EP1709209A2 - Light metal alloy sintering method - Google Patents

Light metal alloy sintering method

Info

Publication number
EP1709209A2
EP1709209A2 EP04802845A EP04802845A EP1709209A2 EP 1709209 A2 EP1709209 A2 EP 1709209A2 EP 04802845 A EP04802845 A EP 04802845A EP 04802845 A EP04802845 A EP 04802845A EP 1709209 A2 EP1709209 A2 EP 1709209A2
Authority
EP
European Patent Office
Prior art keywords
sintering
sintered
alloy
light metal
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04802845A
Other languages
German (de)
French (fr)
Other versions
EP1709209B1 (en
Inventor
Angelika Pohl
Otto Stock
Klaus Edgar BÄCHLE
Anton Eiberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwaebische Huettenwerke Automotive GmbH
Original Assignee
Schwaebische Huettenwerke Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwaebische Huettenwerke Automotive GmbH filed Critical Schwaebische Huettenwerke Automotive GmbH
Priority to PL04802845T priority Critical patent/PL1709209T3/en
Publication of EP1709209A2 publication Critical patent/EP1709209A2/en
Application granted granted Critical
Publication of EP1709209B1 publication Critical patent/EP1709209B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the invention relates to a method for light metal alloy sintering for lightweight metal parts and subsequently produced light metal parts.
  • Sintered parts meet all the necessary requirements for mechanical strength and elasticity in simpler manufacturing processes. Both homogeneously melting metal powder mixtures and non-homogeneous melting of metal powder mixtures can be used as starting materials. It can powders, granules, Gries od. Like. Of different grain sizes are used. These are usually pressed with a pressing aid, which is required to demold the compacted part from the mold, and then sintered, where it undergoes a greater or lesser shrinkage during sintering by eliminating the voids in the structure.
  • the sintering of iron-containing powders is known, for example, from EP 11 33 374 B1 or EP 1246950 B1.
  • the experience of sintering steel powder is not transferable to the sintering of light metal sintered parts, such as aluminum, because iron and its alloys do not form a refractory oxide layer which interferes with later sintering of the powder particles.
  • Due to the high ductility of the material sintering processes are easy to carry out for steel alloys.
  • a high non-uniform shrinkage of ⁇ 2-6% by volume was observed in this conventional sintering process, resulting in non-dimensional parts and very high reject rates. Consequently, the production of light metal sintered parts has so far been problematic.
  • light metal sintered parts it is desirable to use light metal sintered parts to save weight and to allow lightweight construction. This is especially true for parts for vehicle production - both land and air, but is useful for all applications, including those where weight should be saved. Light metal parts also have the advantage of low corrosion because they have passivated surfaces - hence they are often superior in applications where iron parts might rust - for example, in wet rooms, alkaline environments, etc. Hitherto, light-alloy sintered parts, for example aluminum alloy sintered parts, have been produced by a conventional sintering method in which the powder to be sintered is sintered. ver - which may consist of a material or a mixture of materials, was first pressed with a pressing aid to a green compact. This was then sintered, quenched and calibrated at a sintering temperature in the range of 60 to 90% of the liquidus temperature of the sintered material.
  • a process for sintering aluminum powder is known from DE 19950595, in which high-density metal powder is sintered at relatively low temperatures in order to avoid a liquid phase. This process provided parts whose mechanical properties could still be improved.
  • the object is achieved by a sintering process for lightweight metal parts comprising the following steps: pressing a light metal sintered powder mixture with pressing aid to obtain a green compact having a compression of about 90% of its theoretical density; Sintering the green body at a sintering temperature of 80-95% of the liquidus temperature of the light metal alloy with removal of the pressing aid; Two-dimensional cold repressing of the presintered part by about 10% of its height with elongated deformation of the grains of the microstructure, sintering of the re-densified part at high sintering temperatures of 90-99% of the liquidus temperature of the light metal alloy; and calibrating the high sintered part with another compaction by about 1-2% of its height.
  • Advantageous developments emerge from the dependent claims.
  • the invention also relates to sintered parts produced by this method.
  • the grains of the structure are thereby elongated deformed due to the zweldimensionalen pressing, whereby this deformation is retained until the end product.
  • the elongated grains provide a very good internal consolidation of the part - as could be achieved in a similar way at most by fibers.
  • This high compression is followed by high sintering at very high sintering temperatures, which strengthens this structure, dissipates stresses in the high-density sintered body and further bonds occur between adjacent grains.
  • very high sintering temperatures are here referred to those which are located in the upper limit of the sintering temperature of the light metal alloy. Usually, sintering takes place at 60 to 90% of the liquidus temperature of the alloy to be sintered.
  • Meh ⁇ hasige powders and powder mixtures are generally sintered in the vicinity of the melting or solidus temperature of the lowest-melting component of the mixture.
  • high sintering temperatures are understood as meaning those of more than 90% of the liquidus temperature and, under normal sintering temperatures, those which are around 90% of the liquidus temperature.
  • the part thus produced can be calibrated.
  • the parts produced in this way are very dimensionally stable and have very favorable physical properties due to the microstructure produced by the process.
  • Suitable shielding gases are all those which do not react to a significant extent with the alloy constituents. the gases, such as nitrogen, argon, hydrogen or mixtures thereof etc. The selection of such a gas is familiar to the person skilled in the art.
  • the process can also be carried out in a vacuum
  • the sintered part may be advantageous to quench the sintered part in water, especially if the sintered part is substantially non-reactive, for example. Oxidation-prone.
  • the selection of the quenching medium depends strongly on the material - but is easily accessible to the skilled person. In this case, gaseous or liquid quenching media can be used - depending on the behavior of the freshly sintered part relative to the medium.
  • solution annealing i. to use a heat treatment at lower temperatures of about 70% to 95% of the liquidus of the light metal alloy after sintering followed by quenching, making the part easier to calibrate and the alloying elements unevenly distributed in the structure are dissolved and homogenized in the solid solution.
  • the light metal alloy may be selected from aluminum alloys, Mg alloys, Be alloys or material mixtures with hard parts, such as SiC, boron carbide, boron nitride, tungsten carbide, SiO 2, Al 2 O 3 or AIN, TiB 2.
  • alloys which can not be produced by melt metallurgy.
  • Typical are titanium alloys, such as TiAl, TialNb, or else Mg alloys or beryllium alloys or lithium alloys.
  • aluminum alloys are currently. preferably AlSi, AlSiCu, AISiCuMg.
  • an aluminum alloy has from about 1 to 4% Cu, 12 to 17% Si, 0 to 3% Mg, balance aluminum, preferably 2 to 3% Cu, 13 to 16% Si 0 to 3% Mg , Rest aluminum proved to be suitable - of course, other sinterable light metal alloys, such as those of magnesium or beryllium can be used.
  • aluminum alloys which except aluminum, one or more metals such as 0.1 - 15% Cu, 0.1 - 30% Mg, 0.1 - 40% Si; 0.1-15% Cu, 0.1-15% Zn, 0.1-15% Ti, 0.1-9% Sn, 0.1-2.5% Mn, 0.1-5% Ni and / or less than 1% As, Sb, Co, Be, Pb or B and 0.8 to 40% Mo, Wo, Cr, V, Zr and / or Yt.
  • metals such as 0.1 - 15% Cu, 0.1 - 30% Mg, 0.1 - 40% Si; 0.1-15% Cu, 0.1-15% Zn, 0.1-15% Ti, 0.1-9% Sn, 0.1-2.5% Mn, 0.1-5% Ni and / or less than 1% As, Sb, Co, Be, Pb or B and 0.8 to 40% Mo, Wo, Cr, V, Zr and / or Yt.
  • an aluminum-silicon alloy sintered body may be made of powder of an aluminum-silicon alloy mixed with pure aluminum powder - that is, various components are compounded into the final composition. It may also be very important to select the powder type - depending on the preparation of the powder, this may have a smaller grain size, which may be desirable for the preparation of an intimate mixture - or have a larger grain. It has proven to be particularly favorable to use powder of small particle size, which compresses very well and mixes well. The invention is by no means limited to the use of such powders. Typical powders have an average particle size of 50-150 ⁇ m.
  • the powder mixture In order to be able to produce green bodies, the powder mixture must have a binding and / or pressing aid, since the powder can only be brought into defined, relatively permanent molds in the cold state with pressing aids, which are then sintered. Particularly preferred are those pressing aids which can be easily driven out thermally, such as long-chain hydrocarbons or materials which contain long-chain hydrocarbon chains - all materials customary in this field can be used.
  • the invention also relates to light metal sintered components, produced by a method according to one of the preceding claims.
  • the inventive Parts have a conspicuously one-dimensional pressed grain structure, which leads to a high strength and elasticity and thus mechanical strength with high dimensional accuracy.
  • Typical light metal components that can be so manufactured and used are rotors, stators, wheels such as pump wheels, sprockets, gears and rollers of all kinds, valve parts for engines, cam for built-up camshaft u. like. More.
  • FIG. 3 shows a section through the cold-pressed sintered AISi14 green compact of FIG
  • FIG. 4 shows a section through the highly sintered cold-pressed AISi14 sintered ring of FIG. 3;
  • FIG. 5 shows a section through the calibrated high-sintered light metal component of FIG
  • the method according to the invention therefore always has the steps, as shown again graphically in FIG. 1, of the steps: - Producing a green part by pressing powder and pressing aid to a mold near the final shape;
  • This green compact is sintered in a dry nitrogen atmosphere oven at 500-530 ° C, shrinking by about 1% by volume.
  • the part is quenched by inert gas and the state thus obtained frozen.
  • a section through this sintered part is shown in FIG.
  • the dark grains are silicon and the lighter grains are the aluminum alloy.
  • the edge of the sintered part shown on the left is still quite open and rough.
  • the post-compacted pre-sintered disc is then transferred to a sintering furnace with ⁇ atmosphere and sintered at 560-570 ° C for about 1 hour. Thereafter, the part is quenched after solution annealing. A section through the part after this treatment is shown in FIG. The structure is now even denser - i. There are fewer dark spots in the structure - and many grain boundaries are blurred. Significantly, the compacted structure, especially in the dense surface, falls on.
  • the sintered part thus treated is then compressed in a Kalibrie ⁇ resse about another 1-2% of its height and assumes its final shape. This step can be followed by another hot aging to resolve stresses in the structure.
  • the part had the following properties for hardness: HB 2.5 / 62.5 90 - 100 Density: 2.61 g / cm 3 (96% of theoretical density) Tolerance accuracy: IT7
  • the green compact thus produced is pre-sintered at 500 ° C, where it undergoes a shrinkage of about 1 vol.% And quenched the sintered part.
  • the sintered part is cold-condensed in a press by 5% of its height.
  • This cold densified pre-sintered part is then transferred to a sintering furnace and sintered at 565-570 ° C under N 2 or other inert gas for about 1 hour. Thereafter solution heat treatment and quenching in nitrogen or water takes place.
  • the material experiences only a minor compaction of less than 1%.
  • the sintered part thus treated is then cold compressed again in another press by 5% of its height and now takes substantially its final shape. It is then transferred to a sintering furnace and sintered at 565 - 570 ° C under argon or other inert gas for about 1 hour. Thereafter solution heat treatment and quenching in nitrogen or water takes place.
  • the material experiences only a minor compaction of less than 1%.
  • the double-compacted sintered part is again pressed in a Kalibrie ⁇ resse by about 1% of its height.
  • this step warm Auslagern.
  • An aluminum powder mixture of a final composition of about 5% copper, about 0.5% silicon, about 0.5% magnesium, balance aluminum - the alloy is subject to mix variations as different starting alloys are mixed together - ⁇ 2% wax becomes conventional pressed to a green rod with a green strength of> 8.0 N / mm 2 to a density of 90% of the theoretical density.
  • This green compact is sintered in a dry nitrogen atmosphere furnace at 520-560 ° C, shrinking by about 1% by volume. This part is then two-dimensionally recompressed in a press by 12% of its height to a density of about 95% of the theoretical density.
  • the post-densified pre-sintered disc is then transferred in a sintering furnace with ⁇ atmosphere and sintered at 580 - 610 ° C for about 1 hour. Then the part is quenched after solution annealing. The structure is now even denser.
  • the sintered part thus treated is then compressed in a Kalibrie ⁇ resse about another 1-2% of its height and assumes its final shape. This step can be followed by another hot aging to improve the mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

