EP1738029B1 - Verfahren zur vermessung von fahrbahnen - Google Patents

Verfahren zur vermessung von fahrbahnen Download PDF

Info

Publication number
EP1738029B1
EP1738029B1 EP04728500A EP04728500A EP1738029B1 EP 1738029 B1 EP1738029 B1 EP 1738029B1 EP 04728500 A EP04728500 A EP 04728500A EP 04728500 A EP04728500 A EP 04728500A EP 1738029 B1 EP1738029 B1 EP 1738029B1
Authority
EP
European Patent Office
Prior art keywords
platform
measuring
relation
track
position data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04728500A
Other languages
English (en)
French (fr)
Other versions
EP1738029A1 (de
Inventor
Heinz Jäger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sersa Maschineller Gleisbau AG
Original Assignee
J Mueller AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Mueller AG filed Critical J Mueller AG
Publication of EP1738029A1 publication Critical patent/EP1738029A1/de
Application granted granted Critical
Publication of EP1738029B1 publication Critical patent/EP1738029B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes

Definitions

  • the present invention relates to a method for surveying according to the preamble of claim 1.
  • the course of the road has to be measured accurately, compared with a target road course and then made any corrections to the road course by means of suitable track-laying machines.
  • the course of the lane from outside the carriageway with respect to geographical reference points can be measured very accurately with corresponding measuring means.
  • these are static measurements in which, for the measurement of larger road sections, the measuring location next to the carriageway has to be newly set up, calibrated and the measurement must be carried out.
  • such measuring methods are not suitable for the control of continuously operating track-laying machines, which are intended to correct the course of the lane in relation to a predetermined desired course, if necessary.
  • Track-laying machines of this kind are dependent on the most continuous and up-to-date measurement of the current road course directly in the processing area of the track-laying machine so that this work can be carried out in as short a time as possible and with the greatest possible accuracy.
  • Such a method for the maintenance of tracks for railways is for example from the EP 0 559 850 known.
  • a measuring platform which can be moved on the track is used, which detects optical position change values of the measuring platform by optical means based on reference points arranged next to the track. These values are converted into position data and compared with setpoints of a stored survey plan. The deviations between these values provide correction values which can be evaluated by a special maintenance track-laying machine in order to be able to correct the track course accordingly.
  • the values can be determined and converted continuously with a single measuring base, which can preferably be coupled directly in front of the maintenance track-laying machine.
  • Out DE 196 52 627 A1 is a method for the dynamic control of a continuous machine for handling of linear production processes known as road construction.
  • a measuring device installed on a towing device attached behind the continuously operating machine is from time to time suspended from the continuously operating machine and brought into a rest position in which a determination of the position of the measuring device is carried out.
  • the distance between the measuring device and the continuously operating machine is determined with simple, partly mechanical testing devices. From the result of the position determination and the determined distance, the position of the continuously operating machine is determined and a target-actual comparison is performed.
  • the object of the present invention was to provide a measuring method which allows a reliable and accurate detection of the change in position of the measuring platform and thus the road course, without a permanent connection to reference points is necessary and thus the method, even over long distances resp. longer distances can be used continuously with high accuracy.
  • a measuring platform is moved along the lane on which an inertial platform is located, which at the beginning initializes the measurement resp. calibrated and aligned with respect to the coordinate system, and which detects the respective positions of the measuring platform with respect to the coordinate system during the travel of the measuring platform, the position data of the inertial platform with respect to the coordinate system are periodically automatically checked and any deviations with respect to the coordinate system recorded as correction values and for correcting the measurement data resp. the measured actual position of the measuring platform can be used.
  • the course of the position of the measuring platform can continuously be recorded and recorded very accurately.
  • the advantage of the inertial platform is that it provides very accurate values, virtually independent of weather conditions, and can be used universally everywhere.
  • the periodic checking of the position data of the inertial platform preferably takes place by optical measurement of the position of the measuring platform in relation to fixed points arranged next to the roadway. In each case, a very accurate determination of the actual position of the measuring platform can take place and the possibly deviating values of the inertial platform can be corrected. Since the optical measurement in contrast to conventional systems does not have to be continuous, but only periodically and at defined locations, this is much less sensitive to external influences, such as the view of the fixed points obscuring obstacles. If necessary, even such a measurement can be dispensed with if it does not give accurate results deliver, and only at the following fixed point, a measurement and correction if necessary.
  • a gyrostabilized platform or a laser platform is used as the inertial platform.
  • the laser platform usually has a higher accuracy and has a smaller drift, i. a smaller deviation from the actual position after the calibration, as gyrostabilized platforms, which are cheaper to buy and have sufficient for only small changes in direction roadways sufficient accuracy.
  • the measurement platform is additionally equipped with a satellite-based navigation system and the position data of the inertial platform are compared with the position data of this navigation system, wherein when deviations of these position data mutually corrected position data are calculated and stored.
  • This is an ongoing adaptation resp. Correction of the position data originating from the inertial platform is also possible between two fixed points and the accuracy of the method is thus further improved overall.
  • the position data of the satellite-based navigation system are also checked periodically with respect to their effective position to the coordinate system and corrected according to deviations.
  • the position data of the satellite-based navigation system can be obtained by including values of a second, defined at a defined with respect to the coordinate system Navigation system are corrected and thus the accuracy of the results are further increased.
  • deviations of the position data of the inertial platform determined at a fixed point are applied linearly to the previously measured points in the sense of a correction.
  • the already recorded and stored position values of the measuring platform can be subsequently corrected when a deviation at a fixed point is detected.
  • the correction is advantageously applied linearly in relation to the distance to the previous fixed point on the position values.
