EP1765763A2 - Verfahren zur herstellung von optisch aktiven alkylbernsteinsäuremonoalkylestern - Google Patents

Verfahren zur herstellung von optisch aktiven alkylbernsteinsäuremonoalkylestern

Info

Publication number
EP1765763A2
EP1765763A2 EP05772382A EP05772382A EP1765763A2 EP 1765763 A2 EP1765763 A2 EP 1765763A2 EP 05772382 A EP05772382 A EP 05772382A EP 05772382 A EP05772382 A EP 05772382A EP 1765763 A2 EP1765763 A2 EP 1765763A2
Authority
EP
European Patent Office
Prior art keywords
alkyl
optically active
hydrogenation
atoms
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05772382A
Other languages
English (en)
French (fr)
Inventor
Frank Hettche
Christoph JÄKEL
Marko Friedrich
Rocco Paciello
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200410032968 external-priority patent/DE102004032968A1/de
Priority claimed from DE200510007750 external-priority patent/DE102005007750A1/de
Application filed by BASF SE filed Critical BASF SE
Publication of EP1765763A2 publication Critical patent/EP1765763A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/303Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by hydrogenation of unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the invention relates to a novel process for the preparation of optically active alkyl-succinic acid monoalkyl esters.
  • R, R 1 alkyl, aryl, arylalkyl via an asymmetric hydrogenation starting from their directly unsaturated precursors has not yet been satisfactorily resolved.
  • optical purity achieved in the processes cited does not therefore meet the requirements in the active substance range without additional enrichment steps, which in most cases require an enantiomeric excess of ⁇ 98% ee.
  • D and E independently of one another, denote H, C 1 -C 10 -alkyl, RC 1 -C 10 -alkyl, aryl or alkylaryl,
  • R 1 and R 2 independently of one another are C 1 -C 6 -alkyl, aryl, alkylaryl, R 1 furthermore hydrogen,
  • B a bridge member with 1-5 C atoms between the two P atoms or Cp-Fe-Cp.
  • the compounds of the formula (I) are optically active compounds which are each intended to represent an enantiomer (R or S).
  • Enantioselective hydrogenation is to be understood below to mean that not both enantiomers are formed to the same extent by the hydrogenation, but that one enantiomer (R or S) in high optical purity, in particular with an ee value of 98, 99, 99.5 % is formed.
  • Preferred starting compounds (II) are those in which D and E, independently of one another, have the meaning H, methyl, ethyl, propyl, butyl, pentyl, hexyl, tert-butyl, octyl, nonyl, decyl, the alkyl designation being both unbranched and the branched isomers. Particular preference is given to those starting compounds in which D and E are H and methyl, in particular those in which D and E are H or D and E are methyl. Further preferred starting compounds (II) are those in which D is H and E is butyl.
  • the radical R can be C r Ci 0 - alkyl, in which individual H atoms of the alkyl radical in turn by further radicals such as OH, NH 2, NO 2, CN, F, Cl, Br, J, may be replaced.
  • R can also be aryl radicals such as phenyl, naphthyl, and also alkylaryl radicals such as benzyl, where the aryl radicals can also be substituted again.
  • the catalysts consist of a metal atom of the group Pd, Pt, Ru, Rh, Ni, Ir. Particularly preferred are catalysts with Rh, Ru or Ir as the metal atom, in particular Rh catalysts are suitable for the inventive method.
  • precursors such as
  • X can be any generally known anion in the asymmetric synthesis known to those skilled in the art.
  • Examples of X are halogens such as Cl “ , Br “ , I “ , BF 4 -, CIO 4 -, SbF 6 -, PF 6 -, CF 3 SO 3 -, BAr 4 - preferred for X are BF 4 " , CF 3 SO 3 -, SbF 6 -, CIO 4 -, in particular BF 4 - and CF 3 SO 3 -.
  • the catalysts of the process according to the invention contain one or more phosphoan ligands of the general formula (L).
  • Preferred substituents R 1 and R 2 are H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, benzyl.
  • radicals R 1 are preferred in which the two R 1 are bridged, such as isopropylidene or benzylidene.
  • Preferred ligands L are those in which A represents a further phospholane residue together with a bridging member B, where B is a bridge of 1 to 5 C atoms.
