EP1713912B1 - Modifizierte sirna (short interfering rna) - Google Patents

Modifizierte sirna (short interfering rna) Download PDF

Info

Publication number
EP1713912B1
EP1713912B1 EP05700612.4A EP05700612A EP1713912B1 EP 1713912 B1 EP1713912 B1 EP 1713912B1 EP 05700612 A EP05700612 A EP 05700612A EP 1713912 B1 EP1713912 B1 EP 1713912B1
Authority
EP
European Patent Office
Prior art keywords
lna
rna
modified
modified sirna
sense strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05700612.4A
Other languages
English (en)
French (fr)
Other versions
EP1713912A1 (de
Inventor
Joacim Elmen
Claes Wahlestedt
Zicai Liang
Henrik Orum
Troels Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Innovation Center Copenhagen AS
Original Assignee
Santaris Pharma AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/DK2004/000192 external-priority patent/WO2004083430A2/en
Application filed by Santaris Pharma AS filed Critical Santaris Pharma AS
Publication of EP1713912A1 publication Critical patent/EP1713912A1/de
Application granted granted Critical
Publication of EP1713912B1 publication Critical patent/EP1713912B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3231Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/334Modified C
    • C12N2310/33415-Methylcytosine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity
    • C12N2320/51Methods for regulating/modulating their activity modulating the chemical stability, e.g. nuclease-resistance