  • the measuring platform is preferably connected to reference platforms which can also be moved on the roadway and follow the course of the roadway, the relative position of which with respect to the measuring platform is detected by optical means and supplement or correct the measured resp. calculated values are used.
  • additional relative reference points for example, the curve radius of the road can be detected and determined very accurately.
  • two reference platforms arranged one behind the other and connected to the measuring platform at a constant, defined distance are used.
  • the reference platforms are equipped with optical reflectors and on the measuring platform is at least one light scanner used.
  • the light scanner communicates visually with the reflectors and can very accurately detect their relative angular deviations, for example with respect to the longitudinal axis of the measuring platform. Due to the known geometric relationships between the measuring platform and reference platforms, it is thus possible to determine very precisely, for example, the curve radius of a roadway.
  • the inventive method for the measurement of tracks for railways is used.
  • defined conditions prevail, in particular with regard to the orientation of the measuring platform, so that it can precisely detect the course of the center line and, by detecting the inclination with respect to the horizontal, also the course of the two parallel track strands.
  • the deviations of the raw or corrected position data from the target position are fed directly as control data to a road surface processing machine following or directly connected to the measuring platform in order to align the roadway with the desired position.
  • the measuring platform can advantageously be coupled directly in front of a roadworking machine or even arranged on such a resp. be integrated and control them such that the course of the road is adjusted to the desired course. This can be a continuous and fast processing of the road. Especially with tracks for railways, this is particularly important, since there is a processing usually only during the non-operating hours of the railway can get shorter and shorter with longer and longer operating times.
  • FIG. 1 schematically the view of a traveling on tracks 1 measuring platform 2 is shown.
  • the measuring platform 2 is formed by a measuring carriage 3, which is equipped with two axles 4, 5.
  • an inertial platform 6 On the measuring platform 2, an inertial platform 6, an optical scanner 7 and a satellite-based navigation system 8 are arranged.
  • the inertial platform 6 provides absolute position data with respect to a coordinate system, with initialization of the inertial platform 6 first being required. In the initialization of the inertial platform 6, this is due to the known, i. measured resp. determined, absolute position of the measuring platform 2 aligned in a known manner. Thus, the inertial platform 6 in the process of measuring platform 2 resp. of the measuring carriage 3 along the tracks 1, the current position data with respect to the coordinate system.
  • an inertial platform 6 can be used conventionally known devices which either work on a mechanical basis with gyroscope-based platform, or lighting technology resp. Laser technology based on virtually wear-free elements are equipped. Depending on the operating time since initialization and the movements and forces exerted on the inertial platform 6, the position data deviate from the effective position of the measuring platform 2. As a rule, these deviations increase with increasing operating time and thus lead to falsified position results. This requires a periodic reinitialization resp. Calibration of the inertial platform 6 due to known resp. measured position data of the measuring platform to ensure sufficiently accurate position data.
  • the calibration can now be carried out automatically in each case in the vicinity of fixed points 9, which are each preferably arranged in the vicinity of the tracks 1. For example, these may be registered in the surveying plan of the tracks and accurately measured fixed points 9, which are attached to catenary masts 10, for example.
  • the position of the measuring carriage 3 and thus of the measuring platform 2 can be determined exactly by measuring with respect to such fixed points 9.
  • Such a measurement is preferably carried out by means of the optical scanner 7, which is arranged on the measuring platform 2, respectively. connected to this.
  • Such optical scanners can automatically provide very accurate measurement results, and based on these measurement results, the current absolute position of the measuring carriage 3 and thus the measuring platform 2 with respect to the coordinate system can be determined in a known manner.
  • the deviation of the thus measured position values from the position values supplied by the inertial platform 6 directly indicates the effective deviation of the inertial platform 6 and can be used for the calibration of the inertial platform 6.
  • the position of the measuring platform 2 is additionally determined with the aid of the satellite-supported navigation system 8.
  • This navigation system 8 also supplies parallel to the inertial platform 6 absolute position data of the measuring platform 2.
  • a deviation of the position values of the inertial platform 6 and the navigation system 8 now indicates a deviation or drift of the inertial platform 6. When such deviations occur, the position values of the inertial platform 6 can now be corrected accordingly.
  • the satellite-based navigation system 8 does not provide absolutely accurate position data, since these are dependent on the reception quality of the signals originating from satellite 11, the deviations are preferably not with the full value but only with a certain percentage as a trend value for correcting the position data of the inertial platform 6 used.
  • FIG. 2 is shown schematically the result of this measurement process graphically.
  • the points M represent the result of the position determination due to a travel of the measuring carriage 3 on the actual track course.
  • the arrow D indicates the direction of the deviation resp. the drift of the inertial platform 6 again, which is usually not directed parallel to the track course.
  • a correction of the position values based on determined differences between the position values of the inertial platform 6 and the satellite-based navigation system 8 is made, which leads to the illustrated course of the position values.
  • the method can now for example be used to create an accurate survey plan of the actual position of the track 1.
  • the data can also be used to in order to control a track-laying machine, which can change the position of the tracks 1 and thus adapt them to the desired position according to the survey plan or to correct them.
  • this data can be corrected on the basis of measurements of an adjacent stationary second satellite-based navigation system 12 located at a defined position.
  • This correction signal which results from the difference between the position value ascertained in the second navigation system 12 and the effective position of the second navigation system 12, can be supplied via a receiver 13 to the evaluation unit 14 of the measuring platform 2, in which all other calculations are carried out and the determined values are stored resp. to be recorded.
  • FIG. 3 is again schematically the course of measured resp. corrected by the above method position data between two fixed points 9 resp. 9 'shown.
  • the distance A between two consecutive measuring points M 1 and M 2 with respect to the desired course S represents the error resp. the deviation of the track position.