  • Atoms between the two phosphorus atoms does not mean that B consists of a maximum of 5 C atoms, but that the direct connection between the two P atoms does not comprise more than 5 C atoms.
  • B may be a phenyl ring if the two P atoms are ortho attached to it.
  • bridging compound B may also be a ferrocene-type compound consisting of substituted or unsubstituted cyclopentadienyl radicals (Cp) sandwiching an Fe atom (Cp-Fe-Cp), the P atoms being attached to the Cp radicals ,
  • Particularly preferred ligands L are:
  • Ligand MetaU Complexes can be prepared by using in a known manner ⁇ eg Uson, Inorg. Chim. Acta 73, 275 1983, EP-A 0158875, EP-A 437690) by reaction with rhodium, iridium, ruthenium, palladium, platinum; Nickel complexes containing labile ligands (eg, [RuCI 2 (COD) J n , [Rh (COD) 2 ] BF 4 , [Rh (COD) 2 ] CF 3 SO 3 Rh (COD) 2 CIO 4 , [Ir (COD) CI] 2 , p-cymene-ruthenium chloride dimer) catalytically active complexes synthesized.
  • labile ligands eg, [RuCI 2 (COD) J n , [Rh (COD) 2 ] BF 4 , [Rh (COD) 2 ] CF 3 SO 3 Rh (COD) 2 CIO
  • NBD can also be used successfully for the preparation of the complexes.
  • Suitable solvents are all solvents known to those skilled in the art for asymmetric hydrogenation.
  • Preferred solvents are lower alkyl alcohols such as methanol, ethanol, isopropanol, and toluene, THF 1 ethyl acetate. Particular preference is given to using methanol as solvent in the process according to the invention.
  • the inventive hydrogenation is generally carried out at a temperature of -20 to 15O 0 C, preferably at 0 to 100 0 C and particularly preferably at 10 - leads 8O 0 C Oberge.
  • the hydrogenation according to the invention uses substrate / catalyst ratios s / c ⁇ 20 000/1 and thereby gives ⁇ 98% ee. Even with s / c 110 000/1 an ee of 98% is achieved.
  • the catalyst consumption can be lowered even further.
  • the hydrogen pressure can be varied within a wide range between 0.1 bar and 300 bar for the hydrogenation process according to the invention. Very good results are obtained in a pressure range of 1 to 200 bar, preferably 1 to 100 bar.
  • the work-up of the reaction mixture is carried out by methods known to those skilled in the art.
  • the product may e.g. converted into a carboxylate, precipitated and so separated from the catalyst and then released again, alternatively, the catalyst can also be adsorbed on a bed, which allows easy to carry out chromatographic purification. A distillative removal of the product from the catalyst is also possible.
  • the enantiomeric excess of the product (2f?) - methyl succinic acid 4-monomethyl ester was determined by gas chromatography to> 98% (company: BGB analysis, column type: BGB-174, length: 30 m, inner diameter: 0.25 ml, film thickness: 0, 25 microns, carrier gas: helium, pressure: 2.35 bar, temperature: 135 0 C, heating rate: 1.2 ° C / min, retention time R-enantiomer: 23.3 min, retention time S-enantiomer: 22.6 min).
  • the s / c ratio was 20,000: 1.
  • Example 3 The reaction described in Example 1 was carried out with a catalyst / substrate ratio s / c of 40000/1. After 4 hours, the substrate was completely reacted. The enantiomeric excess of the product was> 98%.
  • Example 3 The reaction described in Example 1 was carried out with a catalyst / substrate ratio s / c of 40000/1. After 4 hours, the substrate was completely reacted. The enantiomeric excess of the product was> 98%.
  • the mixture was then hydrogenated at 6O 0 C and 5 bar hydrogen. After 16 h, the starting material was completely reacted. The enantiomeric excess of the product was 98%.
  • Rophos A bistriflate salt (Rophos * 2 CF 3 SO 3 H) is treated with 1.1 eq.
  • Amount of base preferably amines such as triethylamine, Hünigbase or similar
  • the metal source preferably (Rh [COD] 2 )
  • X BF 4 , CF 3 SO 3 , SbF 6 , PF 6 , CIO 4 , BAr 4
  • the mixture is allowed to come to room temperature.
  • the free ligand is used, the base addition is omitted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von optisch aktiven Alkylbernsteinsäuremonoalkylestern der Formel (I) wobei D und E unabhängig voneinander H, C1-C10-Alkyl, RC1-C10-Alkyl, Aryl oder Alkylaryl bedeuten.