Definitions

  • the present invention is directed to novel, modified siRNA which are significantly impaired in their ability to support cleavage of mRNA when incorporated into a RISC complex.
  • modified siRNA may be useful as therapeutic agents, e.g., in the treatment of various cancer forms.
  • RNA interference RNA interference
  • Elegans were made by Fire et al. (Nature, 1998, 391, 806-811 ). Long stretches of double stranded RNA (dsRNA) was found to have a potent knock-down effect on gene expression that could last for generations in the worm. RNA interference (RNAi) rapidly became a functional genomic tool in C. Elegans (early RNA interference is reviewed by Fire (TIG, 1999,15, 358-363 ) and Bosher and Labouesse (Nature Cell Biology, 2000, 2, E31-E36 )).
  • RNA interference was demonstrated to work in vertebrates were performed in zebrafish embryos and mouse oocytes ( Wargelius et al., Biochem. Biophys. Res. Com. 1999, 263, 156-161 , Wianny and Zernicka-Goetz, Nature Cell Biology, 2000, 2, 70-75 ). Since dsRNA induces non-specific effects in mammalian cells it has been argued that these mechanisms were not fully developed in the mouse embryonic system ( Alexopoulou et al., Nature, 2001, 413, 732-738 , Reviews: Stark et al., Annu. Rev. Biochem., 1998, 67, 227-264 and Samuel, Clin. Micro. Rev., 2001, 14, 778-809 ).
  • siRNAs mediate potent knock-down in a variety of mammalian cell lines and probably escaped the adverse non-specific effects of long dsRNA in mammalian cells.
  • This discovery was a hallmark in modern biology and the application of siRNAs as therapeutics soon became an attractive field of research (Reviewed by McManus and Sharp, Nature Reviews Genetics, 2002, 3, 737-747 and Thompson, DDT, 2002, 7, 912-917 ).
  • RNA analogues are much more stable in biological media, and that the increased stability is also induced to the proximate native RNA residues. By greater stability is mainly meant increased nuclease resistance but also better cellular uptake and tissue distribution may be conferred by such modifications.
  • Pre-siRNA ( Parrish et al. Mol. Cell, 2000, 6, 1077-1087 ) show tolerance for certain backbone modifications for RNAi in C. elegans.
  • phosphorothioates are tolerated in both the sense and antisense strand and so are 2'-fluorouracil instead of uracil.
  • 2'-aminouracil and 2'-aminocytidine reduce the RNAi activity when incorporated into the sense strand and the activity is completely abolished when incorporated in the antisense strand.
  • UU 3' overhangs can be exchanged with 2'deoxythymidine 3' overhangs and are well tolerated ( Elbashir et al., Nature, 2001, 411, 494-498 and Boutla et al., Curr. Biol., 2001, 11, 1776-1780 ).
  • DNA monomers can be incorporated in the sense strand without compromising the activity.
  • Nyhimnen et al. (Cell, 2001, 107, 309-321 ) showed the need for ATP in making siRNA out of RNAi, but also in the later steps to exert the siRNA activity. ATP is needed for unwinding and maintaining a 5'-phosphate for RISC recognition. The 5'-phosphate is necessary for siRNA activity.
  • Martinez et al. (Cell, 2002, 110, 563-574 ) showed that a single strand can reconstitute the RNA-induced silencing complex (RISC, Hammond et al., Nature, 2000, 404, 293-296 ) and that a single antisense strand has activity especially when 5'-phosphorylated. 5'-antisense strand modification inhibits activity while both the 3' end and the 5' end of the sense strand can be modified.
  • Amarzguioui et al. confirmed the above-mentioned findings, and it was concluded that a mismatch is tolerated as long as it is not too close to the 5' end of the antisense strand.
  • a mismatch 3-5 nucleotides from the 5' end of the antisense strand markedly diminishes the activity.
  • two mismatches are tolerated if they are in the "middle" or towards the 3' end of the antisense strand, though with a slightly reduced activity.
  • ENA bi-cyclic nucleoside analogue
  • siRNA Hamada et al., Antisense and Nucl. Acid Drug Dev., 2002, 12, 301-309 . It was shown that two ENA thymidines in the 5' end of the sense strand deteriorated the effect. It was concluded by Hamada et al. (2002) that: " using 2'-O,4'-C-ethylene thymidine, which is a component of ethylene-bridged nucleic acids (ENA), completely abolished RNAi".
  • the antisense strand is more sensitive to modifications than is the sense strand. Without being limited to any specific theory, this phenomena is, at least partly, believed to be based on the fact that the structure of the antisense/target duplex has to be native A-form RNA.
  • the sense strand of siRNA can be regarded as a "vehicle" for the delivery of the antisense strand to the target and the sense strand is not participating in the enzyme-catalysed degradation of RNA.
  • modifications in the sense strand is tolerated within a certain window even though the modifications induce changes to the A-form structure of the siRNA. If changes are introduced in the antisense strand they have to be structurally balanced within the recognition frame of the native RNA induced silencing complex (RISC).
  • RISC native RNA induced silencing complex
  • siRNAs have been shown to be able to potently suppress translation of complementary mRNAs inside cells.
  • the mechanism by which these molecules work have been characterised in some detail. Briefly, after introduction into the cell by transfection one of the two RNA strands of the siRNA gets incorporated into the an enzyme complex (termed RISC), which thereby acquires the ability to bind to and cleave a mRNA containing a complementary sequence (thereby preventing its translation into protein). It has been shown that each of the two strands of the siRNA can be incorporated into the RISC complex, but that the strand that forms the weakest basepair at its 5'-end is preferred.
  • RISC an enzyme complex
  • any siRNA will - to a different extent - lead to the production of a mixture of activated RISC complexes that can cleave both the intended target as well as non-targets. It is evident that when siRNAs are used as a therapeutic drug it is highly desirable that the vast majority, preferably all, of the activated RISC complex contains the siRNA strand that is complementary to the desired target.
  • modified siRNAs that i ) eliminates incorporation of the non-desired siRNA strand into the RISC complex, and/or ii ) disables the mRNA's destructive activity of inappropriately incorporated siRNA strands, would be highly desirable as such siRNAs would be expected to exert fewer side-effects than the corresponding non-modified siRNA drug.
  • the present invention is based on the surprising finding that the mRNA-cleaving capability of an activated RISC complex can be suppressed by modifying nucleotides at specific positions in the sense strand.
  • the present invention relates to a modified siRNA comprising a sense strand and an antisense strand, wherein the sense strand comprises a modified RNA nucleotide in at least position 10, calculated from the 5'-end.
  • the present invention relates to a modified RNA oligomer comprising 12-35 monomers, wherein said oligomer comprises a modified RNA nucleotide in at least position 10, calculated from the 5'-end.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a modified siRNA according to the invention and a pharmaceutically acceptable diluent, carrier or adjuvant.
  • the present invention relates to a modified siRNA according to the invention for use as a medicament.
  • the present invention relates to the use of a modified siRNA according to the invention for the manufacture of a medicament for the treatment of cancer, an infectious disease or an inflammatory disease.
  • the oligomers of the present invention may be used in a method for treating cancer, an infectious disease or an inflammatory disease, said method comprising administering a modified siRNA according to the invention or a pharmaceutical composition according to the invention to a patient in need thereof.
  • RNA or “small interfering RNA” refers to double-stranded RNA molecules from about 12 to about 35 ribonucleotides in length that are named for their ability to specifically interfere with protein expression.
  • modified siRNA means that at least one of the ribonucleotides in the siRNA molecule has been modified in its ribose unit, in its nitrogenous base, in its internucleoside linkage group, or combinations thereof.
  • nucleotide means a 2-deoxyribose (DNA) monomer or a ribose (RNA) monomer which is bonded through its number one carbon to a nitrogenous base, such as adenine (A), cytosine (C), thymine (T), guanine (G) or uracil (U), and which is bonded through its number five carbon atom to an internucleoside linkage group (as defined below) or to a terminal group (as defined below).
  • a nitrogenous base such as adenine (A), cytosine (C), thymine (T), guanine (G) or uracil (U)
  • RNA nucleotide or “ribonucleotide” encompasses a RNA monomer comprising a ribose unit which is bonded through its number one carbon to a nitrogenous base selected from the group consisting of A, C, G and U, and which is bonded through its number five carbon atom to a phosphate group or to a terminal group.
  • DNA nucleotide or "2-deoxyribonucleotide” encompasses a DNA monomer comprising a 2-deoxyribose unit which is bonded through its number one carbon to a nitrogenous base selected from the group consisting of A, C, T and G, and which is bonded through its number five carbon atom to a phosphate group or to a terminal group.
  • modified RNA nucleotide or “modified ribonucleotide” means that the RNA nucleotide in question has been modified in its ribose unit, in its nitrogenous base, in its internucleoside linkage group, or combinations thereof. Accordingly, a “modified RNA nucleotide” may contain a sugar moiety which differs from ribose, such as a ribose monomer where the 2'-OH group has been modified.
  • RNA nucleotide may contain a nitrogenous base which differs from A, C, G and U (a "non-RNA nucleobase”), such as T or Me C.
  • a “modified RNA nucleotide” may contain an internucleoside linkage group which is different from phosphate (-O-P(O) 2 -O-), such as phosphorothioate (-O-P(O,S)-O-).
  • DNA nucleobase covers the following nitrogenous bases: A, C, T and G.
  • RNA nucleobase covers the following nitrogenous bases: A, C, U and G.
  • non-RNA nucleobase encompasses nitrogenous bases which differ from A, C, G and U, such as purines (different from A and G) and pyrimidines (different from C and U).
  • nucleobase covers DNA nucleobases, RNA-nucleobases and non-RNA nucleobases.
  • sugar moiety which differs from ribose refers to a pentose with a chemical structure that is different from ribose.
  • sugar moieties which are different from ribose include ribose monomers where the 2'-OH group has been modified.
  • locked nucleic acid monomer When used in the present context, the terms "locked nucleic acid monomer”, “locked nucleic acid residue”, “LNA monomer” or “LNA residue” refer to a bicyclic nucleotide analogue.
  • LNA monomers are described in inter alia WO 99/14226 , WO 00/56746 , WO 00/56748 , WO 01/25248 , WO 02/28875 , WO 03/006475 and WO 03/095467 .
  • the LNA monomer may also be defined with respect to its chemical formula.
  • a “LNA monomer” as used herein has the chemical structure shown in Scheme 1 below: wherein X is selected from the group consisting of O, S and NR H , where R H is H or alkyl, such as C 1-4 -alkyl; Y is (-CH 2 ) r , where r is an integer of 1-4; Z and Z* are independently absent or selected from the group consisting of an internucleoside linkage group, a terminal group and a protection group; and B is a nucleobase.
  • nucleoside linkage group is intended to mean a group capable of covalently coupling together two nucleosides, two LNA monomers, a nucleoside and a LNA monomer, etc.
  • Specific and preferred examples include phosphate groups and phosphorothioate groups.
  • nucleic acid is defined as a molecule formed by covalent linkage of two or more nucleotides.
  • nucleic acid and polynucleotide are used interchangeable herein.
  • a “nucleic acid” or a “polynucleotide” typically contains more than 35 nucleotides.
  • oligonucleotide refers, in the context of the present invention, to an oligomer (also called oligo) of RNA, DNA and/or LNA monomers as well as variants and analogues thereof.
  • an "oligonucleotide” typically contains 2-35 nucleotides, in particular 12-35 nucleotides.
  • At least one encompasses an integer larger than or equal to 1, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and so forth.
  • a and “an” as used about a nucleotide, an active agent, a LNA monomer, etc. is intended to mean one or more.
  • the expression “a component (such as a nucleotide, an active agent, a LNA monomer or the like) selected from the group consisting of " is intended to mean that one or more of the cited components may be selected.
  • expressions like “a component selected from the group consisting of A, B and C” is intended to include all combinations of A, B and C, i.e. A, B, C, A+B, A+C, B+C and A+B+C.
  • thio-LNA refers to a locked nucleotide in which X in Scheme 1 is S.
  • Thio-LNA can be in both the beta-D form and in the alpha-L form. Generally, the beta-D form of thio-LNA is preferred.
  • the beta-D form of thio-LNA is shown in Scheme 2 as compound 2C.