  • the distance D between the measuring point M n and the calibration measuring point M k represents the accumulated deviation resp. Drift of the inertial platform 6. If, for example, the measuring platform 2 resp. the measuring carriage 3 is moved at an approximately constant speed to record the actual track course, ie perform a test drive, then it can be assumed that the deviation resp. Drift of the inertial platform 6 between two fixed points 9 resp. 9 'has occurred linearly. Thus, the 9 between the two fixed points.
  • FIG. 5 Another embodiment of a measuring carriage 3 for carrying out the measuring method according to the invention is shown.
  • the measuring carriage 3 is with two additional reference cars 15 respectively. 16 connected.
  • These reference cars 15 resp. 16 each advantageously have a reference axis 17 respectively. 18, which with optical reflectors 19, respectively. 20 are connected.
  • the relative position of the reference cars 15 can now. 16 measured automatically in relation to the measuring carriage 3, respectively. be determined.
  • this information can serve, for example, to determine the curve radius R of the tracks 1. Since the reference cars 15 resp. 16 are connected with a certain, known distance to the measuring carriage 3 with this, the radius can be easily calculated due to the known geometric conditions.
  • the measuring method is not for use with rails resp.
  • Rail 1 is limited, but can also be used for example for roads.
  • the measuring carriage 3 must be moved manually along the center line of the road, if necessary, in order to supply the corresponding position values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Navigation (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Debugging And Monitoring (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Instructional Devices (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Vermessung nach dem Oberbegriff von Anspruch 1.
  • Für den Unterhalt und Neubau von Fahrbahnen, wie beispielsweise Strassen oder Geleisen für Eisenbahnen, muss der Verlauf der Fahrbahn genau ausgemessen, mit einem Soll-Fahrbahnverlauf verglichen und danach allfällige Korrekturen am Fahrbahnverlauf mittels dafür geeigneten Gleisbaumaschinen vorgenommen werden.
  • Grundsätzlich lässt sich der Fahrbahnverlauf von Ausserhalb der Fahrbahn in Bezug auf geographische Referenzpunkte mit entsprechenden Messmitteln sehr genau vermessen. Allerdings handelt es sich dabei um statische Messungen, bei welchen für die Vermessung von grösseren Streckenabschnitten jeweils der Messstandort neben der Fahrbahn neu eingerichtet, kalibriert und die Messung vorgenommen werden muss. Derartige Messverfahren eignen sich insbesondere nicht für die Steuerung von kontinuierlich arbeitenden Gleisbaumaschinen, welche den Fahrbahnverlauf in Bezug auf einen vorgegebenen Soll-Verlauf ggf. korrigieren sollen. Derartige Gleisbaumaschinen sind auf eine möglichst kontinuierliche und aktuelle Messung des aktuellen Fahrbahnverlaufes unmittelbar im Bearbeitungsbereich der Gleisbaumaschine angewiesen, damit diese Arbeiten in möglichst kurzer Zeit und bei grösstmöglicher Genauigkeit durchgeführt werden können.
  • Ein solches Verfahren für den Unterhalt von Geleisen für Eisenbahnen ist beispielsweise aus der EP 0 559 850 bekannt. Darin wird eine auf dem Geleise verfahrbare Messplattform eingesetzt, welche mit optischen Mitteln anhand von neben dem Geleise angeordneten Referenzpunkten Lageänderungswerte der Messplattform erfasst. Diese Werte werden in Positionsdaten umgewandelt und mit Sollwerten eines gespeicherten Vermessungsplanes verglichen. Die Abweichungen zwischen diesen Werten geben Korrekturwerte vor, welche von einer speziellen Unterhalts-Gleisbaumaschine ausgewertet werden können, um den Geleiseverlauf entsprechend korrigieren zu können. Dabei können mit einer einzigen Messbasis, welche vorzugsweise direkt vor die Unterhalts-Gleisbaumaschine gekoppelt werden kann, die Werte kontinuierlich ermittelt und umgesetzt werden.
  • Um aufgrund der Änderungen absolute Werte für die Unterhalts-Gleisbaumaschine zu erhalten, muss vor Beginn der Messung mit dieser Messplattform deren Lage absolut festgestellt werden. Dies erfolgt durch eine separate, statische Positionsermittlung zu Beginn der Messung. Zwar erreicht die optische Messung eine sehr hohe Genauigkeit, kann aber wegen der Notwendigkeit einer ständigen optischen Verbindung zwischen der Messplattform und den Referenzpunkten nicht unter allen Bedingungen durchgeführt werden. So können insbesondere Umwelteinflüsse wie Nebel oder die Sicht unterbrechende resp. verhindernde Elemente wie Baumaschinen oder Arbeiter zu Messfehlern führen oder gar die Messung verunmöglichen.
  • Aus DE 196 52 627 A1 ist ein Verfahren zur dynamischen Steuerung einer kontinuierlich arbeitenden Maschine zur Abwicklung von liniengerichteten Produktionsprozessen wie dem Strassenbau bekannt. Dabei wird eine auf einer hinter der kontinuierlich arbeitenden Maschine angehängten Schleppvorrichtung installierte Messeinrichtung von Zeit zu Zeit von der kontinuierlich arbeitenden Maschine abgehängt und in eine Ruheposition gebracht, in der eine Bestimmung der Position der Messeinrichtung durchgeführt wird. Während der Positionsbestimmung wird - mit einfachen, z.T. mechanischen Prüfmitteln - die Entfernung zwischen der Messeinrichtung und der kontinuierlich arbeitenden Maschine bestimmt. Aus dem Ergebnis der Positionsbestimmung und der bestimmten Entfernung wird die Position der kontinuierlich arbeitenden Maschine bestimmt und ein Soll-Ist-Vergleich durchgeführt.
  • Die Aufgabe der vorliegenden Erfindung lag nun darin, ein Messverfahren zu schaffen, welches eine zuverlässige und genaue Erfassung der Lageänderung der Messplattform und damit des Fahrbahnverlaufes erlaubt, ohne dass eine dauernde Verbindung zu Referenzpunkten notwendig ist und damit das Verfahren auch über längere Strecken resp. grössere Distanzen bei hoher Genauigkeit kontinuierlich eingesetzt werden kann.
  • Diese Aufgabe wird erfindungsgemäss durch ein Verfahren entsprechend den Merkmalen von Anspruch 1 gelöst. Bevorzugte Ausführungsvarianten ergeben sich aus den Merkmalen der weiteren Ansprüche 2 bis 10.
  • Erfindungsgemäss werden beim Verfahren zur Vermessung von Fahrbahnen in Bezug zu einem Vermessungsplan der Fahrbahn, welcher die Sollposition der Fahrbahn in Bezug auf ein absolutes Koordinatensystem enthält, wobei eine Messplattform entlang der Fahrbahn verfahren wird, auf welcher eine Trägheits-Plattform angeordnet ist, welche zu Beginn der Messung initialisiert resp. kalibriert und in Bezug auf das Koordinatensystem ausgerichtet wird, und welche während der Fahrt der Messplattform die jeweilige Positionen der Messplattform in Bezug auf das Koordinatensystem erfasst, die Positionsdaten der Trägheitsplattform in Bezug auf das Koordinatensystem periodisch automatisch überprüft werden und allfällige Abweichungen in Bezug auf das Koordinatensystem als Korrekturwerte erfasst und zur Korrektur der Messdaten resp. der gemessenen Ist-Position der Messplattform verwendet werden.
  • Durch den Einsatz einer Trägheitsplattform, welche periodisch in Bezug auf das Koordinatensystem kalibriert wird, d.h. deren Positionsdaten in Bezug auf das Koordinatensystem korrigiert werden, kann der Verlauf der Lage der Messplattform kontinuierlich sehr genau erfasst und aufgezeichnet werden. Der Vorteil der Trägheitsplattform liegt darin, dass sie praktisch witterungsunabhängig sehr genaue Werte liefert und universell überall eingesetzt werden kann. Durch die periodische Überprüfung der Positionsdaten der Trägheitsplattform mit ihrer effektiven Position in Bezug auf das Koordinatensystem können Abweichungen der Plattform von der tatsächlichen Lage kontinuierlich und schnell erkannt werden und als Korrekturwerte bei der Berechnung der Positionsdaten berücksichtigt werden.