Description

Verfahren zur Herstellung von optisch aktiven Alkylbernsteinsäuremonoalkylestern.
Beschreibung
Die Erfindung betrifft ein neues Verfahren zur Herstellung von optisch aktiven Alkyl- bemsteinsäuremonoalkylestern.
Stand der Technik
Ein direkter selektiver Zugang zu Systemen des Typs III bzw. ihrer optischen Antipo¬ den
R, R1 = Alkyl, Aryl, Arylalkyl über eine asymmetrische Hydrierung ausgehend von ihren direkten ungesättigten Vor¬ läufern ist bislang nicht befriedigend gelöst.
Dies zeigt sich z.B bei der Darstellung von (2R)-Methylbemsteinsäure-4-methylester4 aus billigem leicht zugänglichen Itaconsäuremonomethylester 3.
H2, chiraler Kat* Lösungsmittel
3 4
K. Achiwa, Y. Ohga, Y. Itaka, Tetrahedron Lett. 1978, 19, 4683 erhalten Verbindung 4 mit 60% Enantiomerenüberschuss (= ee = [Gehalt Enantiomer 1 - Gehalt Enantiomer 2}/[Geha!t Enantiomer 1 + Enantiomer 2]) in Methanol.
W. C. Christopfel, B. D. Vineyard, J. Am. Chem. Soc. 1979, 101, 4406 erhalten Verbin¬ dung 4 mit 55%ee in Methanol.
S. Saito, Y. Nakamura, Y. Morita, Chem. Pharm. Bull. 1985, 33, 5284 erhalten Verbin¬ dung 4 mit 90%ee in Benzol/MeOH 1/4.
H. Kawano, Y. Ishii, T. Ikariya, M. Saburi, S. Yoshikawa, Tetrahedron Lett. 1987, 28, 1905 erhalten Verbindung 4 mit 60%ee in Toluen/THF. D. Carmichael, H. Doucet, J. M. Brown, Chem. Commun. 1999, 261 H. Kawano, T. Ikariya, Y. Ishii, M. Saburi, S. Yoshikawa et al., J. Chem. Soc. Perkin Trans. 1 1989, 1571 erhalten Verbindung 4 mit 94%ee in Methanol.
U. Berens, M. Burk, A. Gerlach ( WO 00/27855; EP 1 127 061 B1) erhalten Verbindung 4 mit 95%ee in Methanol.
Die bei den angeführten Verfahren erzielte optische Reinheit genügt damit ohne zu- sätzliche Anreicherungsschritte nicht den Anforderungen im Wirkstoffbereich, welche in den meisten Fällen einen Enantiomerenüberschuss von ≥ 98%ee fordern.
Andere Verfahren, die zu einer höheren optischen Reinheit führen, verwenden entwe¬ der hohe Katalysatormengen, d.h. ein niedriges Substrat / Katalysatorverhältnis (s/c) , was für eine industrielle Erzeugung unwirtschaftlich ist, oder es werden Reaktionsbe¬ dingungen (vor allem Lösungsmittel) gewählt, die aus Umweltschutzgesichtspunkten oder aus Gründen der Arbeitssicherheit problematisch sind.
M. Ostermeier, B. Brunner, C. Korff, G. Heimchen, Eur. J. Org. Chem. 2003, 3453 er- halten Verbindung 4 bei einem s/c Verhältnis von 200/1 mit 97.3%ee in Dichlormethan, in C6H5CF3 wird, ebenfalls bei s/c 200/1 , ein ee von 98.3% erzielt. In Dichlorethan wird eine Reinheit von 99.3%ee bei einem s/c Verhältnis von 1000/1 erreicht.
Aus den o.g. Gründen sind alle diese Verfahren für eine einstufige direkte Synthese von optisch aktiven Bernsteinsäurealkylestern aus ihren billigen, leicht zugänglichen olefinischen Vorläufern im technischen Maßstab nicht geeignet.
Aufgabenstellung
Es bestand daher die Aufgabe, ein neues Verfahren zur Herstellung von optisch akti¬ ven Alkylbemsteinsäuremonoalkylestern bereitzustellen, welches bei niedrigen Kataly¬ satormengen (s/c ≥ 20 000/1) und gleichzeitig umweltverträglichen Reaktionsbedin¬ gungen einen vollständigen Reaktionsumsatz sowie hohe optische Ausbeute (≥ 98% ee) erzielt, so dass es eine effiziente, umweltgerechte, kostengünstige technische Syn¬ these erlaubt.
Beschreibung der Erfindung
Gefunden wurde ein Verfahren zur Herstellung von optisch aktiven Alkylbemsteinsäu- remonoalkylestem der Formel (I)
wobei D und E unabhängig voneinander H, C1-C10 Alkyl, R C1-C10 -Alkyl, Aryl oder Alkylaryl bedeuten,
indem man eine Verbindung der Formel (II)
wobei D1E und R die o.g. Bedeutungen besitzen,
in Gegenwart eines Katalysators, der einen Phospholanliganden der Formel (L) trägt,
