EP1706518A1 - Protective layer for an aluminium-containing alloy for using at high temperatures, and method for producing one such protective layer - Google Patents

Protective layer for an aluminium-containing alloy for using at high temperatures, and method for producing one such protective layer

Info

Publication number
EP1706518A1
EP1706518A1 EP04802781A EP04802781A EP1706518A1 EP 1706518 A1 EP1706518 A1 EP 1706518A1 EP 04802781 A EP04802781 A EP 04802781A EP 04802781 A EP04802781 A EP 04802781A EP 1706518 A1 EP1706518 A1 EP 1706518A1
Authority
EP
European Patent Office
Prior art keywords
aluminum
alloy
oxide layer
oxide
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04802781A
Other languages
German (de)
French (fr)
Other versions
EP1706518B1 (en
Inventor
Willem J. Quadakkers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP1706518A1 publication Critical patent/EP1706518A1/en
Application granted granted Critical
Publication of EP1706518B1 publication Critical patent/EP1706518B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising

Definitions

  • the invention relates to a protective layer for an aluminum-containing alloy for use at high temperatures, in particular at temperatures up to 1400 ° C.
  • the invention further relates to methods for producing such protective layers on aluminum-containing alloys.
  • the resistance is based on the formation of a dense and slowly growing aluminum oxide layer, which forms on the material surfaces (alloys) when used at high temperatures.
  • This protective cover layer which is based on a selective oxidation of the alloying element aluminum, only occurs if the aluminum content in the alloy is sufficiently high, e.g. B. at least about 8 wt .-% in Fe-Al or Ni-Al alloys and at least about 3 wt .-% in Fe-Cr-Al or Ni-Cr-A alloys.
  • the alloy element aluminum present in the alloy is regularly used up.
  • the consumption per unit of time is generally proportional to the oxide growth rate and therefore increases with increasing temperature, since the oxide growth rate (k in cm 2 per second) increases with increasing temperature.
  • the total aluminum reservoir in an alloy containing aluminum increases in proportion to the wall thickness of a corresponding component. With one shift or film as a component, the thickness typically corresponds to the layer thickness, for a wire as a component, for example, the diameter.
  • t B typical times (t B ) until the end of the service life of components made of FeCrAl alloys (commercial names, for example KANHAL AF or ALUCHROM YHF) as a function of temperature and wall thickness are known from the literature. For example - for 1 mm wall thickness at 1200 ° C, about 10000 h, for 0.05 mm wall thickness at 1100 ° C about 700 h. for 0.05 mm wall thickness at 1200 ° C about 80 h,
  • the growth rate (k) of the oxide layer disadvantageously shows a clear deviation from the above-mentioned temperature dependency.
  • This deviation occurs particularly in the initial stage (eg up to about 100 h) of the oxidation stress.
  • the reason for this deviation lies in the fact that at temperatures around 800 ° C it is not the ⁇ -Al 2 0 3 (hexagonal structure; corundum lattice) formed at high temperatures (at and above 1000 ° C), but rather metastable Al 2 0 3 modifications, in particular ⁇ - or ⁇ -Al 2 0 3 .
  • These last-mentioned oxide modifications are distinguished by significantly higher growth rates than the ⁇ -Al 2 0 3 .
  • the initially high growth rate of the oxide layer can disadvantageously exhaust the existing, very small aluminum reservoir in just a few hours. This regularly leads to the complete destruction of the component.
  • the actual lifespan is thus orders of magnitude smaller than would be expected due to the extrapolation of the growth rates of the ⁇ -Al 2 0 3 layers at high temperatures (1000 to 1200 ° C).
  • the above-mentioned alloys are therefore not suitable for use in the thin-walled components mentioned, for example car catalysts, gas burners or filter systems.