  • Vorzugsweise erfolgt die periodische Überprüfung der Positionsdaten der Trägheitsplattform durch optische Vermessung der Lage der Messplattform in Bezug auf neben der Fahrbahn angeordnete Fixpunkte. Damit kann jeweils eine sehr genaue Bestimmung der Ist-Position der Messplattform erfolgen und die allenfalls davon abweichenden Werte der Trägheitsplattform korrigiert werden. Da die optische Messung im Gegensatz zu herkömmlichen Systemen nicht kontinuierlich erfolgen muss, sondern nur periodisch und an definierten Standorten, ist diese wesentlich unempfindlicher auf äussere Einflüsse, wie beispielsweise die Sicht auf die Fixpunkte verdeckende Hindernisse. Gegebenenfalls kann sogar auf eine solche Messung verzichtet werden, falls sie keine genauen Resultate zu liefern vermag, und erst am folgenden Fixpunkt eine Messung und ggf. Korrektur vorgenommen werden.
  • Vorzugsweise wird als Trägheitsplattform eine kreiselstabilisierte Plattform oder eine Laserplattform eingesetzt. Die Laserplattform besitzt dabei in der Regel eine höhere Genauigkeit und weist einen kleineren Drift auf, d.h. eine kleinere Abweichung von der Ist-Position nach der Kalibrierung, als kreiselstabilisierte Plattformen, welche dafür günstiger in der Anschaffung sind und eine für nur geringe Richtungsänderungen aufweisenden Fahrbahnen genügende Genauigkeit aufweisen.
  • Vorzugsweise ist die Messplattform zusätzlich mit einem satellitengestützten Navigationssystem ausgestattet und die Positionsdaten der Trägheitsplattform werden mit den Positionsdaten dieses Navigationssystems verglichen, wobei bei Abweichungen dieser Positionsdaten untereinander korrigierte Positionsdaten berechnet und gespeichert werden. Damit ist eine laufende Anpassung resp. Korrektur der von der Trägheitsplattform stammenden Positionsdaten auch zwischen zwei Fixpunkten möglich und die Genauigkeit des Verfahrens wird damit insgesamt weiter verbessert.
  • Vorzugsweise werden die Positionsdaten des satellitengestützten Navigationssystems ebenfalls periodisch in Bezug auf ihre effektive Lage zum Koordinatensystem überprüft und bei Abweichungen entsprechend korrigiert. Weiter können die Positionsdaten des satellitengestützten Navigationssystems durch Einbezug von Werten eines zweiten, an einem in Bezug auf das Koordinatensystem definiert positionierten Navigationssystems korrigiert werden und damit die Genauigkeit der Resultate weiter gesteigert werden.
  • Vorzugsweise werden an einem Fixpunkt festgestellte Abweichungen der Positionsdaten der Trägheitsplattform linear auf die zuvor gemessenen Punkte im Sinne einer Korrektur angewandt. Die bereits erfassten und gespeicherten Positionswerte der Messplattform können beim Feststellen einer Abweichung an einem Fixpunkt nachträglich korrigiert werden. Dabei wird die Korrektur vorteilhaft linear in Verhältnis zum Abstand zum vorhergehenden Fixpunkt auf die Positionswerte angewandt. Damit kann beispielsweise der tatsächliche Verlauf einer Fahrbahn in Bezug auf das Koordinatensystem und damit auch im Bezug auf den Soll-Verlauf des Vermessungsplanes ermittelt und ggf. festgehalten werden.
  • Vorzugsweise ist die Messplattform mit ebenfalls auf der Fahrbahn verfahrbaren, dem Fahrbahnverlauf folgenden Referenzplattformen verbunden, deren relative Lage in Bezug auf die Messplattform mit optischen Mitteln erfasst werden und zur Ergänzung oder Korrektur der gemessenen resp. berechneten Werte verwendet werden. Durch diese zusätzlichen relativen Referenzpunkte kann beispielsweise der Kurvenradius der Fahrbahn sehr genau erfasst und bestimmt werden. Vorzugsweise werden hierfür zwei hintereinander angeordnete, mit einem konstanten, definierten Abstand mit der Messplattform verbundene Referenzplattformen eingesetzt.
  • Vorzugsweise sind die Referenzplattformen mit optischen Reflektoren ausgestattet und auf der Messplattform wird mindestens ein Lichtscanner eingesetzt. Der Lichtscanner kommuniziert optisch mit den Reflektoren und kann sehr exakt deren relative Winkelabweichungen beispielsweise in Bezug auf die Längsachse der Messplattform erfassen. Durch die bekannten geometrischen Verhältnisse zwischen Messplattform und Referenzplattformen kann somit beispielsweise der Kurvenradius einer Fahrbahn sehr exakt bestimmt werden.
  • Vorzugsweise wird das erfindungsgemässe Verfahren für die Vermessung von Geleisen für Eisenbahnen eingesetzt. Gerade dort herrschen definierte Verhältnisse insbesondere in Bezug auf die Ausrichtung der Messplattform, so dass diese exakt den Verlauf der Mittellinie und durch Erfassung der Neigung in Bezug auf die Horizontale auch den Verlauf der beiden parallelen Geleisestränge erfassen kann.
  • Vorzugsweise werden die Abweichungen der rohen oder korrigierten Positionsdaten von der Sollposition direkt als Steuerdaten einer der Messplattform folgenden oder direkt verbundenen Fahrbahnbearbeitungsmaschine zugeführt, um die Fahrbahn der Sollposition anzugleichen. Die Messplattform kann vorteilhaft unmittelbar vor eine Fahrbahnbearbeitungsmaschine gekoppelt werden oder sogar auf einer solchen angeordnet resp. integriert sein und diese derart ansteuern, dass der Verlauf der Fahrbahn dem Soll-Verlauf angepasst wird. Damit kann eine kontinuierliche und schnelle Bearbeitung der Fahrbahn erfolgen. Gerade bei Geleisen für Eisenbahnen ist dies besonders wichtig, da dort eine Bearbeitung in der Regel nur während den Nichtbetriebszeiten der Eisenbahn erfolgen kann, die bei immer längeren Betriebzeiten immer kürzer werden.
  • Ein Ausführungsbeispiel des erfindungsgemässen Verfahrens wird nachfolgend anhand der Figuren noch näher erläutert. Es zeigen
    • Fig. 1 schematisch die Ansicht auf eine Messplattform zur Durchführung des erfindungsgemässen Verfahrens;
    • Fig. 2 schematisch den Verlauf von Messpunkten des erfindungsgemässen Verfahrens unter Einbezug eines satellitengestützten Navigationssystems;
    • Fig. 3 schematisch den Verlauf von Messpunkten allein aufgrund der Erfassung durch die Trägheitsplattform;
    • Fig. 4 schematisch den korrigierten Verlauf der Messpunkte nach Figur 3 aufgrund der festgestellten Abweichung der Trägheitsplattform;
    • Fig. 5 schematisch die Ansicht einer Messplattform mit zugeordneten Referenzplattformen zur Durchführung des erfindungsgemässen Verfahrens; und
    • Fig. 6 schematisch die Aufsicht auf eine Messanordnung nach Figur 5 beim Durchfahren einer Kurvenbahn.
  • In Figur 1 ist schematisch die Ansicht einer auf Geleisen 1 verfahrbaren Messplattform 2 dargestellt. Die Messplattform 2 wird durch einen Messwagen 3 gebildet, welcher mit zwei Achsen 4, 5 ausgestattet ist.
  • Auf der Messplattform 2 sind eine Trägheitsplattform 6, ein optischer Scanner 7 sowie ein satellitengestütztes Navigationssystem 8 angeordnet.
  • Die Trägheitsplattform 6 liefert in Bezug auf ein Koordinatensystem absolute Positionsdaten, wobei zuerst eine Initialisierung der Trägheitsplattform 6 stattfinden muss. Bei der Initialisierung der Trägheitsplattform 6 wird diese aufgrund der bekannten, d.h. gemessenen resp. ermittelten, absoluten Position der Messplattform 2 in bekannter Weise ausgerichtet. Damit liefert die Trägheitsplattform 6 beim Verfahren der Messplattform 2 resp. des Messwagens 3 entlang der Geleise 1 die jeweils aktuellen Positionsdaten in Bezug auf das Koordinatensystem.