R2
(L) wobei:
R1 und R2 unabhängig voneinander C1-C6 -Alkyl, Aryl, Alkylaryl, R1 außerdem Wasserstoff,
A entweder R1 oder
mit B = ein Brückenglied mit 1 - 5 C-Atomen zwischen den beiden P-Atomen oder Cp-Fe-Cp bedeuten.
enantioselektiv hydriert.
Die Verbindungen der Formel (I) sind optisch aktive Verbindungen, die jeweils ein E- nantiomer (R oder S) darstellen sollen.
Unter enantioselektiver Hydrierung soll im folgenden verstanden werden, dass nicht beide Enantiomere in gleichem Ausmass durch die Hydrierung entstehen, sondern dass ein Enantiomer (R bzw. S) in hoher optischer Reinheit, insbesondere mit einem ee-Wert von 98, 99, 99,5 % gebildet wird.
Die Ausgangsverbindungen der Formel (II) sind literaturbekannt und können leicht nach gängigen Methoden (für D=E=H; R =Me siehe z.B. A. R. Devi, S. Rajaram, Ind. J. Chem. 2000, 39B, 294-296 oder R. C. Anand, V. A. Milhotra, J. Chem. Res. (S) 1999, 378-379 oder R. N. Ram, I. Charles, Tetrahedron 1997, 53, 7335-7340) hergestellt werden. Bevorzugte Ausgangsverbindungen (II) sind solche, in denen D und E unab¬ hängig voneinander die Bedeutung H, Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Hep- tyl, Octyl, Nonyl, Decyl besitzen, wobei die Alkylbezeichnung sowohl die unverzweigten als auch die verzweigten Isomere umfasst. Besonders bevorzugt sind diejenigen Aus- gangsverbindungen, bei denen D und E H und Methyl, insbesondere solche, bei de¬ nen D und E H bzw. D und E Methyl bedeuten. Weitere bevorzugte Ausgangsverbin¬ dungen (II) sind solche, bei denen D H und E Butyl bedeuten.
Der Rest R kann CrCi0- Alkyl bedeuten, wobei einzelne H-Atome des Alkylrests wie- derum durch weitere Reste wie OH, NH2, NO2, CN, F, Cl, Br, J, ersetzt sein können. Weiterhin kann R auch Arylreste wie Phenyl, Naphtyl, sowie Alkylarylreste wie Benzyl bedeuten, wobei die Arylreste auch wiederum substituiert sein können. Bevorzugte Reste R sind Methyl, Ethyl, Propyl, i-Propyl und tert-Butyl. Besonders bevorzugt ist R = Methyl.
Die Katalysatoren bestehen aus einem Metallatom der Gruppe Pd, Pt, Ru, Rh, Ni, Ir. Besonders bevorzugt sind Katalysatoren mit Rh, Ru oder Ir als Metallatom, insbeson- der sind Rh Katalysatoren für das erfindungsgemässe Verfahren geeignet.
Als Metallquellen für die Katalysatorherstellung können Precursor wie etwa
Pd2(DBA)3, Pd(OaC)2, [Rh(COD)CI]2, [Rh(COD)2)]X, Rh(acac)(CO)2, RuCI2(COD), Ru(COD)(methallyl)2, Ru(Ar)CI2, Ar = Aryl, sowohl unsubstituiert als auch substituiert, [Ir(COD)CI]2, [Ir(COD)2]X, Ni(allyl)X bevorzugt verwendet werden. Anstatt COD (= 1,5- Cyclooctadien) kann auch NBD (= Norbornadien) verwendet werden.
X kann dabei jedes dem Fachmann bekannte generell nutzbare Anion in der asymme- trischen Synthese sein . Beispiele für X sind Halogene wie Cl", Br", I", BF4-, CIO4-, SbF6-, PF6-, CF3SO3-, BAr4-. Bevorzugt für X sind BF4 ", CF3SO3-, SbF6-, CIO4-, insbe¬ sondere BF4- und CF3SO3-.
Desweiteren enthalten die Katalysatoren des erfindungsgemässen Verfahrens einen oder mehrere Phosphoianliganden der allgemeinen Formel (L). Bevorzugte Substituen- ten R1 und R2 sind H, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert.Butyl, Benzyl. Besonders bevorzugt ist die Substituentenkombination aus R1 = H und R2 = Methyl.
Weiterhin sind auch solche Reste R1 bevorzugt, bei denen die beiden R1 verbrückt sind wie z.B Isopropyliden oder Benzyliden.
Im Falle der Diphospholane sind solche bevorzugt bei denen
Besonders bevorzugt sind solche Brückenglieder B bei denen n=1 oder 2 oder m=0 ist.
Bevorzugte Liganden L sind solche, in denen A einen weiteren Phospholanrest zu- sammen mit einem Brückenglied B darstellt, wobei B eine Brücke aus 1 bis 5 C-