To sinter a light metal alloy, the alloy powder is pressed into a green compact at 90% of its theoretical density. The green compact is sintered at a temperature of 80-95% of the limiting crystallization temperature of the light metal alloy, as the press is removed. The pre-sintered material is given a two-dimensional cold pressing by 10% of its height with a longitudinal distortion of the granules. The material is sintered again at a higher temperature of 90-99% of the limiting crystallizing temperature, with a final calibration and further compression by 1-2% of its height. The metallurgical powder can also incorporate hard materials e.g. SiC, boron carbide, boron nitride, tungsten carbide, and the like.

Description

Verfahren zum Leichtmetall-Legierungs-Sintern Method of Alloy Alloy Sintering
Die Erfindung betrifft ein Verfahren zum Leichtmetall-Legierungs-Sintern für masshaltige Leichtmetallteile sowie danach hergestellte Leichtmetallteile.The invention relates to a method for light metal alloy sintering for lightweight metal parts and subsequently produced light metal parts.
Die Herstellung von Sinterteilen für leichte, hochbeanspruchte massgenaue Teile ist aufgrund des einfachen und präzisen Verfahrens zwischenzeitlich üblich. Durch das Sinterverfahren können aufwändige Bearbeitungsschritte wie Fräsen etc. vermieden werden. Sinterteile erfüllen alle notwendigen Anforderungen an mechanische Festigkeit und Elastizität bei einfacheren Herstellungsverfahren. Es können sowohl homogen schmelzende Metallpulvermischungen als auch nicht homogen schmelzen de Metallpulvermischungen als Ausgangsmaterialien eingesetzt werden. Es können Pulver, Granulat, Gries od. dgl. verschiedenster Korngrössen eingesetzt werden. Diese werden üblicherweise mit einem Presshilfsmittel, das benötigt wird, um das verdichtete Teil aus dem Werkzeug zu entformen, gepresst und sodann gesintert, wobei es während des Sinterns durch Wegfall der Hohlräume im Gefüge einer mehr oder weniger starken Schrumpfung unterliegt. Das Sintern von eisenhaltigen Pulvern ist bekannt, bspw. aus der EP 11 33 374 B1 oder aber der EP 1246950 B1. Die Erfahrungen über das Sintern von Stahlpulver sind jedoch auf das Sintern von Leichtmetallsinterteilen, wie solchen aus Aluminium, nicht übertragbar, da Eisen und seine Legierungen keine hochschmelzende Oxidschicht bilden, welche ein späteres Zusammensintern der Pulverteilchen stören. Bei Stahllegierungen sind Sinterverfahren aufgrund der hohen Duktilität des Materials gut durchzuführen - bei den meist spröderen Leichtmetallen wurde bei diesem üblichen Sinterverfahren ein hohes ungleichmässiges Schrumpfen um <_2 - 6 Vol% beobachtet, was zu nicht masshaltigen Teilen und sehr hohen Ausschussquoten führte. Demzufolge ist die Produktion von Leichtmetallsinterteilen bisher problematisch.The production of sintered parts for lightweight, highly stressed, dimensionally accurate parts is customary in the meantime due to the simple and precise method. Due to the sintering process, complex processing steps such as milling etc. can be avoided. Sintered parts meet all the necessary requirements for mechanical strength and elasticity in simpler manufacturing processes. Both homogeneously melting metal powder mixtures and non-homogeneous melting of metal powder mixtures can be used as starting materials. It can powders, granules, Gries od. Like. Of different grain sizes are used. These are usually pressed with a pressing aid, which is required to demold the compacted part from the mold, and then sintered, where it undergoes a greater or lesser shrinkage during sintering by eliminating the voids in the structure. The sintering of iron-containing powders is known, for example, from EP 11 33 374 B1 or EP 1246950 B1. However, the experience of sintering steel powder is not transferable to the sintering of light metal sintered parts, such as aluminum, because iron and its alloys do not form a refractory oxide layer which interferes with later sintering of the powder particles. Due to the high ductility of the material, sintering processes are easy to carry out for steel alloys. In the case of the mostly brittle light metals, a high non-uniform shrinkage of <2-6% by volume was observed in this conventional sintering process, resulting in non-dimensional parts and very high reject rates. Consequently, the production of light metal sintered parts has so far been problematic.
Es ist erwünscht, Leichtmetallsinterteile einzusetzen, um Gewicht zu ersparen und Leichtbau zu ermöglichen. Dies gilt ganz besonders für Teile für die Fahrzeugproduktion - sowohl von Land- als auch von Luftfahrzeugen, ist aber für alle Anwendungen, unter anderem solchen, wo Gewicht gespart werden sollte, sinnvoll. Leichtmetallteile haben auch dem Vorteil geringer Korrosion, da sie passivierte Oberflächen aufweisen - daher sind sie in Anwendungen, wo Eisenteile möglicherweise rosten würden - bspw. in Feuchträumen, alkalischer Umgebung etc. häufig überlegen. Bisher wurden Leichtmetallsinterteile, bspw. Aluminiumlegierungs-Sinterteile mit einem herkömmlichen Sinterverfahren hergestellt, bei dem das zu sinternde Pul- ver - das aus einem Material oder einer Materialmischung bestehen kann, zunächst mit einem Presshilfsmittel zu einem Grünling verpresst wurde. Dieser wurde dann bei einer Sintertemperatur im Bereich von 60 bis 90% der Liquidustemperatur des Sintermaterials gesintert, abgeschreckt und kalibriert.It is desirable to use light metal sintered parts to save weight and to allow lightweight construction. This is especially true for parts for vehicle production - both land and air, but is useful for all applications, including those where weight should be saved. Light metal parts also have the advantage of low corrosion because they have passivated surfaces - hence they are often superior in applications where iron parts might rust - for example, in wet rooms, alkaline environments, etc. Hitherto, light-alloy sintered parts, for example aluminum alloy sintered parts, have been produced by a conventional sintering method in which the powder to be sintered is sintered. ver - which may consist of a material or a mixture of materials, was first pressed with a pressing aid to a green compact. This was then sintered, quenched and calibrated at a sintering temperature in the range of 60 to 90% of the liquidus temperature of the sintered material.
Ein Verfahren zum Sintern von Aluminiumpulver ist aus der DE 19950595 bekannt, bei dem hochverdichtetes Metallpulver bei relativ niedrigen Temperaturen gesintert wird, um eine flüssige Phase zu vermeiden. Dieses Verfahren lieferte Teile, deren mechanische Eigenschaften noch verbesserungsfähig waren.A process for sintering aluminum powder is known from DE 19950595, in which high-density metal powder is sintered at relatively low temperatures in order to avoid a liquid phase. This process provided parts whose mechanical properties could still be improved.
Es ist demgegenüber Aufgabe der Erfindung, die Nachteile der Sinterverfahren des Standes der Technik für Leichtmetallsinterteile zu vermeiden und ein Verfahren anzugeben, dass masshaltige Teile ermöglicht.It is accordingly an object of the invention to avoid the disadvantages of the sintering method of the prior art for light-metal sintered parts and to provide a method that allows dimensionally stable parts.