  • Als Trägheitsplattform 6 lassen sich herkömmlich bekannte Vorrichtungen verwenden, welche entweder auf mechanischer Basis mit kreiselgestützter Plattform arbeiten, oder auf Lichttechnik resp. Lasertechnik beruhend mit praktisch verschleissfreien Elementen ausgestattet sind. In Abhängigkeit der Betriebsdauer seit der Initialisierung sowie der auf die Trägheitsplattform 6 ausgeübten Bewegungen und Kräfte weisen die Positionsdaten Abweichungen zu der effektiven Position der Messplattform 2 auf. In der Regel wachsen diese Abweichungen mit zunehmender Betriebsdauer und führen damit zu verfälschten Positions-Resultaten. Dies bedingt eine periodische Neuinitialisierung resp. Kalibrierung der Trägheitsplattform 6 aufgrund von bekannten resp. gemessenen Positionsdaten der Messplattform, um genügend genaue Positionsdaten zu gewährleisten.
  • Die Kalibrierung kann nun jeweils automatisch in der Nähe von Fixpunkten 9 erfolgen, welche jeweils bevorzugt in der Nähe der Geleise 1 angeordnet sind. Beispielsweise können dies im Vermessungsplan der Geleise eingetragene und exakt vermessene Fixpunkte 9 sein, welche beispielsweise an Fahrleitungsmasten 10 angebracht sind. Die Position des Messwagens 3 und damit der Messplattform 2 lässt sich durch eine Vermessung in Bezug auf solche Fixpunkte 9 exakt bestimmen. Eine solche Vermessung wird vorzugsweise mittels des optischen Scanners 7 vorgenommen, welcher auf der Messplattform 2 angeordnet ist resp. mit dieser verbunden ist. Derartige optische Scanner können automatisiert sehr genaue Messresultate liefern, und aufgrund dieser Messresultate lässt sich die aktuelle absolute Position des Messwagens 3 und damit der Messplattform 2 in Bezug auf das Koordinatensystem in bekannter Weise bestimmen.
  • Die Abweichung der derart gemessenen Positionswerte von den von der Trägheitsplattform 6 gelieferten Positionswerten gibt direkt die effektive Abweichung der Trägheitsplattform 6 an und kann für die Kalibrierung der Trägheitsplattform 6 genutzt werden.
  • Um nun bereits zwischen zwei Fixpunkten 9 eine Korrektur der von der Trägheitsplattform 6 gelieferten Positionswerte vornehmen zu können, wird zusätzlich die Position der Messplattform 2 mit Hilfe des satellitengestützten Navigationssystems 8 ermittelt. Dieses Navigationssystem 8 liefert parallel zur Trägheitsplattform 6 ebenfalls absolute Positionsdaten der Messplattform 2. Eine Abweichung der Positionswerte der Trägheitsplattform 6 und des Navigationssystems 8 deutet nun auf eine Abweichung oder Drift der Trägheitsplattform 6 hin. Beim Auftreten solcher Abweichungen können nun die Positionswerte der Trägheitsplattform 6 entsprechend korrigiert werden.
  • Da auch das satellitengestützte Navigationssystem 8 keine absolut genauen Positionsdaten liefert, da diese von der Empfangsqualität der von Satelliten 11 stammenden Signale abhängig sind, werden die Abweichungen vorzugsweise nicht mit dem vollen Wert sondern lediglich mit einem gewissen Prozentsatz als Trendwert zur Korrektur der Positionsdaten der Trägheitsplattform 6 eingesetzt.
  • In Figur 2 ist schematisch das Resultat dieses Messverfahrens grafisch dargestellt. Zwischen den zwei Fixpunkten 9 resp. 9' ist der Soll-Verlauf S der Geleise 1 gemäss Vermessungsplan gestrichelt dargestellt. Die Punkte M geben das Resultat der Positionsbestimmung aufgrund einer Fahrt des Messwagens 3 auf dem tatsächlichen Geleiseverlauf wieder. Der Pfeil D gibt die Richtung der Abweichung resp. der Drift der Trägheitsplattform 6 wieder, welche idR nicht parallel zum Geleiseverlauf gerichtet ist. Vom Punkt M' an wird nun eine Korrektur der Positionswerte aufgrund von ermittelten Unterschieden zwischen den Positionswerten der Trägheitsplattform 6 und des satellitengestützten Navigationssystems 8 vorgenommen, was zum dargestellten Verlauf der Positionswerte führt. Vorzugsweise unmittelbar neben dem Fixpunkt 9' wird nun die effektive Position der Messplattform 2 wie bereits geschildert bestimmt und eine Kalibrierung der Trägheitsplattform 6 vorgenommen. Da die Positionswerte M resp. M' bereits eine Korrektur erfahren haben und damit die Abweichung von der effektiven Position minimiert ist, wird nun beim Punkt M" an der Kalibrierungsstelle keine grosse Abweichung in Bezug auf die vorhergehenden Punkte M' festzustellen sein.
  • Damit wird durch dieses Verfahren insgesamt eine sehr gute Qualität der Messpunkte M, M' resp. M" erzielt, d.h. diese geben den tatsächlichen Verlauf der Geleise 1 in hoher Genauigkeit wieder. Das Verfahren kann nun beispielsweise dafür eingesetzt werden, um einen genauen Vermessungsplan der Ist-Lage der Geleise 1 zu erstellen. Die Daten können aber auch dazu verwendet werden, um eine Gleisbaumaschine anzusteuern, welche die Lage der Geleise 1 verändern kann und diese damit der Soll-Lage gemäss Vermessungsplan anzupassen resp. zu korrigieren.
  • Um die Genauigkeit der Positionsdaten des satellitengestützten Navigationssystems 8 zu verbessern, können diese Daten aufgrund von Messungen eines benachbarten, an einer definierten Position befindlichen feststehenden zweiten satellitengestützten Navigationssystems 12 korrigiert werden. Diese Korrektursignal, welches sich aus der Differenz der im zweiten Navigationssystem 12 ermittelten Positionswertes und der effektiven Position des zweiten Navigationssystems 12 ergibt, kann über einen Empfänger 13 der Auswertungseinheit 14 der Messplattform 2 zugeführt werden, in welcher auch sämtliche anderen Berechnungen erfolgen und die ermittelten Werte gespeichert resp. aufgezeichnet werden.
  • In Figur 3 ist noch einmal schematisch der Verlauf von gemessenen resp. nach obigem Verfahren korrigierten Positionsdaten zwischen zwei Fixpunkten 9 resp. 9' aufgezeigt. Der Abstand A zwischen zwei aufeinander folgenden Messpunkten M1 und M2 in Bezug auf den Sollverlauf S stellt den Fehler resp. die Abweichung der Geleiselage dar. Der Abstand D zwischen dem Messpunkt Mn und dem Kalibrierungsmesspunkt Mk stellt die aufgelaufene Abweichung resp. Drift der Trägheitsplattform 6 dar. Wenn nun beispielsweise die Messplattform 2 resp. der Messwagen 3 mit annähernd konstante Geschwindigkeit bewegt wird, um den tatsächlichen Geleiseverlauf aufzunehmen, d.h. eine Messfahrt durchzuführen, dann kann davon ausgegangen werden, dass die Abweichung resp. Drift der Trägheitsplattform 6 zwischen zwei Fixpunkten 9 resp. 9' linear aufgetreten ist. Damit können die zwischen den beiden Fixpunkten 9 resp. 9' ermittelten Positionswerte nachträglich linear in Abhängigkeit vom Abstand des ersten Fixpunktes 9 entsprechend dieser Abweichung korrigiert werden, wie in Figur 4 schematisch dargestellt ist. Die derart korrigierten Positionswerte M geben ein sehr exaktes Abbild des tatsächlichen Verlaufes der Geleise 1 im Koordinatensystem wieder.
  • In Figur 5 ist nun noch eine weitere Ausführungsform eines Messwagens 3 zur Durchführung des erfindungsgemässen Messverfahrens dargestellt. Der Messwagen 3 ist dabei mit zwei zusätzlichen Referenzwagen 15 resp. 16 verbunden. Diese Referenzwagen 15 resp. 16 weisen jeweils vorteilhaft eine Referenzachse 17 resp. 18 auf, welche mit optischen Reflektoren 19 resp. 20 verbunden sind. Mit Hilfe eines optischen Scanners 21 kann nun die relative Lage der Referenzwagen 15 resp. 16 in Bezug auf den Messwagen 3 automatisch laufend gemessen resp. ermittelt werden.
  • Wie aus der schematischen Aufsicht aus Figur 6 hervorgeht, können diese Informationen, vorteilhaft Winkelinformationen, dazu dienen, beispielsweise den Kurvenradius R der Geleise 1 zu bestimmen. Da die Referenzwagen 15 resp. 16 mit einem bestimmten, bekannten Abstand zum Messwagen 3 mit diesem verbunden sind, kann der Radius aufgrund der bekannten geometrischen Verhältnisse einfach berechnet werden.
  • Es ist für den Fachmann klar, dass das Messverfahren nicht auf den Einsatz bei Schienen resp. Geleisen 1 eingeschränkt ist, sondern auch beispielsweise für Strassen eingesetzt werden kann. In diesem Fall muss der Messwagen 3 entlang der Mittellinie der Strasse ggf. manuell gesteuert verfahren werden, um die entsprechenden Positionswerte zu liefern.