Atomen zwischen den beiden Phosphoratomen darstellen kann. Der Ausdruck 1-5 C- Atome zwischen den beiden Phosphoratomen bedeutet nicht, dass B aus maximal 5 C- Atomen besteht, sondern dass die direkte Verbindung zwischen den beiden P-Atomen nicht mehr als 5 C-Atome umfasst. B kann beispielsweise ein Phenylring sein, falls die beiden P-Atome daran orthoständig verknüpft sind.
Das Brückengiied B kann aber auch eine Ferrocen-artige Verbindung sein, bestehend aus substituierten oder unsubstituierten Cyclpentadienylresten (Cp), die sandwichartig ein Fe-Atom umfassen (Cp-Fe-Cp), wobei die P-Atome an die Cp-Reste gebunden sind. Besonders bevorzugte Liganden L sind:
Rophos B Rophos A
Me-KetalPhos Me-f-KetalPhos
Erfindungsgemäss mitumfasst sind nicht nur die hier formelmässig abgebildeten Enan- tiomere sondern auch ihre optischen Antipoden.
Für die Herstellung der Rophos-Katalysatoren wird auf die EP O 889 048 verwiesen, deren gesamter Inhalt hiermit in Bezug genommen wird.
Ligand-MetaU-Komp\exe lassen sich herstellen, indem man in bekannter Weise {z.B. Uson, Inorg. Chim. Acta 73, 275 1983, EP-A 0158875 , EP-A 437690) durch Umset¬ zung mit Rhodium-, Iridium-, Ruthenium-.Palladium-, Platin-; Nickelkomplexen, die labi- Ie Liganden enthalten (z.B. [RuCI2(COD)Jn, [Rh(COD)2]BF4, [Rh(COD)2]CF3SO3 Rh(COD)2CIO4, [Ir(COD)CI]2, p-Cymol-Rutheniumchlorid-dimer) katalytisch aktive Komplexe synthetisiert. Anstelle von COD kann auch NBD mit gutem Erfolg für die Herstellung der Komplexe eingesetzt werden. Wie dem Fachmann bekannt kann der Komplex (= Präkatalysator) vor Benutzung er¬ zeugt, isoliert und anschließend „fertig" eingesetzt werden oder vor der eigentlichen Hydrierung im Reaktionsgefäß in situ erzeugt werden (s.u).
Als Lösungsmittel sind alle dem Fachmann für asymmetrische Hydrierung bekannten Lösungsmittel geeignet. Bevorzugte Lösungsmittel sind niedrige Alkylalkohole wie Me¬ thanol, Ethanol, Isopropanol, sowie Toluol, THF1 Essigester. Besonders bevorzugt wird in dem erfindungsgemässen Verfahren Methanol als Lösungsmittel eingesetzt.
Die erfindungsgemässe Hydrierung wird in der Regel bei einer Temperatur von -20 bis 15O0C, bevorzugt bei 0 bis 1000C und besonders bevorzugt bei 10 - 8O0C durchge¬ führt.
Die erfindungsgemässe Hydrierung verwendet Substrat/Katalysatorverhältnisse s/c ≥ 20 000/1 und liefert dabei ≥ 98% ee. Selbst bei s/c 110 000/1 wird ein ee von 98% er- reicht.
Durch eine geeignete Immobilisierung des Katalysators lässt sich der Katalysatorver¬ brauch noch weiter absenken.
Der Wasserstoffdruck kann in einem großen Bereich zwischen 0,1 bar und 300 bar für das erfindungsgemäße Hydrierverfahren variiert werden. Sehr gute Ergebnisse erhält man in einem Druckbereich von 1 - 200 bar, bevorzugt 1 - 100 bar.
Die Aufarbeitung des Reaktionsgemisches erfolgt mit dem Fachmann bekannten Ar- beitsweisen. Das Produkt kann z.B. in ein Carboxylat überführt, ausgefällt und so vom Katalysator abgetrennt und anschließend wieder freigesetzt werden, alternativ kann der Katalysator auch auf einem Bett adsorptiv gebunden werden, was eine leicht durchführbare chromatographische Reinigung erlaubt. Auch eine destillative Abtren¬ nung des Produkts vom Katalysator ist möglich.
Bei der zwischenzeitigen Überführung des Produktes ins Carboxylat und simplen Aus¬ fällung desselben aus dem Reaktionsgemisch ist eine ee-Steigerung auf >99.5% mög¬ lich.
Hierfür kommen alle dem Fachmann bekannten Basen in Betracht, wobei Amine und Guanidine als Neutralbasen und Alkoxylate, Carbonate, Hydroxide, Oxide als MetalJ- basen bevorzugt sind. Besonders bevorzugt sind bei den Metallbasen die entspre¬ chenden Lithiumverbindungen.