Die Aufgabe wird erfindungsgemäß durch ein Sinterverfahren für masshaltige Leichtmetallteile mit den Schritten: Pressen einer Leichtmetall-Sinterpulvermischung mit Presshilfsmittel unter Erhalt eines Grünlings mit einer Verdichtung von etwa 90 % seiner theoretischen Dichte; Sintern des Grünlings bei einer Sintertemperatur von 80 - 95 % .der Liquidustemperatur der Leichtmetallegierung unter Entfernen des Presshilfsmittels; Zweidimensionaies Kalt-Nachpressen des vorgesinterten Teils um etwa 10% seiner Höhe unter länglicher Verformung der Körner des Gefüges, Sintern des nachverdichteten Teils bei hohen Sintertemperaturen von 90 - 99 % der Liquidustemperatur der Leichtmetallegierung; und Kalibrieren des hochgesinterten Teils mit einer weiteren Verdichtung um etwa 1 - 2% seiner Höhe gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Ansprüchen. Die Erfindung bezieht sich auch auf Sinterteile, hergestellt durch dieses Verfahren.According to the invention, the object is achieved by a sintering process for lightweight metal parts comprising the following steps: pressing a light metal sintered powder mixture with pressing aid to obtain a green compact having a compression of about 90% of its theoretical density; Sintering the green body at a sintering temperature of 80-95% of the liquidus temperature of the light metal alloy with removal of the pressing aid; Two-dimensional cold repressing of the presintered part by about 10% of its height with elongated deformation of the grains of the microstructure, sintering of the re-densified part at high sintering temperatures of 90-99% of the liquidus temperature of the light metal alloy; and calibrating the high sintered part with another compaction by about 1-2% of its height. Advantageous developments emerge from the dependent claims. The invention also relates to sintered parts produced by this method.
Dadurch, dass nun erfindungsgemäß nach einem Sintern, das bereits eine Verfestigung der Struktur und teilweise Bindung des Sinterkörpers bewirkt, zweidimensionaies Pressen mit relativ hoher Verdichtung des. Sinterkörpers folgt, wird das Korn- gefüge überraschenderweise so verändert, dass die Schrumpfung beim nachfolgenden Sintern bei hoher Sintertemperatur sehr gering wird und das unkontrollierte Schrumpfen, welches zu den hohen Ausschussraten führte, vermieden wird. Durch das Kalt-Hochverdichten eines durch Sintern von Presshilfsmittel befreiten und leicht bereits etwas verbundenen Sinterkörpers wird das Korngefüge desselben so verändert, dass sich eine bessere Verfestigung ergibt. Da das Presshilfsmittel im Sinterschritt entfernt wurde, kann ein hoher Verdichtungsgrad erzielt werden. Die Körner des Gefüges werden dabei aufgrund des zweldimensionalen Pressens länglich verformt, wobei diese Verformung bis zum Endprodukt erhalten bleibt. Die länglichen Körner schaffen eine sehr gute innere Verfestigung des Teils - wie sie in ähnlicher Weise allenfalls durch Fasern erzielt werden könnte. An dieses Hochverdichten schliesst sich ein Hochsintern bei sehr hohen Sintertemperaturen an, wodurch diese Struktur gefestigt, Spannungen im hochverdichteten Sinterkörper abgebaut werden und weitere Bindungen zwischen benachbarten Körnern erfolgen. Als sehr hohe Sintertemperaturen werden hier solche bezeichnet, die sich im obersten Grenzbereich der Sintertemperatur der Leichtmetallegierung befinden. Üblicherweise findet Sintern bei 60 bis 90% der Liquidustemperatur der zu sinternden Legierung statt. Mehφhasige Pulver und Pulvermischungen werden im allgemeinen in der Nähe der Schmelz- oder Solidustemperatur des am niedrigsten schmelzenden Bestandteils der Mischung gesintert. Im Zusammenhang mit der Erfindung werden als hohe Sintertemperaturen solche von über 90% der Liquidustemperatur verstanden und unter normalen Sintertemperaturen solche, die um 90% der Liquidustemperatur liegen. Anschliessend kann das so hergestellte Teil kalibriert werden. Die so hergestellten Teile sind sehr masshaltig und aufgrund der durch das Verfahren hergestellten Gefügestruktur mit sehr günstigen physikalischen Eigenschaften ausgestattet.By virtue of the fact that, according to the invention, after sintering, which already effects solidification of the structure and partial bonding of the sintered body, two-dimensional pressing with relatively high compression of the sintered body . Sintered follows, the grain structure is surprisingly changed so that the shrinkage during subsequent sintering at high sintering temperature is very low and the uncontrolled shrinkage, which led to the high rejection rates, is avoided. By cold-high compression of a freed by sintering of pressing aids and slightly already slightly connected sintered body, the grain structure thereof is changed so that there is a better solidification. Since the pressing aid was removed in the sintering step, a high degree of compaction can be achieved. The grains of the structure are thereby elongated deformed due to the zweldimensionalen pressing, whereby this deformation is retained until the end product. The elongated grains provide a very good internal consolidation of the part - as could be achieved in a similar way at most by fibers. This high compression is followed by high sintering at very high sintering temperatures, which strengthens this structure, dissipates stresses in the high-density sintered body and further bonds occur between adjacent grains. As very high sintering temperatures are here referred to those which are located in the upper limit of the sintering temperature of the light metal alloy. Usually, sintering takes place at 60 to 90% of the liquidus temperature of the alloy to be sintered. Mehφhasige powders and powder mixtures are generally sintered in the vicinity of the melting or solidus temperature of the lowest-melting component of the mixture. In connection with the invention, high sintering temperatures are understood as meaning those of more than 90% of the liquidus temperature and, under normal sintering temperatures, those which are around 90% of the liquidus temperature. Subsequently, the part thus produced can be calibrated. The parts produced in this way are very dimensionally stable and have very favorable physical properties due to the microstructure produced by the process.
Beim Sintern werden reaktive Stellen des zu sinternden Pulvers freigesetzt, was zu einer chemischen Verbindung einander berührender Körner an den Berührungsstellen führt. Da bei diesem Prozess die reaktiven Stellen ggf. auch von bei den hohen Sintertemperaturen schnell eindiffundierenden Gasmolekülen besetzt werden können, ist es sinnvoll, die Sinterschritte in Schutzgasatmosphäre durchzuführen, um Reaktionen mit Gasen der Luft, wie Oxidation, oder auch Hydroxidbildung, falls die Luft feucht ist, zu vermeiden. In diesem Zusammenhang ist daraufhinzuweisen, dass, falls die Sintermetallegierung anfällig für Hydroxidbildung ist, trockene Gase eingesetzt werden müssen, um eine Reaktion mit dem Wasser im Gas zu vermeiden.During sintering, reactive sites of the powder to be sintered are released, resulting in chemical bonding of contacting grains at the points of contact. Since in this process the reactive sites may possibly also be occupied by gas molecules which rapidly diffuse in at the high sintering temperatures, it is expedient to carry out the sintering steps in a protective gas atmosphere, to react with gases of the air, such as oxidation, or else to form hydroxide if the air is humid is to avoid. In this context, it should be noted that if the sintered metal alloy is susceptible to hydroxide formation, dry gases must be used to avoid reaction with the water in the gas.
Nach dem Sintern ist es sinnvoll, den so erzielten Zustand durch ein schnelles Abkühlen - Abschrecken - einzufrieren, um so einen Verzug beim Abkühlen zu vermeiden. Es hat sich als besonders günstig erwiesen, gesinterte Teile nach dem Sintern mit Schutzgas abzuschrecken, um den beim Sintern hergestellten Zustand einzufrieren, aber Oxidation/Hydroxidbildung zu vermeiden. Als Schutzgase eignen sich alle mit den Legierungbestandteilen nicht in wesentlichem Umfang reagieren- den Gase, wie Stickstoff, Argon, Wasserstoff oder Mischungen derselben etc.. Die Auswahl eines derartigen Gases ist dem Fachmann geläufig. Das Verfahren kann auch im Vakuum durchgeführt werdenAfter sintering, it makes sense to freeze the state achieved by rapid cooling - quenching - so as to avoid a delay during cooling. It has been found to be particularly advantageous to quench sintered parts after sintering with inert gas to freeze the state produced during sintering, but to avoid oxidation / hydroxide formation. Suitable shielding gases are all those which do not react to a significant extent with the alloy constituents. the gases, such as nitrogen, argon, hydrogen or mixtures thereof etc. The selection of such a gas is familiar to the person skilled in the art. The process can also be carried out in a vacuum