Claims (10)

  1. Verfahren zur Vermessung von Fahrbahnen in Bezug zu einem Vermessungsplan der Fahrbahn, welcher die Sollposition der Fahrbahn in Bezug auf ein absolutes Koordinatensystem enthält, wobei eine Messplattform (2) entlang der Fahrbahn (1) verfahren wird, auf welcher eine Trägheits-Plattform (6) angeordnet ist, welche zu Beginn der Messung initialisiert resp. kalibriert und in Bezug auf das Koordinatensystem ausgerichtet wird, und welche während der Fahrt der Messplattform (2) die jeweilige Position der Messplattform (2) in Bezug auf das Koordinatensystem erfasst, dadurch gekennzeichnet, dass die Trägheitsplattform (6) periodisch in Bezug auf das Koordinatensystem kalibriert wird, indem die Positionsdaten der Trägheitsplattform (6) in Bezug auf das Koordinatensystem periodisch automatisch überprüft werden und allfällige Abweichungen in Bezug auf das Koordinatensystem als Korrekturwerte erfasst und zur Korrektur der Messdaten resp. der gemessenen Ist-Position der Messplattform (2) verwendet werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die periodische Überprüfung der Positionsdaten der Trägheitsplattform (6) durch optische Vermessung der Lage der Messplattform (2) in Bezug auf neben der Fahrbahn angeordnete Fixpunkte (9;9') erfolgt.
  3. Verfahren nach Anspruch 1 oder 2, dass als Trägheitsplattform (6) eine kreiselstabilisierte Plattform oder eine Laserplattform eingesetzt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Messplattform (2) mit einem satellitengestützten Navigationssystem (8) ausgestattet ist und die Positionsdaten (M) der Trägheitsplattform (6) verglichen werden mit den Positionsdaten dieses Navigationssystems (8), wobei bei Abweichungen dieser Positionsdaten (M) untereinander korrigierte Positionsdaten (M') berechnet und als Korrekturwerte gespeichert werden.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Positionsdaten des satellitengestützten Navigationssystems (8) ebenfalls periodisch in Bezug auf ihre effektive Lage zum Koordinatensystem überprüft und bei Abweichungen entsprechend korrigiert werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass an einem Fixpunkt (9;9') festgestellte Abweichungen (A) der Positionsdaten der Trägheitsplattform (6) linear auf die zuvor gemessenen Punkte (M) im Sinne einer Korrektur angewandt werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Messplattform (2) mit ebenfalls entlang der Fahrbahn (1) verfahrbaren, dem Fahrbahnverlauf folgenden Referenzplattformen (15;16) verbunden ist, deren relative Lage in Bezug auf die Messplattform (2) mit optischen Mitteln (21) erfasst werden und zur Ergänzung oder Korrektur der gemessenen resp. berechneten Werte verwendet werden.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Referenzplattformen (15;16) mit optischen Reflektoren (19;20) ausgestattet sind und auf der Messplattform (20) mindestens ein Lichtscanner (21) eingesetzt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8 für die Vermessung von Geleisen für Eisenbahnen.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Abweichung der rohen oder korrigierten Positionsdaten (M; M) von der Sollposition direkt als Steuerdaten einer der Messplattform (2) folgenden oder direkt verbundenen Fahrbahnbearbeitungsmaschine zugeführt werden, um die Fahrbahn der Sollposition anzugleichen.
EP04728500A 2004-04-21 2004-04-21 Verfahren zur vermessung von fahrbahnen Expired - Lifetime EP1738029B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH2004/000241 WO2005103385A1 (de) 2004-04-21 2004-04-21 Verfahren zur vermessung von fahrbahnen