  • the object of the invention is to provide a process in which aluminum-containing alloys form an oxidic cover layer predominantly composed of ⁇ -Al 2 O 3 at a temperature of more than 800 ° C., in particular in the initial stage of the oxidation, and so on have significantly improved long-term behavior.
  • the object of the invention is achieved by a method for the treatment of aluminum-containing alloys for high-temperature use according to the main claim.
  • Advantageous embodiments of the method can be found in the claims referring back to it.
  • the treatment according to the invention is based on the fact that the presence of other, i.e. H. not containing aluminum
  • the non-aluminum-containing oxides act on the surface of the alloy like nucleating agents, which promote the formation of the -Al 2 0 3 modification in particular at temperatures above 800 ° C. This effect advantageously occurs right at the start of the oxidation of the alloy at operating temperatures, so that the harmful formation of metastable aluminum oxides is regularly prevented from the start.
  • Suitable examples of such oxides which have an advantageous effect on the surface are in particular Ni oxides, Fe oxides, Cr oxides and Ti oxides.
  • the oxides can be applied to the surfaces of the components made of the metallic, aluminum-containing alloys mentioned by various methods or can also be produced.
  • an oxide layer is formed on the surface of the alloy, which predominantly does not consist of an aluminum oxide.
  • the Surface layer has further, non-aluminum-containing oxides with a content of at least 20%, and in particular of more than 50%.
  • the surface layer of the alloy is understood to mean a region close to the surface up to a thickness of 1000 nm. It has been found in the context of the invention that the mode of action of the non-aluminum-containing oxides on the surface of the alloy also occurs with layer thicknesses of only a few nm.
  • the dashed lines show the layer thickness of an oxide layer formed on the surface of a corresponding alloy when ⁇ -Al 2 0 3 is exclusively formed at the corresponding temperatures versus time (both in arbitrary units). After an initially somewhat steeper initial course of the growth rate, the growth rate then remains almost constant, which leads to an almost linear increase in the layer thickness for longer times. Overall, the layer thickness that is formed is higher the higher the corresponding operating temperature.
  • the layer thickness is also indicated by a solid line initial formation of metastable aluminum oxides and subsequent formation of ⁇ -Al 2 0 3 entered.
  • the comparison shows the significantly higher growth rate of metastable aluminum oxides, especially in the early stages. In the further course, the growth rate then remains almost constant, so that an almost linearly increasing layer thickness also forms over time.
  • Ni oxide, Fe oxide, Cr oxide or even Ti oxide with a preferred thickness of 5 to 1000 nm is applied to the surface of a component made of an aluminum-containing alloy by vapor deposition.
  • the coating method mentioned corresponds to the prior art.
  • a metallic layer made of Fe, Ni, Cr or Ti is first applied to the surface of a component made of an aluminum-containing alloy by means of customary coating processes up to a thickness of 5 to 1000 nm.
  • customary coating processes up to a thickness of 5 to 1000 nm.
  • vapor deposition, cathode sputtering, galvanic coating are mentioned as suitable methods of application.
  • the metals mentioned were converted into the corresponding oxides in an oxygen-containing atmosphere.
  • a component made of an aluminum-containing alloy is treated in a chloride- and / or fluoride-containing solution or in a gas atmosphere in which such a solution is located.
  • a suitable solution is, for example, a 10% NaCl solution in water. This treatment takes place at room temperature or at a slightly elevated temperature, approx. 80 ° C instead.
  • an Fe- or Ni-containing oxide and / or hydroxide is formed on the surface of the component, depending on the alloy base.
  • the hydroxide which may be present is converted into the desired Fe oxide (Fe 2 0 3 ) or Ni oxide (NiO).
  • a component is first exposed to a temperature of 750 ° C for a period of a few minutes to five hours.