Bei manchen Sinterteilen - abhängig vom Material - kann es günstig sein, das Sinterteil in Wasser abzuschrecken, insbesondere falls das gesinterte Teil im wesentlichen nicht reaktiv, bspw. oxidationsanfällig ist. Die Auswahl des Abschreckmediums hängt stark vom Material ab - ist dem Fachmann aber leicht zugänglich. Dabei können gasförmige oder flüssige Abschreckmedien eingesetzt werden - je nach Verhalten des frisch gesinterten Teils gegenüber dem Medium.In some sintered parts - depending on the material - it may be advantageous to quench the sintered part in water, especially if the sintered part is substantially non-reactive, for example. Oxidation-prone. The selection of the quenching medium depends strongly on the material - but is easily accessible to the skilled person. In this case, gaseous or liquid quenching media can be used - depending on the behavior of the freshly sintered part relative to the medium.
Vor jeglicher Verdichtung gesinterter Teile kann es günstig sein, Lösungsglühen, d.h. eine Wärmebehandlung bei geringeren Temperaturen von etwa 70% bis 95 % des Liquiduspunktes der Leichtmetalllegierung nach dem Sintern mit anschlie- ssendem Abschrecken einzusetzen, wodurch das Teil leichter kalibrierbar wird und die im Gefüge ungleichmässig verteilten Legierungselemente im Mischkristall gelöst und homogenisiert werden.Prior to any densification of sintered parts, it may be beneficial to use solution annealing, i. to use a heat treatment at lower temperatures of about 70% to 95% of the liquidus of the light metal alloy after sintering followed by quenching, making the part easier to calibrate and the alloying elements unevenly distributed in the structure are dissolved and homogenized in the solid solution.
Schliesslich kann es günstig sein, nach dem Endkalibrieren das kalibrierte Teil bei einer Temperatur von 20 bis 35% der Liquidustempertur der Sinterlegierung warm auszulagern. Dadurch werden die mechanischen Eigenschaften verbessert. Beim Warmauslagern werden metastabile Phasen gebildet, die von Aushärtungseffekten begleitet werden.Finally, it may be favorable after the final calibration to warmly outsource the calibrated part at a temperature of 20 to 35% of the liquidus temperature of the sintered alloy. This improves the mechanical properties. Hot aging forms metastable phases accompanied by hardening effects.
Bei einigen Geometrien oder Sintermaterialien kann es vorteilhaft sein, die Schritte des Verdichtens und Hochsinterns wiederholt durchzuführen, um ein dichtes und festes Teil zu erzielen.For some geometries or sintered materials, it may be advantageous to repeat the steps of compacting and high sintering to achieve a dense and solid part.
Typischerweise kann die Leichtmetalllegierung ausgewählt sein aus Aluminium-Legierungen, Mg-Legierungen, Be-Legierungen bzw. Materialmischungen mit Hartteilen, wie SiC, Borcarbid, Bornitrid , Wolframcarbid, SiO2, AI2O3 oder auch AIN, TiB2.Typically, the light metal alloy may be selected from aluminum alloys, Mg alloys, Be alloys or material mixtures with hard parts, such as SiC, boron carbide, boron nitride, tungsten carbide, SiO 2, Al 2 O 3 or AIN, TiB 2.
Durch das erfindungsgemäße Verfahren können auch schmelzmetallurgisch nicht herstellbare Legierungen verarbeitet werden. Typisch sind Titan-Legierungen, wie TiAl, TialNb, oder auch Mg-Legierungen oder Berylliumlegierungen oder Lithiumlegierungen. Bei Aluminiumlegierungen sind z.Zt. bevorzugt u.a. AlSi, AlSiCu, AISiCuMg. Für viele Anwendungen hat sich eine Aluminium-Legierung aus von etwa 1 - 4 % Cu, 12 - 17 % Si, 0 - 3% Mg, Rest Aluminium, bevorzugt 2 - 3 % Cu, 13 - 16 % Si 0 - 3% Mg, Rest Aluminium als geeignet erwiesen - selbstverständlich können auch andere sinterfähige Leichtmetallegierungen, wie solche von Magnesium oder Beryllium eingesetzt werden.By means of the method according to the invention, it is also possible to process alloys which can not be produced by melt metallurgy. Typical are titanium alloys, such as TiAl, TialNb, or else Mg alloys or beryllium alloys or lithium alloys. For aluminum alloys are currently. preferably AlSi, AlSiCu, AISiCuMg. For many applications, an aluminum alloy has from about 1 to 4% Cu, 12 to 17% Si, 0 to 3% Mg, balance aluminum, preferably 2 to 3% Cu, 13 to 16% Si 0 to 3% Mg , Rest aluminum proved to be suitable - of course, other sinterable light metal alloys, such as those of magnesium or beryllium can be used.
Es eignen sich auch in vorteilhafter Weise Aluminium-Legierungen, die ausser Aluminium auch eine oder mehrere Metalle wie 0,1 - 15 % Cu, 0,1 - 30 % Mg, 0,1 - 40 % Si; 0,1 - 15 % Cu, 0,1 bis 15 % Zn, 0,1 - 15 % Ti, 0,1 - 9% Sn, 0,1 - 2,5 % Mn, 0,1 - 5 % Ni und/oder weniger als 1 % As, Sb, Co, Be, Pb oder B und 0,8 40 % Mo, Wo, Cr, V, Zr und/oder Yt aufweisen.It is also advantageous aluminum alloys, which except aluminum, one or more metals such as 0.1 - 15% Cu, 0.1 - 30% Mg, 0.1 - 40% Si; 0.1-15% Cu, 0.1-15% Zn, 0.1-15% Ti, 0.1-9% Sn, 0.1-2.5% Mn, 0.1-5% Ni and / or less than 1% As, Sb, Co, Be, Pb or B and 0.8 to 40% Mo, Wo, Cr, V, Zr and / or Yt.
Dabei ist zu beachten, dass bspw. ein Aluminium-Siliciumlegierungs-Sinterteil aus Pulver einer Aluminiumsiliciumlegierung gemischt mit reinem Aluminiumpulver, hergestellt werden kann - also verschiedene Komponenten zur Endzusammensetzung vermischt werden. Es kann auch sehr wesentlich sein, die Pulverart auszuwählen - je nach Herstellung des Pulvers kann dieses eine geringere Korngröße, was für die Herstellung einer innigen Mischung erwünscht sein kann - oder aber ein grösseres Korn aufweisen. Es hat sich als besonders günstig herausgestellt, Pulver geringer Komgrösse einzusetzen, das sich sehr gut verdichtet und gut mischt. Die Erfindung ist aber keineswegs auf die Verwendung derartiger Pulver eingeschränkt. Typische Pulver haben eine mittlere Korngrösse von 50 -150μm.It should be noted that, for example, an aluminum-silicon alloy sintered body may be made of powder of an aluminum-silicon alloy mixed with pure aluminum powder - that is, various components are compounded into the final composition. It may also be very important to select the powder type - depending on the preparation of the powder, this may have a smaller grain size, which may be desirable for the preparation of an intimate mixture - or have a larger grain. It has proven to be particularly favorable to use powder of small particle size, which compresses very well and mixes well. The invention is by no means limited to the use of such powders. Typical powders have an average particle size of 50-150 μm.
Die Pulvemischung muss, um Grünlinge herstellen zu können, ein Binde - und/oder Presshilfsmittel aufweisen, da das Pulver im kalten Zustand nur mit Presshilfsmitteln in definierte relativ bleibende Formen gebracht werden kann, die dann gesintert werden. Besonders bevorzugt sind solche Presshilfsmittel, die sich leicht thermisch austreiben lassen, wie langkettige Kohlenwasserstoffe oder Materialien, die lang- kettige Kohlenwasserstpffketten enthalten - alle auf diesem Gebiet üblichen Materialien können eingesetzt werden.In order to be able to produce green bodies, the powder mixture must have a binding and / or pressing aid, since the powder can only be brought into defined, relatively permanent molds in the cold state with pressing aids, which are then sintered. Particularly preferred are those pressing aids which can be easily driven out thermally, such as long-chain hydrocarbons or materials which contain long-chain hydrocarbon chains - all materials customary in this field can be used.