Publications (2)

Publication Number Publication Date
EP1738029A1 EP1738029A1 (de) 2007-01-03
EP1738029B1 true EP1738029B1 (de) 2011-09-21

Family

ID=34957197

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04728500A Expired - Lifetime EP1738029B1 (de) 2004-04-21 2004-04-21 Verfahren zur vermessung von fahrbahnen

Country Status (6)

Country Link
US (1) US7469479B2 (de)
EP (1) EP1738029B1 (de)
JP (1) JP4676980B2 (de)
AT (1) ATE525529T1 (de)
NO (1) NO338964B1 (de)
WO (1) WO2005103385A1 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0601819D0 (en) * 2006-01-31 2006-03-08 Aea Technology Plc Track twist monitoring
DE102006042496A1 (de) * 2006-09-07 2008-04-24 Gbm Wiebe Gleisbaumaschinen Gmbh Verfahren zur Gleisvermessung und hochgenaues Messsystem für kleine Baustellen im Gleisbau
US7900368B2 (en) * 2008-10-11 2011-03-08 John Cerwin Train rail alignment and distance system
DE102009002678B4 (de) * 2009-04-27 2012-04-26 AGG Anlagen- und Gerätebau GmbH Prüfverfahren für Drehgestelle sowie Prüf- und Montagestand
US9810533B2 (en) * 2011-04-27 2017-11-07 Trimble Inc. Railway track monitoring
CN102358325B (zh) * 2011-06-29 2014-02-26 株洲时代电子技术有限公司 基于绝对坐标测量参考系的轨道参数测量装置及其方法
US8781655B2 (en) 2011-10-18 2014-07-15 Herzog Railroad Services, Inc. Automated track surveying and ballast replacement
US9051695B2 (en) 2011-10-18 2015-06-09 Herzog Railroad Services, Inc. Automated track surveying and ballast replacement
US8615110B2 (en) 2012-03-01 2013-12-24 Herzog Railroad Services, Inc. Automated track surveying and ditching
AT512159B1 (de) * 2012-04-11 2013-06-15 Plasser Bahnbaumasch Franz Maschine zur Instandhaltung eines Gleises
AT513749B1 (de) * 2013-04-10 2014-07-15 Plasser Bahnbaumasch Franz Verfahren zur Überstellung eines Längskettenabschnittes einer Räumkette
CN104417582A (zh) * 2013-08-29 2015-03-18 中国铁道科学研究院铁道建筑研究所 一种实时测量铁路轨道绝对位置与偏差的装置
ES2646607T3 (es) * 2014-06-27 2017-12-14 Hp3 Real Gmbh Dispositivo para medir vías férreas
KR101697645B1 (ko) * 2014-10-06 2017-01-18 현대모비스 주식회사 추측 항법과 gps를 이용한 복합 항법 시스템 및 그 방법
AT516248B1 (de) * 2014-12-12 2016-04-15 System 7 Railsupport Gmbh Verfahren zur Kalibrierung einer Vorrichtung zum Vermessen von Gleisen
CN105887591B (zh) * 2016-04-13 2018-08-07 株洲时代电子技术有限公司 一种铁路轨道测量标记点定位装置及***
CN105648861B (zh) * 2016-04-13 2018-07-06 株洲时代电子技术有限公司 一种铁路轨道测量标记点定位方法
AT518579B1 (de) * 2016-04-15 2019-03-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren und Messsystem zum Erfassen eines Festpunktes neben einem Gleis
AT519003B1 (de) 2016-12-19 2018-03-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Messvorrichtung und Verfahren zum Erfassen einer Gleisgeometrie
AT519218B1 (de) * 2017-02-06 2018-05-15 Hp3 Real Gmbh Verfahren zur Optimierung einer Gleislage
FR3066770B1 (fr) * 2017-05-29 2019-07-26 Matisa Materiel Industriel S.A. Procedure de reglage d’un systeme de guidage d’une machine de travaux ferroviaires, procede et systeme de guidage associes
AU2018363532B2 (en) * 2017-11-09 2023-12-07 Track Machines Connected Gesellschaft M.B.H. System and method for navigating within a track network
US11465659B2 (en) * 2018-02-19 2022-10-11 Claudio Filippone Autonomous scouting rail vehicle
CN109753765B (zh) * 2019-03-13 2023-05-19 中铁山桥集团有限公司 一种钢轨顶弯轨迹的确定方法
CN110095101B (zh) * 2019-04-20 2021-03-02 北京工业大学 一种用于柱状零件测量仪的坐标系标定装置及方法
CN111521164B (zh) * 2020-04-17 2021-06-04 中建五局土木工程有限公司 一种用于单轨轨道梁的调节检测***及方法
RU2743640C1 (ru) * 2020-04-29 2021-02-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" (КНИТУ-КАИ) Установка для настройки одноосного силового горизонтального гиростабилизатора малогабаритного путеизмерительного устройства в лабораторных условиях
CN111721250B (zh) * 2020-06-30 2021-07-23 中国地质大学(北京) 一种铁路轨道平顺性实时检测装置及检测方法
RU2750027C1 (ru) * 2020-11-17 2021-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Одноосный индикаторный горизонтальный гиростабилизатор

