EP1724536A2 - Wärmetauscher mit Akkumulator - Google Patents

Wärmetauscher mit Akkumulator Download PDF

Info

Publication number
EP1724536A2
EP1724536A2 EP06007946A EP06007946A EP1724536A2 EP 1724536 A2 EP1724536 A2 EP 1724536A2 EP 06007946 A EP06007946 A EP 06007946A EP 06007946 A EP06007946 A EP 06007946A EP 1724536 A2 EP1724536 A2 EP 1724536A2
Authority
EP
European Patent Office
Prior art keywords
container
chamber
heat exchanger
tube
longitudinal wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06007946A
Other languages
English (en)
French (fr)
Other versions
EP1724536B1 (de
EP1724536A3 (de
Inventor
Hubertus R. Dipl.-Ing. Kamsma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modine Manufacturing Co
Original Assignee
Modine Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modine Manufacturing Co filed Critical Modine Manufacturing Co
Publication of EP1724536A2 publication Critical patent/EP1724536A2/de
Publication of EP1724536A3 publication Critical patent/EP1724536A3/de
Application granted granted Critical
Publication of EP1724536B1 publication Critical patent/EP1724536B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/005Other auxiliary members within casings, e.g. internal filling means or sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0441Condensers with an integrated receiver containing a drier or a filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0446Condensers with an integrated receiver characterised by the refrigerant tubes connecting the header of the condenser to the receiver; Inlet or outlet connections to receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/051Compression system with heat exchange between particular parts of the system between the accumulator and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Definitions