  • an oxide containing Fe or Ni was preferably formed on the surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Alloys containing aluminium are characterised by an outstanding oxidation resistance at high temperatures, that is based on, inter alia, the formation of a thick and slow-growing aluminium oxide layer on material surfaces. If the formation of the aluminium oxide layer reduces the aluminium content of the alloy so far that a critical aluminium concentration is not reached, no other protective aluminium oxide layer can be formed. This leads disadvantageously to a very rapid breakaway oxidation, and the destruction of the component. This effect is stronger at temperatures above 800 °C due to the fact that, often at this point, metastable A1203 modifications, especially θ- or Ϝ-A1203, are formed instead of α-A1203 that is generally formed at high temperatures. The above-mentioned oxide modifications are disadvantageously characterised by significantly higher growth rates. The invention relates to methods whereby aluminium-containing alloys advantageously form an oxidic covering layer predominantly consisting of α-Al2O3, at a temperature higher than 800 °C, especially in the initial stage of oxidation, and thus have a significantly improved long-term behaviour.

Description

Beschreibung description
Schutzschicht für eine aluminiumha.ltige Legierung für den Einsatz bei hohen Temperature , sowie Verfahren zur Herstellung einer solchen SchutzschichtProtective layer for an aluminum-containing alloy for use at high temperatures, as well as methods for producing such a protective layer
Die Erfindung betrifft eine Schutzschicht für eine aluminiumhaltige Legierung für den Einsatz bei hohen Temperaturen, insbesondere bei Temperaturen bis zu 1400 °C. Die Erfindung betrifft ferner Verfahren zur Herstellung solchen Schutz- schichten auf aluminiumhaltigen Legierungen.The invention relates to a protective layer for an aluminum-containing alloy for use at high temperatures, in particular at temperatures up to 1400 ° C. The invention further relates to methods for producing such protective layers on aluminum-containing alloys.
Stand der TechnikState of the art
Legierungen auf der Basis von Fe-Al, Ni-Al, Ni-Cr-Al oderAlloys based on Fe-Al, Ni-Al, Ni-Cr-Al or
Fe-Cr-Al zeichnen sich durch eine hervorragende Oxidations- beständigkeit bis zu sehr hohen Einsatztemperaturen (=Fe-Cr-Al are characterized by excellent oxidation resistance up to very high operating temperatures (=
1400°C) aus. Die Beständigkeit beruht auf der Bildung einer dichten und langsam wachsenden Aluminiumoxidschicht, die sich bei Hochtemperatureinsatz auf den WerkstoffOberflächen (Legierungen) bildet. Diese schützende Deckschicht, die auf einer selektiven Oxidation des Legierungselementes Aluminium beruht, tritt nur dann auf, wenn der Aluminiumgehalt in der Legierung ausreichend hoch ist, z. B. mindestens etwa 8 Gew.-% in Fe-Al- oder Ni-Al-Legierungen und mindestens etwa 3 Gew.-% in Fe-Cr-Al- oder Ni-Cr-A -Legierungen.1400 ° C). The resistance is based on the formation of a dense and slowly growing aluminum oxide layer, which forms on the material surfaces (alloys) when used at high temperatures. This protective cover layer, which is based on a selective oxidation of the alloying element aluminum, only occurs if the aluminum content in the alloy is sufficiently high, e.g. B. at least about 8 wt .-% in Fe-Al or Ni-Al alloys and at least about 3 wt .-% in Fe-Cr-Al or Ni-Cr-A alloys.