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1244824B (de) 1965-04-26 1967-07-20 Deutsche Bundesbahn Verfahren und Einrichtung zum Ausrichten eines Gleises der Seite und/oder der Hoehe nach
AT324391B (de) * 1971-10-08 1975-08-25 Plasser Bahnbaumasch Franz Einrichtung zur feststellung der abweichung der lage eines gleises von seiner soll-lage
JPS63274000A (ja) * 1987-05-06 1988-11-11 Matsushita Electric Ind Co Ltd 車載用ナビゲ−ション装置
FR2662984B1 (fr) * 1990-06-12 1992-07-31 Cegelec Vehicule sur rails pour la mesure des parametres geometriques de voie.
CH683703A5 (de) 1991-09-26 1994-04-29 Mueller J Ag Verfahren zur Geleisevermessung.
US5786750A (en) * 1996-05-10 1998-07-28 The United States Of America As Represented By The Secretary Of The Navy Pilot vehicle which is useful for monitoring hazardous conditions on railroad tracks
DE19652627A1 (de) * 1996-12-18 1998-06-25 Deutsche Asphalt Gmbh Verfahren und Vorrichtung zur dynamischen Steuerung einer kontinuierlich arbeitenden Maschine zur Abwicklung von liniengerichteten Produktionsprozessen
JP3983849B2 (ja) * 1997-05-02 2007-09-26 パイオニア株式会社 ナビゲーション装置
JP3148980B2 (ja) * 1997-11-26 2001-03-26 東急車輛製造株式会社 軌道形状検出装置
DE19755324A1 (de) * 1997-12-12 1999-06-17 Michael Dipl Ing Sartori Verfahren und Vorrichtung zum Steuern eines Fahrzeugs
FR2798347B1 (fr) * 1999-09-09 2001-11-30 Matisa Materiel Ind Sa Vehicule de mesure de l'etat geometrique d'une voie ferree
US6634112B2 (en) * 2001-03-12 2003-10-21 Ensco, Inc. Method and apparatus for track geometry measurement
GB0116651D0 (en) * 2001-07-07 2001-08-29 Aea Technology Plc Track monitoring equipment
JP3868337B2 (ja) * 2002-06-19 2007-01-17 鹿島建設株式会社 レール上台車の走行軌跡検出方法及び装置
US6725782B1 (en) * 2003-03-24 2004-04-27 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H Railroad test vehicle comprising a railroad measurement axle suspension
ATE388274T1 (de) * 2004-09-22 2008-03-15 Plasser Bahnbaumasch Franz Verfahren zum abtasten einer gleislage

Also Published As

Publication number Publication date
ATE525529T1 (de) 2011-10-15
WO2005103385A1 (de) 2005-11-03
NO20065047L (no) 2006-11-03
US20070213926A1 (en) 2007-09-13
JP2007533878A (ja) 2007-11-22
JP4676980B2 (ja) 2011-04-27
NO338964B1 (no) 2016-11-07
EP1738029A1 (de) 2007-01-03
US7469479B2 (en) 2008-12-30

Similar Documents

Publication Publication Date Title
EP1738029B1 (de) Verfahren zur vermessung von fahrbahnen
EP1028325B1 (de) Verfahren zum Aufmessen eines Gleises
EP3554919B1 (de) Gleismessfahrzeug und verfahren zum erfassen einer gleisgeometrie
EP3442849B1 (de) Verfahren und messsystem zum erfassen eines festpunktes neben einem gleis
DE60015268T2 (de) Fahrzeug zur Vermessung des geometrischen Zustandes eines Gleises
EP3746346B1 (de) Schienenfahrzeug und verfahren zum vermessen einer gleisstrecke
DE19618922C2 (de) Vorrichtung und Verfahren zum Messen des Fahrzeugabstandes für Kraftfahrzeuge
EP2064390B1 (de) Verfahren zur gleisvermessung und hochgenaues messsystem für kleine baustellen im gleisbau
EP3580393B1 (de) Verfahren und schienenfahrzeug zur berührungslosen erfassung einer gleisgeometrie
AT523627B1 (de) Verfahren und System zur Ermittlung eines Soll-Gleisverlaufs für eine Lagekorrektur
EP0761522A1 (de) Verfahren und Vorrichtung zur Bestimmung der Position wenigstens einer Stelle eines spurgeführten Fahrzeugs und deren Verwendung
EP3358079A1 (de) Verfahren und vorrichtung zur optimierung einer gleislage
EP3535456B1 (de) Gleisbaumaschine mit gleislagemesssystem
DE4222333A1 (de) Verfahren zum ermitteln der abweichungen der ist-lage eines gleisabschnittes
EP3237266B1 (de) Verfahren und ortungseinrichtung zum bestimmen der position eines spurgeführten fahrzeugs, insbesondere eines schienenfahrzeugs
EP0511191A2 (de) Einrichtung zum Messen der Lage eines Gleises zu einem Fixpunkt
AT523717B1 (de) Verfahren zum Vermessen einer Gleislage
EP4021778B1 (de) Verfahren und messfahrzeug zur ermittlung einer ist-lage eines gleises
DE102016223435A1 (de) Wegstrecken- und Geschwindigkeitsmessung mit Hilfe von Bildaufnahmen
DE102013101561A1 (de) Fahrerloses Transportfahrzeug mit einem Sensor
AT17358U1 (de) Verfahren und Überwachungssystem zur Ermittlung einer Position eines Schienenfahrzeugs
DE102007009772B4 (de) Vorrichtung und Verfahren zur Ermittlung einer gleisselektiven Ortungsinformation
WO2022111983A1 (de) Verfahren und system zur ermittlung von korrekturwerten für eine lagekorrektur eines gleises
EP0806523A1 (de) Maschine zur Herstellung einer Soll-Geleiseanlage
DE102006026048A1 (de) GPS gestütztes, kontinuierliches Trassenerkundungssystem mit Multisensorik

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061003

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070801

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SERSA MASCHINELLER GLEISBAU AG

Free format text: J. MUELLER AG#VOGELSANGSTRASSE 6#8307 EFFRETIKON (CH) -TRANSFER TO- SERSA MASCHINELLER GLEISBAU AG#VOGELSANGSTRASSE 6#8307 EFFRETIKON (CH)

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: TD

Effective date: 20111103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004012882

Country of ref document: DE

Effective date: 20111117

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SERSA MASCHINELLER GLEISBAU AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004012882

Country of ref document: DE

Owner name: SERSA MASCHINELLER GLEISBAU AG, CH

Free format text: FORMER OWNER: J. MUELLER AG, EFFRETIKON, CH

Effective date: 20111025

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004012882

Country of ref document: DE

Owner name: SERSA MASCHINELLER GLEISBAU AG, CH

Free format text: FORMER OWNER: J. MUELLER AG, EFFRETIKON, CH

Effective date: 20110928

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111222

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 525529

Country of ref document: AT

Kind code of ref document: T

Owner name: SERSA MASCHINELLER GLEISBAU AG, CH

Effective date: 20120309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

26N No opposition filed

Effective date: 20120622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004012882

Country of ref document: DE

Effective date: 20120622

BERE Be: lapsed

Owner name: J. MULLER A.G.

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040421

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200427

Year of fee payment: 17

Ref country code: FR

Payment date: 20200420

Year of fee payment: 17

Ref country code: FI

Payment date: 20200421

Year of fee payment: 17

Ref country code: CH

Payment date: 20200414

Year of fee payment: 17

Ref country code: DE

Payment date: 20200420

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200423

Year of fee payment: 17

Ref country code: GB

Payment date: 20200427

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200421

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004012882

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210501

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 525529

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210421

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210421

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210421

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210421

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200421