EP1777420B1 - Ventilanordnung - Google Patents

Ventilanordnung Download PDF

Info

Publication number
EP1777420B1
EP1777420B1 EP20050022932 EP05022932A EP1777420B1 EP 1777420 B1 EP1777420 B1 EP 1777420B1 EP 20050022932 EP20050022932 EP 20050022932 EP 05022932 A EP05022932 A EP 05022932A EP 1777420 B1 EP1777420 B1 EP 1777420B1
Authority
EP
European Patent Office
Prior art keywords
diffuser
flow
inlet
valve
valve arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20050022932
Other languages
English (en)
French (fr)
Other versions
EP1777420A1 (de
Inventor
Thomas Dr. Thiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP20050022932 priority Critical patent/EP1777420B1/de
Priority to DE200550006431 priority patent/DE502005006431D1/de
Publication of EP1777420A1 publication Critical patent/EP1777420A1/de
Application granted granted Critical
Publication of EP1777420B1 publication Critical patent/EP1777420B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Definitions

  • the invention relates to a valve arrangement comprising a control valve and a diffuser, in particular for a turbine of a thermal power plant, wherein the diffuser is arranged to be arranged at a flow outlet of the control valve for controlling a flow rate of a flow medium, with a diffuser wall, starting from a diffuser inlet with a narrowest cross section bounded in the flow direction steadily expanding flow channel.
  • the invention further relates to a turbine for a thermal power plant with such a valve arrangement.
  • Such a valve arrangement is particularly suitable for gas or steam turbines. In this case, such a valve arrangement is arranged on a blade section of the turbine.
  • the control valve can be designed in particular as a plug-controlled outflow valve.
  • Such a valve arrangement shows the document US 4,986. 309 ,
  • An object underlying the invention is to improve a valve arrangement for a turbine for a thermal power plant such that the valve arrangement can be made more compact and at the same time has a high efficiency with low losses.
  • valve assembly according to claim 1.
  • the object is further achieved with a turbine for a thermal power plant, which is provided on a blade section of the turbine with such a valve arrangement according to the invention. That is, the opening angle of the diffuser according to the invention is not constant, but changes suitably in the longitudinal direction of the diffuser extending along the flow direction.
  • the cross-sectional area of the diffuser also increases in a manner different from the increase in the cross-sectional area of a cone-shaped diffuser.
  • the solution according to the invention is based on the knowledge that in a directly adjoining the control valve inlet section of the diffuser, the degree of turbulence of the flow medium is usually very high. High degrees of turbulence allow considerable cross-sectional enlargements without a lossy flow separation occurring.
  • opening angles for the flow channel of the diffuser without loss of efficiency can be provided in the region of the inlet section compared to the opening angles used in the prior art. Only after the turbulence has subsided to a customary level in a region of the diffuser adjoining the inlet section then again the usual boundary conditions for the opening angle apply.
  • the value of the non-linear area increase of the diffuser according to the invention corresponding half the opening angle of the mood channel in an immediately adjacent to the diffuser inlet inlet portion of the diffuser wall is more than 10 °, typically at 15 ° to 40 °, in particular at 25 °.
  • Such an opening angle of the diffuser allows optimal area expansion while minimizing possible efficiency losses.
  • the flow channel delimited by the diffuser wall has an opening angle that continuously decreases in the flow direction. That is, with increasing distance from the seat of the control valve, the opening angle of the diffuser is reduced.
  • the opening angle in the flow direction initially decreases to a great extent and then to a lesser extent.
  • the opening angle is advantageously set optimally to the degree of turbulence of the flow medium delivered by the control valve that occurs in the diffuser. That is, the opening angle at each point along the longitudinal direction of the diffuser to a corresponding maximum value at which a flow separation just does not yet occur, set.
  • the diffuser has a valve seat adjoining the diffuser wall on the upstream side for fastening the control valve.
  • This valve seat is preferably formed integrally with the diffuser wall, which surrounds the flow channel which widens continuously in the flow direction.
