Bäumen usw. erzeugt.
  • Das klassische Verfahren zur Einstellung des Nebenkeulen-Niveaus basiert auf einer üblicherweise zu den Rändern der Spalte abfallenden Amplitudenverteilung ("Taper"), der von den einzelnen Elementen imitierten elektromagnetischen Welle. Entsprechende Verteilungsfunktionen, z.B. Tschebyscheff, Taylor, findet man in der Literatur. Dabei wird ein konstanter Abstand der Elemente von üblicherweise der halben Freiraumwellenlänge und eine konstante Phasendifferenz der Antennenelemente vorausgesetzt, bzw. Gleichphasigkeit, wenn die Abstrahlung in Richtung der Antennen-Normalen erfolgen soll. Die Breite der Hauptkeule ergibt sich aus der gewählten Amplitudenverteilung, der Anzahl der Elemente und ihrem Abstand in der Spalte.
  • Die Implementierung dieser Amplitudenverteilung kann einerseits durch einen entsprechenden Leistungsteiler erfolgen, über den die im allgemeinen identisch aufgebauten Antennenelemente versorgt werden, vgl. Speisung innerhalb der Spalten in Figur 2a. Andererseits können auch die Antennenelemente oder ihre Ankopplung an die Speisung und damit ihrer Abstrahlung innerhalb der Antenne variiert werden. Ersteres Verfahren ist mit einer Serienspeisung aus Platzgründen im allgemeinen inkompatibel. Das letztere Verfahren kann prinzipiell auch bei einer Serienspeisung angewandt werden.
  • Je nach verwendetem Antennenelement ist letzteres Verfahren jedoch mit Einschränkungen behaftet. Bei einer seriengespeisten Antennenspalte mit direkt gekoppelten Patch-Elementen, lässt die Abstrahlung der Elemente nur innerhalb gewisser Grenzen einstellen. Diese Grenzen werden vor allem von der maximalen Breite der Antennenelemente bestimmt, die zum einen von der elektromagnetischen Verkopplung der Antennenspalten und zum ändern vom Anschwingen des ersten transversalen Modus in einem Patch-Element, wenn die Breite des Patches in die Größenordnung der halben Leitungswellenlänge gelangt, bestimmt wird.
  • Vorliegende Erfindung beschreibt eine Antennenstruktur, insbesondere für einen Kraftfahrzeug-Radarsensor mit planarer Antenne, deren Antennenspalten mit Serienspeisung aufgebaut sind, wobei einzelne Patch-Elemente eine erhöhte Abstrahlung aufweisen und somit verbesserte Möglichkeiten der Strahlformung bzw. Nebenkeulen-Unterdrückung bieten.
  • Die erfindungsgemäße Antennenstruktur mit Schlitzkopplung der Patch-Elemente gegenüber der weiterführenden Speiseleitung für den Einsatz in planaren seriengespeisten Antennenspalten, insbesondere in einem Kraflfahrzeug-Radarsensor, gestattet eine variable Strahlformung und Nebenkeulen-Unterdrückung in der Ebene der Antennenspalte. Üblicherweise sind die Antennenspalten in einem Kraftfahrzeug-Radarsensor in Elevationsrichtung angeordnet und die genannte Ebene ist die Elevationsebene.
  • Vorteil ist, dass die Kombination von herkömmlichen und erfindungsgemäßen Patch-Elementen an jedem Patch-Element einer planaren seriengespeisten Antennenspalte jede benötigte Abstrahlung des am Eingang dieses Elements anliegenden Signals einstellen lässt.
  • Planare seriengespeiste Antennen in Kraftfahrzeug-Radarsensoren werden üblicherweise in Streifenleitungs-Technologie aufgebaut. Ein ein- oder mehrschichtiges Mikrowellensubstrat ist beidseitig mit Metall beschichtet. Mindestens eine der beiden Metallschichten ist strukturiert und bildet die Signalleitungsebene. In der Signalleitungsebene sind die Versorgungsleitungen, die Antennenspalten und gegebenenfalls die Sende- Empfangsmodule, oder Teile davon, angeordnet. Die andere Metallebene bildet die Masse-Ebene. Unterhalb der Masse-Ebene können weitere Substrat- und Metallebenen angeordnet sein, in denen z.B. die Niederfrequenz-/Basisband- und Digital-Elektronik zur Verarbeitung der Niederfrequenz-/Basisband-Signale und zur Ansteuerung und insbesondere digitalen Signalverarbeitung aufgebaut sind. In Kombination damit können auch noch weitere Mikrowellensubstrat-Ebenen eingesetzt werden, auf denen gegebenenfalls z.B. die Sende- und Empfangsmodule aufgebaut werden.