Weitere bevorzugte Ausführungsformen sind in den Unteransprüchen und dem expe- rimentellen Teil beschrieben. Experimenteller Teil
Beispiel 1 Herstellung des optisch aktiven Methylbernsteinsäuremethylesters (s/c 20000/1)
In einem 4 I (Email)-Autoklav der Firma Pfaudler wurden unter Schutzgas 133 mg (0,182 mmol) (RophosARhCOD)CF3SO3 (=Präkatalysator) in 21 ml Methanol vorgelegt und 526 g (3,65 mol) 2-Methylenbemsteinsäure-4-monomethylester (= Substrat) gelöst in 704 ml Methanol zugegeben. Anschließend wurde bei 400C und 5 bar Wasserstoff hydriert. Nach 4 h war das Substrat vollständig umgesetzt (1H-NMR, 500 MHz). Der Enantiomerenüberschuss des Produkts (2f?)-Methylbernsteinsäure-4-monomethylester wurde gaschromatographisch zu >98% bestimmt (Firma: BGB-Analytik, Säulentyp: BGB-174, Länge: 30 m, Innendurchmesser: 0,25 ml, Filmdicke: 0,25 μm, Trägergas: Helium, Vordruck: 2,35 bar, Temperatur: 1350C, Aufheizrate: 1,2°C/ min, Retentions- zeit R-Enantiomer: 23,3 min, Retentionszeit S-Enantiomer: 22,6 min). Das s/c- Verhältnis betrug 20000:1.
Beispiel 2.
Herstellung des optisch aktiven Methylbernsteinsäuremethylesters (s/c 40000/1)
Die in Beispiel 1 beschriebene Umsetzung wurde mit einem Katalysator / Substratver¬ hältnis s/c von 40000/1 durchgeführt . Nach 4 h war das Substrat vollständig umge¬ setzt. Der Enantiomerenüberschuss des Produkts betrug >98%. Beispiel 3
Herstellung des optisch aktiven Methylbernsteinsäuremethylesters (s/c 110000/1)
In einem 50 ml Glasautoklav wurden unter Schutzgas 5,73 g (39,8 mmol) 2-
Methylenbernsteinsäure-4-monomethylester in 12 ml Methanol vorgelegt und mit 0,12 ml einer Lösung von 6,6 mg (RophosARhCOD)CF3S03 (=Präkatalysator) in 3 ml Me¬ thanol versetzt (0,00036 mmol Präkatalysator). Anschließend wurde bei 6O0C und 5 bar Wasserstoff hydriert. Nach 16 h war das Edukt vollständig umgesetzt. Der Enan- tiomerenüberschuss des Produkts betrug 98%.
Beispiel 4
Herstellung des optisch aktiven Methylbemsteinsäuremethylesters im technischen Maßstab, gefolgt von Li-Salz-Bildung
In einem 1m3-Stahlkessel wurden unter Schutzgas 75 kg Methylenbernsteinsäure-4- monomethylester (520, 4 mol) in 185 I Methanol vorgelegt. Nach Zugabe von 19,0 g (RophosARhCOD)CF3S03 (=26 mmol Präkatalysator, s/c 20 000/1) In 2 I Methanol wurde bei 500C und 4 bar Wasserstoff hydriert. Nach 4 Stunden war das Substrat voll¬ ständig umgesetzt. Der ee des Hydrierproduktes wurde mittels chiraler HPLC zu 99.4% bestimmt (Hersteller Säule: Chiracel; Säulentyp: OD-H; mobile Phase: 95 vol% n- Heptan/5 vol% 2-Propanol - auf 1 I dieser Mischung 0,1 ml Trifluoressigsäure; Retenti- onszeiten: tR ((R)-2-Methylbernsteinsäure-4-methylester) = 7.4 min fR((S)-2-Methylbernsteinsäure-4-methylester) = 16.7 min). Die Reaktionslösung wurde portionsweise mit insgesamt 22,2 kg Lithiumhydroxid-
Monohydrat und anschließend 375 kg Methyl-fe/t-butylether versetzt und auf O0C ge¬ kühlt. Aus der erhaltenen Suspension wurde das Li-Carboxlyat abfiltriert (Ausbeute: 65,8 kg). Dessen ee (bestimmt nach Freisetzung) betrug >99.8%.
Beispiel 5.
Herstellung des Präkatalysators in situ (allgemeine Arbeitsvorschrift)
1,1 eq. RophosA-Bistriflat-Salz (Rophos * 2 CF3SO3H) werden mit 1,1 eq. Menge Base (vorzugsweise Amine wie Triethylamin, Hünigbase oder ähnlich) in Methanol gelöst und bei -100C langsam zu einer Lösung von 1 eq. der Metallquelle, vorzugsweise (Rh[COD]2)X mit X = BF4, CF3SO3, SbF6, PF6, CIO4, BAr4) zugetropft. Anschließend lässt man das Gemisch auf Raumtemperatur kommen. Bei Benutzung des freien Li¬ ganden entfällt die Basenzugabe.