  • amino-LNA refers to a locked nucleotide in which X in Scheme 1 is NH or NR H , where R H is hydrogen or C 1-4 -alkyl. Amino-LNA can be in both the beta-D form and alpha-L form. Generally, the beta-D form of amino-LNA is preferred. The beta-D form of amino-LNA is shown in Scheme 2 as compound 2D.
  • oxy-LNA refers to a locked nucleotide in which X in Scheme 1 is O. Oxy-LNA can be in both the beta-D form and alpha-L form. The beta-D form of oxy-LNA is preferred. The beta-D form and the alpha-L form are shown in Schemes 2 and 3 as compounds 2A and 2B, respectively.
  • mRNA means the mRNA transcript(s) of a targeted gene, and any further transcripts, which may be identified.
  • target nucleic acid encompass any RNA that would be subject to modulation, targeted cleavage, steric blockage (decrease the abundance of the target RNA and/or inhibit translation) guided by the antisense strand.
  • the target RNA could, for example, be genomic RNA, genomic viral RNA, mRNA or a pre-mRNA
  • target-specific nucleic acid modification means any modification to a target nucleic acid.
  • the term "gene” means the gene including exons, introns, non-coding 5' and 3' regions and regulatory elements and all currently known variants thereof and any further variants, which may be elucidated.
  • modulation means either an increase (stimulation) or a decrease (inhibition) in the expression of a gene.
  • inhibition is the preferred form of modulation of gene expression and mRNA is a preferred target.
  • targeting an siLNA or siRNA compound to a particular target nucleic acid means providing the siRNA or siLNA oligonucleotide to the cell, animal or human in such a way that the siLNA or siRNA compounds are able to bind to and modulate the function of the target.
  • hybridisation means hydrogen bonding, which may be Watson-Crick, Hoogsteen, reversed Hoogsteen hydrogen bonding, etc., between complementary nucleoside or nucleotide bases.
  • the four nucleobases commonly found in DNA are G, A, T and C of which G pairs with C, and A pairs with T.
  • RNA T is replaced with uracil (U), which then pairs with A.
  • the chemical groups in the nucleobases that participate in standard duplex formation constitute the Watson-Crick face.
  • Hoogsteen showed a couple of years later that the purine nucleobases (G and A) in addition to their Watson-Crick face have a Hoogsteen face that can be recognised from the outside of a duplex, and used to bind pyrimidine oligonucleotides via hydrogen bonding, thereby forming a triple helix structure.
  • complementary refers to the capacity for precise pairing between two nucleotides sequences with one another. For example, if a nucleotide at a certain position of an oligonucleotide is capable of hydrogen bonding with a nucleotide at the corresponding position of a DNA or RNA molecule, then the oligonucleotide and the DNA or RNA are considered to be complementary to each other at that position.
  • the DNA or RNA strand are considered complementary to each other when a sufficient number of nucleotides in the oligonucleotide can form hydrogen bonds with corresponding nucleotides in the target DNA or RNA to enable the formation of a stable complex.
  • siLNA or siRNA compound need not be 100% complementary to its target nucleic acid.
  • complementary and specifically hybridisable thus imply that the siLNA or siRNA compound binds sufficiently strong and specific to the target molecule to provide the desired interference with the normal function of the target whilst leaving the function of non-target mRNAs unaffected
  • conjugate is intended to indicate a heterogenous molecule formed by the covalent attachment of a compound as described herein to one or more non-nucleotide or non-polynucleotide moieties.
  • non-nucleotide or non-polynucleotide moieties include macromolecular agents such as proteins, fatty acid chains, sugar residues, glycoproteins, polymers, or combinations thereof.
  • proteins may be antibodies for a target protein.
  • Typical polymers may be polyethylene glycol (PEG).
  • C 1-6 -alkyl is intended to mean a linear or branched saturated hydrocarbon chain wherein the longest chains has from one to six carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl and hexyl.
  • a branched hydrocarbon chain is intended to mean a C 1-6 -alkyl substituted at any carbon with a hydrocarbon chain.
  • C 1-4 -alkyl is intended to mean a linear or branched saturated hydrocarbon chain wherein the longest chains has from one to four carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl.
  • a branched hydrocarbon chain is intended to mean a C 1-4 -alkyl substituted at any carbon with a hydrocarbon chain.
  • C 1-6 -alkoxy is intended to mean C 1-6 -alkyl-oxy, such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentoxy, isopentoxy, neopentoxy and hexoxy.
  • C 2-6 -alkenyl is intended to mean a linear or branched hydrocarbon group having from two to six carbon atoms and containing one or more double bonds.
  • Illustrative examples of C 2-6 -alkenyl groups include allyl, homo-allyl, vinyl, crotyl, butenyl, butadienyl, pentenyl, pentadienyl, hexenyl and hexadienyl.
  • the position of the unsaturation may be at any position along the carbon chain.
  • C 2-6 -alkynyl is intended to mean linear or branched hydrocarbon groups containing from two to six carbon atoms and containing one or more triple bonds.
  • Illustrative examples of C 2-6 -alkynyl groups include acetylene, propynyl, butynyl, pentynyl and hexynyl.
  • the position of unsaturation may be at any position along the carbon chain. More than one bond may be unsaturated such that the "C 2-6 -alkynyl” is a di-yne or enedi-yne as is known to the person skilled in the art.
  • epithelial tissue covers or lines the body surfaces inside and outside the body. Examples of epithelial tissue are the skin and the mucosa and serosa that line the body cavities and internal organs, such as intestines, urinary bladder, uterus, etc. Epithelial tissue may also extend into deeper tissue layers to from glands, such as mucus-secreting glands.
  • sarcoma is intended to indicate a malignant tumor growing from connective tissue, such as cartilage, fat, muscles, tendons and bones.
  • glioma when used herein, is intended to cover a malignant tumor originating from glial cells.
  • LNA monomers can be used freely in the design of modified siLNAs at both 3'-overhangs and at the 5'-end of the sense strand with full activation of the siLNA effect and down-regulation of protein production
  • the present inventors have surprisingly found that the mRNA-cleaving capability of an activated RISC complex can be suppressed by modifying the sense strand of a siRNA in certain specific positions.
  • the helicase can thereby be directed to unwinding from the other 5'-end (antisense strand 5'-end). In this way the incorporation of the antisense/guiding strand into RISC can be controlled.
  • the helicase starts unwinding the siRNA duplex at the weakest binding end. The released 3'-end is probably targeted for degradation while the remaining strand is incorporated in the RISC.
  • Efficient siRNAs show accumulation of the antisense/guiding strand and weaker base pairing in the 5'-end of the antisense/guiding strand. Unwanted side effects may possibly be avoided by having only the correct strand (the antisense/guiding strand) in RISC and not the unwanted sense strand (not complementary to the desired target RNA). This mechanism is illustrated in Fig. 1 .
  • modification of the position 12 backbone i.e. the sugar moiety and/or the Internucleoside linkage group
  • the present invention relates to a modified siRNA which comprises a sense strand and an antisense strand, wherein the sense strand comprises a modified RNA nucleotide in at least positions 10 and optionally at least one position selected from the group consisting of position 11, and position 12, calculated from the 5'-end.
  • the RNA nucleotide is modified in its base structure, i.e. the modified RNA nucleotide comprises a non-RNA nucleobase.
  • the sense strand comprises a non-RNA nucleobase in at least one position selected from the group consisting of position 9, position 10, position 11, position 12 and position 13, calculated from the 5'-end. More preferably, the sense strand comprises a non-RNA nucleobase in a position selected from the group consisting of position 10, position 11 and both of positions 10 and 11, calculated from the 5'-end. Most preferably, the sense strand comprises a non-RNA nucleobase in position 10, calculated from the 5'-end.
  • the non-RNA nucleobase may be any purine or pyrimidine which is different from adenine (A), cytosine (C), uracil (U) and guanine (G).
  • specific examples of such non-RNA nucleobases include thymine (T), 5-methylcytosine ( Me C), isocytosine, pseudoisocytosine, 5-bromouracil, 5-propynyluracil, 5-propyny-6-fluoroluracil, 5-methylthiazoleuracil, 6-aminopurine, 2-aminopurine, inosine, 2,6-diaminopurine, 7-propyne-7-deazaadenine, 7-propyne-7-deazaguanine and 2-chloro-6-aminopurine, in particular T or Me C.
  • the actual selection of the non-RNA nucleobase will depend on the corresponding (or matching) nucleotide present in the antisense strand.
  • the corresponding antisense nucleotide is A it will normally be necessary to select a non-RNA nucleotide which is capable of establishing hydrogen bonds to A.
  • a typical example of a preferred non-RNA nucleobase is T.
  • a typical example of a preferred non-RNA nucleobase is Me C.
  • the RNA nucleotide is modified in its sugar moiety, i.e. the modified RNA nucleotide comprises a sugar moiety which differs from ribose.
  • the sense strand comprises a sugar moiety which differs from ribose, in at least one position selected from the group consisting of position 9, position 10, position 11, position 12 and position 13, calculated from the 5'-end. More preferably, the sense strand comprises a sugar moiety which differs from ribose, in at least one position selected from the group consisting of position 11, position 12 and position 13, calculated from the 5'-end. Most preferably, the sense strand comprises a sugar moiety which differs from ribose in position 12, calculated from the 5'-end.
  • the sugar moiety which differs from ribose is modified in its 2'-OH group.
  • the ribose 2'-OH group has been substituted with a group selected from the group consisting of -H, -O-CH 3 , -O-CH 2 -CH 2 -O-CH 3 , -O-CH 2 -CH 2 -CH 2 -NH 2 , -O-CH 2 -CH 2 -CH 2 -OH and -F, in particular -H.
  • the sugar moiety which differs from ribose is LNA.
  • the LNA may be selected from the group consisting of thio-LNA, amino-LNA, oxy-LNA and ena-LNA. These LNAs have the general chemical structure shown in Scheme 1 below: wherein X is selected from the group consisting of O, S and NR H , where R H is H or alkyl, such as C 1-4 -alkyl; Y is (-CH 2 ) r , where r is an integer of 1-4 Z and Z* are independently absent or selected from the group consisting of an internucleoside linkage group, a terminal group and a protection group; and B is a nucleobase.
  • X is selected from the group consisting of O, S and NR H , where R H is H or alkyl, such as C 1-4 -alkyl
  • Y is (-CH 2 ) r , where r is an integer of 1-4 Z and Z* are independently absent or selected from the group consisting of an internucleoside linkage group, a terminal
  • r is 1, i.e. a preferred LNA monomer has the chemical structure shown in Scheme 2 below: wherein Z, Z*, R H and B are defined above.
  • X is O and r is 1, i.e. an even more preferred LNA monomer has the chemical structure shown in Scheme 3 below: wherein Z, Z* and B are defined above.
  • the LNA monomer is the beta-D form, i.e. the LNA monomer has the chemical structure indicated in 2A above.
  • Z and Z* which serve for an internucleoside linkage, are independently absent or selected from the group consisting of an internucleoside linkage group, a terminal group and a protection group depending on the actual position of the LNA monomer within the compound. It will be understood that in embodiments where the LNA monomer is located at the 3' end, Z is a terminal group and Z* is an internucleoside linkage. In embodiments where the LNA monomer is located at the 5' end, Z is absent and Z* is a terminal group. In embodiments where the LNA monomer is located within the nucleotide sequence, Z is absent and Z* is an internucleoside linkage group.
  • internucleoside linkage groups include -O-P(O) 2 -O-, -O-P(O,S)-O-,-O-P(S) 2 -O-, -S-P(O) 2 -O-, -S-P(O,S)-O-, -S-P(O) 2 -O-, -O-P(O) 2 -S-, -O-P(O,S)-S-, -S-P(O) 2 -S-, -O-PO(R H )-O-, O-PO(OCH 3 )-O-, -O-PO(NR H )-O-, -O-PO(OCH 2 CH 2 S-R)-O-, -O-PO(BH 3 )-O-, -O-PO(NHR H )-O-, -O-P(O) 2 -NR H -, -NR H -P(O) 2 -NR H
  • the internucleoside linkage group is a phosphate group (-O-P(O) 2 -O-), a phosphorothioate group (-O-P(O,S)-O-) or the compound may contain both phosphate groups and phosphorothioate groups.
  • terminal groups include terminal groups selected from the group consisting of hydrogen, azido, halogen, cyano, nitro, hydroxy, Prot-O-, Act-O-, mercapto, Prot-S-, Act-S-, C 1-6 -alkylthio, amino, Prot-N(R H )-, Act-N(R H )-, mono- or di(C 1-6 -alkyl)amino, optionally substituted C 1-6 -alkoxy, optionally substituted C 1-6 -alk optionally substituted C 2-6 -alkenyl, optionally substituted C 2-6 -alkenyloxy, optionally substituted C 2-6 -alkynyl, optionally substituted C 2-6 -alkynyloxy, monophosphate including protected monophosphate, monothiophosphate including protected monothiophosphate, diphosphate including protected diphosphate, dithiophosphate including protected dithiophosphate, triphosphate including protected triphosphate, trithiophosphat