  • the valve seat is preferably frusto-conical, with its flared opening facing upstream.
  • an inlet section of the diffuser wall adjacent to the diffuser inlet has the non-linear course in the longitudinal sectional plane. Due to the high turbulence in the adjoining the throttle point inlet portion can be achieved by designing the diffuser wall with non-linear course, a particularly large area expansion while avoiding flow separation.
  • the inlet section of the diffuser wall extends in the longitudinal direction of the diffuser over a region with an increased degree of turbulence of a flow medium flowing through the diffuser.
  • the inlet section of the diffuser wall in the longitudinal direction of the diffuser advantageously extends over a length of at most 4 times, in particular 2.5 times, the diameter of the diffuser at the diffuser inlet. Over this length, a highly turbulent flow behavior sets in the diffuser, which is why an increased opening angle easily without the risk of detachment of the flow can be realized.
  • the turbulence has subsided to a normal level and the subsequent diffuser area can be designed according to the prior art as a conical diffuser with a maximum half opening angle of 7 °.
  • Fig. 1 an embodiment of a diffuser according to the invention is shown in a along a flow direction 28 of a flow medium extending longitudinal sectional plane.
  • the diffuser acc. Fig. 1 is advantageously designed to be installed in the flow channel of a turbine of a thermal power plant, such as a gas turbine or a steam turbine.
  • the diffuser 10 between a downstream of a quick-closing valve of the turbine control member 30 of a control valve and a connected to the connection opening 16 of the diffuser 10 inflow region of a turbine with a subsequent blade section is installed.
  • the diffuser 10 is rotationally symmetrical about a longitudinal axis 12 and has at one of its two ends a valve seat 14 for receiving the control element 30 of the control valve.
  • the movable control member 30 is arranged such that between the valve seat 14 and the control member 30, a throttle body 31 is formed.
  • the valve seat 14 is formed here truncated cone-shaped, wherein the extended Opening the truncated cone points outward.
  • any other contours such as contours customary in the prior art, in particular a circle radius or combinations of different circular radii.
  • a diffuser inlet 18 with a narrowest cross-section 18 adjoins a diffuser wall 20 enclosing a continuously widening flow channel 26.
  • a discharged from the control valve flow medium flows in the direction of flow 28 in the direction of the steadily expanding flow channel 26, according to Fig. 1 left to right.
  • At the end of the flow channel 26 there is an extended connection opening 16, through which the flow medium exits the diffuser 10 again.
  • the diffuser wall 20 surrounding the flow channel 26 has an inlet section 22 adjoining the diffuser inlet 18 with the narrowest cross section and an outlet section 24 following thereon.
  • the diffuser wall 20 has a non-linear course in the longitudinal sectional plane extending along the flow direction 28.
  • the opening angle starting from the throttle point 18 in the flow direction 28, increases continuously, to a great extent at first and then to a lesser extent.
  • the value of half the opening angle varies between about 25 ° and about 7 °.
  • the opening angle may remain approximately constant or may continue to decrease slightly in the flow direction 28 as well.
  • the half opening angle is between 0 ° and 7 °, preferably about 3.5 °.
  • the length L of the flow channel 26 is composed of the length of the inlet portion 22 and the length of the outlet portion 24 and is reduced compared to a conventional cone-shaped flow channel of a diffuser.
  • Fig. 2 shows qualitatively the present over the length L of the flow channel 26 in the diffuser 10 turbulence degree of the flow medium. Due to the restriction 31, the latter has a very high value in the diffuser inlet 18 and decreases in the flow direction 28, the degree of turbulence at the end of the inlet section 22 stabilizing at a relatively low value, which is similar to that of a fully developed turbulent pipe flow.
  • the course of the diffuser wall 20 according to Fig. 1 is at the in Fig. 2 adjusted turbulence degree adjusted.
  • the flow channel 26 has a large opening angle, since no flow separation is to be expected in this case. Only after the turbulence has faded to a "normal dimension" which corresponds approximately to that of a fully developed turbulent pipe flow is the opening angle reduced to a conventional level which corresponds to the state of the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lift Valve (AREA)