Claims

Patentansprüche:
1. Verfahren zur Herstellung von optisch aktiven Alkylbernsteinsäuremonoalkyl estern der Formel (I)
wobei D und E unabhängig voneinander H, C1-C10 Alkyl,
R C1-C10 -Alkyl, Aryl oder Alkylaryl bedeuten,
indem man eine Verbindung der Formel (II)
wobei D1E und R die o.g. Bedeutungen besitzen,
in Gegenwart eines Katalysators, der einen Phospholanliganden der Formel (L) trägt,
R2
IL) ' wobei:
R1 und R2 unabhängig voneinander C1-C6 -Alkyl, Aryl, Alkylaryl, R1 außerdem Wasserstoff,
A entweder R1 oder B = ein Brückenglied mit 1 - 5 C-Atomen zwischen den beiden P-Atomen oder Cp-Fe-Cp bedeuten. enantioselektiv hydriert.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass D und E Wasser¬ stoff und R=Me bedeuten.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Ligand (L) ein Ligand aus der Gruppe Rophos A, Rophos B, Me-KetalPhos, Me-f-KetalPhos verwendet wird.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Hydrierung bei einem Wasserstoffdruck zwischen 1 und 100 bar ausgeführt wird.
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Hydrierung in Methanol durchgeführt wird.
6. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Hydrierung bei einer Temperatur zwischen 100C und 890C durchgeführt wird.
7. Verfahren) nach Anspfuch 1 , dadurch gekennzeichnet, dass der verwendete Katalysator immobilisiert ist. ! ;
8. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das bei der Hy¬ drierung erhaltene Reaktionsprodukt (I) in ein Carboxylat überführt wird und in dieser Form aus dem Reaktionsgemisch entfernt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Reaktions¬ produkt (I) in Form eines Li-Carboxylats aus dem Reaktionsgemisch ausge¬ fällt wird.
EP05772382A 2004-07-07 2005-07-06 Verfahren zur herstellung von optisch aktiven alkylbernsteinsäuremonoalkylestern Withdrawn EP1765763A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200410032968 DE102004032968A1 (de) 2004-07-07 2004-07-07 Verfahren zur Herstellung von optisch aktiven Alkylbernsteinsäuremonoalkylestern
DE200510007750 DE102005007750A1 (de) 2005-02-18 2005-02-18 Verfahren zur Herstellung von optisch aktiven Alkylbernsteinsäuremonoalkylestern
PCT/EP2005/007289 WO2006002999A2 (de) 2004-07-07 2005-07-06 Verfahren zur herstellung von optisch aktiven alkylbernsteinsäuremonoalkylestern

Publications (1)

Publication Number Publication Date
EP1765763A2 true EP1765763A2 (de) 2007-03-28

Family

ID=35431129

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05772382A Withdrawn EP1765763A2 (de) 2004-07-07 2005-07-06 Verfahren zur herstellung von optisch aktiven alkylbernsteinsäuremonoalkylestern

Country Status (4)