  • phosphate protection groups include S-acetylthioethyl (SATE) and S-pivaloylthioethyl (t-butyl-SATE).
  • terminal groups include DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, ligands, carboxy, sulphono, hydroxymethyl, Prot-O-CH 2 -, Act-O-CH 2 -, aminomethyl, Prot-N(R H )-CH 2 -, Act-N(R H )-CH 2 -, carboxymethyl, sulphonomethyl, where Prot is a protection group for -OH, -SH and -NH(R H ), and Act is an activation group for -OH, -SH, and -NH(R H ), and R H is hydrogen or C 1-6 -alkyl.
  • protection groups for -OH and -SH groups include substituted trityl, such as 4,4'-dimethoxytrityloxy (DMT), 4-monomethoxytrityloxy (MMT); trityloxy, optionally substituted 9-(9-phenyl)xanthenyloxy (pixyl), optionally substituted methoxytetrahydro-pyranyloxy (mthp); silyloxy, such as trimethylsilyloxy (TMS), triisopropylsilyloxy (TIPS), tert -butyldimethylsilyloxy (TBDMS), triethylsilyloxy, phenyldimethylsilyloxy; tert- butylethers; acetals (including two hydroxy groups); acyloxy, such as acetyl or halogen-substituted acetyls, e.g .
  • DMT 4,4'-dimethoxytrityloxy
  • amine protection groups include fluorenylmethoxycarbonylamino (Fmoc), tert- butyloxycarbonylamino (BOC), trifluoroacetylamino, allyloxycarbonylamino (alloc, AOC), Z-benzyloxycarbonylamino (Cbz), substituted benzyloxycarbonylamino, such as 2-chloro benzyloxycarbonylamino (2-ClZ), monomethoxytritylamino (MMT), dimethoxytritylamino (DMT), phthaloylamino, and 9-(9-phenyl)xanthenylamino (pixyl).
  • Fmoc fluorenylmethoxycarbonylamino
  • BOC tert- butyloxycarbonylamino
  • trifluoroacetylamino allyloxycarbonylamino (alloc, AOC)
  • the activation group preferably mediates couplings to other residues and/or nucleotide monomers and after the coupling has been completed the activation group is typically converted to an internucleoside linkage.
  • activation groups include optionally substituted O-phosphoramidite, optionally substituted O-phosphortriester, optionally substituted O-phosphordiester, optionally substituted H-phosphonate, and optionally substituted O-phosphonate.
  • phosphoramidite means a group of the formula -P(OR x )-N(R y ) 2 , wherein R x designates an optionally substituted alkyl group, e.g.
  • R y designates optionally substituted alkyl groups, e.g . ethyl or isopropyl, or the group -N(R y ) 2 forms a morpholino group (-N(CH 2 CH 2 ) 2 O).
  • R x preferably designates 2-cyanoethyl and the two R y are preferably identical and designates isopropyl. Accordingly, a particularly preferred phosphoramidite is N,N-diisopropyl- O -(2-cyanoethyl)phosphoramidite.
  • B is a nucleobase which may be of natural or non-natural origin.
  • nucleobases include adenine (A), cytosine (C), 5-methylcytosine ( Me C), isocytosine, pseudoisocytosine, guanine (G), thymine (T), uracil (U), 5-bromouracil, 5-propynyluracil, 5-propyny-6, 5-methylthiazoleuracil, 6-aminopurine, 2-aminopurine, inosine, 2,6-diaminopurine, 7-propyne-7-deazaadenine, 7-propyne-7-deazaguanine and 2-chloro-6-aminopurine.
  • the RNA nucleotide is modified in its internucleoside linkage group structure, i.e. the modified RNA nucleotide comprises an internucleoside linkage group which differs from phosphate.
  • the sense strand comprises an internucleoside linkage group which differs from phosphate, in at least one position selected from the group consisting of position 9, position 10, position 11, position 12 and position 13, calculated from the 5'-end. More preferably, the sense strand comprises an internucleoside linkage group which differs from phosphate, in at least one position selected from the group consisting of position 11, position 12 and position 13, calculated from the 5'-end. Most preferably, the sense strand comprises an internucleoside linkage group which differs from phosphate in position 12, calculated from the 5'-end.
  • the sense strand comprises an internucleoside linkage group which differs from phosphate in position X, calculated from the 5'-end
  • the internucleoside linkage group establishes a linkage between the 3'-position of the residue in position X and the 5'-position of the residue in position X+1, calculated from the 5'-end.
  • internucleoside linkage groups which differ from phosphate (-O-P(O) 2 -O-) include -O-P(O,S)-O-, -O-P(S) 2 -O-, -S-P(O) 2 -O-, -S-P(O,S)-O-, -S-P(O) 2 -O-, -O-P(O) 2 -S-, -O-P(O,S)-S-, -S-P(O) 2 -S-, -O-PO(R H )-O-, O-PO(OCH 3 )-O-, -O-PO(NR H )-O-,-O-PO(OCH 2 CH 2 S-R)-O-, -O-PO(BH 3 )-O-, -O-PO(NHR H )-O-, -O-P(O) 2 -NR H -, -NR H -P-
  • any of the above-mentioned modifications may be combined and/or the modified siRNA may contain other modifications which serve the purpose of increasing the biostability (corresponding to an increased T m ), increasing the nuclease resistance, improving the cellular uptake and/or improving the tissue distribution.
  • At least one of the strands of the modified siRNA further comprises at least one modified RNA nucleotide.
  • This further modification may be a modification selected from the group consisting of a non-RNA nucleobase, a sugar moiety which differs from ribose, an internucleoside linkage group which differs from phosphate, and combinations thereof.
  • the sense strand comprises at least one LNA monomer, such as 1-10 LNA monomers, e.g. 1-5 or 1-3 LNA monomers.
  • the antisense strand comprises at least one LNA monomer, such as 1-10 LNA monomers, e.g. 1-5 or 1-3 LNA monomers.
  • the sense strand comprises at least one LNA monomer and the antisense strand comprises at least one LNA monomer.
  • the sense strand typically comprises 1-10 LNA monomers, such as 1-5 or 1-3 LNA monomers
  • the antisense strand typically comprises 1-10 LNA monomers, such as 1-5 or 1-3 LNA monomers.
  • the sense strand comprises a sugar moiety which differs from ribose in position 12, calculated from the 5'-end, and a non-RNA nucleobase in position 10, calculated from the 5'-end.
  • LNA monomers incorporated into oligos will induce a RNA-like structure of the oligo and the hybrid that it may form. It has also been shown that LNA residues modify the structure of DNA residues, in particular when the LNA residues is incorporated in the proximity of 3'-end. LNA monomer incorporation towards the 5'-end seems to have a smaller effect. This means that it is possible to modify RNA strands which contain DNA monomers, and if one or more LNA residues flank the DNA monomers they too will attain a RNA-like structure. Therefore, DNA and LNA monomers can replace RNA monomers and still the oligo will attain an overall RNA-like structure. As DNA monomers are considerably cheaper than RNA monomers, easier to synthesise and more stable towards nucleolytic degradation, such modifications will therefore improve the overall use and applicability of siRNAs.
  • At least one (such as one) LNA monomer is located at the 5'-end of the sense strand.
  • at least two (such as two) LNA monomers are located at the 5'-end of the sense strand.
  • the sense strand comprises at least one (such as one) LNA monomer located at the 3'-end of the sense strand. More preferably, at least two (such as two) LNA monomers are located at the 3'-end of the of the sense strand.
  • the sense strand comprises at least one (such as one) LNA monomer located at the 5'-end of the sense strand and at least one (such as one) LNA monomer located at the 3'-end of the sense strand. Even more preferably, the sense strand comprises at least two (such as two) LNA monomers located at the 5'-end of the sense strand and at least two (such as two) LNA monomers located at the 3'-of the sense strand.
  • At least one (such as one) LNA monomer is located at the 3'-end of the antisense strand. More preferably, at least two (such as two) LNA monomers are located at the 3'-end of the antisense strand. Even more preferably, at least three (such as three) LNA monomers are located at the 3'-end of the antisense strand. In a particular preferred embodiment of the invention, no LNA monomer is located at or near (i.e. within 1, 2, or 3 nucleotides) the 5'-end of the antisense strand.
  • the sense strand comprises at least one LNA monomer at the 5'-end and at least one LNA monomer at the 3'-end
  • the antisense strand comprises at least one LNA monomer at the 3'-end. More preferably, the sense strand comprises at least one LNA monomer at the 5'-end and at least one LNA monomer at the 3'-end, and the antisense strand comprises at least two LNA monomers at the 3'-end. Even more preferably, the sense strand comprises at least two LNA monomers at the 5'-end and at least two LNA monomers at the 3'-end, and the antisense strand comprises at least two LNA monomers at the 3'-end.
  • the sense strand comprises at least two LNA monomers at the 5'-end and at least two LNA monomers at the 3'-end
  • the antisense strand comprises at least three LNA monomers at the 3'-end. It will be understood that in the most preferred embodiment, none of the above-mentioned compounds contain a LNA monomer which is located at the 5'-end of the antisense strand.
  • the LNA monomer is located close to the 3'-end, i.e. at postion 2, 3 or 4, preferably at position 2 or 3, in particular at position 2, calculated from the 3'-end.
  • the sense strand comprises a LNA monomer located at position 2, calculated from the 3'-end.
  • the sense strand comprises LNA monomers located at position 2 and 3, calculated from the 3'-end.
  • the sense strand comprises at least one (such as one) LNA monomer located at the 5'-end and a LNA monomer located at position 2 (calculated from the 3'-end). In a further embodiment, the sense strand comprises at least two (such as two) LNA monomers located at the 5'-end of the sense strand a LNA monomer located at positions 2 (calculated from the 3' end).
  • the antisense strand comprises a LNA monomer at position 2, calculated from the 3'-end. More preferably, the antisense strand comprises LNA monomers in position 2 and 3, calculated from the 3'-end. Even more preferably, the antisense strand comprises LNA monomers located at position 2, 3 and 4, calculated from the 3'-end. In a particular preferred embodiment of the invention, no LNA monomer is located at or near (i.e. within 1, 2, or 3 nucleotides) the 5'-end of the antisense strand.
  • the sense strand comprises at least one LNA monomer at the 5'-end and a LNA monomer at position 2 (calculated from the 3' end), and the antisense strand comprises a LNA monomer located at position 2 (calculated from the 3'-end). More preferably, the sense strand comprises at least one LNA monomer at the 5'-end and a LNA monomer at position 2 (calculated from the 3'-end), and the antisense strand comprises LNA monomers at position 2 and 3 (calculated from the 3'-end).
  • the sense strand comprises at least two LNA monomers at the 5'-end and LNA monomers at position 2 and 3 (calculated from the 3'-end), and the antisense strand comprises LNA monomers at position 2 and 3 (calculated from the 3'-end). Still more preferably, the sense strand comprises at least two LNA monomers at the 5'-end and LNA monomers at position 2 and 3 (calculated from the 3'-end), and the antisense strand comprises LNA monomers at position 2, 3 and 4 (calculated from the 3'-end). It will be understood that in the most preferred embodiment, none of the above-mentioned compounds contain a LNA monomer which is located at the 5'-end of the antisense strand.
  • each strand typically comprises 12-35 monomers. It will be understood that these numbers refer to the total number of naturally occurring and modified nucleotides. Thus, the total number of naturally occurring and modified nucleotides will typically not be lower than 12 and will typically not exceed 35. In an interesting embodiment of the invention, each strand comprises 17-25 monomers, such as 20-22 or 20-21 monomers.
  • the modified siRNA according to the invention may be blunt ended or may contain overhangs.
  • at least one of the strands comprises a 3'-overhang.
  • the sense and antisense strand both comprise a 3'-overhang.
  • only the sense strand comprises a 3'-overhang.
  • the 3'-overhang is 1-7 monomers in length, preferably 1-5 monomers in length, such as 1-3 monomers in length, e.g. 1 monomer in length, 2 monomers in length or 3 monomers in length.
  • the strands may have a 5'-overhang.
  • the 5'-overhang will be of 1-7 monomers in length, preferably 1-3, such as 1, 2 or 3, monomers in length.
  • the sense strand may contain a 5'-overhang
  • the antisense strand may contain a 5'-overhang
  • both of the sense and antisense strands may contain 5'-overhangs.
  • the sense strand may contain both a 3'- and a 5'-overhang.
  • the antisense strand may contain both a 3'- and a 5'-overhang.
  • the LNA monomers are useful for the purposes of the present invention.
  • the LNA monomer is in the beta-D form, corresponding to the LNA monomers shown as compounds 2A, 2C and 2D.
  • the currently most preferred LNA monomer is the monomer shown as compound 2A in Schemes 2 and 3 above, i.e. the currently most preferred LNA monomer is the beta-D form of oxy-LNA.
  • the modified siRNA of the invention is linked to one or more ligands so as to form a conjugate.
  • the ligand(s) serve(s) the role of increasing the cellular uptake of the conjugate relative to the non-conjugated compound.