  • the invention relates to a device for the treatment of the refrigerant, which in a
  • Air circulating circulates comprising: compressor, gas cooler, evaporator (heat exchanger) and expansion element and thereby passes through a high pressure side and a low pressure side, in which the refrigerant has different temperature, the device having a tube through which flows the one side and in a container is arranged, through which the other side flows to serve as an intermediate heat exchanger, wherein in the container, an accumulator chamber and a heat exchanger chamber is formed.
  • This device which is often referred to as an internal heat exchanger in trans-critical air conditioning circuits, is from the DE 196 35 454A1 is known and can be considered advanced, because the achievable heat exchange rate meets the requirements and because it also includes a Akkumulatorhunt.
  • the fabrication of this device - lying in the installation space of the motor vehicle - seems to be rather expensive, since the tubes are deformed as spirals and the insertion of the heat-conducting fins between the turns of the coils could also be complicated.
  • German patent DE 199 18 617 C2 were an accumulator and - separately - and an internal heat exchanger combined with the gas cooler, creating a very compact design was created.
  • the accumulator is connected to a manifold of the gas cooler.
  • the inner heat exchanger is located at the upper or lower edge of the gas cooler, ie parallel to the tubes, and thus directly in the influence of the cooling air, which has a temperature of about 30 - 40 ° C in summer, whereby the intended effect of the inner heat exchanger is counteracted , The degree of intended cooling of the refrigerant on the high pressure side is somewhat reduced by the relatively high temperature of the cooling air.
  • the inner heat exchanger is also quite expensive to produce. Its connection with the gas cooler also seems to be structurally difficult to carry out.
  • the object of the invention is to propose with other design features comparable in terms of compactness and functionality device that can be produced cheaper.
  • the container containing the tube is connected to the manifold of the heat exchanger, preferably the gas cooler, to a structural unit, wherein the accumulator chamber and the heat exchanger chamber present in the container extend parallel to the manifold and over a substantial portion of the length of the container achieved a good result in terms of compactness.
  • the favorable possibility of arranging a dryer and optionally also a filter in the accumulator chamber and / or the heat exchanger chamber of the container, since the space available for this measure is sufficient.
  • the filter and dryer ensure the desired drying and cleaning (treatment) of the transcritical refrigerant, which can be CO2, for example.
  • the accumulator serves the functionality of the system, since it contributes to the fact that only vaporous refrigerant reaches the compressor and thereby ensures its proper operation.
  • the vaporous refrigerant shortly before leaving the heat exchanger chamber in the direction of the compressor via an opening in the longitudinal wall small amounts of oil and liquid refrigerant are supplied.
  • the refrigerant vapor is in such a state that the supply of oil and liquid refrigerant results in further cooling by evaporative cooling.
  • the vaporous state of the refrigerant at the compressor is thereby assisted and the refrigerant inlet temperature at the compressor is lowered again.
  • the refrigerant must overcome a more or less large slope after the return of the oil, resulting in losses.
  • the recirculation is made bypassing the inner heat exchanger directly into the suction line, whereby a more favorable heat transfer is present.
  • the mentioned tube is preferably an extruded multi-chamber tube that extends substantially straight over at least one extends substantial length of the container, whereby, inter alia, the relatively inexpensive production of the device is effected.
  • the multi-chamber tube is covered around its entire circumference with the heat exchange rib.
  • a longitudinal wall is formed in the container, which divides the container into two parts, namely an accumulator chamber and a heat exchanger chamber.
  • the longitudinal wall has at least one opening at one end to allow the refrigerant to flow from the accumulator chamber into the heat exchanger chamber.
  • another opening is provided, via which accumulated in the accumulator oil can get into the refrigerant.
  • a drying agent and also a filter can be arranged in the accumulator chamber.
  • An inlet tube is disposed in the accumulator chamber to assist in the settling of any liquid refrigerant present in the low pressure phase.
  • the dryer In or on the introduction tube, the dryer can be located and immediately below the filter can be arranged.
  • a plastic wall can be inserted into the container which suppresses the undesired heat transfer between the accumulator chamber and the heat exchanger chamber.
  • the heat exchange should take place essentially in the heat exchanger chamber, since this was specially equipped for it. Overall, this results in slightly higher temperature differences between the low pressure side and the high pressure side in the heat exchange chamber itself, resulting in improved efficiency of heat exchange.
  • the independent claim 19 relates to a not with a heat exchanger, preferably the gas cooler, united device, which is rather at a suitable location in the air conditioning circuit and which is particularly inexpensive to produce and has high efficiency.
  • the container is designed as a slender, preferably produced by extrusion hollow body with a longitudinal wall or with holders for holding a longitudinal wall inserted, wherein the longitudinal wall has at least one opening to flow the refrigerant from the accumulator into the heat exchanger chamber and that the tube is formed as a preferably produced by the same extrusion process multi-chamber tube which extends through the heat exchanger chamber and is covered on all sides with heat exchange ribs.
  • the device is particularly easy to manufacture and is also characterized by its slim Design that helps to accommodate a conventional air conditioning system and transcritical refrigerant air conditioning system, such as CO2, with substantially the same space requirements, which is a not inconsiderable advantage for automobile manufacturers, who are thus not constrained by their space concepts within a range of Change automobiles depending on the type of air conditioning.
  • CO2 transcritical refrigerant air conditioning system
  • Fig. 1 shows a longitudinal section through a device according to the invention.
  • FIG. 2 shows a cross section through the device according to FIGS. 1 or 3.
  • Fig. 3 shows a longitudinal section in a preferred embodiment of the invention.
  • Fig. 4 shows an alternative design in a cross section through the container.
  • Fig. 5 shows a flat multi-chamber tube in a cross section according to another alternative.
  • Figs. 6, 7 and 8 show different embodiments of the container in cross section.
  • FIGS. 9-12 show, purely schematically, the connection of the device to a heat exchanger, preferably to the gas cooler.
  • the devices described in the exemplary embodiments are preferably intended for use in air conditioning systems of motor vehicles in an approximately vertical arrangement.
  • the device for the treatment of the refrigerant according to FIGS. 1 and 3 differs by the arrangement of a filter 23 in the accumulator chamber 21 and in the heat exchanger chamber 22. They otherwise agree that they have a container 20 with a longitudinal wall 26, the was produced by extrusion.
  • the longitudinal wall 26 divides the container 20 into the two mentioned chambers 21, 22 which extend in parallel and substantially over the entire length of the container 20.
  • a dryer 24 In the accumulator chamber 21 is a dryer 24, which in this embodiment, outside a Introducer tube 25 has been arranged.
  • a flat multi-chamber tube 10 Through the heat exchanger chamber 22 extends a flat multi-chamber tube 10, which is equipped with a heat conducting rib 11 which largely fills the remaining cross section of the heat exchanger chamber 22 in order to achieve good results in terms of heat exchange efficiency can.
  • an insulation 50 was provided in both embodiments, which covers the surface of the container 20 . This measure is particularly suitable where you would like to avoid temperature effects from the environment on the heat exchange in the container 20 . Usually these are too high outside temperatures.
  • the lower-pressure side, cooler refrigerant flows through an opening 40 in the upper lid 80 into the accumulator chamber 21 a.
  • an introduction tube 25 projects into the accumulator chamber 21 . In the case of FIG. 1, this refrigerant flows through a filter basket 25 at the end of the introduction tube 25. Oil present in the refrigerant and residual liquid refrigerant settle in the accumulator chamber 21 at the bottom.
  • the gaseous refrigerant flows above an inlet opening 31 in the longitudinal wall 26 in the heat exchanger chamber 22 to pass through the heat conducting rib 11 down in the direction of exit 41 , which is arranged in the wall of the container 20 .
  • the high-pressure side and warmer refrigerant flows through a channel 70 in the upper lid 80 in the multi-chamber tube 10 , flows in the multi-chamber tube 10 down to the exit channel 71 in the lower lid 80, after heat release to the low-pressure side refrigerant and further cooled and therefore the performance-improving state of leaving the container 20 toward an expansion device (not shown) and the evaporator.
  • the described direction of flow only serves to understand the figures. It is, moreover, determined in an appropriate manner.
  • FIG. 2 Down in the longitudinal wall 26 is a channel 30 and a bore 32 to supply the low-pressure side refrigerant after passing through the heat exchanger chamber 22 in the accumulator 21 settled oil.
  • FIG. 2 In the exemplary embodiment according to FIG. 3, two flat filter elements 24 have been provided. One of these was placed in front of the channel 30 and the second is located in front of the already mentioned exit 41 in the heat exchanger chamber 22. With this configuration it should be pointed out that the present invention offers greater design freedom for the designer with regard to the placement of such elements the state of the art.
  • Fig. 4 shows the cross section through the container 20 of another particularly noteworthy embodiment.
  • a larger or specially designed accumulator chamber 21 is required, which was achieved according to FIG. 4 in that the flat multi-chamber tube 10 was formed with a shape adapted to the contour of the container 20 and thus extends along part of the container wall.
  • a longitudinal wall 26 was used, which is also adapted to the mentioned contour.
  • On the inside of the container wall there are receiving grooves 27 into which the longitudinal edges of the longitudinal wall 26 can be inserted.
  • the grooves 27 do not limit the manufacturability of the container 20 by means of extrusion molding, ie they can be realized by means of this method.
  • the multi-chamber tube 10 is preferably, but not necessarily, also an extruded tube, for example with two rows of apertures 12. More preferably, this configuration is then made when, as shown in Fig. 5, on the corrugated heat exchange ribs 11 is to be omitted as a single part by the multi-chamber tube 10 is equipped on the outside with rib-like channels.
  • FIG. 6, 7 and 8 show further embodiments in cross-section through an extruded container 20 with two longitudinal walls 26, which then form three chambers or compartments in the container 20 .
  • These chambers may be formed according to the desired application as a battery chamber 22 or as a heat exchanger chamber 21 .
  • the middle chamber was designed as a heat exchange chamber 22 and the other two chambers as accumulator chambers 21 .
  • the heat exchanger chamber 22 is a multi-chamber tube 10 which has already been described above with reference to FIG. 5.
  • FIG. 7 shows another example in which all three chambers are designed as heat exchanger chambers 22 .
  • the reference numeral 90 was a design option, which is to partially increase the wall thickness of the container 20 in order to form the cross section of the chambers - while maintaining the circular cross-sectional shape of the container 20 - so that the insertion of the tube 10 is facilitated with the heat exchange fin 11 .
  • It can be used in this case conventional corrugated fins 11 , which are spirally wound around the tube 10 .
  • such a "uniform" cross-section is also suitable for the collector chamber 21 .
  • the "uniformed" cross-section was achieved with another measure, namely a slight deviation from the round container shape, which is still acceptable despite the high pressures in the system.
  • four graduations 60 distributed on the circumference of the container 20 have been provided, which result in that the cross section of the upper and the lower heat exchanger chamber 22 can be approximately rectangular.
  • the middle chamber was designed here as an accumulator chamber 21 .
  • the device described so far was, as shown in the following Fig. 9-12, combined with the gas cooler 3 in order to achieve a particularly compact design of the entire system.
  • the container 20 may in principle be such as shown for example in FIG. 3 and already described above.
  • the container 20 is arranged parallel to and connected to a header 30 of the condenser, here the gas cooler 3 .
  • the difference further consists in that in the prior art it is only a collector, but in the present case an accumulator 21, combined with an internal heat exchanger 22, is connected to the gas cooler 3 .
  • the container 20 is secured by means of two holders 5 on the manifold 4 .
  • FIG. 9 the necessary components of the air conditioning circuit at the inflow and outflow points for the low-pressure side ND and the high-pressure side HD refrigerant have been indicated by appropriate labeling.
  • the gas cooler 3 receives high-pressure compressed gaseous HD refrigerant coming from the compressor, which is cooled in the gas cooler 3 by heat exchange with cooling air.
  • the serpentine flow through the gas cooler 3 by groups of parallel flat tubes was indicated by arrows.
  • the headers 4 of the gas cooler 3 are partitions, the described flow cause.
  • the HD - refrigerant into the heat exchanger chamber 22 occurs in the embodiment immediately, and indeed, as described in the extending through the chamber 22 multi-chamber tube 10 after leaving the gas cooler. 3
  • Fig. 9 has been provided to make the passage from the gas cooler 3 to the container 20 by means of a short line 6 from the manifold 4 in the multi-chamber tube 10 .
  • Fig. 12 shows a somewhat more compact design, which consists in that the conduit 6 passes through one of the holders 5 and is connected to the multi-chamber tube 10 .
  • the ND refrigerant coming from the evaporator is in the state of subcooling. It passes through the reaching in the accumulator 21 insertion tube 25 into the accumulator 21 a and passes the dryer 24 and a filter 23 25 at the end of the insertion tube Unlike the previously described embodiments, the opening of the oil is in the longitudinal wall 26 directly in the area of the soil.
  • FIG. 10 shows, likewise schematically, a section from a plan view of the device according to FIG. 9.
  • FIG. 11 shows a further development idea, which is that the container 20 produced by extrusion has no integrated longitudinal wall 26 , but was equipped only with receiving grooves 40 . These receiving grooves 40 serve to be able to use a longitudinal wall made of plastic, which is otherwise formed as described. Such a design brings advantages in terms of the efficiency of the heat exchange, and it is executable despite the prevailing high pressure, because there are no significant differences in pressure between the heat exchanger chamber 22 and the accumulator 21 .
  • the container 20 of the proposed device is also characterized by its slim design.
  • the ratio of its length L to its diameter D is at least 3: 1, preferably the ratio is about 6: 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Die Erfindung bezieht sich auf eine Vorrichtung zur Behandlung des Kältemittels, das in einem transkritischen Klimakreislauf zirkuliert, enthaltend: Kompressor (1), Gaskühler (3), Verdampfer, (Wärmetauscher) und Expansionsorgan und dabei eine Hochdruckseite und Niederdruckseite durchläuft, in denen das Kältemittel unterschiedliche Temperatur aufweist, wobei die Vorrichtung ein flaches Mehrkammerrohr (10) umfasst, durch das die eine Seite strömt und das in einem Behälter (20) angeordnet ist, durch den die andere Seite strömt, um als Zwischenwärmetauscher zu dienen, wobei in dem Behälter (20) eine Akkumulatorkammer (21) und eine Wärmetauscherkammer (22) ausgebildet ist. Eine besonders kompakte und wirksame Vorrichtung wird erfindungsgemäß dadurch erreicht, dass der das Mehrkammerrohr (10) enthaltende Behälter (20) mit einem Sammelrohr (4) eines Wärmetauschers (3) verbunden ist, wobei in der Akkumulatorkammer (21) ein Trockner (24) angeordnet ist und wobei sich die Akkumulatorkammer (21) und die Wärmetauscherkammer (22) etwa über die Länge des schlanken Behälters (20) erstrecken. Eine besonders herstellungsfreundliche Vorrichtung ergibt sich erfindungsgemäß dadurch, dass der Behälter (20) als schlanker Hohlkörper mit wenigstens einer Längswand (26) oder mit Halterungen (27) zum Halten wenigstens einer eingesetzten Längswand ausgebildet ist, wobei die wenigstens eine Längswand (26) wenigstens eine Öffnung (31) aufweist, damit das Kältemittel die Kammern (21, 22) durchströmen kann und wobei sich die Akkumulatorkammer (21) und die Wärmetauscherkammer (22) etwa über die Länge des schlanken Behälters (20) erstrecken.