  • Figur 3 zeigt schematisch verschiedene Ausführungsformen einer Antennenspalte 1 mit Serienspeisung. In der genannten Signalleitungsebene sind die Speiseleitungen 50 der Antennenspalte angeordnet. Diese sind üblicherweise als Mikrostreifenleitungen ausgeführt, wobei mehrere Abschnitte mit unterschiedlichen Impedanzen zur Impedanzanpassung auftreten können. An die Speiseleitung 50 sind die Patch-Elemente in Form von verbreiterten Leitungsabschnitten 20 angekoppelt. Am Ende der Spalte kann ein Patch-Element 10 eingesetzt werden, das alle einfallende Leistung abstrahlt, so dass keine Reflexion auftritt. Alternativ kann auch ein absorbtiver Abschluss, z.B. ein auf die weitergeführte Speiseleitung 50 aufgeklebter Absorber oder ein angepasster Abschluss mit Widerstand, eingesetzt werden, die aber die Herstellung der Antenne weiter verkomplizieren und daher üblicherweise nicht erste Wahl sind.
  • Charakteristisch für die seriengespeiste Antennenspalte 1 ist die von der Einspeisung 60 bzw. 70, bei mittiger Speisung, zum Ende der Spalte kontinuierlich abfallende verfügbare Leistung. Jedes Patch-Element 20 strahlt einen Bruchteil der am Ort des Patch-Elements bzw. am Ort der Ankopplung des Elements verfügbaren Leistung ab. In den Patch-Elementen und auf der Speiseleitung zwischen den Patch-Elementen treten außerdem Verluste, vor allem ohmsche Verluste, auf. Wenn alle Patch-Elemente 20, die Abstände d der Patch-Elemente und die Speiseleitung 50 zwischen den Patch-Elementen gleich sind, dann ist die Leistungsverteilung von der Speisung zum Ende der Spalte näherungsweise exponentiell fallend, wobei das Patch-Element 10 am Ende der Spalte eine von diesem Verlauf abweichende Leistung abstrahlen kann. Diese Leistungsverteilung bestimmt die Strahlformung der von der Spalte erzeugten Strahlkeule, wobei die Nebenkeulen-Unterdrückung üblicherweise schlechter als 14 dB (13,6 dB werden in einer Gleichverteilung der Leistung erreicht) ist Dieser Wert reicht für Anwendungen im Kraftfahrzeug-Radarsystemen in der Regel nicht aus.
  • Eine gute Nebenkeulen-Unterdrückung liefern vor allem Leistungsverteilungen, die in der Mitte der Antennenspalte ein Maximum haben und zu den Rändern kontinuierlich abfallen. Solche Funktionen sind z.B. als Tschebbyscheff- oder Taylor-Belegung bekannt, wobei im allgemeinen ein konstanter Abstand der Antennen-Elemente vorausgesetzt wird.
  • Um eine solche Leistungsverteilung in einer seriengespeisten Spalte zu erreichen, werden nach dem Stand der Technik die Patch-Elemente 20 in Abhängigkeit von ihrer Position auf der Spalte modifiziert, um den Bruchteil der verfügbaren Leistung, den ein Element abstrahlt, zu verändern (20a und 20b) und damit eine verbesserte Leistungsverteilung zu erreichen. Eine solche Spalte ist in Figur 3c skizziert.
  • Im allgemeinen reicht jedoch die Einstellmöglichkeit durch die Patch-Elemente aus dem Stand der Technik nicht aus, um eine ausreichende Nebenkeulen-Unterdrückung zu erzielen. Auch eine flexible Einstellung der Richtcharakteristik ist mit diesem Patch-Element nicht möglich. Im Rahmen dieser Erfindung wird ein weiteres Pach-element vorgestellt, das zusammen mit herkömmlichen Patch-Elementen gemäß Figur 4 es ermöglicht, jede beliebige Abstrahlung des am Eingang des Elements auf der Speiseleistung verfügbaren Leistung bereitzustellen.