Die Erfindung wird nachfolgend anhand einer bevorzugten verschleissfesten Al-Si- Legierung genauer erläutert, auf die sie aber keinesfalls eingeschränkt ist.The invention is explained in more detail below with reference to a preferred wear-resistant Al-Si alloy, to which it is by no means limited.
Die Erfindung betrifft auch Leichtmetallsinterbauteile, hergestellt nach einem Verfahren nach einem der vorangehenden Ansprüche. Die erfindungsgemässen Sin- terteile weisen eine auffällig eindimensional gepresste Kornstruktur auf, die zu einer hohen Festigkeit und Elastizität und damit mechanischen Beanspruchbarkeit bei hoher Masshaltigkeit führt.The invention also relates to light metal sintered components, produced by a method according to one of the preceding claims. The inventive Parts have a conspicuously one-dimensional pressed grain structure, which leads to a high strength and elasticity and thus mechanical strength with high dimensional accuracy.
Typische Leichtmetallbauteile, die derart hergestellt und eingesetzt werden können, sind Rotoren, Statoren, Räder wie Pumpenräder, Kettenräder, Zahnräder und Rollen aller Art, Ventilteile für Motoren, Nocken für gebaute Nockenwellen u. dgl. mehr.Typical light metal components that can be so manufactured and used are rotors, stators, wheels such as pump wheels, sprockets, gears and rollers of all kinds, valve parts for engines, cam for built-up camshaft u. like. More.
Im folgenden wird die Erfindung im einzelnen anhand eines Ausführungsbeispiels, nämlich eines Verfahrens zur Herstellung von Sinterteilen aus einer verschleissfe- sten Aluminium-Siliziumlegierung beschrieben, auf die sie jedoch keineswegs eingeschränkt ist.In the following the invention is described in detail with reference to an embodiment, namely a method for the production of sintered parts made of a wear-resistant aluminum-silicon alloy, to which it is by no means limited.
Es zeigtIt shows
Fig.1 ein Schema eines typischen Verfahrensablaufs1 is a diagram of a typical procedure
Fig.2 einen Schnitt durch einen gesinterten AISΪ14 Grünling2 shows a section through a sintered AISΪ14 green compact
Fig. 3 einen Schnitt durch den kalt nachgepressten gesinterten AISi14 Grünling der Fig.23 shows a section through the cold-pressed sintered AISi14 green compact of FIG
Fig.4 einen Schnitt durch den hochgesinterten kalt nachgepressten AISi14-Sinter- ling der Fig.3; und4 shows a section through the highly sintered cold-pressed AISi14 sintered ring of FIG. 3; and
Fig. 5 einen Schnitt durch das kalibrierte hochgesinterte Leichtmetallbauteil der Fig.45 shows a section through the calibrated high-sintered light metal component of FIG
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen zur Herstellung von Sinterteilen aus einer verschleissfesten Aluminium-Sili- ciumlegierung beschrieben.The invention will be described below with reference to exemplary embodiments for the production of sintered parts made of a wear-resistant aluminum-silicon alloy.
Das erfindungsgemässe Verfahren weist daher stets, wie in Fig. 1 nochmals grafisch dargestellt, die Schritte auf: - Herstellen eines Grünteils durch Verpressen von Pulver und Presshilfsmittel zu einer Form nahe der Endform;The method according to the invention therefore always has the steps, as shown again graphically in FIG. 1, of the steps: - Producing a green part by pressing powder and pressing aid to a mold near the final shape;
- Sintern des Grünlings bei 70 - 95 % der Solidustemperatur der Leichtmetallegierung;Sintering of the green body at 70-95% of the solidus temperature of the light metal alloy;
- starkes zweidimensionaies Kalt-Nachpressen des Sinterteils um etwa 10% seiner Höhe bzw. auf etwa 95% theoretische Dichte;- strong two-dimensional cold re-pressing of the sintered part by about 10% of its height or to about 95% theoretical density;
- Sintern des verdichteten Sinterteils bei Sintertemperaturen von 90 - 99 % der Solidustemperatur;Sintering the compacted sintered body at sintering temperatures of 90-99% of the solidus temperature;
- Kalibrieren des hochgesinterten Teils.- Calibrating the high sintered part.
Beispiel 1.Example 1.
Eine Aluminium-Pulvermischung aus Alumium und AISi14Mg mit einer Endzusammensetzung von etwa 2 % Kupfer, etwa 14 % Silicium, 0,5 % Magnesium, Rest Aluminium - die Legierung unterliegt mischungsbedingten Variationen, da verschiedene Ausgangslegierungen zusammengemischt werden - mit <2 % Wachs wird in üblicherweise zu einer Grünlings-Scheibe eines Durchmessers von 10 cm und 1 cm Höhe mit einer Grünfestigkeit von >8,0 N/mm2 zu einer Dichte von 90 % der theoretischen Dichte verpresst.An aluminum powder mixture of Alumium and AISi14Mg with a final composition of about 2% copper, about 14% silicon, 0.5% magnesium, balance aluminum - the alloy is subject to mix variations as different starting alloys are mixed together - <2% wax becomes usually pressed to a green disk of diameter 10 cm and 1 cm high with a green strength of> 8.0 N / mm 2 to a density of 90% of the theoretical density.
Dieser Grünling wird in einem Ofen mit trockener Stickstoffatmosphäre bei 500 - 530°C gesintert, wobei er um etwa 1 Vol.% schrumpft.This green compact is sintered in a dry nitrogen atmosphere oven at 500-530 ° C, shrinking by about 1% by volume.
Das Teil wird durch Schutzgas abgeschreckt und der so erhaltene Zustand eingefroren. Ein Schnitt durch diesess gesinterte Teil ist in Fig.2 dargestellt. Deutlich erkennt man noch Leerstellen - hier dunkel abgebildet - und verschiedene, relativ runde Körner, wobei die dunklen Körner Silicium und die helleren Körner die Aluminiumlegierung sind. Der links gezeigte Rand des gesinterten Teils ist noch recht offen und rauh.The part is quenched by inert gas and the state thus obtained frozen. A section through this sintered part is shown in FIG. Clearly you can still recognize vacancies - shown here in dark colors - and different, relatively round grains, the dark grains are silicon and the lighter grains are the aluminum alloy. The edge of the sintered part shown on the left is still quite open and rough.
Dieses Teil wird nun in einer Presse um 10 % seiner Höhe auf. eine Dichte von etwa 95% der theoretischen Dichte zweidimensional kalt nachverdichtet. Das Ergebnis dieser starken Verdichtung unter hohem Druck ist in Fig. 3 dargestellt. Deutlich sieht man die Verformung der hellen Aluminium-Körner der Struktur, die nun - verglichen mit dem gesinterten Grünling der Fig.2 - eine längliche Form haben und eine bessere mechanische Festigkeit des Teils bewirken.This part will now be in a press at 10% of its height. a density of about 95% of the theoretical density two-dimensionally cold densified. The result of this high compression under high pressure is shown in FIG. You can clearly see the deformation of the bright aluminum grains of the structure, which now - compared with the sintered green compact of Figure 2 - have an elongated shape and cause a better mechanical strength of the part.
Die nachverdichtete vorgesinterte Scheibe wird nun in einen Sinterofen mit ^-Atmosphäre überführt und bei 560 - 570° C etwa 1 Stunden gesintert. Danach wird das Teil nach Lösungsglühen abgeschreckt. Ein Schnitt durch das Teil nach dieser Behandlung ist in Fig.4 dargestellt. Das Gefüge ist nun noch dichter - d.h. es befinden sich weniger dunkle Stellen im Gefüge - und viele Korngrenzen sind verwischt. Deutlich fällt die verdichtete Struktur, insbesondere auch in der dichten Oberfläche, auf.The post-compacted pre-sintered disc is then transferred to a sintering furnace with ^ atmosphere and sintered at 560-570 ° C for about 1 hour. Thereafter, the part is quenched after solution annealing. A section through the part after this treatment is shown in FIG. The structure is now even denser - i. There are fewer dark spots in the structure - and many grain boundaries are blurred. Significantly, the compacted structure, especially in the dense surface, falls on.
Bei allen Sinterschritten ist im übrigen eine präzise Temperatursteuerung des Ofens aüsserordentlich wichtig, da bereits geringfügige Temperaturschwankungen zu verzogenen Sinterteilen führen.Incidentally, in all sintering steps, precise temperature control of the furnace is extremely important, since even slight temperature fluctuations lead to distorted sintered parts.