Description

  • Die Erfindung betrifft eine Ventilanordnung umfassend ein Stellventil und einen Diffusor, insbesondere für eine Turbine eines thermischen Kraftwerks, wobei der Diffusor zur Anordnung an einem Strömungsausgang des Stellventils zum Steuern einer Flussrate eines Strömungsmediums ausgebildet ist, mit einer Diffusorwand, die ausgehend von einem Diffusoreintritt mit einem engsten Querschnitt einen sich in Strömungsrichtung stetig erweiternden Strömungskanal begrenzt. Die Erfindung betrifft ferner eine Turbine für ein thermisches Kraftwerk mit einer derartigen Ventilanordnung. Eine derartige Ventilanordnung ist insbesondere für Gas- oder Dampfturbinen geeignet. Dabei wird eine solche Ventilanordnung an einem Schaufelabschnitt der Turbine angeordnet. Das Stellventil kann insbesondere als ein stopfengeregeltes Ausflussventil ausgeführt sein. Eine solche Ventilanordnung zeigt das Dokument US 4.986. 309 .
  • Aus dem Stand der Technik bekannte Ventilanordnungen der oben genannten Art weisen eine konusförmige Diffusorwand auf. Der Öffnungswinkel des Konuses ist dabei auf einem bestimmten Maximalwert begrenzt, um eine möglichst verlustarme Strömung der Turbine mit gutem Druckrückgewinn zu gewährleisten. Bei einer vorgegebenen Querschnittsfläche am Austrittsende des Diffusors ergibt sich bei den vorbekannten konischen Diffusoren wegen des begrenzten Öffnungswinkels eine relativ große Diffusorlänge. Dies führt zu erheblichen Kosten bei der Herstellung des Diffusors und legt weiterhin für den Konstrukteur die Randbedingungen bezüglich der Dimensionierung der die Ventil-Diffusor-Anordnung aufnehmenden Maschine, insbesondere einer Turbine eines thermischen Kraftwerks fest. Das heißt, durch die erhebliche Länge des Diffusors muss an der Maschine ein entsprechend großer Bauraum vorgesehen werden, was zusätzliche Einschränkungen in den Randbedingungen der Konstruktion der Maschine und der Aufstellungsplanung mit entsprechenden Kostenkonsequenzen nach sich zieht.
  • Eine der Erfindung zugrundeliegende Aufgabe besteht darin, eine Ventilanordnung für eine Turbine für ein thermisches Kraftwerk derart zu verbessern, dass die Ventilanordnung kompakter ausgeführt werden kann und dieser gleichzeitig einen hohen Wirkungsgrad bei geringen Verlusten aufweist.
  • Diese Aufgabe ist erfindungsgemäß durch eine Ventilanordnung gemäß Anspruch 1 gelöst. Die Aufgabe ist ferner mit einer Turbine für ein thermisches Kraftwerk gelöst, das an einem Schaufelabschnitt der Turbine mit einer derartigen erfindungsgemäßen Ventilanordnung versehen ist. Das heißt, der Öffnungswinkel des erfindungsgemäßen Diffusors ist nicht konstant, sondern ändert sich in geeigneter Weise in entlang der Strömungsrichtung sich erstreckender Längsrichtung des Diffusors. Damit nimmt auch die Querschnittsfläche des Diffusors auf eine Weise zu, die sich von der Zunahme der Querschnittsfläche bei einem konusförmigen Diffusor unterscheidet.
  • Die erfindungsgemäße Lösung geht auf die Erkenntnis zurück, dass in einem sich unmittelbar an das Stellventil anschließenden Eintrittsabschnitt des Diffusors der Turbulenzgrad des Strömungsmediums in der Regel sehr hoch ist. Hohe Turbulenzgrade erlauben erhebliche Querschnittserweiterungen, ohne dass eine verlustreiche Strömungsablösung auftritt.
  • Das heißt, in dem Bereich des Eintrittsabschnitts können im Vergleich zu den im Stand der Technik verwendeten Öffnungswinkeln größere Öffnungswinkel für den Strömungskanal des Diffusors ohne Wirkungsgradverlust vorgesehen werden. Erst nach Abklingen der Turbulenz auf ein übliches Maß in einem sich an den Eintrittsabschnitt anschließenden Bereich des Diffusors gelten dann wieder die üblichen Randbedingungen für den Öffnungswinkel.
  • Der Wert des der nichtlinearen Flächenzunahme des erfindungsgemäßen Diffusors entsprechenden halben Öffnungswinkels des Stimmungskanals in einem unmittelbar an den Diffusoreintritt angrenzenden Eintrittsabschnitt der Diffusorwand liegt bei mehr als 10°, typischerweise bei 15° bis 40°, insbesondere bei 25°. Ein derartiger Öffnungswinkel des Diffusors ermöglicht eine optimale Flächenerweiterung unter Minimierung möglicher Wirkungsgradverluste.