  • Basis des erfindungsgemäßen Patch-Elements 30 in Figur 5 ist das Patch-Element 20 in Figur 4a aus dem Stand der Technik. Das Patch-Element 20 aus dem Stand der Technik besteht im wesentlichen aus einem verbreiterten Leitungsabschnitt, der üblicherweise zur Maximierung der Abstrahlung und Minimierung der Reflexion etwa halb so lang ist wie die Wellenlänge auf einer vergleichbar breiten Leitung. Über die Breite des Leitungsabschnittes wird üblicherweise die abgestrahlte Leistung der am Eingang des Elements verfügbaren Leistung eingestellt. Im Folgenden wird das Patch-Element 20 aus dem Stand der Technik auch vereinfacht als verbreiteter Leitungsabschnitt bzw. nur als Leitungsabschnitt bezeichnet.
  • Das erfindungsgemäße Patch-Element 30 (Figur 5) enthält abweichend vom Stand der Technik zwei Schlitze 31 im Ausgangsbereich des Patch-Elements, die insbesondere oberhalb und unterhalb der weiterführenden Speiseleitung 50b verlaufen. Dadurch wird die weiterführenden Speiseleitung 50b am Ausgang des Patch-Elements in den Leitungsabschnitt 20 hineinversetzt. Dadurch werden die Impedanzverhältnisse innerhalb des Patch-Elements so modifiziert, dass mehr Leistung gegenüber dem Stand der Technik abgestrahlt wird und damit weniger Leistung am Ausgang des Patch-Elements 30 auf der Speiseleitung 50b zur Weiterleitung bereitgestellt wird. Die abgestrahlte bzw. die auf der Signalleitung 50b weitergeführte Leistung wird im wesentlichen durch die Länge der Schlitze 31 als auch durch die Breite des Leitungsabschnitts 20 eingestellt. Die Form der Schlitze 31 als auch der Verlauf der Speiseleitung 50b im Bereich der Schlitze 31 können von der Skizze in Figur 5 abweichen.
  • Eine erste Ausführungsform 30-1 (Figur 6) des erfindungsgemäßen Patch-Elements enthält einen zusätzlichen Schlitz 33 am Anfang der weiterführenden Speiseleitung 50b, der diese vom Leitungsabschnitt 20 galvanisch trennt. Hierdurch erreicht man eine weitere Erhöhung der Abstrahlung der am Eingang des Patch-Elements verfügbaren Leistung. Die auf der Signalleitung 50b weitergeführte Leistung reduziert sich entsprechend.
  • Eine weitere zweite Ausführungsform des erfindungsgemäßen Patch-Element 30 zeigt Figur 7. Dort sind im Bereich der Eingangssignalleitung 50a wie am Ausgang Schlitze 32 in den Leitungsabschnitt 20 eingebracht. Diese Schlitze dienen zur besseren Anpassung und Steuerung der Abstrahlung des Patch-Elements. Wesentlicher Einstellparameter ist die Länge der Schlitze. Die Form der Schlitze 32 als auch der Verlauf der Speiseleitung 50a im Bereich der Schlitze können von der Skizze in Figur 7 abweichen.
  • Figur 8 zeigt eine dritte Ausführungsform basierend auf der ersten Ausführungsform, bei der die Schlitze 31 über die Position des Zusatzschlitzes 33 hinaus in den Leitungsabschnitt verlängert sind. Hiermit kann zusätzlich sowohl die Anpassung als auch die Abstrahlung eingestellt werden. Der Zusatzschlitz 33 befindet sich somit im Zuge der weiterführenden Speiseleitung 50b. Das Beispiel in Figur 9 ist ein Sonderfall der ersten Ausführungsform von Figur 6, wenn man die Länge der Schlitze 31 zu 0 annimmt und nur noch der zusätzliche Schlitz 33 vorhanden ist.
  • Die Verkopplung zwischen weiterführender Signalleitung 50b am Ausgang des Patch-Elements und dem Leitungsabschnitt 20 lässt sich im Bereich des zusätzlichen Schlitzes über breitere Strukturen auf der Signalleitung 50b erreichen. Beispeile zeigen Figur 10 und Figur 11 mit den Strukturen 34 und 34a. Andere Formen und Längen dieser verbreiterten Koppelstrukturen sind realisierbar.
  • Am Eingang der Signalleitung 50a und Ausgang auf der Signalleitung 50b der Patch-Elemente ist der Einsatz gängiger Anpassstrukturen aus der Mikrowellenstreifenleitungstechnik möglich, um Reflexionen und Abstrahlung zu optimieren.
  • Die Figuren 12a bis d zeigen verschiedene Ausführungsformen der Kombinationen von Patch-Elementen gemäß Stand der Technik und Patch-Elementen gemäß der Erfindung zu planaren seriengespeisten Antennenspalten.
  • Selbstverständlich können die zuvor vorgestellten Antennenstrukturen für Sendeantennen wie auch für Empfangsantennen oder Kombinationen davon eingesetzt werden.