  • This conjugation can take place at the terminal 5'-OH and/or 3'-OH positions, but the conjugation may also take place at the sugars and/or the nucleobases.
  • the growth factor to which the antisense oligonucleotide may be conjugated may comprise transferrin or folate.
  • Transferrin-polylysine-oligonucleotide complexes or folate-polylysine-oligonucleotide complexes may be prepared for uptake by cells expressing high levels of transferrin or folate receptor.
  • conjugates/lingands are cholesterol moieties, duplex intercalators such as acridine, poly-L-lysine, "end-capping" with one or more nuclease-resistant linkage groups such as phosphoromonothioate, and the like.
  • the compounds or conjugates of the invention may also be conjugated or further conjugated to active drug substances, for example, aspirin, ibuprofen, a sulfa drug, an antidiabetic, an antibacterial agent, a chemotherapeutic agent or an antibiotic.
  • active drug substances for example, aspirin, ibuprofen, a sulfa drug, an antidiabetic, an antibacterial agent, a chemotherapeutic agent or an antibiotic.
  • the modified siRNAs of the invention may be produced using the polymerisation techniques of nucleic acid chemistry, which is well known to a person of ordinary skill in the art of organic chemistry.
  • nucleic acid chemistry which is well known to a person of ordinary skill in the art of organic chemistry.
  • standard oligomerisation cycles of the phosphoramidite approach S. L. Beaucage and R. P. Iyer, Tetrahedron, 1993, 49, 6123 ; and S. L. Beaucage and R. P. Iyer, Tetrahedron, 1992, 48, 2223
  • other chemistries such as the H-phosphonate chemistry or the phosphortriester chemistry may also be used.
  • Purification of the individual strands may be done using disposable reversed phase purification cartridges and/or reversed phase HPLC and/or precipitation from ethanol or butanol.
  • Gel electrophoresis, reversed phase HPLC, MALDI-MS, and ESI-MS may be used to verify the purity of the synthesised LNA-containing oligonucleotides.
  • solid support materials having immobilised thereto a nucleobase-protected and 5'-OH protected LNA are especially interesting for synthesis of the LNA-containing oligonucleotides where a LNA monomer is included at the 3' end.
  • the solid support material is preferable CPG or polystyrene onto which a 3'-functionalised, optionally nucleobase protected and optionally 5'-OH protected LNA monomer is linked.
  • the LNA monomer may be attached to the solid support using the conditions stated by the supplier for that particular solid support material.
  • the modified siRNAs of the invention will constitute suitable drugs with improved properties.
  • the design of a potent and safe RNAi drug requires the fine-tuning of various parameters such as affinity/specificity, stability in biological fluids, cellular uptake, mode of action, pharmacokinetic properties and toxicity.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a modified siRNA according to the invention and a pharmaceutically acceptable diluent, carrier or adjuvant.
  • the present invention relates to a modified siRNA according to the invention for use as a medicament.
  • dosing is dependent on severity and responsiveness of the disease state to be treated, and the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved.
  • Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient.
  • Optimum dosages may vary depending on the relative potency of individual siLNAs. Generally it can be estimated based on EC50s found to be effective in in vitro and in vivo animal models. In general, dosage is from 0.01 ⁇ g to 1 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 10 years or by continuous infusion for hours up to several months. The repetition rates for dosing can be estimated based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state.
  • the invention also relates to a pharmaceutical composition, which comprises at least one modified siRNA of the invention as an active ingredient.
  • the pharmaceutical composition according to the invention optionally comprises a pharmaceutical carrier, and that the pharmaceutical composition optionally comprises further compounds, such as chemotherapeutic compounds, anti-inflammatory compounds, antiviral compounds and/or immuno-modulating compounds.
  • modified siRNAs of the invention can be used "as is” or in form of a variety of pharmaceutically acceptable salts.
  • pharmaceutically acceptable salts refers to salts that retain the desired biological activity of the herein-identified modified siRNAs and exhibit minimal undesired toxicological effects.
  • Non-limiting examples of such salts can be formed with organic amino acid and base addition salts formed with metal cations such as zinc, calcium, bismuth, barium, magnesium, aluminum, copper, cobalt, nickel, cadmium, sodium, potassium, and the like, or with a cation formed from ammonia, N,N -dibenzylethylene-diamine, D -glucosamine, tetraethylammonium, or ethylenediamine.
  • metal cations such as zinc, calcium, bismuth, barium, magnesium, aluminum, copper, cobalt, nickel, cadmium, sodium, potassium, and the like, or with a cation formed from ammonia, N,N -dibenzylethylene-diamine, D -glucosamine, tetraethylammonium, or ethylenediamine.
  • the modified siRNA may be in the form of a pro-drug.
  • Oligonucleotides are by virtue negatively charged ions. Due to the lipophilic nature of cell membranes the cellular uptake of oligonucleotides are reduced compared to neutral or lipophilic equivalents. This polarity "hindrance” can be avoided by using the pro-drug approach (see e.g. Crooke, R. M. (1998) in Crooke, S. T. Antisense research and Application. Springer-Verlag, Berlin, Germany, vol. 131, pp. 103-140 ). In this approach the oligonucleotides are prepared in a protected manner so that the oligo is neutral when it is administered.
  • protection groups are designed in such a way that they can be removed when the oligo is taken up by the cells.
  • examples of such protection groups are S-acetylthioethyl (SATE) or S-pivaloylthioethyl ( t -butyl-SATE). These protection groups are nuclease resistant and are selectively removed intracellulary.
  • Pharmaceutically acceptable binding agents and adjuvants may comprise part of the formulated drug.
  • Capsules, tablets and pills etc. may contain for example the following compounds: microcrystalline cellulose, gum or gelatin as binders; starch or lactose as excipients; stearates as lubricants; various sweetening or flavouring agents.
  • the dosage unit may contain a liquid carrier like fatty oils.
  • coatings of sugar or enteric agents may be part of the dosage unit.
  • the oligonucleotide formulations may also be emulsions of the active pharmaceutical ingredients and a lipid forming a micellular emulsion.
  • a compound of the invention may be mixed with any material that do not impair the desired action, or with material that supplement the desired action.
  • the formulation may include a sterile diluent, buffers, regulators of tonicity and antibacterials.
  • the active compound may be prepared with carriers that protect against degradation or immediate elimination from the body, including implants or microcapsules with controlled release properties.
  • the preferred carriers are physiological saline or phosphate buffered saline.
  • an oligomeric compound is included in a unit formulation such as in a pharmaceutically acceptable carrier or diluent in an amount sufficient to deliver to a patient a therapeutically effective amount without causing serious side effects in the treated patient.
  • compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be (a) oral (b) pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, (c) topical including epidermal, transdermal, ophthalmic and to mucous membranes including vaginal and rectal delivery; or (d) parenteral including intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.
  • pulmonary e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer
  • intratracheal intranasal
  • topical including epidermal, transdermal, ophthalmic and to mucous membranes including vaginal and rectal delivery
  • the pharmaceutical composition is administered IV, IP, orally, topically or as a bolus injection or administered directly in to the target organ.
  • Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, sprays, suppositories, liquids and powders.
  • Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
  • Coated condoms, gloves and the like may also be useful.
  • Preferred topical formulations include those in which the compounds of the invention are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants.
  • compositions and formulations for oral administration include but is not restricted to powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets.
  • Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.
  • compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self- emulsifying solids and self-emulsifying semisolids. Delivery of drug to tumour tissue may be enhanced by carrier-mediated delivery including, but not limited to, cationic liposomes, cyclodextrins, porphyrin derivatives, branched chain dendrimers, polyethylenimine polymers, nanoparticles and microspheres ( Dass CR. J Pharm Pharmacol 2002; 54(1):3-27 ).
  • compositions of the present invention may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
  • the compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels and suppositories.
  • the compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media.
  • Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran.
  • the suspension may also contain stabilizers.
  • the compounds of the invention may also be conjugated to active drug substances, for example, aspirin, ibuprofen, a sulfa drug, an antidiabetic, an antibacterial or an antibiotic.
  • compositions of the invention may contain one or more siLNA compounds, targeted to a first nucleic acid and one or more additional siLNA compounds targeted to a second nucleic acid target. Two or more combined compounds may be used together or sequentially.
  • therapeutic methods include administration of a therapeutically effective amount of a siLNA to a mammal, particularly a human.
  • the present invention provides pharmaceutical compositions containing (a) one or more compounds of the invention, and (b) one or more chemotherapeutic agents.
  • chemotherapeutic agents When used with the compounds of the invention, such chemotherapeutic agents may be used individually, sequentially, or in combination with one or more other such chemotherapeutic agents or in combination with radiotherapy. All chemotherapeutic agents known to a person skilled in the art are here incorporated as combination treatments with compound according to the invention.
  • anti-inflammatory drugs including but not limited to nonsteroidal anti-inflammatory drugs and corticosteroids, antiviral drugs, and immuno-modulating drugs may also be combined in compositions of the invention. Two or more combined compounds may be used together or sequentially.
  • the present invention relates to the use of a modified siRNA according to the invention for the manufacture of a medicament for the treatment of cancer.
  • the modified siRNAs of the invention may be used in a method for treatment of, or prophylaxis against, cancer, said method comprising administering a modified siRNA of the invention or a pharmaceutical composition of the invention to a patient in need thereof.
  • Such cancers may include lymphoreticular neoplasia, lymphoblastic leukemia, brain tumors, gastric tumors, plasmacytomas, multiple myeloma, leukemia, connective tissue tumors, lymphomas, and solid tumors.
  • said cancer may suitably be in the form of a solid tumor.
  • said cancer in the method for treating cancer disclosed herein said cancer may suitably be in the form of a solid tumor.
  • said cancer is also suitably a carcinoma.
  • the carcinoma is typically selected from the group consisting of malignant melanoma, basal cell carcinoma, ovarian carcinoma, breast carcinoma, non-small cell lung cancer, renal cell carcinoma, bladder carcinoma, recurrent superficial bladder cancer, stomach carcinoma, prostatic carcinoma, pancreatic carcinoma, lung carcinoma, cervical carcinoma, cervical dysplasia, laryngeal papillomatosis, colon carcinoma, colorectal carcinoma and carcinoid tumors. More typically, said carcinoma is selected from the group consisting of malignant melanoma, non-small cell lung cancer, breast carcinoma, colon carcinoma and renal cell carcinoma.
  • the malignant melanoma is typically selected from the group consisting of superficial spreading melanoma, nodular melanoma, lentigo maligna melanoma, acral melagnoma, amelanotic melanoma and desmoplastic melanoma.
  • the cancer may suitably be a sarcoma.
  • the sarcoma is typically in the form selected from the group consisting of osteosarcoma, Ewing's sarcoma, chondrosarcoma, malignant fibrous histiocytoma, fibrosarcoma and Kaposi's sarcoma.
  • the cancer may suitably be a glioma.
  • a further embodiment is directed to the use of a modified siRNA according to the invention for the manufacture of a medicament for the treatment of cancer, wherein said medicament further comprises a chemotherapeutic agent selected from the group consisting of adrenocorticosteroids, such as prednisone, dexamethasone or decadron; altretamine (hexalen, hexamethylmelamine (HMM)); amifostine (ethyol); aminoglutethimide (cytadren); amsacrine (M-AMSA); anastrozole (arimidex); androgens, such as testosterone; asparaginase (elspar); bacillus calmette-gurin; bicalutamide (casodex); bleomycin (blenoxane); busulfan (myleran); carboplatin (paraplatin); carmustine (BCNU, BiCNU); chlorambucil (leukeran); chlorodeoxyadenosine (2-CDA, cla