Während dieses Sinter/Lösungsglühschrittes erfährt das Material nur eine geringfügige Verdichtung von unter 1% - es tritt praktisch kein Verzug auf.During this sintering / solution annealing step, the material experiences only a minor compaction of less than 1% - virtually no distortion occurs.
Das so behandelte Sinterteil wird nun in einer Kalibrieφresse um etwa weitere 1- 2 % seiner Höhe verdichtet und nimmt seine endgültige Form an. An diesen Schritt kann sich zur nochmals Warmauslagern zur Behebung von Spannungen im Gefüge anschliessen.The sintered part thus treated is then compressed in a Kalibrieφresse about another 1-2% of its height and assumes its final shape. This step can be followed by another hot aging to resolve stresses in the structure.
Das Teil wies die nachfolgenden Eigenschaften auf Härte: HB 2,5/62,5 90 - 100 Dichte: 2,61 g/cm3 (96% der theoretischen Dichte) Toleranzgenauigkeit: IT7The part had the following properties for hardness: HB 2.5 / 62.5 90 - 100 Density: 2.61 g / cm 3 (96% of theoretical density) Tolerance accuracy: IT7
Beispiel 2Example 2
Eine Al-Pulvermischung mit einer Endzusammensetzung von etwa 2 % Cu, etwa 14% Si, 0,5% Magnesium, Rest Aluminium - die Legierung unterliegt mischungsbedingten Variationen, da verschiedene Ausgangslegierungen zusammengemischt werden - mit 2 % Steramid-Wachs wird zu einem Rollen-Grünling mit einer Grünfestigkeit von >8,0 N/mm2 verpresst. Der so hergestellte Grünling wird bei 500°C vorgesintert, wobei er einer Schrumpfung von etwa 1 Vol. % unterliegt und das gesinterte Teil abgeschreckt.An Al powder mixture having a final composition of about 2% Cu, about 14% Si, 0.5% magnesium, balance aluminum - the alloy is subject to mix variations as different starting alloys are mixed together - with 2% steramide wax becomes a roll Green compact with a green strength of> 8,0 N / mm2 compressed. The green compact thus produced is pre-sintered at 500 ° C, where it undergoes a shrinkage of about 1 vol.% And quenched the sintered part.
Das gesinterte Teil wird in einer Presse um 5% seiner Höhe kalt^weidimensiooal verdichtet.The sintered part is cold-condensed in a press by 5% of its height.
Dieses kalt nachverdichtete vorgesinterte Teil wird nun in einen Sinterofen überführt und bei 565 - 570° C unter N2 oder einem anderen Schutzgas etwa 1 Stunde gesintert. Danach findet Lösungsglühen und Abschrecken in Stickstoff oder Wasser statt.This cold densified pre-sintered part is then transferred to a sintering furnace and sintered at 565-570 ° C under N 2 or other inert gas for about 1 hour. Thereafter solution heat treatment and quenching in nitrogen or water takes place.
Während dieses Sinter/Lösungsglühschrittes erfährt das Material nur eine geringfügige Verdichtung von unter 1 %.During this sintering / solution annealing step, the material experiences only a minor compaction of less than 1%.
Das so behandelte Sinterteil wird nun in einer weiteren Presse nochmals um 5 % seiner Höhe kalt verdichtet und nimmt nun im wesentlichen seine endgültige Form an. Es wird nun in einen Sinterofen überführt und bei 565 - 570° C unter Argon oder einem anderen Schutzgas etwa 1 Stunde gesintert. Danach findet Lösungsglühen und Abschrecken in Stickstoff oder Wasser statt.The sintered part thus treated is then cold compressed again in another press by 5% of its height and now takes substantially its final shape. It is then transferred to a sintering furnace and sintered at 565 - 570 ° C under argon or other inert gas for about 1 hour. Thereafter solution heat treatment and quenching in nitrogen or water takes place.
Während des letzten Sinter/Lösungsglühschrittes erfährt das Material nur eine geringfügige Verdichtung von unter 1 %.During the last sintering / solution annealing step, the material experiences only a minor compaction of less than 1%.
Anschliessend wird das doppelt verdichtete Sinterteil in einer Kalibrieφresse nochmals um etwa 1% seiner Höhe gepresst. Auch hier kann sich an diesen Schritt Warmauslagern anschliessen.Subsequently, the double-compacted sintered part is again pressed in a Kalibrieφresse by about 1% of its height. Here, too, can join this step warm Auslagern.
Beispiel 3Example 3
Eine Aluminium-Pulvermischung einer Endzusammensetzung von etwa 5 % Kupfer, etwa 0,5 % Silicium, etwa 0,5 % Magnesium, Rest Aluminium - die Legierung unterliegt mischungsbedingten Variationen, da verschiedene Ausgangslegierungen zusammengemischt werden - mit <2 % Wachs wird in üblicher Weise zu einem Grünlings-Stab mit einer Grünfestigkeit von >8,0 N/mm2 zu einer Dichte von 90 % der theoretischen Dichte verpresst.An aluminum powder mixture of a final composition of about 5% copper, about 0.5% silicon, about 0.5% magnesium, balance aluminum - the alloy is subject to mix variations as different starting alloys are mixed together - <2% wax becomes conventional pressed to a green rod with a green strength of> 8.0 N / mm 2 to a density of 90% of the theoretical density.
Dieser Grünling wird in einem Ofen mit trockener Stickstoffatmosphäre bei 520 - 560°C gesintert, wobei er um etwa 1 Vol.% schrumpft. Dieses Teil wird nun in einer Presse um 12 % seiner Höhe auf eine Dichte von etwa 95% der theoretischen Dichte zweidimensional nachverdichtet.This green compact is sintered in a dry nitrogen atmosphere furnace at 520-560 ° C, shrinking by about 1% by volume. This part is then two-dimensionally recompressed in a press by 12% of its height to a density of about 95% of the theoretical density.
Die nachverdichtete vorgesinterte Scheibe wird nun in einem Sinterofen mit ^-Atmosphäre überführt und bei 580 - 610° C etwa 1 Stunden gesintert. Danach wird das Teil nach Lösungsglühen abgeschreckt Das Gefüge ist nun noch dichter.The post-densified pre-sintered disc is then transferred in a sintering furnace with ^ atmosphere and sintered at 580 - 610 ° C for about 1 hour. Then the part is quenched after solution annealing. The structure is now even denser.
Bei allen Sinterschritten ist im übrigen eine präzise Temperatursteuerung des Ofens ausserordentlich wichtig, da bereits geringfügige Temperaturschwankungen zu verzogenen Sinterteilen führen.Incidentally, in all sintering steps, precise temperature control of the furnace is extremely important since even slight temperature fluctuations lead to distorted sintered parts.
Während dieses Sinter/Lösungsglühschrittes erfährt das Material nur eine geringfügige Verdichtung von unter 1% - es tritt praktisch kein Verzug auf.During this sintering / solution annealing step, the material experiences only a minor compaction of less than 1% - virtually no distortion occurs.
Das so behandelte Sinterteil wird nun in einer Kalibrieφresse um etwa weitere 1- 2 % seiner Höhe verdichtet und nimmt seine endgültige Form an. An diesen Schritt kann sich zur nochmals Warmauslagern zur Verbesserung der mechanischen Eigenschaften anschliessen.The sintered part thus treated is then compressed in a Kalibrieφresse about another 1-2% of its height and assumes its final shape. This step can be followed by another hot aging to improve the mechanical properties.
Obwohl die Erfindung anhand einer bevorzugten Anwendung bei der Aluminium- Silicium-Legierung beschrieben wurde, sind weitere Ausgestaltungen und Fortentwicklungen im Rahmen des Schutzumfangs der Ansprüche dem Fachmann offensichtlich und der Schutzumfang ist keineswegs auf die hier beispielhaft aufgeführten Ausführungsformen begrenzt, die lediglich der Erläuterung dienen sollen. While the invention has been described in terms of a preferred use in the aluminum-silicon alloy, other embodiments and developments within the scope of the claims will be apparent to those skilled in the art and the scope of protection is by no means limited to the embodiments exemplified herein, which are intended to be illustrative only ,