Claims (8)

  1. Antennenstruktur bestehend aus mehreren seriengespeisten Patch-Elementen, mit jeweils einer signalzuführenden Speiseleitung (50a), dadurch gekennzeichnet, dass zumindest eines der Patch-Elemente (30) gegenüber der weiterführenden Speiseleitung (50b) jeweils einen Schlitz (31) zur Kopplung unmittelbar oberhalb und unterhalb der weiterführenden Speiseleitung (50b) aufweist derart, dass die weiterführende Speiseleitung (50b) in das Patch-Element (30) hineinversetzt wird, um die vom Patch-Element (30) abgestrahlte Leistung durch die Länge der Schlitze (31) zu beeinflussen.
  2. Antennenstruktur nach Anspruch 1, dadurch gekennzeichnet, dass ein Schlitz (33) zwischen dem Anfang der weiterführenden Speiseleitung (50b) und dem Patch-Element (30) vorgesehen ist.
  3. Antennenstruktur nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass ein Schlitz (33) im Zuge der weiterführenden Speiseleitung (50b) im Bereich eines Patch-Elements (30) vorgesehen ist.
  4. Antennenstruktur nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass der Anfang der weiterführenden Speiseleitung (50b) verbreitert (34, 34a) ausgebildet ist.
  5. Antennenstruktur nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die signalzuführende Speiseleitung (50a) im Bereich zumindest eines der Patch-Elemente (30) eine Schlitzkopplung (32) gegenüber dem Patch-Element aufweist.
  6. Antennenstruktur nach Anspruch 5, dadurch gekennzeichnet, dass in dem Patch-Element (30) jeweils ein Schlitz (31), insbesondere unmittelbar oberhalb und unterhalb der signalzuführenden Speiseleitung (50a) vorgesehen ist.
  7. Antennenstruktur nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass mindestens ein Patch-Element (30) mit einer Schlitzkopplung (31, 33) gegenüber der weiterführenden Speiseleitung (50b) mit herkömmlichen Patch-Elementen (20) innerhalb eines Serienspeisungszuges kombiniert ist und wobei die Schlitzkopplung so ausgebildet ist, dass das mindestens eine Patch-Element mit Schlitzkopplung (31, 33) einer erhöhte Abstrahlung gegenüber einem herkömmlichen Patch-Element (20) aufweist.
  8. Radarsensor nach einem der Ansprüche 1 bis 7 bestehend aus seriengespeisten Patch-Elementen, wobei jeweils ein Serienspeisungszug eine Antennenspalte innerhalb einer Gruppenantenne bildet.
EP05758394A 2004-08-17 2005-06-17 Antennenstruktur mit patch-elementen Expired - Fee Related EP1782502B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004039743A DE102004039743A1 (de) 2004-08-17 2004-08-17 Antennenstruktur mit Patch-Elementen
PCT/EP2005/052822 WO2006018338A1 (de) 2004-08-17 2005-06-17 Antennenstruktur mit patch-elementen