  • the invention is further directed to the use of a modified siRNA according to the invention for the manufacture of a medicament for the treatment of cancer, wherein said treatment further comprises the administration of a further chemotherapeutic agent selected from the group consisting of adrenocorticosteroids, such as prednisone, dexamethasone or decadron; altretamine (hexalen, hexamethylmelamine (HMM)); amifostine (ethyol); aminoglutethimide (cytadren); amsacrine (M-AMSA); anastrozole (arimidex); androgens, such as testosterone; asparaginase (elspar); bacillus calmette-gurin; bicalutamide (casodex); bleomycin (blenoxane); busulfan (myleran); carboplatin (paraplatin); carmustine (BCNU, BiCNU); chlorambucil (leukeran); chlorodeoxyadenosine (2
  • the modified siRNA of the invention may be used in a method for treating cancer, said method comprising administering a modified siRNA of the invention or a pharmaceutical composition according to the invention to a patient in need thereof and further comprising the administration of a further chemotherapeutic agent.
  • Said further administration may be such that the further chemotherapeutic agent is conjugated to the compound of the invention, is present in the pharmaceutical composition, or is administered in a separate formulation.
  • the modified siLNA compounds according to the invention are used for targeting Severe Acute Respiratory Syndrome (SARS), which first appeared in China in November 2002.
  • SARS Severe Acute Respiratory Syndrome
  • WHO WHO over 8,000 people have been infected world-wide, resulting in over 900 deaths.
  • a previously unknown coronavirus has been identified as the causative agent for the SARS epidemic ( Drosten C et al. N Engl J Med 2003,348,1967-76 ; and Fouchier RA et al. Nature 2003,423,240 ). Identification of the SARS-CoV was followed by rapid sequencing of the viral genome of multiple isolates ( Ruan et al. Lancet 2003,361,1779-85 ; Rota PA et al.
  • the nucleotide sequence encoding the SARS-CoV RNA-dependent RNA polymerase (Pol) is highly conserved throughout the coronavirus family.
  • the Pol gene product is translated from the genomic RNA as a part of a polyprotein, and uses the genomic RNA as a template to synthesize negative-stranded RNA and subsequently sub-genomic mRNA.
  • the Pol protein is thus expressed early in the viral life cycle and is crucial to viral replication.
  • the present invention relates the use of a modified siRNA according to the invention for the manufacture of a medicament for the treatment of Severe Acute Respiratory Syndrome (SARS).
  • the modified siRNAs of the invention may be used in a method for treating Severe Acute Respiratory Syndrome (SARS), said method comprising administering a modified siRNA according to the invention or a pharmaceutical composition according to the invention to a patient in need thereof.
  • the compounds of the invention may be broadly applicable to a broad range of infectious diseases, such as diphtheria, tetanus, pertussis, polio, hepatitis B, hemophilus influenza, measles, mumps, and rubella.
  • infectious diseases such as diphtheria, tetanus, pertussis, polio, hepatitis B, hemophilus influenza, measles, mumps, and rubella.
  • the present invention relates the use of a modified siRNA according to the invention for the manufacture of a medicament for the treatment of an infectious disease.
  • the modified siRNAs of the invention may be used in a method for treating an infectious disease, said method comprising administering a modified siRNA according to the invention or a pharmaceutical composition according to the invention to a patient in need thereof.
  • the inflammatory response is an essential mechanism of defense of the organism against the attack of infectious agents, and it is also implicated in the pathogenesis of many acute and chronic diseases, including autoimmune disorders.
  • Inflammation is a complex process normally triggered by tissue injury that includes activation of a large array of enzymes, the increase in vascular permeability and extravasation of blood fluids, cell migration and release of chemical mediators, all aimed to both destroy and repair the injured tissue.
  • the present invention relates to the use of a modified siRNA according to the invention for the manufacture of a medicament for the treatment of an inflammatory disease.
  • the modified siRNAs of the invention may be used in a method for treating an inflammatory disease, said method comprising administering a modified siRNA according to the invention or a pharmaceutical composition according to the invention to a patient in need thereof.
  • the inflammatory disease is a rheumatic disease and/or a connective tissue diseases, such as rheumatoid arthritis, systemic lupus erythematous (SLE) or Lupus, scleroderma, polymyositis, inflammatory bowel disease, dermatomyositis, ulcerative colitis, Crohn's disease, vasculitis, psoriatic arthritis, exfoliative psoriatic dermatitis, pemphigus vulgaris and Sjorgren's syndrome, in particular inflammatory bowel disease and Crohn's disease.
  • SLE systemic lupus erythematous
  • Lupus scleroderma
  • polymyositis inflammatory bowel disease
  • dermatomyositis ulcerative colitis
  • Crohn's disease vasculitis
  • psoriatic arthritis exfoliative psoriatic dermatitis
  • pemphigus vulgaris and Sjorgren's syndrome
  • the inflammatory disease may be a non-rheumatic inflammation, like bursitis, synovitis, capsulitis, tendinitis and/or other inflammatory lesions of traumatic and/or university origin.
  • the modified siRNAs of the present invention can be utilized for as research reagents for diagnostics, therapeutics and prophylaxis.
  • the modified siRNA may be used to specifically inhibit the synthesis of target genes in cells and experimental animals thereby facilitating functional analysis of the target or an appraisal of its usefulness as a target for therapeutic intervention.
  • the siRNA oligonucleotides may be used to detect and quantitate target expression in cell and tissues by Northern blotting, in-situ hybridisation or similar techniques.
  • an animal or a human, suspected of having a disease or disorder, which can be treated by modulating the expression of target is treated by administering the modified siRNA compounds in accordance with this invention.
  • 5'-O-DMT (A(bz), C(bz), G(ibu) or T) linked to CPG were deprotected using a solution of 3% trichloroacetic acid (v/v) in dichloromethane. The CPG was washed with acetonitrile. Coupling of phosphoramidites (A(bz), G(ibu), 5-methyl-C(bz)) or T - ⁇ -cyanoethyl-phosphoramidite) was performed by using 0.08 M solution of the 5'-O-DMT-protected amidite in acetonitrile and activation was done by using DCI (4,5-dicyanoimidazole) in acetonitrile (0.25 M).
  • the coupling reaction was carried out for 2 min. Thiolation was carried out by using Beaucage reagent (0.05 M in acetonitrile) and was allowed to react for 3 min. The support was thoroughly washed with acetonitrile and the subsequent capping was carried out by using standard solutions (CAP A) and (CAP B) to cap unreacted 5' hydroxyl groups. The capping step was then repeated and the cycle was concluded by acetonitrile washing.
  • Beaucage reagent 0.05 M in acetonitrile
  • 5'-O-DMT (A(bz), C(bz), G(ibu) or T) linked to CPG was deprotected by using the same procedure as described above. Coupling was performed by using 5'-O-DMT-A(bz), C(bz), G(ibu) or T- ⁇ -cyanoethylphosphoramidite (0.1 M in acetonitrile) and activation was done by DCI (0.25 M in acetonitrile). The coupling reaction was carried out for 7 minutes. Capping was done by using standard solutions (CAP A) and (CAP B) for 30 sec.
  • the phosphite triester was oxidized to the more stable phosphate triester by using a standard solution of I 2 and pyridine in THF for 30 sec.
  • the support was washed with acetonitrile and the capping step was repeated. The cycle was concluded by thorough acetonitrile wash.
  • oligonucleotides were cleaved from the support and the ⁇ -cyanoethyl protecting group removed by treating the support with 35% NH 4 OH for 1 h at room temperature.
  • the support was filtered off and the base protecting groups were removed by raising the temperature to 65°C for 4 hours. Ammonia was then removed by evaporation.
  • oligos were either purified by reversed-phase-HPLC (RP-HPLC) or by anion exchange chromatography (AIE): RP-HPLC: Column: VYDAC TM , Cat. No. 218TP1010 (vydac) Flow rate: 3 ml/min Buffer: A (0.1 M ammonium acetate, pH 7.6) B (acetonitrile) Gradient: Time 0 10 18 22 23 28 B% 0 5 30 100 100 0 AIE: Column: Resource TM 15Q (amersham pharmacia biotech) Flow rate: 1.2 ml/min Buffer: A (0.1 M NaOH) B (0.1 M NaOH, 2.0 M NaCl) Gradient: Time 0 1 27 28 32 33 B% 0 25 55 100 100 0
  • LNA/RNA oligonucleotides were synthesized DMT-off on a 1.0 ⁇ mole scale using an automated nucleic acid synthesiser (MOSS Expedite 8909) and using standard reagents. 1 H -tetrazole or 5-ethylthio-1 H -tetrazole were used as activators.
  • the LNA A Bz , G lBu and T phosphoramidite concentration was 0.1 M in anhydrous acetonitrile.
  • the Me C Bz was dissolved in 15 % THF in acetonitrile.
  • the coupling time for all monomer couplings was 600 secs.
  • RNA phosphoramidites (Glen Research, Sterling, Virginia) were N-acetyl and 2'-O-triisopropylsilyloxymethyl (TOM) protected.
  • the monomer concentration was 0.1 M (anhydrous acetonitrile) and the coupling time was 900 secs.
  • the oxidation time was set to be 50 sec.
  • the solid support was DMT-LNA-CPG (1000 ⁇ , 30-40 ⁇ mole/g).
  • Cleavage from the resin and nucleobase/phosphate deprotection was carried out in a sterile tube by treatment with 1.5 ml of a methylamine solution (1:1, 33% methylamine in ethanol:40% methylamine in water) at 35°C for 6 h or left overnight.
  • the tube was centrifuged and the methylamine solution was transferred to second sterile tube.
  • the methylamine solution was evaporated in a vacuum centrifuge.
  • To remove the 2'-O-protection groups the residue was dissolved in 1.0 ml 1.0 M TBAF in THF and heated to 55°C for 15 min. and left at 35°C overnight.
  • the THF was evaporated in a vacuum centrifuge leaving a light yellow gum, which was neutralised with approx.
  • the gel was stained in CyberGold (Molecular Probes, 1:10000 in 0.9xTBE) for 30 min followed by scanning in a Bio-Rad FX Imager).
  • the concentration of the oligonucleotide was measured by UV-spectrometry at 260 nm.
  • Step Reagent Operation Volume Remarks 1 - Empty storage buffer - Discard 2 H 2 O (RNase-free) Wash 2 x full volume Discard 3 Oligo in buffer (RNase-free) Load 1.0 ml Discard 4 H 2 O (RNase-free) Elution 1.5 ml Collect - Contains oligo 5 H 2 O (RNase-free) "Elution" 0.5 ml Collect - Contains salt + small amount of oligo
  • the cells used were the human embryonal kidney (HEK) 293 cell lines.
  • HEK 293 cells were maintained in DMEM supplemented with 10% foetal bovine serum, penicillin, strepto-mycine and glutamine (Invitrogen, Paisely, UK).
  • the plasmids used were pGL3-Control coding for firefly luciferace under the control of the SV40 promoter and enhancer and pRL-TK coding for Renilla luciferase under the control of HSV-TK promoter (Promega, Madison, WI, USA).
  • transfection cells were seeded in 500 ⁇ l medium in 24-well plates in order to adhere and reach a confluency of 70 to 90% at the time of transfection.
  • Cells were seeded in the medium without antibiotics and changed to 500 ⁇ l Opti-MEM I just before adding the transfection mix to the cells.
  • a standard co-transfection mix was prepared for triplicate wells by separately adding 510 ng pGL3-Control, 51 ng pRL-TK and 340 ng siRNA to 150 ⁇ l Opti-MEM I (Invitrogen) and 3 ⁇ l LipofectAMINE 2000 (Invitrogen) to another 150 ⁇ l Opti-MEM I. The two solutions were mixed and incubated at room temperature for 20-30 minutes before adding to the cells.
  • transfection mix 100 ⁇ l was added to each of the three wells. The final volume of medium plus transfection mix was 600 ⁇ l. The siLNA or siRNA concentration corresponded to about 13 nM. Cells were incubated with the transfection mix for 4 hours and the medium was then changed with fully supplemented DMEM.
  • Cells were harvested in passive lysis buffer and assayed according to the protocol (Promega) using a NovoSTAR 96-well format luminometer with substrate dispenser (BMG Labtechnologies, Offenburg, Germany). 10 ⁇ l sample was applied in each well of a 96 well plate and 50 ⁇ l Luciferace Assay Reagent II (substrate for firefly luciferase) was added to a well by the luminometer and measured. Then, 50 ⁇ l Stop and Glow (stop solution for firefly luciferase and substrate for Renilla luciferase) was added and measured. The average of the luciferase activities measured for 10 sec. was used to calculate ratios between firefly and Renilla luciferase or the opposite.
  • Luciferace Assay Reagent II substrate for firefly luciferase
  • Stop and Glow stop solution for firefly luciferase and substrate for Renilla luciferase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Claims (15)