Claims

Neue Patentansprüche New claims
1. Sinterverfahren für masshaltige Leichtmetallteile mit den Schritten:1. Sintering process for solid light metal parts with the steps:
Pressen einer Leichtmetall-Sinterpulvermischung mit Presshilfsmittel unter Erhalt eines Grünlings mit einer Verdichtung von etwa 90 % seiner theoretischen DichtePressing a light metal sintered powder mixture with a pressing aid to obtain a green compact with a compression of about 90% of its theoretical density
Sintern des Grünlings bei einer Sintertemperatur von 80 - 95 % .der Liquidustemperatur der Leichtmetallegierung unter Entfernen des Presshilfsmittels;Sintering the green body at a sintering temperature of 80-95% of the liquidus temperature of the light metal alloy with removal of the pressing aid;
Zweidimensionaies Kalt-Nachpressen des vorgesinterten Teils um etwa 10% seiner Höhe unter länglicher Verformung der Körner des Gefüges,Two-dimensional cold-re-pressing of the pre-sintered part by about 10% of its height, with elongated deformation of the grains of the microstructure,
Sintern des nachverdichteten Teils bei hohen Sintertemperaturen von 90 - 99 % der Liquidustemperatur der Leichtmetallegierung;Sintering the post-compacted part at high sintering temperatures of 90-99% of the liquidus temperature of the light metal alloy;
Kalibrieren des hochgesinterten Teils mit einer weiteren Verdichtung um etwa 1 - 2% seiner Höhe.Calibrate the high sintered part with another compaction by about 1 - 2% of its height.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß das mindestens ein Sinterschritt in Schutzgasatmosphäre stattfindet.2. The method according to claim 1, characterized in that the at least one sintering step takes place in a protective gas atmosphere.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das gesinterte Teil nach dem Sintern abgeschreckt wird.3. The method according to any one of claims 1 or 2, characterized in that the sintered part is quenched after sintering.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Abschrecken mit Gas oder Flüssigkeit durchgeführt wird.4. The method according to claim 3, characterized in that the quenching is carried out with gas or liquid.
5. Verfahren nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß nach mindestens einem Sinterschritt Lösungsglühen eingesetzt wird.5. The method according to any one of claims 1-3, characterized in that solution annealing is used after at least one sintering step.
6. Verfahren nach einem der Ansprüche 1 - 3 , dadurch gekennzeichnet, daß das kalibrierte Teil bei einer Temperatur von 20 bis 35% der Liquidustempertur der Sinterlegierung warm ausgelagert wird. 6. The method according to any one of claims 1-3, characterized in that the calibrated part is panned warm at a temperature of 20 to 35% of the liquidus temperature of the sintered alloy.
7.Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Schritte des Verdichtens und Hochsinterns wiederholt durchgeführt werden.7.A method according to one of the preceding claims, characterized in that the steps of compacting and high sintering are repeatedly performed.
8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Leichtmetalllegierung ausgewählt ist aus Aluminium-Legierungen, Magnesium-Legierungen, Beryllium-Legierungen, Titan-Legierungen, wie TiAl, NiAINb, Lithium-Legierungen, bzw. Materialmischungen derselben mit Hartteilen, wie SiC, Borcarbid, Bornitrid, Wolframcarbid, SiO2 oder auch AIN, TiB2, AI2O3, Titan-Legierungen, wie TiAl, TialNb8. The method according to any one of the preceding claims, characterized in that the light metal alloy is selected from aluminum alloys, magnesium alloys, beryllium alloys, titanium alloys such as TiAl, NiAINb, lithium alloys, or material mixtures thereof with hard parts, such as SiC, boron carbide, boron nitride, tungsten carbide, SiO 2 or else AIN, TiB 2, Al 2 O 3, titanium alloys, such as TiAl, TialNb
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Legierung eine verschleissfeste Al-Si-Legierung ist.9. The method according to claim 8, characterized in that the alloy is a wear-resistant Al-Si alloy.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Aluminiumlegierung eine AlSi, AlSiCu, AISiCuMg - Legierung ist.10. The method according to claim 9, characterized in that the aluminum alloy is an AlSi, AlSiCu, AISiCuMg - alloy.
11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Aluminium- Legierung aus 1 -4 % Cu, 12 - 17 % Si 0 - 3 % Mg, Rest Aluminium, bevorzugt 2 - 3 % Cu, 13 - 16 % Si 0 - 3 % Mg, Rest Aluminium besteht.11. The method according to claim 9, characterized in that the aluminum alloy of 1 -4% Cu, 12 - 17% Si 0 - 3% Mg, balance aluminum, preferably 2 - 3% Cu, 13 - 16% Si 0 - 3% Mg, balance aluminum.
12. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Legierung eine warmfeste Aluminiumlegierung ist.12. The method according to claim 8, characterized in that the alloy is a heat-resistant aluminum alloy.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Aluminium- Legierung ausser Aluminium 0,1 - 15 % Cu, 0,1 - 30 % Mg, 0,1 - 40 % Si; 0,1 - 15 % Cu, 0,1 bis 15 % Zn, 0,1 - 15 % Ti, 0,1 - 9% Sn, 0,1 - 2,5 % Mn, 0,1 - 5 % Ni und/oder weniger als 1 % As, Sb, Co, Be, Pb oder B und 0,8 40 % Mo, Wo, Cr, V, Zr und/oder Yt aufweist.13. The method according to claim 12, characterized in that the aluminum alloy except aluminum 0.1 - 15% Cu, 0.1 - 30% Mg, 0.1 - 40% Si; 0.1-15% Cu, 0.1-15% Zn, 0.1-15% Ti, 0.1-9% Sn, 0.1-2.5% Mn, 0.1-5% Ni and / or has less than 1% As, Sb, Co, Be, Pb or B and 0.8 40% Mo, Wo, Cr, V, Zr and / or Yt.
14. Leichtmetallbauteil, hergestellt nach einem Verfahren nach einem der vorangehenden Ansprüche.14. Light metal component, produced by a method according to one of the preceding claims.
15. Leichtmetallbauteil, nach Anspruch 14, dadurch gekennzeichnet, dass es ein Rad, Pumpenrad, Kettenrader, Zahnrad,. Rolle jeglicher Art, ein Ventilteil, Nocken für gebaute Nockenwellen ist. 15. Light metal component, according to claim 14, characterized in that it is a wheel, impeller, sprockets, gear ,. Roller of any kind, a valve part, cam for built camshafts is.
EP04802845A 2004-01-19 2004-11-26 Light metal alloy sintering method Active EP1709209B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04802845T PL1709209T3 (en) 2004-01-19 2004-11-26 Light metal alloy sintering method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004002714A DE102004002714B3 (en) 2004-01-19 2004-01-19 To produce sintered components, of light metal alloys, the powder is compressed into a green compact to be give a low temperature sintering followed by further compression and high temperature sintering
PCT/DE2004/002636 WO2005068112A2 (en) 2004-01-19 2004-11-26 Light metal alloy sintering method