Description

  • Die Erfindung betrifft eine Vorrichtung zur Behandlung des Kältemittels, das in einem
  • Klimakreislauf zirkuliert, enthaltend: Kompressor, Gaskühler, Verdampfer (Wärmetauscher) und Expansionsorgan und dabei eine Hochdruckseite und eine Niederdruckseite durchläuft, in denen das Kältemittel unterschiedliche Temperatur besitzt, wobei die Vorrichtung ein Rohr aufweist, durch das die eine Seite strömt und das in einem Behälter angeordnet ist, durch den die andere Seite strömt, um als Zwischenwärmetauscher zu dienen, wobei in dem Behälter eine Akkumulatorkammer und eine Wärmetauscherkammer ausgebildet ist.
  • Diese Vorrichtung, die oftmals auch als innerer Wärmetauscher in transkritischen Klimakreisläufen bezeichnet wird, ist aus der DE 196 35 454A1 bekannt und kann als fortschrittlich angesehen werden, weil die damit erreichbare Wärmetauschrate den Anforderungen entspricht und weil sie auch eine Akkumulatorkammer umfasst. Jedoch scheint die Herstellung dieser - liegend im Einbauraum des Kraftfahrzeuges angeordneten - Vorrichtung ziemlich aufwendig zu sein, da die Rohre als Spiralen verformt sind und das Einsetzen der Wärmeleitrippen zwischen den Windungen der Spiralen ebenfalls kompliziert sein könnte.
  • In der DE 103 22 028 B4 wurde ein Zwischenwärmetauscher als koaxiales Rohr in das Sammelrohr des Verdampfers integriert, wodurch eine sehr kompakte Gestaltung geschaffen wurde, die scheinbar auch günstiger herstellbar ist, die jedoch keinen Akkumulator aufweist.
  • In der deutschen Patentschrift DE 199 18 617 C2 wurden ein Akkumulator und - getrennt davon - auch ein innerer Wärmetauscher mit dem Gaskühler vereinigt, wodurch eine überaus kompakte Gestaltung geschaffen wurde. Der Akkumulator ist mit einem Sammelrohr des Gaskühlers verbunden. Der innere Wärmetauscher befindet sich am oberen oder unteren Rand des Gaskühlers, also parallel zu dessen Rohren, und damit unmittelbar im Einflussbereich der Kühlluft, die im Sommer eine Temperatur von etwa 30 - 40 °C aufweist, wodurch dem beabsichtigten Effekt des inneren Wärmetauschers entgegengewirkt wird. Der Grad der beabsichtigten Kühlung des Kältemittels auf der Hochdruckseite wird durch die relativ hohe Temperatur der Kühlluft etwas reduziert. Der innere Wärmetaucher ist ferner recht aufwendig herstellbar. Dessen Verbindung mit dem Gaskühler scheint ebenfalls konstruktiv schwierig ausführbar zu sein.
  • Die Aufgabe der Erfindung besteht darin, mit anderen Gestaltungsmerkmalen eine hinsichtlich Kompaktheit und Funktionalität vergleichbare Vorrichtung vorzuschlagen, die sich günstiger herstellen lässt.
  • Die erfindungsgemäße Lösung ergibt sich bei der Vorrichtung gemäß Oberbegriff des Anspruchs 1 durch die Merkmale in dessen kennzeichnendem Teil.
  • Weil gemäß der Erfindung der das Rohr enthaltende Behälter mit dem Sammelrohr des Wärmetauschers, vorzugsweise des Gaskühlers, zu einer Baueinheit verbunden ist, wobei sich die im Behälter vorhandene Akkumulatorkammer und die Wärmetauscherkammer parallel zum Sammelrohr und über einen wesentlichen Abschnitt der Länge des Behälters erstrecken, wurde hinsichtlich Kompaktheit ein gutes Ergebnis erzielt. Gleichzeitig eröffnet sich die günstige Möglichkeit, einen Trockner und ggf. auch einen Filter in der Akkumulatorkammer und/oder der Wärmetauscherkammer des Behälters anzuordnen, da das Raumangebot für diese Maßnahme ausreichend ist. Der Filter und der Trockner sichern die gewünschte Trocknung und Reinigung (Behandlung) des transkritischen Kältemittels, was beispielsweise CO2 sein kann.
  • Der Akkumulator dient der Funktionalität der Anlage, da er dazu beiträgt, dass nur dampfförmiges Kältemittel zum Kompressor gelangt und dadurch dessen einwandfreien Betrieb gewährleistet.
  • Dem steht nicht entgegen, dass dem dampfförmigen Kältemittel kurz vor Verlassen der Wärmetauscherkammer in Richtung auf den Kompressor über eine Öffnung in der Längswand geringe Mengen an Öl und flüssigem Kältemittel zugeführt werden. Der Kältemitteldampf befindet sich an dieser Stelle in einem solchen Zustand, dass die Zuführung von ÖI und flüssigem Kältemittel eine weitere Abkühlung durch Verdampfungskühlung zur Folge hat. Der dampfförmige Zustand des Kältemittels am Kompressor wird dadurch unterstützt und die Kältemitteleintrittstemperatur am Kompressor wird wieder abgesenkt. Bei dem vorne erwähnten Stand der Technik muss das Kältemittel nach der Rückführung des Öls eine mehr oder weniger große Steigung überwinden, was Verluste mit sich bringt. Gemäß der vorliegenden Erfindung wird die Rückführung unter Umgehung des inneren Wärmetauschers direkt in die Saugleitung vorgenommen, wodurch ein günstigerer Wärmetransfer vorhanden ist.
  • Bei dem erwähnten Rohr handelt es sich vorzugsweise um ein stranggepresstes Mehrkammerrohr, dass sich im wesentlichen gerade über wenigstens eine wesentliche Länge des Behälters erstreckt, wodurch u. a. die relativ kostengünstige Herstellung der Vorrichtung bewirkt wird. Bevorzugt wird das Mehrkammerrohr um seinen gesamten Umfang mit der Wärmetauschrippe belegt.
  • Eine Längswand ist im Behälter ausgebildet, die den Behälter in zwei Teile aufteilt, und zwar eine Akkumulatorkammer und eine Wärmetauscherkammer. Die Längswand besitzt an einem Ende wenigstens eine Öffnung, um das Kältemittel von der Akkumulatorkammer in die Wärmetauscherkammer strömen zu lassen. Am anderen Ende der Längswand ist eine andere Öffnung vorhanden, über die im Akkumulator abgesetztes Öl in das Kältemittel gelangen kann.
  • In der Akkumulatorkammer kann ein Trocknungsmittel und auch ein Filter angeordnet werden. Es ist ein Einströmrohr in der Akkumulatorkammer angeordnet, um die Absetzung eventuell vorhandenen flüssigen Kältemittels in der Niederdruckphase zu unterstützen. In oder an dem Einführungsrohr kann sich der Trockner befinden und unmittelbar darunter kann das Filter angeordnet sein.
  • Es kann eine Wand aus Kunststoff in den Behälter eingesetzt werden, die den unerwünschten Wärmeübergang zwischen der Akkumulatorkammer und der Wärmetauscherkammer unterdrückt. Der Wärmeaustausch soll im Wesentlichen in der Wärmetauscherkammer stattfinden, da diese speziell dafür ausgestattet wurde. Das führt insgesamt zu etwas höheren Temperaturunterschieden zwischen der Niederdruckseite und der Hochdruckseite in der Wärmtauscherkammer selbst, woraus eine verbesserte Effizienz des Wärmetausches resultiert.
  • Der unabhängige Anspruch 19 bezieht sich auf eine nicht mit einem Wärmetauscher, vorzugsweise dem Gaskühler, vereinigte Vorrichtung, die sich vielmehr an einer geeigneten Stelle im Klimakreislauf befindet und die besonders günstig herstellbar ist und eine hohe Wirksamkeit besitzt.