  1. Modifizierte siRNA, umfassend einen sense-Strang und einen antisense-Strang, wobei der sense-Strang in mindestens einer der Positionen 8-14, gezählt von dem 5'-Ende, ein modifiziertes RNA-Nukleotid umfasst und wobei der sense-Strang in Position 10, gezählt von dem 5'-Ende, eine Nicht-RNA-Nukleobase umfasst, wobei die Nicht-RNA-Nukleobase eine von Ribose verschiedene Zuckergruppe aufweist und wobei die modifizierte siRNA spezifisch die Proteinexpression stören kann.
  2. Modifizierte siRNA nach Anspruch 1, wobei der sense-Strang weiterhin eine Nicht-RNA-Nukleobase in Position 12, gezählt von dem 5'-Ende, umfasst.
  3. Modifizierte siRNA nach Anspruch 1, wobei der sense-Strang weiterhin eine Nicht-RNA-Nukleobase in Position 11, gezählt von dem 5'-Ende, umfasst.
  4. Modifizierte siRNA nach einem der Ansprüche 1-3, wobei die Nicht-RNA-Nukleobase ausgewählt ist aus der Gruppe, bestehend aus Thymin (T), 5-Methylcytosin (MeC), Isocytosin, Pseudoisocytosin, 5-Bromouracil, 5-Propinyluracil, 5-Propinyl-6-fluorouracil, 5-Methylthiazoluracil, 6-Aminopurin, 2-Aminopurin, Inosin, 2,6-Diaminopurin, 7-Propinyl-7-deazaadenin, 7-Propinyl-7-deazaguanin und 2-Chlor-6-aminopurin.
  5. Modifizierte siRNA nach Anspruch 4, wobei die Nicht-RNA-Nukleobase T oder MeC ist.
  6. Modifizierte siRNA nach Anspruch 5, wobei die Nicht-RNA-Nukleobase T ist.
  7. Modifizierte siRNA nach einem der Ansprüche 1-6, wobei sich die Zuckergruppe dadurch von Ribose unterscheidet, dass die 2'-OH-Gruppe von Ribose modifiziert ist.
  8. Modifizierte siRNA nach Anspruch 7, wobei die Zuckergruppe LNA ist.
  9. Modifizierte siRNA nach Anspruch 8, wobei die LNA ausgewählt ist aus der Gruppe, bestehend aus Thio-LNA, Amino-LNA, Oxy-LNA und Ena-LNA.
  10. Modifizierte siRNA nach Anspruch 9, wobei die LNA Oxy-LNA ist.
  11. Modifizierte siRNA nach Anspruch 10, wobei die Oxy-LNA in der Beta-D-Form vorliegt.
  12. Modifizierte siRNA nach einem der vorhergehenden Ansprüche, wobei der sense-Strang in Position 12, gezählt von dem 5'-Ende, eine von Ribose verschiedene Zuckergruppe umfasst und wobei der sense-Strang in Position 10, gezählt von dem 5'-Ende, eine Nicht-RNA-Nukleobase umfasst.
  13. Modifizierte siRNA nach einem der vorhergehenden Ansprüche, wobei jeder Strang 12-35 Monomere umfasst.
  14. Pharmazeutische Zusammensetzung, umfassend die modifizierte siRNA nach einem der Ansprüche 1-13 und ein pharmazeutisch unbedenkliches Verdünnungsmittel, Träger oder Adjuvans.
  15. Modifizierte siRNA nach einem der Ansprüche 1-13 zur Verwendung als Arzneimittel.
EP05700612.4A 2004-01-30 2005-01-28 Modifizierte sirna (short interfering rna) Active EP1713912B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DKPA200400145 2004-01-30
PCT/DK2004/000192 WO2004083430A2 (en) 2003-03-21 2004-03-22 SHORT INTERFERING RNA (siRNA) ANALOGUES
DKPA200401079 2004-07-08
PCT/DK2005/000062 WO2005073378A1 (en) 2004-01-30 2005-01-28 MODIFIED SHORT INTERFERING RNA (MODIFIED siRNA)