Publications (2)

Publication Number Publication Date
EP1782502A1 EP1782502A1 (de) 2007-05-09
EP1782502B1 true EP1782502B1 (de) 2012-10-10

Family

ID=34971953

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05758394A Expired - Fee Related EP1782502B1 (de) 2004-08-17 2005-06-17 Antennenstruktur mit patch-elementen

Country Status (4)

Country Link
US (1) US7920094B2 (de)
EP (1) EP1782502B1 (de)
DE (1) DE102004039743A1 (de)
WO (1) WO2006018338A1 (de)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7609222B2 (en) * 2007-12-05 2009-10-27 Antennas Direct, Inc. Antenna assemblies with antenna elements and reflectors
US8368607B2 (en) * 2007-12-05 2013-02-05 Antennas Direct, Inc. Antenna assemblies with antenna elements and reflectors
US7839347B2 (en) * 2007-12-05 2010-11-23 Antennas Direct, Inc. Antenna assemblies with tapered loop antenna elements and reflectors
USD809490S1 (en) 2008-02-29 2018-02-06 Antennas Direct, Inc. Antenna
USD867347S1 (en) 2008-02-29 2019-11-19 Antennas Direct, Inc. Antenna
USD881172S1 (en) 1975-11-03 2020-04-14 Antennas Direct, Inc. Antenna and base stand
US20140292597A1 (en) 2007-12-05 2014-10-02 Antennas Direct, Inc. Antenna assemblies with tapered loop antenna elements
US10957979B2 (en) 2018-12-06 2021-03-23 Antennas Direct, Inc. Antenna assemblies
USD666178S1 (en) 2008-02-29 2012-08-28 Antennas Direct, Inc. Antenna
USD868045S1 (en) 2008-02-29 2019-11-26 Antennas Direct, Inc. Antenna
DE102006041982A1 (de) * 2006-09-07 2008-03-27 Robert Bosch Gmbh Antennenanordnung
US20080291345A1 (en) * 2007-05-23 2008-11-27 Antennas Direct, Inc. Picture frame antenna assemblies
US11929562B2 (en) 2007-12-05 2024-03-12 Antennas Direct, Inc. Antenna assemblies with tapered loop antenna elements
US7990335B2 (en) * 2007-12-05 2011-08-02 Antennas Direct, Inc. Antenna assemblies with antenna elements and reflectors
USD804459S1 (en) 2008-02-29 2017-12-05 Antennas Direct, Inc. Antennas
USD883265S1 (en) 2008-02-29 2020-05-05 Antennas Direct, Inc. Antenna
USD920962S1 (en) 2008-02-29 2021-06-01 Antennas Direct, Inc. Base stand for antenna
USD883264S1 (en) 2008-02-29 2020-05-05 Antennas Direct, Inc. Antenna
USD815073S1 (en) 2008-02-29 2018-04-10 Antennas Direct, Inc. Antenna
DE102009029291A1 (de) 2009-09-09 2011-03-10 Robert Bosch Gmbh Planare Antenneneinrichtung für eine Radarsensorvorrichtung
DE102009046491A1 (de) 2009-11-06 2011-05-12 Robert Bosch Gmbh Planare Antenneneinrichtung für eine Radarsensorvorrichtung
DE102009047561A1 (de) 2009-12-07 2011-06-09 Robert Bosch Gmbh Antenneneinrichtung für eine Radarsensorvorrichtung
USD664126S1 (en) 2010-08-26 2012-07-24 Antennas Direct, Inc. Antenna
US8743016B2 (en) * 2010-09-16 2014-06-03 Toyota Motor Engineering & Manufacturing North America, Inc. Antenna with tapered array
DE102011050841A1 (de) * 2011-06-03 2012-12-06 Universität Duisburg-Essen Planare Antennenanordnung und Verfahren zum Erzeugen einer elektromagnetischen Welle mittels einer planaren Antennenanordnung
JP5697052B2 (ja) * 2012-11-23 2015-04-08 古河電気工業株式会社 アレーアンテナ装置
TWI509885B (zh) * 2013-07-24 2015-11-21 Wistron Neweb Corp 功率分配器及射頻裝置
CN104347921B (zh) * 2013-07-29 2017-03-01 启碁科技股份有限公司 功率分配器及射频装置
KR101907173B1 (ko) * 2013-12-09 2018-10-11 주식회사 만도 차량용 레이더 시스템 및 그의 방위각 추출 방법
US10128575B2 (en) 2015-09-02 2018-11-13 Antennas Direct, Inc. HDTV antenna assemblies
USD824884S1 (en) 2015-10-08 2018-08-07 Antennas Direct, Inc. Antenna element
USD827620S1 (en) 2015-10-08 2018-09-04 Antennas Direct, Inc. Antenna element
US9761935B2 (en) 2015-09-02 2017-09-12 Antennas Direct, Inc. HDTV antenna assemblies
USD811752S1 (en) 2015-10-08 2018-03-06 Antennas Direct, Inc. Picture frame antenna
US10109910B2 (en) * 2016-05-26 2018-10-23 Delphi Technologies, Inc. Antenna device with accurate beam elevation control useable on an automated vehicle
CN108511888B (zh) * 2017-02-28 2020-12-08 华为技术有限公司 一种天线及通信设备
CN107453043A (zh) * 2017-06-23 2017-12-08 惠州市德赛西威汽车电子股份有限公司 一种汽车侧后方雷达天线阵列以及天线面阵
JP2022536407A (ja) * 2019-04-26 2022-08-15 バテル メモリアル インスティチュート スケーラブルなモジュール式ネットワークノードを伴う信号通信システムおよび方法
CN112787076A (zh) * 2019-11-06 2021-05-11 华为技术有限公司 天线结构、雷达和终端
TWI770621B (zh) * 2020-09-29 2022-07-11 為昇科科技股份有限公司 具長短距離模態偵測之雷達系統
TWI752780B (zh) * 2020-12-31 2022-01-11 啓碁科技股份有限公司 寬波束之天線結構