  • Diese Vorrichtung zeichnet sich dadurch aus, dass der Behälter als schlanker, vorzugsweise im Strangpressverfahren hergestellter Hohlkörper mit einer Längswand oder mit Haltern zum Halten einer eingesetzten Längswand ausgebildet ist, wobei die Längswand wenigstens eine Öffnung aufweist, um das Kältemittel aus der Akkumulatorkammer in die Wärmetauscherkammer strömen zu lassen, und dass das Rohr als vorzugsweise mit dem gleichen Strangpressverfahren hergestelltes Mehrkammerrohr ausgebildet ist, das sich durch die Wärmetauscherkammer erstreckt und allseitig mit Wärmetauschrippen belegt ist. Die Vorrichtung ist besonders herstellungsfreundlich und zeichnet sich ferner durch ihre schlanke Gestaltung aus, die dazu beiträgt, eine herkömmliche Klimaanlage und eine Klimaanlage mit transkritischem Kältemittel, beispielsweise CO2, mit im Wesentlichen gleichem Raumbedarf unterzubringen, was ein nicht zu vernachlässigender Vorteil für die Automobilhersteller ist, die somit nicht gezwungen sind, ihre Raumkonzepte innerhalb einer Baureihe von Automobilen in Abhängigkeit vom Typ der Klimaanlage zu verändern. Mit Blick auf weltweit unterschiedliche Umweltschutzvorschriften wird man Automobile für einen Markt mit herkömmlichen Klimaanlagen ausstatten wollen und für einen anderen Markt mit CO2-Klimaanlagen.
  • Im Anschluss werden einige Ausführungsbeispiele unter Bezugnahme auf die beiliegenden Abbildungen beschrieben. In dieser Beschreibung sind weitere Merkmale und damit einhergehende Vorteile enthalten, die sich als besonders wichtig herausstellen können.
  • Kurzbeschreibung der Abbildungen
  • Die Fig. 1 zeigt einen Längsschnitt durch eine erfindungsgemäße Vorrichtung.
  • Die Fig. 2 zeigt ein Querschnitt durch die Vorrichtung gemäß den Fig. 1 oder 3.
  • Die Fig. 3 zeigt einen Längsschnitt bei einer bevorzugten erfindungsgemäßen Ausführungsform.
  • Die Fig. 4 zeigt eine alternative Gestaltung in einem Querschnitt durch den Behälter.
  • Die Fig. 5 zeigt ein flaches Mehrkammerrohres in einem Querschnitt gemäß einer anderen Alternative.
  • Die Fig. 6, 7 und 8 zeigen verschiedene Ausführungen des Behälters im Querschnitt.
  • Die Fig. 9 -12 zeigen rein schematisch die Verbindung der Vorrichtung mit einem Wärmetauscher, vorzugsweise mit dem Gaskühler.
  • Die in den Ausführungsbeispielen beschriebenen Vorrichtungen sind vorzugsweise für den Einsatz in Klimaanlagen von Kraftfahrzeugen in etwa senkrecht stehender Anordnung bestimmt.
  • Die Vorrichtung zur Behandlung des Kältemittels gemäß den Fig. 1 und 3 unterscheidet sich durch die Anordnung eines Filters 23 in der Akkumulatorkammer 21 bzw. in der Wärmetauscherkammer 22. Sie stimmen ansonsten darin überein, dass sie einen Behälter 20 mit einer Längswand 26 aufweisen, der mittels Strangpressverfahren hergestellt wurde. Die Längswand 26 unterteilt den Behälter 20 in die beiden erwähnten Kammern 21, 22 die sich parallel und im Wesentlichen über die gesamte Länge des Behälters 20 erstrecken. In der Akkumulatorkammer 21 befindet sich ein Trockner 24, der im diesem Ausführungsbeispiel außerhalb eines Einführungsrohres 25 angeordnet wurde. Durch die Wärmetauscherkammer 22 erstreckt sich ein flaches Mehrkammerrohr 10, das mit einer Wärmeleitrippe 11 ausgestattet ist, die den verbleibenden Querschnitt der Wärmetauscherkammer 22 weitgehend ausfüllt, um hinsichtlich Wärmetauscheffizienz gute Ergebnisse erreichen zu können. Ferner wurde in beiden Ausführungen eine Isolation 50 vorgesehen, die die Oberfläche des Behälters 20 abdeckt. Diese Maßnahme bietet sich vor allem dort an, wo man Temperatureinflüsse aus der Umwelt auf den Wärmeaustausch im Behälter 20 vermeiden möchte. Gewöhnlich handelt es sich dabei um zu hohe Außentemperaturen. Das niederdruckseitige, kühlere Kältemittel strömt durch eine Öffnung 40 im oberen Deckel 80 in die Sammlerkammer 21 ein. Um die Akkumulatorfunktion bzw. das Absetzen von Flüssigkeit und ÖI zu unterstützen, ragt ein Einführungsrohr 25 in die Akkumulatorkammer 21 hinein. Im Falle der Fig. 1 strömt dieses Kältemittel durch einen Filterkorb 25 am Ende des Einführungsrohres 25. Im Kältemittel vorhandenes Öl und restliches flüssiges Kältemittel setzen sich in der Akkumulatorkammer 21 unten ab. Das gasförmige Kältemittel strömt oben über eine Einströmöffnung 31 in der Längswand 26 in die Wärmetauscherkammer 22 ein, um durch die Wärmeleitrippe 11 nach unten in Richtung Austritt 41 zu gelangen, der in der Wand des Behälters 20 angeordnet ist. Das hochdruckseitige und wärmere Kältemittel strömt über einen Kanal 70 im oberen Deckel 80 in das Mehrkammerrohr 10 ein, strömt im Mehrkammerrohr 10 nach unten, um über den Austrittskanal 71 im unteren Deckel 80, nach erfolgter Wärmeabgabe an das niederdruckseitige Kältemittel und in weiter abgekühltem und deshalb die Leistung verbesserndem Zustand, den Behälter 20 in Richtung auf ein nicht gezeigtes Expansionsorgan und den Verdampfer zu verlassen. Die beschriebene, Durchströmungsrichtung dient lediglich dem Verständnis der Abbildungen. Sie wird im Übrigen in zweckmäßiger Weise festgelegt. Unten in der Längswand 26 befindet sich ein Kanal 30 und eine Bohrung 32, um dem niederdruckseitigen Kältemittel nach der Durchströmung der Wärmetauscherkammer 22 im Akkumulator 21 abgesetztes ÖI zuzuführen. (Fig. 2) Im Ausführungsbeispiel gemäß der Fig. 3 wurden zwei flache Filterelemente 24 vorgesehen. Eines davon wurde vor dem Kanal 30 angeordnet und das zweite befindet sich vor dem bereits erwähnten Austritt 41 in der Wärmetauscherkammer 22. Mit dieser Ausgestaltung soll darauf aufmerksam gemacht werden, dass die vorliegende Erfindung hinsichtlich der Platzierung solcher Elemente einen größeren Gestaltungsspielraum für den Konstrukteur bietet als der Stand der Technik.
  • Die Fig. 4 zeigt den Querschnitt durch den Behälter 20 einer anderen besonders bemerkenswerten Ausführungsform. In manchen Fällen ist eine größere oder speziell gestaltete Akkumulatorkammer 21 erforderlich, die gemäß Fig. 4 dadurch erreicht wurde, dass das flache Mehrkammerrohr 10 mit einer an die Kontur des Behälters 20 angepassten Formgebung ausgeformt wurde und sich somit entlang eines Teils der Behälterwand erstreckt. Auch hier wurde eine Längswand 26 eingesetzt, die ebenfalls an die erwähnte Kontur angepasst ist. Auf der Innenseite der Behälterwand befinden sich Aufnahmenuten 27, in die die Längsränder der Längswand 26 eingeschoben werden können. Die Aufnahmenuten 27 schränken die Herstellbarkeit des Behälters 20 mittels Strangpressverfahren nicht ein, d. h. sie sind mittels dieses Verfahrens realisierbar. Das Mehrkammerrohr 10 ist in bevorzugter Weise, jedoch nicht in notwendiger Weise, ebenfalls ein stranggepresstes Rohr, mit beispielsweise zwei Reihen von Durchbrüchen 12. Besonders bevorzugt wird diese Ausbildung dann vorgenommen, wenn, wie in der Fig. 5 gezeigt ist, auf die gewellten Wärmetauschrippen 11 als Einzelteil verzichtet werden soll, indem das Mehrkammerrohr 10 auf der Außenseite mit rippenartigen Kanälen ausgestattet wird. Hier ist es gemäß einer nicht gezeigten Weiterbildung auch möglich, die Längswand 26 ebenfalls einstückig mit dem Mehrkammerrohr 10 auszubilden, wodurch auf das Einsetzen einer Längswand 26 und auf die dafür erforderlichen Aufnahmenuten 27 oder dgl. verzichtet werden kann. In diesem Fall bestehen alle Teile aus Metall, beispielsweise aus Aluminium. Es bringt jedoch bestimmte vorne bereits erwähnte Vorteile für den Wärmeaustausch mit sich, wenn die Längswand 26 aus einem Werkstoff mit niedrigerem Wärmeleitwert, beispielsweise aus Kunststoff, hergestellt und eingesetzt wird.