Publications (2)

Publication Number Publication Date
EP1713912A1 EP1713912A1 (de) 2006-10-25
EP1713912B1 true EP1713912B1 (de) 2013-09-18

Family

ID=36997281

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05700612.4A Active EP1713912B1 (de) 2004-01-30 2005-01-28 Modifizierte sirna (short interfering rna)

Country Status (4)

Country Link
US (1) US20080249039A1 (de)
EP (1) EP1713912B1 (de)
DK (1) DK1713912T3 (de)
WO (1) WO2005073378A1 (de)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE443765T1 (de) 2003-03-21 2009-10-15 Santaris Pharma As Analoga kurzer interferierender rna (sirna)
US20100041738A1 (en) * 2005-06-20 2010-02-18 Avaris Ab Hybridization-stabilizing construct
US20090018097A1 (en) * 2005-09-02 2009-01-15 Mdrna, Inc Modification of double-stranded ribonucleic acid molecules
AU2007209481B2 (en) * 2006-01-27 2012-01-12 Roche Innovation Center Copenhagen A/S LNA modified phosphorothiolated oligonucleotides
JP5244087B2 (ja) * 2006-03-23 2013-07-24 サンタリス ファーマ アー/エス 低分子内部セグメント化干渉rna
ES2603379T3 (es) 2006-10-09 2017-02-27 Roche Innovation Center Copenhagen A/S Compuestos antagonistas de ARN para la modulación de PCSK9
EP2195428B1 (de) 2007-09-19 2013-12-11 Applied Biosystems, LLC Sirna-sequenz-unabhängige modifikationsformate zur verringerung von das ziel verfehlenden phänotypischen effekten bei rnai und stabilisierte formen davon
AU2009273878A1 (en) * 2008-07-25 2010-01-28 Alnylam Pharmaceuticals, Inc. Enhancement of siRNA silencing activity using universal bases or mismatches in the sense strand
US8957038B2 (en) 2009-07-15 2015-02-17 Medtronic, Inc. Treatment of neurological disorders
WO2011009697A1 (en) 2009-07-21 2011-01-27 Santaris Pharma A/S Antisense oligomers targeting pcsk9
EP2544703A4 (de) 2010-03-12 2013-09-18 Brigham & Womens Hospital Verfahren zur behandlung von gefässentzündungserkrankungen
PT2561078T (pt) 2010-04-23 2018-12-03 Cold Spring Harbor Laboratory Sharn com uma conceção estrutural inovadora
US20140031250A1 (en) 2010-10-07 2014-01-30 David Tsai Ting Biomarkers of Cancer
US9920317B2 (en) 2010-11-12 2018-03-20 The General Hospital Corporation Polycomb-associated non-coding RNAs
AU2011325956B2 (en) 2010-11-12 2016-07-14 The General Hospital Corporation Polycomb-associated non-coding RNAs
US9045749B2 (en) 2011-01-14 2015-06-02 The General Hospital Corporation Methods targeting miR-128 for regulating cholesterol/lipid metabolism
MX2014004516A (es) 2011-10-11 2015-01-16 Brigham & Womens Hospital Micro-arns en trastornos neurodegenerativos.
EP2850188A4 (de) 2012-05-16 2016-01-20 Rana Therapeutics Inc Zusammensetzungen und verfahren zur modulierung der expression der hämoglobin-genfamilien
CN104583401A (zh) 2012-05-16 2015-04-29 Rana医疗有限公司 用于调节atp2a2表达的组合物和方法
EA201492123A1 (ru) 2012-05-16 2015-10-30 Рана Терапьютикс, Инк. Композиции и способы для модулирования экспрессии семейства генов smn
US10837014B2 (en) 2012-05-16 2020-11-17 Translate Bio Ma, Inc. Compositions and methods for modulating SMN gene family expression
EA201492116A1 (ru) 2012-05-16 2015-05-29 Рана Терапьютикс, Инк. Композиции и способы для модулирования экспрессии mecp2
CN104540946A (zh) 2012-05-16 2015-04-22 Rana医疗有限公司 用于调节utrn表达的组合物和方法
WO2013184209A1 (en) 2012-06-04 2013-12-12 Ludwig Institute For Cancer Research Ltd. Mif for use in methods of treating subjects with a neurodegenerative disorder
PL2920304T3 (pl) 2012-11-15 2019-07-31 Roche Innovation Center Copenhagen A/S Koniugaty oligonukleotydowe
PT3013959T (pt) 2013-06-27 2020-02-04 Roche Innovation Ct Copenhagen As Oligómeros antissentido e conjugados dirigidos para pcsk9
WO2015200697A1 (en) 2014-06-25 2015-12-30 The General Hospital Corporation Targeting human satellite ii (hsatii)
WO2016033472A1 (en) 2014-08-29 2016-03-03 Children's Medical Center Corporation Methods and compositions for the treatment of cancer
CA2966044A1 (en) 2014-10-30 2016-05-06 The General Hospital Corporation Methods for modulating atrx-dependent gene repression
WO2016137937A1 (en) * 2015-02-24 2016-09-01 Dcb-Usa Llc Short interfering rna for treating cancer
WO2016149455A2 (en) 2015-03-17 2016-09-22 The General Hospital Corporation The rna interactome of polycomb repressive complex 1 (prc1)
US10961532B2 (en) 2015-04-07 2021-03-30 The General Hospital Corporation Methods for reactivating genes on the inactive X chromosome
WO2016210241A1 (en) 2015-06-26 2016-12-29 Beth Israel Deaconess Medical Center, Inc. Cancer therapy targeting tetraspanin 33 (tspan33) in myeloid derived suppressor cells
WO2017066712A2 (en) 2015-10-16 2017-04-20 The Children's Medical Center Corporation Modulators of telomere disease
WO2017066796A2 (en) 2015-10-16 2017-04-20 The Children's Medical Center Corporation Modulators of telomere disease
WO2017087708A1 (en) 2015-11-19 2017-05-26 The Brigham And Women's Hospital, Inc. Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity
JP7033072B2 (ja) 2016-02-25 2022-03-09 ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッド Smoc2を標的化する線維症のための治療方法
EP3532638A4 (de) 2016-10-31 2020-07-29 University of Massachusetts Targeting von microrna-101-3p in der krebstherapie
EP3612232A1 (de) 2017-04-21 2020-02-26 The Broad Institute, Inc. Gezielte abgabe an beta-zellen
WO2019036375A1 (en) 2017-08-14 2019-02-21 Sanford Burnham Prebys Medical Discovery Institute CARDIOGENIC MESODERMA TRAINING REGULATORS
US11413288B2 (en) 2017-11-01 2022-08-16 Dana-Farber Cancer Institute, Inc. Methods of treating cancers
US20210292766A1 (en) 2018-08-29 2021-09-23 University Of Massachusetts Inhibition of Protein Kinases to Treat Friedreich Ataxia
WO2020171889A1 (en) 2019-02-19 2020-08-27 University Of Rochester Blocking lipid accumulation or inflammation in thyroid eye disease

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898031A (en) * 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
US6506559B1 (en) * 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
DE19956568A1 (de) * 1999-01-30 2000-08-17 Roland Kreutzer Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
US20020068709A1 (en) * 1999-12-23 2002-06-06 Henrik Orum Therapeutic uses of LNA-modified oligonucleotides
WO2003070918A2 (en) * 2002-02-20 2003-08-28 Ribozyme Pharmaceuticals, Incorporated Rna interference by modified short interfering nucleic acid
WO2002081628A2 (en) * 2001-04-05 2002-10-17 Ribozyme Pharmaceuticals, Incorporated Modulation of gene expression associated with inflammation proliferation and neurite outgrowth, using nucleic acid based technologies
KR20080023768A (ko) * 2000-03-30 2008-03-14 화이트헤드 인스티튜트 포 바이오메디칼 리서치 Rna 간섭의 rna 서열 특이적인 매개체
CZ302719B6 (cs) * 2000-12-01 2011-09-21 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Izolovaná molekula dvouretezcové RNA, zpusob její výroby a její použití
EP2221377B2 (de) * 2002-02-01 2017-05-17 Life Technologies Corporation Doppelsträngige Oligonukleotide
MXPA05001355A (es) * 2002-08-05 2005-09-30 Atugen Ag Formas nuevas adicionales de moleculas de arn de interferencia.
ATE443765T1 (de) * 2003-03-21 2009-10-15 Santaris Pharma As Analoga kurzer interferierender rna (sirna)
US20040224405A1 (en) * 2003-05-06 2004-11-11 Dharmacon Inc. siRNA induced systemic gene silencing in mammalian systems
NZ555644A (en) * 2004-11-09 2009-04-30 Santaris Pharma As Potent LNA oligonucleotides for the inhibition of HIF-1A expression
DE102005030529A1 (de) * 2005-06-30 2007-01-04 Deutsche Telekom Ag Verfahren und System zur Verteilung von Konfigurationen auf Clientrechner
AU2007209481B2 (en) * 2006-01-27 2012-01-12 Roche Innovation Center Copenhagen A/S LNA modified phosphorothiolated oligonucleotides

Also Published As

Publication number Publication date
DK1713912T3 (da) 2013-12-16
EP1713912A1 (de) 2006-10-25
US20080249039A1 (en) 2008-10-09
WO2005073378A1 (en) 2005-08-11

Similar Documents

Publication Publication Date Title
EP1713912B1 (de) Modifizierte sirna (short interfering rna)
US9738894B2 (en) Short interfering RNA (siRNA) analogues
EP1984382B1 (de) Lna-modifizierte phosphorothiolierte oligonukleotide
ES2344566T3 (es) Compuestos oligomericos para la modulacion de bcl-2.
US20080188432A1 (en) Oligomeric compounds for the modulation ras expression
WO2007031091A2 (en) Rna antagonist compounds for the modulation of p21 ras expression
JP2021524450A (ja) マイクロrna関連疾患の処置のための薬学的組成物
EP1592794A2 (de) Oligomere verbindungen modulation der expression von thioredoxin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071107

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SANTARIS PHARMA A/S

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOCH, TROELS

Inventor name: LIANG, ZICAI

Inventor name: WAHLESTEDT, CLAES

Inventor name: RUM, HENRIK

Inventor name: ELM N, JOACIM

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602005041254

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C12N0015110000

Ipc: C12N0015113000

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SANTARIS PHARMA A/S

RIC1 Information provided on ipc code assigned before grant

Ipc: C12N 15/113 20100101AFI20121221BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130408

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOCH, TROELS

Inventor name: ELMEN, JOACIM

Inventor name: ORUM, HENRIK

Inventor name: WAHLESTEDT, CLAES

Inventor name: LIANG, ZICAI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 632831

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005041254

Country of ref document: DE

Effective date: 20131114

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20131209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130918

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 632831

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130918

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005041254

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140128

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005041254

Country of ref document: DE

Effective date: 20140619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140128

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050128

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005041254

Country of ref document: DE

Representative=s name: D YOUNG & CO LLP, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 20

Ref country code: DK

Payment date: 20231219

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 20