Publications (2)

Publication Number Publication Date
EP1709209A2 true EP1709209A2 (en) 2006-10-11
EP1709209B1 EP1709209B1 (en) 2008-06-11

Family

ID=34442568

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04802845A Active EP1709209B1 (en) 2004-01-19 2004-11-26 Light metal alloy sintering method

Country Status (6)

Country Link
EP (1) EP1709209B1 (en)
AT (1) ATE398190T1 (en)
DE (2) DE102004002714B3 (en)
ES (1) ES2272202T3 (en)
PL (1) PL1709209T3 (en)
WO (1) WO2005068112A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108277369A (en) * 2018-02-09 2018-07-13 兰州理工大学 A kind of high duralumin, hard alumin ium alloy processing technology of lightweight
DE102017123738A1 (en) 2017-10-12 2019-04-18 Schaeffler Technologies AG & Co. KG Drive wheel for camshaft adjuster and method for producing a drive wheel for a camshaft adjuster

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010003546B4 (en) * 2010-03-31 2016-02-04 Schwäbische Hüttenwerke Automotive GmbH Combined sprocket and stator unit
CN103008662B (en) * 2011-09-23 2015-06-03 复盛应用科技股份有限公司 Integrally forming method for compound metals
CN102699327B (en) * 2012-01-04 2015-03-25 洛阳科威钨钼有限公司 Process for manufacturing molybdenum crucibles
CN103506624B (en) * 2012-06-20 2015-12-02 中磁科技股份有限公司 The sintering method of neodymium iron boron magnetic body
DE102012017040A1 (en) * 2012-08-29 2014-03-27 Gkn Sinter Metals Holding Gmbh Method for producing a composite component and a composite component
AT515747B1 (en) * 2014-04-24 2017-02-15 Miba Sinter Austria Gmbh Method for producing an assembly

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2438315C3 (en) * 1974-08-09 1979-01-25 Sintermetallwerk Krebsoege Gmbh, 5608 Krebsoege Process for the powder metallurgical production of precision parts
US4393563A (en) * 1981-05-26 1983-07-19 Smith David T Cold forced sintered powder metal annular bearing ring blanks
JP2761085B2 (en) * 1990-07-10 1998-06-04 昭和電工株式会社 Raw material powder for Al-Si based alloy powder sintered parts and method for producing sintered parts
JP2000017307A (en) * 1998-06-29 2000-01-18 Toyota Motor Corp Production of sintered member
DE19850326A1 (en) * 1998-11-02 2000-05-04 Gkn Sinter Metals Holding Gmbh Process for producing a sintered component with reshaping of the green body
DE19950595C1 (en) * 1999-10-21 2001-02-01 Dorn Gmbh C Production of sintered parts made of aluminum sintered mixture comprises mixing pure aluminum powder and aluminum alloy powder to form a sintered mixture, mixing with a pressing auxiliary agent, pressing, and sintering
PL191806B1 (en) * 1999-12-31 2006-07-31 Inst Obrobki Plastycznej Method of obtaining shaped workpieces
DE10203283C5 (en) * 2002-01-29 2009-07-16 Gkn Sinter Metals Gmbh Method for producing sintered components from a sinterable material and sintered component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005068112A3 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017123738A1 (en) 2017-10-12 2019-04-18 Schaeffler Technologies AG & Co. KG Drive wheel for camshaft adjuster and method for producing a drive wheel for a camshaft adjuster
CN108277369A (en) * 2018-02-09 2018-07-13 兰州理工大学 A kind of high duralumin, hard alumin ium alloy processing technology of lightweight

Also Published As

Publication number Publication date
WO2005068112A3 (en) 2006-01-19
EP1709209B1 (en) 2008-06-11
ES2272202T3 (en) 2008-12-01
WO2005068112A2 (en) 2005-07-28
ATE398190T1 (en) 2008-07-15
PL1709209T3 (en) 2008-11-28
DE102004002714B3 (en) 2005-05-19
DE502004007370D1 (en) 2008-07-24
ES2272202T1 (en) 2007-05-01

Similar Documents

Publication Publication Date Title
EP0800495B1 (en) Production of an aluminide-containing ceramic moulding
DE3817350C2 (en)
DE60033018T2 (en) METHOD FOR PRODUCING METAL PRODUCTS, SUCH AS PANELS BY COLD FORMING AND FLASH MOUNTING
EP1470261B1 (en) Sinterable metal powder mixture for the production of sintered components
EP1469963B1 (en) Method for producing sintered components from a sinterable material
DE69907346T2 (en) Composite material based on silicon carbide and manufacturing process therefor
DE19681358B4 (en) Powder mixture made of aluminum alloy and sintered aluminum alloys
DE4211319C2 (en) Process for the production of sintered iron molded parts with a non-porous zone
DE1909781A1 (en) Metal powder made from kneaded composite particles and method for their production
AT505699B1 (en) METHOD FOR PRODUCING A SINTERED CERTAIN COMPONENT
DE10308274A1 (en) Manufacturing process for a high-density ferrous forging
EP0229511A1 (en) Powder metallurgical process for manufacturing copper-nickel-tin spinodal alloy articles
DE19950595C1 (en) Production of sintered parts made of aluminum sintered mixture comprises mixing pure aluminum powder and aluminum alloy powder to form a sintered mixture, mixing with a pressing auxiliary agent, pressing, and sintering
DE19752776C1 (en) Production of metal-ceramic composite parts, e.g. brake discs
EP1709209B1 (en) Light metal alloy sintering method
EP3027341B1 (en) Method of manufacturing a light metal piston using an insert
DE2537112C3 (en) Method for producing a welding electrode for hard overlay welding
EP1412113B1 (en) Sinter metal parts with homogeneous distribution of non-homogeneously melting components and method for the production thereof
DE60300144T2 (en) Process for producing Al sintered alloy
AT505698B1 (en) METHOD FOR PRODUCING A SINTER-CURABLE SINTER MOLDING PART
DE10125814C1 (en) Metal-ceramic composite material used in the production of cylinder liners comprises an intermediate layer made from titanium aluminide arranged between a ceramic matrix and a metallic phase made from aluminum or aluminum alloy
AT10479U1 (en) FLUID-DENSITY SINTERED METAL PARTS AND METHOD FOR THE PRODUCTION THEREOF
EP0890560A1 (en) Ceramic-metal or metal-ceramic composites
DE10117394A1 (en) Metal-ceramic brake disk used for brakes comprises a matrix made from column and/or crystal-like silicon nitride infiltrated with an aluminum alloy in a squeeze-casting method
DE19752775C1 (en) Sacrificial body for aluminum oxide-titanium aluminide composite body production by molten aluminum filling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060818

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHWAEBISCHE HUETTENWERKE AUTOMOTIVE GMBH & CO. KG

R17D Deferred search report published (corrected)

Effective date: 20060406

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRCL

EL Fr: translation of claims filed
REG Reference to a national code

Ref country code: HU

Ref legal event code: AG9A

17Q First examination report despatched

Effective date: 20070205

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004007370

Country of ref document: DE

Date of ref document: 20080724

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2272202

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E003960

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081011

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081111

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080911

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

26N No opposition filed

Effective date: 20090312

BERE Be: lapsed

Owner name: SCHWABISCHE HUTTENWERKE AUTOMOTIVE G.M.B.H. & CO.

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081126

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080912

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20211216

Year of fee payment: 18

Ref country code: FR

Payment date: 20211122

Year of fee payment: 18

Ref country code: SE

Payment date: 20211126

Year of fee payment: 18

Ref country code: SK

Payment date: 20211214

Year of fee payment: 18

Ref country code: AT

Payment date: 20211123

Year of fee payment: 18

Ref country code: CZ

Payment date: 20211216

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211124

Year of fee payment: 18

Ref country code: HU

Payment date: 20211227

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20211215

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004007370

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R073

Ref document number: 502004007370

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R074

Ref document number: 502004007370

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220805

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004007370

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 5699

Country of ref document: SK

Effective date: 20221126

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 398190

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221126

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221126

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221126

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221127