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995277A (en) 1975-10-20 1976-11-30 Minnesota Mining And Manufacturing Company Microstrip antenna
US4079268A (en) * 1976-10-06 1978-03-14 Nasa Thin conformal antenna array for microwave power conversion
US4742354A (en) * 1986-08-08 1988-05-03 Hughes Aircraft Company Radar transceiver employing circularly polarized waveforms
DE19951123C2 (de) 1999-07-30 2003-11-13 Volkswagen Ag Radarsensor für ein Überwachen der Umgebung eines Kraftfahrzeuges
US6411258B1 (en) 2000-10-16 2002-06-25 Andrew Corporation Planar antenna array for point-to-point communications
GB0105440D0 (en) 2001-03-06 2001-04-25 Koninkl Philips Electronics Nv Antenna arrangement
US20030107518A1 (en) * 2001-12-12 2003-06-12 Li Ronglin Folded shorted patch antenna

Also Published As

Publication number Publication date
WO2006018338A1 (de) 2006-02-23
EP1782502A1 (de) 2007-05-09
US7920094B2 (en) 2011-04-05
US20080211720A1 (en) 2008-09-04
DE102004039743A1 (de) 2006-02-23

Similar Documents

Publication Publication Date Title
EP1782502B1 (de) Antennenstruktur mit patch-elementen
DE102004044120A1 (de) Antennenstruktur für seriengespeiste planare Antennenelemente
EP2659285B1 (de) Radarsensor für kraftfahrzeuge
EP2617101B1 (de) Gruppenantenne für radarsensoren
EP2569820B1 (de) Fahrerassistenzeinrichtung für ein fahrzeug, fahrzeug und verfahren zum betreiben eines radargeräts
WO2005099042A1 (de) Wellenleiterstruktur
EP2965382B1 (de) Antennenanordnung mit veränderlicher richtcharakteristik
DE102004059915A1 (de) Radarsystem
EP2622366B1 (de) Antennensystem für radarsensoren
EP3465817B1 (de) Antennenvorrichtung für einen radardetektor mit mindestens zwei strahlungsrichtungen und kraftfahrzeug mit zumindest einem radardetektor
EP1522869A1 (de) Radarsystem mit umschaltbarer Winkelauflösung
EP2616840A1 (de) Radarsensor für kraftfahrzeuge, insbesondere lca-sensor
DE10351506A1 (de) Vorrichtung sowie Verfahren zur Phasenverschiebung
EP3701280B1 (de) Radarsensor mit mehreren hauptstrahlrichtungen
DE102016007265A1 (de) Array-Antenne und Radarsystem für Fahrzeuge, das diese aufweist
WO2011029643A1 (de) Planare antenneneinrichtung für eine radarsensorvorrichtung
WO2005034288A1 (de) Vorrichtung sowie verfahren zum abstrahlen und/oder zum empfangen von elektromagnetischer strahlung
WO2006066781A2 (de) Kraftfahrzeug-radarsystem mit segmentweisem phasendifferenz-auswerteverfahren
EP1623248A1 (de) Radarsensor f r automobilanwendungen
WO2008028739A1 (de) Antennenanordnung mit parasitär angekoppelten antennenelementen
WO2021032423A1 (de) Radarsensor, kraftfahrzeug und verfahren zum betrieb eines radarsensors
DE102012224062A1 (de) Streifenleiterantenne, Gruppenantenne und Radarvorrichtung
DE102019115672A1 (de) Aperturgekoppelte mikrostreifenantennen-anordnung
DE10057564A1 (de) Ansteuernetzwerk für eine Antennenanordnung eines Radarsensors, Radarantenne und Radarsensor
WO2024114867A1 (de) Hohlleiterantenne, radarsensor sowie fahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20070703

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/00 20060101ALI20120702BHEP

Ipc: H01Q 9/04 20060101ALI20120702BHEP

Ipc: H01Q 21/06 20060101AFI20120702BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005013175

Country of ref document: DE

Effective date: 20121206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130711

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005013175

Country of ref document: DE

Effective date: 20130711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130621

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140617

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150623

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150623

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160617

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200824

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005013175

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220101