Durch die Bildung der Deckschicht auf Aluminiumoxidbasis wird regelmäßig das in der Legierung vorhandene Legierungs- element Aluminium verbraucht. Der Verbrauch pro Zeiteinheit ist in der Regel proportional zur Oxidwachstumsrate und nimmt daher mit steigender Temperatur zu, da die Oxidwachstumsrate (k in cm2 pro Sekunde) mit steigender Temperatur zunimmt. Das insgesamt in einer alu.miniumh.altigen Legierung vorhandene Aluminiumreservoir nimmt proportional zur Wandstärke eines entsprechenden Bauteils zu. Bei einer Schicht oder Folie als Bauteil entspricht die Stärke typischerweise der Schichtdicke, bei einem Draht als Bauteil beispielsweise dem Durchmesser.By forming the cover layer based on aluminum oxide, the alloy element aluminum present in the alloy is regularly used up. The consumption per unit of time is generally proportional to the oxide growth rate and therefore increases with increasing temperature, since the oxide growth rate (k in cm 2 per second) increases with increasing temperature. The total aluminum reservoir in an alloy containing aluminum increases in proportion to the wall thickness of a corresponding component. With one shift or film as a component, the thickness typically corresponds to the layer thickness, for a wire as a component, for example, the diameter.
Wird durch einen Langzeiteinsatz eines Bauteils aus einer aluminiumhaltigen Legierung durch die Bildung der Aluminiumoxidschicht auf der Oberfläche der Aluminiumgehalt der Legierung so weit reduziert, dass eine kritische Aluminiumkonzentration unterschritten wird, so kann sich keine weitere schützende Aluminiumoxidschicht mehr ausbilden. Dies führt zu einer sehr schnellen "Breakaway Oxidation". Dieser Zeitpunkt entspricht dem so genannten Lebensdauerende der Komponente (Bauteil) .If the aluminum content of the alloy is reduced by a long-term use of a component made of an aluminum-containing alloy by the formation of the aluminum oxide layer on the surface to such an extent that the critical aluminum concentration is not reached, no further protective aluminum oxide layer can be formed. This leads to a very quick "breakaway oxidation". This time corresponds to the so-called end of the life of the component (component).
Damit ergibt sich aus den vorgenannten Überlegungen, dass die Lebensdauer eines Bauteils einerseits mit zunehmender Oxidwachstumsrate und andererseits mit abnehmender Wandstärke abnimmt .It follows from the above considerations that the life of a component decreases on the one hand with increasing oxide growth rate and on the other hand with decreasing wall thickness.
Aus der Literatur sind einige Beispiele für typische Zeiten (tB) bis zum Lebensdauerende von Komponenten aus FeCrAl- Legierungen (kommerzielle Bezeichnungen z. B. KANHAL AF oder ALUCHROM YHF) als Funktion von Temperatur und Wandstärke bekannt. Beispielsweise - für 1 mm Wandstärke bei 1200°C, etwa 10000 h, für 0,05 mm Wandstärke bei 1100°C etwa 700 h. für 0,05 mm Wandstärke bei 1200°C etwa 80 h,Some examples of typical times (t B ) until the end of the service life of components made of FeCrAl alloys (commercial names, for example KANHAL AF or ALUCHROM YHF) as a function of temperature and wall thickness are known from the literature. For example - for 1 mm wall thickness at 1200 ° C, about 10000 h, for 0.05 mm wall thickness at 1100 ° C about 700 h. for 0.05 mm wall thickness at 1200 ° C about 80 h,
Aus theoretischen Überlegungen lässt sich ableiten, dass die Lebensdauer bei einer Temperaturerhöhung von 100 °C etwa um den Faktor 10 abnimmt. Die Temperaturabhängigkeit von tB ergibt sich dabei aus der bekannten Temperaturabhängigkeit der Oxidwachstumsrate k. Diese ist wie folgt definiert: k = kn -Q/RT mit Q = Aktivierungsenergie für Diffusionsvorgänge in der Schicht, T = Temperatur und R = allgemeine Gaskonstante. Die Abhängigkeit der Zeit bis zum Lebensdauerende (tB) von der Komponentenwandstärke (d) ergibt sich für die meisten Anwendungsfälle näherungsweise wie folgt: tB proportional zu d3 From theoretical considerations it can be deduced that the service life decreases by a factor of 10 when the temperature rises to 100 ° C. The temperature dependence of t B results from the known temperature dependence of the oxide growth rate k. This is defined as follows: k = k n -Q / RT with Q = activation energy for diffusion processes in the layer, T = temperature and R = general gas constant. The dependence of the time until the end of the service life (t B ) on the component wall thickness (d) is approximately as follows for most applications: t B proportional to d 3