  • Durch das zumindest abschnittsweise Vorsehen eines nicht linearen Verlaufs der Diffusorwand in Längsrichtung des Diffusors lässt sich eine Erweiterung der Querschnittsfläche auf ein vorgegebenes Maß mittels eines Diffusors mit erheblich geringerer Diffusorlänge unter gleichzeitiger Sicherstellung eines hohen Wirkungsgrades verwirklichen. Kompakte und damit kostengünstige Diffusoren können erfindungsgemäß entwickelt werden. Damit erhält der Konstrukteur mehr Spielraum zur Gestaltung der die Ventil-Diffusor-Anordnung aufnehmenden Maschine. Auch die Gesamtkosten der Maschine können durch die kompaktere Gestaltung der Ventil-Diffusor-Anbindung erfindungsgemäß gesenkt werden.
  • Um den Wirkungsgrad des Diffusors weiter zu optimieren, ist es erfindungsgemäß vorteilhaft, wenn der von der Diffusorwand begrenzte Strömungskanal einen in Strömungsrichtung kontinuierlich abnehmenden Öffnungswinkel aufweist. Das heißt, mit zunehmendem Abstand vom Sitz des Stellventils verringert sich der Öffnungswinkel des Diffusors.
  • In vorteilhafter Ausführungsform nimmt von dem Diffusoreintritt ausgehend gesehen der Öffnungswinkel in Strömungsrichtung zunächst in hohem Maße und daraufhin in geringerem Maße ab. Dabei ist der Öffnungswinkel vorteilhafterweise optimal auf den sich im Diffusor einstellenden Turbulenzgrad des vom Stellventil abgegebenen Strömungsmediums eingestellt. Das heißt, der Öffnungswinkel wird an jedem Punkt entlang der Längsrichtung des Diffusors auf einen entsprechenden Maximalwert, bei dem eine Strömungsablösung gerade noch nicht eintritt, eingestellt. Durch diese Maßnahme lässt sich die Diffusorlänge minimieren, ohne größere Strömungsverluste in Kauf nehmen zu müssen.
  • In zweckmäßiger Ausführungsform weist der Diffusor einen sich stromaufwärtsseitig an die Diffusorwand anschließenden Ventilsitz zur Befestigung des Stellventils auf. Dieser Ventilsitz ist vorzugsweise integral mit der Diffusorwand, die den sich in Strömungsrichtung stetig erweiternden Strömungskanal umgibt, ausgebildet. Der Ventilsitz ist vorzugsweise kegelstumpfförmig ausgebildet, wobei dessen erweiterte Öffnung in Strömungsgegenrichtung zeigt.
  • Vorteilhafterweise weist ein unmittelbar am Diffusoreintritt angrenzender Eintrittsabschnitt der Diffusorwand in der Längsschnittebene den nichtlinearen Verlauf auf. Aufgrund der hohen Turbulenzen in dem sich an die Drosselstelle anschließenden Eintrittsabschnitt kann durch ein Ausgestalten der Diffusorwand mit nichtlinearem Verlauf eine besonders große Flächenerweiterung unter Vermeidung einer Strömungsablösung erzielt werden.
  • Vorteilhafterweise erstreckt sich der Eintrittsabschnitt der Diffusorwand in Längsrichtung des Diffusors über einen Bereich mit erhöhtem Turbulenzgrad eines den Diffusor durchströmenden Strömungsmediums. Das Vorsehen eines nichtlinearen Verlaufes der Diffusorwand in diesem Bereich ermöglicht eine entsprechende Verkürzung der Diffusorlänge ohne Wirkungsgradverlust.
  • Zur Vermeidung einer den Wirkungsgrad des Diffusors verringernden Strömungsablösung erstreckt sich vorteilhafterweise der Eintrittsabschnitt der Diffusorwand in Längsrichtung des Diffusors über eine Länge von maximal 4 mal, insbesondere 2,5 mal dem Durchmesser des Diffusors an dem Diffusoreintritt. Über diese Länge stellt sich ein hochturbulentes Strömungsverhalten im Diffusor ein, weshalb sich ein erhöhter Öffnungswinkel ohne die Gefahr einer Ablösung der Strömung problemlos verwirklichen lässt. Nach diesem Eintrittsabschnitt ist die Turbulenz auf ein übliches Maß abgeklungen und der anschließende Diffusorbereich kann entsprechend dem Stand der Technik als konischer Diffusor mit einem maximalen halben Öffnungswinkel von 7° ausgeführt werden.
  • Nachfolgend wird ein Ausführungsbeispiel eines erfindungsgemäßen Diffusors anhand der beigefügten schematischen Zeichnungen näher erläutert. Es zeigt:
  • Fig. 1
    eine Längsschnittansicht eines erfindungsgemäßen Diffusors, sowie
    Fig. 2