  • Die Fig. 6, 7 und 8 zeigen weitere Ausführungsbeispiele im Querschnitt durch einen stranggepressten Behälter 20 mit zwei Längswänden 26, die dann drei Kammern oder Abteilungen im Behälter 20 bilden. Diese Kammern können entsprechend dem gewünschten Anwendungsfall als Akkumulatorkammer 22 oder als Wärmetauscherkammer 21 ausgebildet sein. Im Beispiel gemäß der Fig. 6 wurde die mittlere Kammer als Wärmetauscherkammer 22 und die beiden anderen Kammern als Akkumulatorkammern 21 ausgebildet. In der Wärmetauscherkammer 22 befindet sich ein Mehrkammerrohr 10 welches vorstehend mit Bezug auf die Fig. 5 bereits beschrieben wurde. Die Fig. 7 zeigt ein anderes Beispiel, bei dem alle drei Kammern als Wärmetauscherkammern 22 ausgebildet sind. Mit dem Bezugszeichen 90 wurde eine gestalterische Option hingewiesen, die darin besteht, die Wanddicke des Behälters 20 partiell zu vergrößern, um den Querschnitt der Kammern - bei Beibehaltung der runden Querschnittsform des Behälters 20 - so auszubilden, dass das Einführen des Rohres 10 mit der Wärmetauschrippe 11 erleichtert wird. Es können dabei übliche Wellrippen 11 verwendet werden, die spiralartig um das Rohr 10 gewickelt werden. In anderen Fällen bietet sich ein solcher "vergleichmäßigter" Querschnitt auch für die Sammlerkammer 21 an. In der Fig. 8 wurde der "vergleichmäßigte" Querschnitt mit einer anderen Maßnahme erreicht, nämlich durch eine geringfügige Abweichung von der runden Behälterform, die trotz der hohen Drücke im System noch hinnehmbar ist. Wie aus der Darstellung erkennbar ist, wurden vier am Umfang des Behälters 20 verteilte Abstufungen 60 vorgesehen, die dazu führen, dass der Querschnitt der oberen und der unteren Wärmetauscherkammer 22 etwa rechteckig sein kann. Die mittlere Kammer wurde hier als Akkumulatorkammer 21 ausgebildet.
  • Die bisher beschriebene Vorrichtung wurde, wie in den folgenden Fig. 9-12 dargestellt ist, mit dem Gaskühler 3 vereinigt, um eine besonders kompakte Gestaltung des gesamten Systems zu erreichen. Der Behälter 20 kann im Prinzip ein solcher sein, wie er beispielsweise in der Fig. 3 gezeigt und vorstehend bereits beschrieben wurde.
  • Wie es bei Klimaanlagen mit zweiphasigem Kältemittel aus dem Stand der Technik üblich ist, wird der Behälter 20 parallel zu einem Sammelrohr 30 des Kondensators, hier jedoch des Gaskühlers 3, angeordnet und damit verbunden. Der Unterschied besteht ferner darin, dass es sich im Stand der Technik lediglich um einen Sammler handelt, vorliegend jedoch ein Akkumulator 21, vereinigt mit einem inneren Wärmetauscher 22, am Gaskühler 3 angeschlossen wird. Konkret wird im gezeigten Ausführungsbeispiel der Behälter 20 mittels zweier Halter 5 am Sammelrohr 4 befestigt. In der Fig. 9 wurden die notwendigen Bestandteile des Klimakreislaufs an den Zu - und Abströmstellen für das niederdruckseitige ND und das hochdruckseitige HD Kältemittel durch entsprechende Beschriftung angegeben. Der Gaskühler 3 empfängt vom Kompressor kommendes komprimiertes, gasförmiges HD - Kältemittel hoher Temperatur, welches im Gaskühler 3 durch Wärmeaustausch mit Kühlluft abgekühlt wird. Die serpentinenartige Durchströmung des Gaskühlers 3 durch Gruppen paralleler Flachrohre wurde durch Pfeile angedeutet. In den Sammelrohren 4 des Gaskühlers 3 befinden sich Trennwände, die die beschriebene Durchströmung bewirken. Das HD - Kältemittel tritt im Ausführungsbeispiel unmittelbar nach Verlassen des Gaskühlers 3 in die Wärmetauscherkammer 22 ein, und zwar, wie beschrieben, in das sich durch die Kammer 22 erstreckende Mehrkammerrohr 10.
  • In der Fig. 9 wurde vorgesehen, den Übertritt vom Gaskühler 3 zum Behälter 20 mittels einer kurzen Leitung 6 vom Sammelrohr 4 in das Mehrkammerrohr 10 vorzunehmen. Als Alternative dazu zeigt die Fig. 12 eine etwas kompaktere Ausbildung, die darin besteht, dass die Leitung 6 durch einen der Halter 5 hindurchgeht und am Mehrkammerrohr 10 angeschlossen ist. Das vom Verdampfer kommende ND - Kältemittel befindet sich im Zustand der Unterkühlung. Es tritt durch das in der Akkumulatorkammer 21 reichende Einführungsrohr 25 in die Akkumulatorkammer 21 ein und passiert dabei den Trockner 24 und einen Filter 23 am Ende des Einführungsrohres 25. Im Unterschied zu den bereits beschriebenen Ausbildungen befindet sich die Öffnung für das Öl in der Längswand 26 unmittelbar im Bereich des Bodens. Am oberen Ende der Längswand 26 befindet sich die Einströmöffnung 31 für das gasförmige ND-Kältemittel, welches in der Wärmetauscherkammer 22 durch die Wärmetauschrippe 11 strömt, um unten aus der Kammer 22 in Richtung auf den Kompressor auszuströmen. Dabei wird es mit Öl und abgesetztem flüssigem Kältemittel angereichert, welches wegen der im Wärmetauscher aufgenommenen Wärme sofort in den gasförmigen Zustand übergeht und eine geringere Temperatur annimmt, wodurch der Kompressor entlastet wird. Die Fig. 10 zeigt, ebenfalls schematisch, einen Ausschnitt aus einer Draufsicht auf die Vorrichtung gemäß Fig. 9.
  • Die Fig. 11 zeigt einen weiterbildenden Gedanken, der darin besteht, dass der mittels Strangpressens hergestellte Behälter 20 keine integrierte Längswand 26 aufweist, sondern lediglich mit Aufnahmenuten 40 ausgestattet wurde. Diese Aufnahmenuten 40 dienen dazu, eine aus Kunststoff bestehende Längswand einsetzen zu können, die ansonsten wie beschrieben ausgebildet ist. Eine solche Ausgestaltung bringt Vorteile hinsichtlich der Effizienz des Wärmetausches, und sie ist trotz des herrschenden hohen Drucks ausführbar, weil es zwischen der Wärmetauscherkammer 22 und der Akkumulatorkammer 21 keine nennenswerten Druckunterschiede gibt.
  • In den Fig. 9 und 10 wurde eine zusätzliche Längswand aus Kunststoff unmittelbar an die aus Metall bestehende Längswand 26 angefügt, wie durch die zwei parallelen Striche erkennbar sein soll.
  • Der Behälter 20 der vorgeschlagenen Vorrichtung zeichnet sich darüber hinaus durch seine schlanke Gestaltung aus. Das Verhältnis seiner Länge L zu seinem Durchmesser D beträgt mindestens 3 : 1, vorzugsweise liegt das Verhältnis bei etwa 6 : 1.