Hierdurch wird die starke Reduzierung der Zeit bis zum Le- bensdauerende bei Verringerung Komponentenwandstärke deutlich. Für sehr dünnwandige Komponenten aus oben genannten Legierungen wie sie z. B. in Trägermaterialien von PKW- Katalysatoren (Foliendicken 0,02 bis 0,1 mm), in faserbasierten Gasbrennern oder Filtern (Faserdurchmesser 0,015 bis 0,1 mm) vorliegen, sind daher die in der Praxis geforderten Betriebszeiten von einigen Tausend Stunden nur dann erreichbar, wenn die Betriebstemperaturen relativ niedrig gehalten werden, z. B. um 900 °C.This clearly shows the significant reduction in the time to the end of the service life with a reduction in the component wall thickness. For very thin-walled components made of the above-mentioned alloys such as z. B. in carrier materials of car catalysts (film thicknesses 0.02 to 0.1 mm), in fiber-based gas burners or filters (fiber diameter 0.015 to 0.1 mm), the operating times of a few thousand hours required in practice are therefore only then achievable if the operating temperatures are kept relatively low, e.g. B. around 900 ° C.
In diesem Temperaturbereich, insbesondere zwischen 800 und 950 °C, zeigt die Wachstumsrate (k) der Oxidschicht jedoch nachteilig eine deutliche Abweichung von der oben genannten Temperaturabhängigkeit . Diese Abweichung tritt insbesondere in dem Anfangsstadium (z. B. etwa bis zu 100 h) der Oxidati- onsbeanspruchung auf. Der Grund für diese Abweichung liegt in der Tatsache, dass bei Temperaturen um 800 °C nicht das bei hohen Temperaturen (bei und oberhalb 1000 °C) gebildete α-Al203 (hexagonale Struktur; Korund-Gitter) auftritt, sondern vielmehr metastabile Al203-Modifikationen, insbesondere θ - oder γ-Al203. Diese letztgenannten Oxidmodifikationen zeichnen sich durch wesentlich höhere Wachstumsraten aus als das α-Al203. Sie treten generell nur in den AnfangsStadien der Oxidation auf . Nach langen Zeiten tritt ein Übergang in stabiles α-Al203 mit der entsprechenden niedrigen Wachstums- rate auf. Die Lebensdauer einer Komponente bei 900 °C lässt sich somit in der Regel nicht aus den bei höheren Temperaturen bekannten Oxidwachstumsraten extrapolieren. Für dickwandige Kompo- nenten mit beispielsweise 1 bis 2 mm Wandstärke ist dies in der Regel nicht problematisch, da das Aluminiumreservoir in der Legierung so hoch ist, dass die anfängliche hohe Wachstumsrate bei Temperaturen um 900 °C, bedingt durch die metastabilen Oxidmodifikationen, keine signifikante Reduzierung des gesamten Aluminiumreservoirs bewirkt.In this temperature range, in particular between 800 and 950 ° C., the growth rate (k) of the oxide layer disadvantageously shows a clear deviation from the above-mentioned temperature dependency. This deviation occurs particularly in the initial stage (eg up to about 100 h) of the oxidation stress. The reason for this deviation lies in the fact that at temperatures around 800 ° C it is not the α-Al 2 0 3 (hexagonal structure; corundum lattice) formed at high temperatures (at and above 1000 ° C), but rather metastable Al 2 0 3 modifications, in particular θ - or γ-Al 2 0 3 . These last-mentioned oxide modifications are distinguished by significantly higher growth rates than the α-Al 2 0 3 . They generally only occur in the initial stages of oxidation. After long periods of time, a transition to stable α-Al 2 0 3 occurs with the corresponding low growth rate. The service life of a component at 900 ° C can therefore generally not be extrapolated from the oxide growth rates known at higher temperatures. For thick-walled components with a wall thickness of 1 to 2 mm, for example, this is generally not a problem, since the aluminum reservoir in the alloy is so high that the initial high growth rate at temperatures around 900 ° C is not significant due to the metastable oxide modifications Reduces the total aluminum reservoir.