    eine schematische Darstellung des Turbulenzgrades eines durch den Diffusor gemäß Fig. 1 strömenden Strömungsmediums entlang der Längsachse des Diffusors.
  • In Fig. 1 ist ein Ausführungsbeispiel eines erfindungsgemäßen Diffusors in einer sich entlang einer Strömungsrichtung 28 eines Strömungsmediums erstreckenden Längsschnittebene dargestellt. Der Diffusor gem. Fig. 1 ist vorteilhafterweise darauf ausgelegt, in den Strömungskanal einer Turbine eines thermischen Kraftwerks, wie etwa einer Gasturbine oder einer Dampfturbine eingebaut zu werden. Dabei wird der Diffusor 10 zwischen ein einem Schnellschlussventil der Turbine nachgeordnetes Regelorgan 30 eines Stellventils und einen an die Anschlussöffnung 16 des Diffusors 10 angeschlossenen Einströmungsbereich einer Turbine mit einem nachfolgenden Schaufelabschnitt eingebaut.
  • Der Diffusor 10 ist um eine Längsachse 12 rotationssymmetrisch aufgebaut und weist an einem seiner beiden Enden einen Ventilsitz 14 zur Aufnahme des Regelorgans 30 des Stellventils auf. Das bewegliche Regelorgan 30 ist dabei derart angeordnet, dass zwischen dem Ventilsitz 14 und dem Regelorgan 30 eine Drosselstelle 31 gebildet ist. Der Ventilsitz 14 ist hier kegelstumpfmantelförmig ausgebildet, wobei die erweiterte Öffnung des Kegelstumpfes nach außen zeigt. Es können jedoch auch beliebige andere Konturen, wie etwa im Stand der Technik gebräuchliche Konturen, insbesondere ein Kreisradius oder Kombinationen verschiedener Kreisradien vorgesehen werden.
  • An der verengten Öffnung des Kegelstumpfes schließt sich eine, von einem Diffusoreintritt 18 mit einem engsten Querschnitt 18 ausgehend, einen sich stetig erweiternden Strömungskanal 26 umschließende Diffusorwand 20 an. Ein vom Stellventil abgegebenes Strömungsmedium strömt in der Strömungsrichtung 28 in Richtung des sich stetig erweiternden Strömungskanals 26, gemäß Fig. 1 von links nach rechts. Am Ende des Strömungskanals 26 befindet sich eine erweiterte Anschlussöffnung 16, durch die das Strömungsmedium aus dem Diffusor 10 wieder austritt.
  • Die den Strömungskanal 26 umgebende Diffusorwand 20 weist einen sich unmittelbar am Diffusoreintritt 18 mit dem engsten Querschnitt anschließenden Eintrittsabschnitt 22 sowie einen darauf folgenden Austrittsabschnitt 24 auf. Im Eintrittsabschnitt 22 weist die Diffusorwand 20 in der sich entlang der Strömungsrichtung 28 erstreckenden Längsschnittebene einen nichtlinearen Verlauf auf. Dabei nimmt der Öffnungswinkel ausgehend von der Drosselstelle 18 in Strömungsrichtung 28 kontinuierlich und zwar zunächst in hohem Maße und daraufhin in geringerem Maße ab. Der Wert des halben Öffnungswinkels variiert dabei zwischen etwa 25° und etwa 7°. Im Austrittsabschnitt 24 kann der Öffnungswinkel in etwa konstant bleiben oder aber auch in Strömungsrichtung 28 weiterhin leicht abnehmen. Im Austrittsabschnitt 24 beträgt der halbe Öffnungswinkel zwischen 0° und 7°, vorzugsweise etwa 3,5°.
  • Die Länge L des Strömungskanals 26 setzt sich aus der Länge des Eintrittsabschnitts 22 und der Länge des Austrittsabschnitts 24 zusammen und ist gegenüber einem herkömmlichen konusförmigen Strömungskanal eines Diffusors verringert.
  • Fig. 2 zeigt qualitativ den über die Länge L des Strömungskanals 26 im Diffusor 10 vorliegenden Turbulenzgrad des Strömungsmediums. Aufgrund der Drosselstelle 31 weist dieser im Diffusoreintritt 18 einen sehr hohen Wert auf und nimmt in Strömungsrichtung 28 ab, wobei sich der Turbulenzgrad am Ende des Eintrittsabschnitts 22 auf einem relativ niedrigen Wert, der dem einer voll entwickelten turbulenten Rohrströmung ähnlich ist, stabilisiert.
  • Der Verlauf der Diffusorwand 20 gemäß Fig. 1 ist an den in Fig. 2 dargestellten Turbulenzgrad angepasst. An Stellen hohen Turbulenzgrades weist der Strömungskanal 26 einen großen Öffnungswinkel auf, da in diesem Fall keine Strömungsablösung zu erwarten ist. Erst nach Abklingen der Turbulenz auf ein in etwa dem einer voll entwickelten turbulenten Rohrströmung entsprechendem "Normalmaß" wird der Öffnungswinkel auf ein herkömmliches, dem Stand der Technik entsprechendes Maß reduziert.