Claims (26)

1. Vorrichtung zur Behandlung des Kältemittels, das in einem transkritischen Klimakreislauf zirkuliert, enthaltend: Kompressor (1), Gaskühler (3), Verdampfer, (Wärmetauscher) und Expansionsorgan und dabei eine Hochdruckseite und Niederdruckseite durchläuft, in denen das Kältemittel unterschiedliche Temperatur aufweist, wobei die Vorrichtung ein flaches Mehrkammerrohr (10) umfasst, durch das die eine Seite strömt und das in einem Behälter (20) angeordnet ist, durch den die andere Seite strömt, um als Zwischenwärmetauscher zu dienen, wobei in dem Behälter (20) eine Akkumulatorkammer (21) und eine Wärmetauscherkammer (22) ausgebildet ist,
dadurch gekennzeichnet, dass
der das Mehrkammerrohr (10) enthaltende Behälter (20) mit einem Sammelrohr (4) eines Wärmetauschers (3) verbunden ist, wobei sich die Akkumulatorkammer (21) und die Wärmetauscherkammer (22) parallel und wenigstens über einen wesentlichen Abschnitt der Länge des schlanken Behälters (20) erstrecken.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass ein Einführungsrohr (25) für die Niederdruckseite in der Akkumulatorkammer (21) angeordnet ist. '
3. Vorrichtung nach Anspruch 1 und 2, dadurch gekenrizeichnet, dass ein Trockner (24) im oder am Einführungsrohr (25) angeordnet ist.
4. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass in dem Behälter (20) wenigstens eine Längswand (26) angeordnet ist, an deren einem Ende wenigstens eine Einströmöffnung (31) vorhanden ist, um die Niederdruckseite aus der Akkumulatorkammer (21) in die Wärmetauscherkammer (22) des Behälters (20) zu bringen.
5. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass am anderen Ende der Längswand (26) wenigstens eine Öffnung (32) für im Kältemittel enthaltendes Öl vorhanden ist.
6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Längswand (26) vorzugsweise außerhalb der Mittelebene des Behälters (20) angeordnet ist, so dass die Akkumulatorkammer (21) größer ist als die Wärmetauscherkammer (22).
7. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sich die im Inneren des Behälters (20) befindliche Wärmetauscherkammer (22) um einen Teilradius desselben erstreckt.
8. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Behälter (20) und das flache Mehrkammerrohr (10) im Extrusionsverfahren hergestellt werden.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass sich das Mehrkammerrohr im wesentlichen unverformt durch die Wärmetauscherkammer (22) des Behälters (20) erstreckt und zumindest der größte Teil der Rohrlänge mit Wärmeleitrippen (11) ausgestattet ist, die möglichst den gesamten verbleibenden Querschnitt der Wärmetauschkammer (22) ausfüllen.
10. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Behälter (20) mit oder ohne Längswand (26) ein mittels Extrusionsverfahren hergestelltes Rohr ist, dessen Enden mit Deckel (80) verschlossen sind.
10. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, eine Isolationsplatte oder dergleichen, angrenzend an die Längswand (26), angeordnet ist.
11. Vorrichtung nach einem der vorstehenden Ansprüche 1 - 9, dadurch gekennzeichnet, dass anstelle der Längswand eine Isolationsplatte in das Rohr einsetzbar ist.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass an gegenüberliegenden Seiten der Rohrwand Nuten oder dergleichen Aufnahmen (27) angeformt sind, in die die Isolationsplatte eingesetzt werden kann.
13. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Behälter (20) gegenüber dem durch den Wärmetauscher, vorzugsweise durch den Gaskühler, strömenden Kühlluftstrom abgeschirmt ist.
14. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Sammelrohr (4) des Wärmetauschers, vorzugsweise des Gaskühlers, und der Behälter (20) mit einem geringen Abstand zueinander angeordnet sind und eine Baueinheit bilden.
16. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Behälter (20) in Luftströmungsrichtung hinter einem Luftleitblech angeordnet ist.
17. Vorrichtung nach einem der Ansprüche 1-15, dadurch gekennzeichnet, dass der Behälter (20) an seiner Außenseite wenigstens teilweise mit einer Isolation (50) versehen ist.
18. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, das im Behälter (20) ein oder mehrere Filter (23) zur Behandlung des Kältemittels vorgesehen sind.
19. Vorrichtung zur Behandlung des Kältemittels, das in einem transkritischen Klimakreislauf zirkuliert, enthaltend: Kompressor, Gaskühler, Verdampfer, (Wärmetauscher) und Expansionsorgan und dabei eine Hochdruckseite und Niederdruckseite durchläuft, in denen das Kältemittel unterschiedliche Temperatur aufweist, wobei die Vorrichtung ein flaches Mehrkammerrohr (10) umfasst, durch das die eine Seite strömt und das in einem Behälter (20) angeordnet ist, durch den die andere Seite strömt, um als Zwischenwärmetauscher zu dienen, wobei in dem Behälter (20) eine Akkumulatorkammer (21) und eine Wärmetauscherkammer (22) ausgebildet ist,
dadurch gekennzeichnet, dass
der Behälter (20) als schlanker Hohlkörper mit wenigstens einer Längswand (26) oder mit Halterungen (27) zum Halten wenigstens einer eingesetzten Längswand ausgebildet ist, wobei die wenigstens eine Längswand (26) wenigstens eine Öffnung (31) aufweist, damit das Kältemittel die Kammern (21, 22) durchströmen kann und wobei sich die Akkumulatorkammer (21) und die Wärmetauscherkammer (22) parallel und wenigstens über einen wesentlichen Abschnitt der Länge des schlanken Behälters (20) erstrecken.
20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass das flache Mehrkammerrohr (10) sich längs durch die Wärmetauscherkammer (22) erstreckt und mit Wärmeleitrippen (11) besetzt ist.
21. Vorrichtung nach Anspruch 19 oder 20, dadurch gekennzeichnet, dass die eingesetzte Längswand einen geringeren Wärmeübergangswert besitzt, beispielsweise aus Kunststoff besteht.
22. Vorrichtung nach den Ansprüchen 1 - 21, dadurch gekennzeichnet, dass die Wärmeleitrippe (11) den restlichen Querschnitt der Wärmetauscherkammer (22) wenigstens weitestgehend ausfüllt.
23. Vorrichtung nach einem der Ansprüche 18 - 22, dadurch gekennzeichnet, dass die Längswand (26) außerhalb der Mittelebene des Behälters angeordnet ist.
24. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Mehrkammerrohr (10) einschließlich der Wärmeleitrippen (11) als extrudiertes Erzeugnis herstellbar ist.
25. Vorrichtung nach einem der Ansprüche 19-24, dadurch gekennzeichnet, dass ein Trockner (24) in der Akkumulatorkammer (21) und vorzugsweise auch ein Filter (23) im Behälter (20) angeordnet sind.
26. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch geknnzeichnet, dass das Verhältnis der Länge (L) zum Durchmesser (D) des Behälters (20) ≥ 3 : 1 beträgt.
EP06007946A 2005-05-11 2006-04-15 Wärmetauscher mit Akkumulator Expired - Fee Related EP1724536B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005021787A DE102005021787A1 (de) 2005-05-11 2005-05-11 Vorrichtung zur Behandlung des Kältemittels