Bei sehr dünnen Komponenten, wie beispielsweise 0,003 bis 0,1 mm dünnen Folien, kann jedoch durch die anfänglich hohe Wachstumsrate der Oxidschicht, das vorhandene, sehr geringe Aluminiumreservoir nachteilig bereits in wenigen Stunden erschöpft werden. Dies führt regelmäßig zu einer völligen Zerstörung der Komponente. Die tatsächliche Lebensdauer ist somit um Größenordnungen kleiner als man auf Grund der Extrapolation der Wachstumsraten der α-Al203-Schichten bei ho- hen Temperaturen (1000 bis 1200 °C) erwarten würde. Die vorgenannten Legierungen sind daher für den Einsatz in den genannten dünnwandigen Komponenten beispielsweise PKW- Katalysatoren, Gasbrennern oder Filtersystemen nicht geeignet .In the case of very thin components, such as, for example, 0.003 to 0.1 mm thin films, the initially high growth rate of the oxide layer can disadvantageously exhaust the existing, very small aluminum reservoir in just a few hours. This regularly leads to the complete destruction of the component. The actual lifespan is thus orders of magnitude smaller than would be expected due to the extrapolation of the growth rates of the α-Al 2 0 3 layers at high temperatures (1000 to 1200 ° C). The above-mentioned alloys are therefore not suitable for use in the thin-walled components mentioned, for example car catalysts, gas burners or filter systems.
Aufgabe und LösungTask and solution
Aufgabe der Erfindung ist es, ein Verfahren zur Verfügung zu stellen, bei welchem aluminiumhaltige Legierungen bei einem Temperatureinsatz von mehr als 800 °C, insbesondere im Anfangsstadium der Oxidation, eine überwiegend aus α-Al203 aufgebaute oxidische Deckschicht ausbilden, und so ein deutlich verbessertes Langzeitverhalten aufweisen.The object of the invention is to provide a process in which aluminum-containing alloys form an oxidic cover layer predominantly composed of α-Al 2 O 3 at a temperature of more than 800 ° C., in particular in the initial stage of the oxidation, and so on have significantly improved long-term behavior.
Die Aufgabe der Erfindung wird gelöst durch ein Verfahren zur Behandlung von aluminiumhaltigen Legierungen für den Hochtemperatureinsatz gemäß Hauptanspruch. Vorteilhafte Ausführungsformen des Verfahrens finden sich in den darauf rückbezogenen Ansprüchen wieder.The object of the invention is achieved by a method for the treatment of aluminum-containing alloys for high-temperature use according to the main claim. Advantageous embodiments of the method can be found in the claims referring back to it.
Gegenstand der ErfindungObject of the invention
Es wurde im Rahmen der Erfindung gefunden, dass eine Oberflächenbehandlung von Aluminium aufweisenden Legierungen auf der Basis Fe-Al-, Ni-Al, Ni-Cr-Al und Fe-Cr-Al bei Einsatz dieser Legierungen bei Temperaturen, bei denen metastabile A1203-Modifikationen auftreten, eine verbesserte Langzeitstabilität bewirkt. Diese Oberflächenbehandlung bewirkt vorteilhaft, dass die Bildung der metastabilen AI-Oxide bei einem nachfolgendem Betriebseinsatz bei höheren Temperaturen um 900 °C, insbesondere im Temperaturbereich von 800 bis 950 °C, regelmäßig unterdrückt wird.It has been found within the scope of the invention that a surface treatment of aluminum-containing alloys based on Fe-Al, Ni-Al, Ni-Cr-Al and Fe-Cr-Al is used when using these alloys at temperatures at which metastable A1 2 0 3 modifications occur, which results in improved long-term stability. This surface treatment advantageously has the effect that the formation of the metastable Al oxides is regularly suppressed during subsequent use at higher temperatures of around 900 ° C., in particular in the temperature range from 800 to 950 ° C.