Claims (8)

  1. Ventilanordnung ,
    umfassend ein Stellventil und einen Diffusor (10), insbesondere für eine Turbine eines thermischen Kraftwerks, wobei der Diffusor zur Anordnung an einem Strömungsausgang des Stellventils ausgebildet ist,
    zum Steuern einer Flussrate eines Strömungsmediums,
    mit einer Diffusorwand (20), die ausgehend von einem Diffusoreintritt (18) mit einem engsten Querschnitt einen sich in Strömungsrichtung (28) stetig erweiternden Strömungskanal (26) begrenzt,
    dadurch gekennzeichnet, dass
    die Diffusorwand (20) in einer sich entlang der Strömungsrichtung (28) erstreckenden Längsschnittebene zumindest abschnittsweise einen nichtlinearen Verlauf aufweist, wobei der von der Diffusorwand (20) begrenzte Strömungskanal (26) einen in Strömungsrichtung (28) kontinuierlich abnehmenden Öffnungswinkel aufweist,
    wobei der Wert des halben Öffnungswinkels des Strömungskanals (26) in einem unmittelbar an den Diffusoreintritt (18) angrenzenden Eintrittsabschnitt (22) der Diffusorwand zwischen 15° und 40° liegt, insbesondere 25° beträgt.
  2. Ventilanordnung nach einem der vorausgehenden Ansprüche,
    dadurch gekennzeichnet, dass
    ausgehend von dem Diffusoreintritt (18) der Öffnungswinkel in Strömungsrichtung (28) zunächst in hohem Maße und daraufhin in geringerem Maße abnimmt.
  3. Ventilanordnung nach einem der vorausgehenden Ansprüche,
    gekennzeichnet durch
    einen sich stromaufwärtsseitig an die Diffusorwand (20) anschließenden Ventilsitz (14) zur Befestigung des Stellventils.
  4. Ventilanordnung nach Anspruch 3,
    dadurch gekennzeichnet, dass
    das Stellventil ein bewegliches Regelorgan (30) umfasst, das derart angeordnet ist, dass zwischen dem Ventilsatz (14) und dem Regelorgan (30) eine Drosselstelle (319 gebildet ist.
  5. Ventilanordnung nach einem der vorausgehenden Ansprüche,
    dadurch gekennzeichnet, dass
    ein unmittelbar am Diffusoreintritt (18) angrenzender Eintrittsabschnitt (22) der Diffusorwand (20) in der Längsschnittebene den nichtlinearen Verlauf aufweist.
  6. Ventilanordnung nach Anspruch 1 oder 5,
    dadurch gekennzeichnet, dass
    der Eintrittsabschnitt (22) der Diffusorwand (20) sich in Längsrichtung des Diffusors (10) über einen Bereich mit erhöhtem Turbulenzgrad eines den Diffusor (10) durchströmenden Strömungsmediums erstreckt.
  7. Ventilanordnung nach einem der Ansprüche 5 bis 6,
    dadurch gekennzeichnet, dass
    der Eintrittsabschnitt (22) der Diffusorwand (20) sich in Längsrichtung des Diffusors über eine Länge von maximal 4 mal, insbesondere 2,5 mal dem Durchmesser des Diffusors (10) an dem Diffusoreintritt (18) erstreckt.
  8. Turbine für ein thermisches Kraftwerk mit einer an einem Schaufelabschnitt der Turbine angeordneten Ventilanordnung (10) nach einem der vorausgehenden Ansprüche.
EP20050022932 2005-10-20 2005-10-20 Ventilanordnung Not-in-force EP1777420B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20050022932 EP1777420B1 (de) 2005-10-20 2005-10-20 Ventilanordnung
DE200550006431 DE502005006431D1 (de) 2005-10-20 2005-10-20 Ventilanordnung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20050022932 EP1777420B1 (de) 2005-10-20 2005-10-20 Ventilanordnung