Publications (3)

Publication Number Publication Date
EP1724536A2 true EP1724536A2 (de) 2006-11-22
EP1724536A3 EP1724536A3 (de) 2008-07-16
EP1724536B1 EP1724536B1 (de) 2011-01-26

Family

ID=36889218

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06007946A Expired - Fee Related EP1724536B1 (de) 2005-05-11 2006-04-15 Wärmetauscher mit Akkumulator

Country Status (3)

Country Link
US (1) US20060254310A1 (de)
EP (1) EP1724536B1 (de)
DE (2) DE102005021787A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816424A1 (de) * 2006-02-02 2007-08-08 Behr GmbH & Co. KG Wärmetauscher für einen Kältekreislauf
EP1892491A2 (de) * 2006-07-12 2008-02-27 Behr GmbH & Co. KG Einheit, aufweisend einen Gaskühler und einen inneren Wärmetauscher, und Wärmetauscher
FR2930018A1 (fr) * 2008-04-15 2009-10-16 Valeo Systemes Thermiques Dispositif combine comprenant un echangeur de chaleur interne et un accumulateur.
EP2199709A2 (de) * 2008-12-22 2010-06-23 Valeo Systemes Thermiques Apparat mit innerem Wärmetauscher und einem Sammler
CN101776357B (zh) * 2009-01-09 2011-12-28 三花丹佛斯(杭州)微通道换热器有限公司 一种热交换器
WO2013114384A1 (en) * 2011-12-26 2013-08-08 Robert Bosch Engineering And Business Solutions Limited An accumulator for a refrigerant recovery and recharge device
EP2631566A1 (de) * 2012-02-24 2013-08-28 Airbus Operations GmbH Akkumulatoranordnung mit integriertem Superkühler
EP2937658A1 (de) * 2014-04-23 2015-10-28 MAHLE International GmbH Innerer wärmeübertrager
EP2963362A1 (de) * 2014-06-30 2016-01-06 Eaton Industrial IP GmbH & Co. KG Akkumulator für ein klimaanlagensystem
EP3748269A1 (de) * 2019-06-05 2020-12-09 Valeo Systemes Thermiques Wärmetauscher

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024899A (ja) * 2007-07-17 2009-02-05 Showa Denko Kk エバポレータ
US7971441B2 (en) 2007-10-26 2011-07-05 GM Global Technology Operations LLC Receiver/dryer-accumulator-internal heat exchanger for vehicle air conditioning system
FR2940420B1 (fr) * 2008-12-22 2010-12-31 Valeo Systemes Thermiques Dispositif combine comprenant un echangeur de chaleur interne et un accumulateur constitutifs d'une bouche de climatisation
FR2940419B1 (fr) * 2008-12-22 2010-12-31 Valeo Systemes Thermiques Dispositif combine constitue d'un echangeur de chaleur interne et d'un accumulateur, et pourvu d'un composant interne multifonctions
DE102010040025A1 (de) * 2010-08-31 2012-03-01 Behr Gmbh & Co. Kg Kältemittelkondensatorbaugruppe
CN103635771A (zh) * 2011-06-27 2014-03-12 开利公司 微孔壳管式换热器
FR2978536B1 (fr) * 2011-07-25 2013-08-23 Valeo Systemes Thermiques Bouteille reservoir de fluide refrigerant et echangeur de chaleur comprenant une telle bouteille
US8899073B2 (en) 2011-12-14 2014-12-02 Delphi Technologies, Inc. Parallel plate type refrigerant storage device
JP2017219212A (ja) * 2016-06-03 2017-12-14 サンデンホールディングス株式会社 内部熱交換器一体型アキュムレータ及びこれを用いた冷凍サイクル
DE102017211529A1 (de) 2017-07-06 2019-01-10 Mahle International Gmbh Einsatzrohr für den Eintrittskanal eines Plattenwärmetauschers
US11892212B2 (en) * 2018-08-23 2024-02-06 Zhejiang Sanhua Intelligent Controls Co., Ltd. Gas-liquid separator and air conditioning system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19635454A1 (de) 1996-08-31 1998-03-05 Behr Gmbh & Co Sammler-Wärmeübertrager-Baueinheit und damit ausgerüstete Klimaanlage
DE19944950A1 (de) 1999-09-20 2001-03-22 Behr Gmbh & Co Klimaanlage mit innerem Wärmeübertrager
DE19918617C2 (de) 1999-04-23 2002-01-17 Valeo Klimatechnik Gmbh Gaskühler für einen überkritischen CO¶2¶-Hochdruck-Kältemittelkreislauf einer Kraftfahrzeugklimaanlage
JP2002310537A (ja) 2001-04-06 2002-10-23 Mitsubishi Heavy Ind Ltd 車両用空調装置
DE10322028B4 (de) 2003-05-16 2005-03-10 Wieland Werke Ag Kälteanlage mit Wärmeaustauscher