Die erfindungsgemäße Behandlung beruht auf der Tatsache, dass die Anwesenheit anderer, d. h. nicht aluminiumhaltigerThe treatment according to the invention is based on the fact that the presence of other, i.e. H. not containing aluminum
Oxide auf der Oberfläche einer aluminiumhaltigen Legierung, bzw. eines entsprechenden Bauteils, die Bildung des vorteilhaften α-Al203 bei Betriebstemperaturen oberhalb von 800 °C fördert. Auf diese Weise wird die nachteilige Bildung meta- stabiler Al203-Modifikationen, wie beispielsweise der 0- oder γ-Al203 unterdrückt. Dabei wirken die nicht aluminium- haltigen Oxide auf der Oberfläche der Legierung wie Keimbildner, die bei Temperaturen oberhalb von 800 °C insbesondere die Ausbildung der -Al203 Modifikation fördern. Dieser Effekt tritt vorteilhaft direkt schon zu Beginn der Oxidation der Legierung bei Betriebstemperaturen ein, so dass die schädliche Bildung metastabiler Aluminiumoxide regelmäßig von Anfang an unterbunden wird. Geeignete Beispiele für solche auf der Oberfläche vorteilhaft wirkenden Oxide sind insbesondere Ni-Oxide, Fe-Oxide, Cr-Oxide und Ti-Oxide. Die Oxide können auf den Oberflächen der Komponenten aus den genannten metallischen, aluminium- haltigen Legierungen durch verschiedene Verfahren aufgebracht oder auch erzeugt werden.Oxides on the surface of an aluminum-containing alloy or a corresponding component, which promotes the formation of the advantageous α-Al 2 0 3 at operating temperatures above 800 ° C. In this way, the disadvantageous formation of meta-stable Al 2 0 3 modifications, such as, for example, the 0 or γ-Al 2 0 3, is suppressed. The non-aluminum-containing oxides act on the surface of the alloy like nucleating agents, which promote the formation of the -Al 2 0 3 modification in particular at temperatures above 800 ° C. This effect advantageously occurs right at the start of the oxidation of the alloy at operating temperatures, so that the harmful formation of metastable aluminum oxides is regularly prevented from the start. Suitable examples of such oxides which have an advantageous effect on the surface are in particular Ni oxides, Fe oxides, Cr oxides and Ti oxides. The oxides can be applied to the surfaces of the components made of the metallic, aluminum-containing alloys mentioned by various methods or can also be produced.
Dazu zählt insbesondereThis includes in particular
- das direkte Aufbringen dieser vorgenannten Oxide auf die Legierungsoberfläche beispielsweise durch Aufdampfen oder durch eine Kathodenzerstäubung.- The direct application of these aforementioned oxides to the alloy surface, for example by vapor deposition or by cathode sputtering.
- das direkte Aufbringen einer metallischen Schicht aus Ti, Cr, Ni oder Fe auf die Oberfläche der Legierung mittels aus dem Stand der Technik bekannter Beschichtungsverfah- ren. Bei einem Hochtemperatureinsatz von mehr als 800 °C wandeln sich die genannten Metalle in sauerstoffhaltiger Atmosphäre in die gewünschten Oxide um.- The direct application of a metallic layer of Ti, Cr, Ni or Fe to the surface of the alloy by means of coating methods known from the prior art. When used at a high temperature of more than 800 ° C., the metals mentioned change into an oxygen-containing atmosphere desired oxides.