Publications (2)

Publication Number Publication Date
EP1777420A1 EP1777420A1 (de) 2007-04-25
EP1777420B1 true EP1777420B1 (de) 2009-01-07

Family

ID=36061537

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050022932 Not-in-force EP1777420B1 (de) 2005-10-20 2005-10-20 Ventilanordnung

Country Status (2)

Country Link
EP (1) EP1777420B1 (de)
DE (1) DE502005006431D1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD115519A1 (de) * 1974-10-29 1975-10-05
EP0581978B1 (de) * 1992-08-03 1996-01-03 Asea Brown Boveri Ag Mehrzoniger Diffusor für Turbomaschine
DE19704541A1 (de) * 1997-02-06 1998-04-23 Siemens Ag Einströmabschnitt eines Turbinengehäuses
DE69832956T2 (de) * 1997-08-15 2006-08-17 Fujikin Inc. Düse eines durchflussreglers mit einer druckregelung und deren herstellungsverfahren

Also Published As

Publication number Publication date
EP1777420A1 (de) 2007-04-25
DE502005006431D1 (de) 2009-02-26

Similar Documents

Publication Publication Date Title
EP3308030B1 (de) Strömungsleitgitter zur anordnung an einem ventilator
DE112015001237B4 (de) Abgasturbolader
EP2378072B1 (de) Nebenstromkanal eines Turbofantriebwerkes
DE102015201805B4 (de) Abgasturbolader
EP3298284B1 (de) Ebenes strömungsleitgitter
EP2989298B1 (de) Abgasturbolader
DE102009050684A1 (de) Radialgebläse
EP2513488B1 (de) Turboverdichter
WO2008110445A1 (de) Diffusoranordnung
DE102009011924A1 (de) Nebenstromkanal eines Turbofantriebwerks
DE102010010128A1 (de) Flugzeugtriebwerk mit optimiertem Ölwärmetauscher
DE10054244C2 (de) Turbinenblattanordnung und Turbinenblatt für eine Axialturbine
DE10039642C2 (de) Turbinenblattluftflügel und Turbinenblatt für eine Axialstromturbine
EP1582695A1 (de) Schaufel für eine Strömungsmaschine
EP3274569B1 (de) Mischvorrichtung
EP1292760B1 (de) Konfiguration einer kühlbaren turbinenschaufel
EP4092340A1 (de) Rohrbogen für einen abluftkanal einer dunstabzugshaube
DE112009001754T5 (de) Abgasdiffusor für Gasturbine
EP2173974B1 (de) Hitzeschildsegment für einen stator einer gasturbine
EP2870350B1 (de) Rückschlagventilvorrichtung für eine verbrennungskraftmaschine
EP1777420B1 (de) Ventilanordnung
CH652450A5 (de) Turbinen-auspuffstutzen.
EP3431707A1 (de) Schaufel, schaufelkranz, schaufelkranzsegment und strömungsmaschine
DE10228003A1 (de) Turbine für einen Abgasturbolader
EP1163426A1 (de) Turbomaschinenschaufel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070605

17Q First examination report despatched

Effective date: 20070710

AKX Designation fees paid

Designated state(s): CH DE FR GB IT LI

RTI1 Title (correction)

Free format text: VALVE CONFIGURATION

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005006431

Country of ref document: DE

Date of ref document: 20090226

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091008

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151005

Year of fee payment: 11

Ref country code: IT

Payment date: 20151027

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151016

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160112

Year of fee payment: 11

Ref country code: DE

Payment date: 20151218

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005006431

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161020

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161020

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161020