Country Link
US (1) US7557240B2 (de)
EP (1) EP1765763A2 (de)
JP (1) JP2008505152A (de)
WO (1) WO2006002999A2 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0158875B1 (de) 1984-04-19 1989-12-13 F. Hoffmann-La Roche Ag Chirale Rhodium-diphosphinkomplexe für asymmetrische Hydrierungen
DE4001019A1 (de) 1990-01-16 1991-07-18 Degussa Verfahren zur asymmetrischen hydrierung von (alpha)-ketocarbonylverbindungen zu optisch aktiven (alpha)-hydroxycarbonylverbindungen
DE19725796A1 (de) * 1997-06-18 1998-12-24 Basf Ag Herstellung optisch aktiver Phospholane, deren Metallkomplexe und Anwendung in der asymmetrischen Synthese
GB9823716D0 (en) * 1998-10-29 1998-12-23 Isis Innovation Diphosphines
CA2347146A1 (en) 1998-11-05 2000-05-18 Chirotech Technology Limited Chiral ligands for asymmetric catalysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006002999A3 *

Also Published As

Publication number Publication date
US7557240B2 (en) 2009-07-07
WO2006002999A2 (de) 2006-01-12
WO2006002999A3 (de) 2006-09-08
US20080058547A1 (en) 2008-03-06
JP2008505152A (ja) 2008-02-21

Similar Documents

Publication Publication Date Title
AT339287B (de) Verfahren zur herstellung von optisch aktiven alfa-n-acylamino-propionsauren
DE2161200C3 (de) Optisch aktive, zweibindige Liganden, katalytische Komposition, die diese Liganden enthält, sowie Verfahren zur asymetrischen Hydrierung von Kohlenstoff-Kohlenstoff-Doppelbindungen unter Anwendung dieser katalytischen Komposition
EP2139835A1 (de) Verfahren zur herstellung optisch aktiver carbonylverbindungen
DE60313357T2 (de) Verfahren zur katalytischen hydrierung von kohlenstoff-heteroatom-doppelbindungen
EP0780157B1 (de) Rutheniumkomplexe mit einem chiralen, zweizähnigen Phosphinoxazolin-Liganden zur enantioselektiven Transferhydrierung von prochiralen Ketonen
EP0965574B1 (de) Verfahren zur enantioselektiven Hydrierung
DE69921588T2 (de) Aminophosphin-Metallkomplex für asymmetrische Reaktionen
DE112015001290T5 (de) Verfahren zur Herstellung optisch aktiver Verbindungen
DE602004008478T2 (de) Biphosphinrutheniumkomplexe mit chiralen diaminliganden als katalysatoren
EP1760055A2 (de) Eisen-katalysierte allylische Alkylierung
EP1200452B1 (de) Neue chirale phosphorliganden und ihre verwendung in der herstellung optisch aktiver produkte
DE3008671A1 (de) Verfahren zur katalytischen umwandlung von carbonylverbindungen bzw. hydroxylverbindungen
DE19647892A1 (de) Verfahren zur katalytischen, enantioselektiven Reduktion von Ketonen
WO2006002999A2 (de) Verfahren zur herstellung von optisch aktiven alkylbernsteinsäuremonoalkylestern
DE60020775T2 (de) Stereospezifische Isomerierung von Allylaminen unter Verwendung von immobiliserten chiralen Phospho-Liganden
DE102005007750A1 (de) Verfahren zur Herstellung von optisch aktiven Alkylbernsteinsäuremonoalkylestern
DE102004032968A1 (de) Verfahren zur Herstellung von optisch aktiven Alkylbernsteinsäuremonoalkylestern
EP1885732B1 (de) CHIRALE DIPHOSPHONITE ALS LIGANDEN IN DER RUTHENIUM-KATALYSIERTEN ENANTIOSELEKTIVEN REDUKTION VON KETONEN, ß-KETOESTERN UND KETIMINEN
AT501193B1 (de) Verfahen zur übergangsmetall - katalysierten asymmetrischen hydrierung von acrylsäurederivaten
DE2908358A1 (de) Optisch aktive tertiaere phosphinoxide und tertiaere phosphine, verfahren zu deren herstellung und verwendung der optisch aktiven tertiaeren phosphine fuer asymmetrische synthesen
CH635815A5 (en) Process for preparing optically active alpha-hydroxycarboxylic esters
DE69914889T2 (de) Asymmetrische hydrierung
DE69913412T2 (de) Stereospezifische Isomerisierung von Allylaminen unter Verwendung von Chiralen Phospho-Liganden
DD253995A1 (de) Verfahren zur herstellung von (r)- und (s)-phenyl-alanin und dessen derivaten
EP1409493A1 (de) Verfahren zur herstellung von nicht-chiralen und optisch aktiven hydroxygruppen enthaltenden organischen verbindungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070308

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

17Q First examination report despatched

Effective date: 20121122

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150203