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868002A (en) * 1996-07-29 1999-02-09 Showa Aluminum Corporation Condenser with a liquid-receiver
DE19830757A1 (de) * 1998-07-09 2000-01-13 Behr Gmbh & Co Klimaanlage
DE19903833A1 (de) * 1999-02-01 2000-08-03 Behr Gmbh & Co Integrierte Sammler-Wärmeübertrager-Baueinheit
EP1202007A1 (de) * 2000-10-25 2002-05-02 Skg Italiana Spa Verflüssiger und Trockner
US6681597B1 (en) * 2002-11-04 2004-01-27 Modine Manufacturing Company Integrated suction line heat exchanger and accumulator
JP2004190956A (ja) * 2002-12-11 2004-07-08 Calsonic Kansei Corp コンデンサ
US6904770B2 (en) * 2003-09-03 2005-06-14 Delphi Technologies, Inc. Multi-function condenser
FR2875894B1 (fr) * 2004-09-24 2006-12-15 Valeo Climatisation Sa Dispositif combine d'echangeur de chaleur interne et d'accumulateur pour un circuit de climatisation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19635454A1 (de) 1996-08-31 1998-03-05 Behr Gmbh & Co Sammler-Wärmeübertrager-Baueinheit und damit ausgerüstete Klimaanlage
DE19918617C2 (de) 1999-04-23 2002-01-17 Valeo Klimatechnik Gmbh Gaskühler für einen überkritischen CO¶2¶-Hochdruck-Kältemittelkreislauf einer Kraftfahrzeugklimaanlage
DE19944950A1 (de) 1999-09-20 2001-03-22 Behr Gmbh & Co Klimaanlage mit innerem Wärmeübertrager
JP2002310537A (ja) 2001-04-06 2002-10-23 Mitsubishi Heavy Ind Ltd 車両用空調装置
DE10322028B4 (de) 2003-05-16 2005-03-10 Wieland Werke Ag Kälteanlage mit Wärmeaustauscher

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816424A1 (de) * 2006-02-02 2007-08-08 Behr GmbH & Co. KG Wärmetauscher für einen Kältekreislauf
EP1892491A2 (de) * 2006-07-12 2008-02-27 Behr GmbH & Co. KG Einheit, aufweisend einen Gaskühler und einen inneren Wärmetauscher, und Wärmetauscher
EP1892491A3 (de) * 2006-07-12 2009-02-18 Behr GmbH & Co. KG Einheit, aufweisend einen Gaskühler und einen inneren Wärmetauscher, und Wärmetauscher
FR2930018A1 (fr) * 2008-04-15 2009-10-16 Valeo Systemes Thermiques Dispositif combine comprenant un echangeur de chaleur interne et un accumulateur.
EP2110624A1 (de) * 2008-04-15 2009-10-21 Valeo Systèmes Thermiques Kombinierte Vorrichtung mit internem Wärmetauscher und Sammler
EP2199709A3 (de) * 2008-12-22 2012-01-04 Valeo Systèmes Thermiques Apparat mit innerem Wärmetauscher und einem Sammler
FR2940418A1 (fr) * 2008-12-22 2010-06-25 Valeo Systemes Thermiques Dispositif combine comprenant un echangeur de chaleur interne et un accumulateur
EP2199709A2 (de) * 2008-12-22 2010-06-23 Valeo Systemes Thermiques Apparat mit innerem Wärmetauscher und einem Sammler
CN101776357B (zh) * 2009-01-09 2011-12-28 三花丹佛斯(杭州)微通道换热器有限公司 一种热交换器
WO2013114384A1 (en) * 2011-12-26 2013-08-08 Robert Bosch Engineering And Business Solutions Limited An accumulator for a refrigerant recovery and recharge device
EP2631566A1 (de) * 2012-02-24 2013-08-28 Airbus Operations GmbH Akkumulatoranordnung mit integriertem Superkühler
CN103292525A (zh) * 2012-02-24 2013-09-11 空中客车作业有限公司 具有集成式过冷器的蓄能器装置
CN103292525B (zh) * 2012-02-24 2015-10-21 空中客车作业有限公司 具有集成式过冷器的蓄能器装置
US9719706B2 (en) 2012-02-24 2017-08-01 Airbus Operations Gmbh Accumulator arrangement with an integrated subcooler
EP2937658A1 (de) * 2014-04-23 2015-10-28 MAHLE International GmbH Innerer wärmeübertrager
EP2963362A1 (de) * 2014-06-30 2016-01-06 Eaton Industrial IP GmbH & Co. KG Akkumulator für ein klimaanlagensystem
EP3748269A1 (de) * 2019-06-05 2020-12-09 Valeo Systemes Thermiques Wärmetauscher

Also Published As

Publication number Publication date
DE102005021787A1 (de) 2006-11-16
EP1724536B1 (de) 2011-01-26
US20060254310A1 (en) 2006-11-16
DE502006008790D1 (de) 2011-03-10
EP1724536A3 (de) 2008-07-16

Similar Documents

Publication Publication Date Title
EP1724536B1 (de) Wärmetauscher mit Akkumulator
EP1724535B1 (de) Vorrichtung zur Zwischenkühlung
EP2044304B1 (de) Wärmetauscher mit kupplungsanschluss, beispielsweise ladeluftkühler, und kupplungsanschluss für wärmetauscher
EP1984196B1 (de) Wärmeübertrager, insbesondere mit kältespeicher
DE102005058769B4 (de) Ladeluftkühler
EP1774245B1 (de) Ganz-metall-wärmetauscher und verfahren zu seiner herstellung
DE112019003711B4 (de) Integrierter Flüssigkeits-/Luftgekühlter Kondensator und Niedertemperatur-Kühler
DE102006018681A1 (de) Wärmetauscher für ein Fahrzeug
DE102007054345A1 (de) Kühlmodul
DE3720483A1 (de) Waermetauscher
DE10162200A1 (de) Mit einem Aufnahmebehälter zusammengefasster Kondensator für ein Fahrzeug
DE4305060C2 (de) Gelöteter Wärmetauscher, insbesondere Verdampfer
DE102011113453A1 (de) Kühler
DE102013217287A1 (de) Innerer Wärmeübertrager für einen Kältemittelkreislauf, insbesondere für eine Klimaanlage eines Kraftfahrzeuges, und einen Kältemittelkreislauf mit einem Verdampfer
DE102013203222A1 (de) Wärmeübertrager
DE102004002252B4 (de) Wärmeübertrager für Fahrzeuge
EP1703242A1 (de) Wärmetauscher, insbesondere Kühlflüssigkeitskühler
EP1881288A1 (de) Rohr-Rippen-Block-Wärmetauscher mit Verbindungs- bzw. Anschlussblöcken
DE4330214B4 (de) Wärmetauscher
EP1684032B1 (de) Kondensator für eine Klimaanlage, insbesondere eines Kraftfahrzeuges
EP2937658B1 (de) Innerer wärmeübertrager
DE4327213A1 (de) Rekuperativer Wärmetauscher, insbesondere Kühler für Kraftfahrzeuge
DE102006057032A1 (de) Kasten zur Aufnahme eines Fluids für einen Wärmeübertrager sowie Verfahren zur Herstellung eines derartigen Kastens, Wärmeübertrager
DE19746371A1 (de) Wärmetauscher mit einem Sammelkasten mit zwei aneinander angrenzenden Kammern
EP2138798B1 (de) Sammelkasten, insbesondere eines Wärmeübertragers eines Kraftfahrzeuges, und Wärmeübertrager, insbesondere Kondensator, eines Kraftfahrzeuges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20090116

17Q First examination report despatched

Effective date: 20090219

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502006008790

Country of ref document: DE

Date of ref document: 20110310

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006008790

Country of ref document: DE

Effective date: 20110310

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111027

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006008790

Country of ref document: DE

Effective date: 20111027

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150506

Year of fee payment: 10

Ref country code: GB

Payment date: 20150424

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150424

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006008790

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160415

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160415