- die Behandlung der Legierung in einer chlorid- oder/und fluoridhaltigen Lösung oder in einer Gasatmosphäre in der sich eine derartige Lösung befindet. Dabei entsteht an der Oberfläche der Legierung in Abhängigkeit von der Legierungsbasis beispielsweise ein Fe-, Ni- oder Cr- haltiges Oxid oder Hydroxid. Bei Hochtemperatureinsatz wandeln sich die Hydroxide in die entsprechenden Oxid um. - eine Temperaturbehandlung der Legierung, bei der zunächst eine Temperatur unterhalb von 800 °C eingestellt wird, bei der bevorzugt die weiteren Legierungselemente (außer Aluminium) eine Oxidschicht auf der Oberfläche ausbilden.- The treatment of the alloy in a chloride and / or fluoride-containing solution or in a gas atmosphere in which such a solution is. Depending on the alloy base, an oxide or hydroxide containing Fe, Ni or Cr is formed on the surface of the alloy. When used at high temperatures, the hydroxides are converted into the corresponding oxide. a heat treatment of the alloy, at which a temperature below 800 ° C. is initially set, at which the further alloy elements (except aluminum) preferably form an oxide layer on the surface.
All diesen Verfahren ist gemeinsam, dass zunächst eine Oxidschicht auf der Oberfläche der Legierung ausgebildet wird, die überwiegend nicht aus einem Aluminiumoxid besteht. Dabei kann es für die gewünschte Wirkung der vorteilhaften Ausbildung einer α-Al203 Schicht, bzw. der Unterdrückung von meta- stabilen Aluminiumoxidschichten, schon ausreichen, wenn die Oberflächenschicht weitere, nicht aluminiumhaltige Oxide mit einem Gehalt von wenigstens 20 %, und insbesondere von mehr als 50 % aufweist.All of these methods have in common that first an oxide layer is formed on the surface of the alloy, which predominantly does not consist of an aluminum oxide. For the desired effect of the advantageous formation of an α-Al 2 O 3 layer or the suppression of meta-stable aluminum oxide layers, it may be sufficient if the Surface layer has further, non-aluminum-containing oxides with a content of at least 20%, and in particular of more than 50%.
Unter der Oberflächenschicht der Legierung ist dabei ein oberflächennaher Bereich bis zu 1000 nm Dicke zu verstehen. Es hat sich im Rahmen der Erfindung herausgestellt, dass die Wirkungsweise der nicht aluminiumhaltigen Oxide auf der Oberfläche der Legierung auch schon bei Schichtdicken von nur wenigen nm auftritt.The surface layer of the alloy is understood to mean a region close to the surface up to a thickness of 1000 nm. It has been found in the context of the invention that the mode of action of the non-aluminum-containing oxides on the surface of the alloy also occurs with layer thicknesses of only a few nm.
Spezieller BeschreibungsteilSpecial description part
Nachfolgend wird der Gegenstand der Erfindung anhand einer Figur und mehreren Ausführungsbeispielen näher erläutert, ohne daß der Gegenstand der Erfindung dadurch beschränkt wird.The subject matter of the invention is explained in more detail below with the aid of a figure and several exemplary embodiments, without the subject matter of the invention being restricted thereby.
Eine schematische Darstellung der Temperaturabhängigkeit des Oxidwachstums auf Legierungen vom Typ Fe-Al, Fe-Cr-Al, Ni-Al oder Ni-Cr-Al ist in der Figur zu sehen.A schematic representation of the temperature dependence of the oxide growth on alloys of the Fe-Al, Fe-Cr-Al, Ni-Al or Ni-Cr-Al type can be seen in the figure.
Die gestrichelten Linien zeigen die Schichtdicke einer auf der Oberfläche einer entsprechenden Legierung ausgebildeten Oxidschicht bei der ausschließlichen Bildung von α-Al203 bei den entsprechenden Temperaturen gegen die Zeit (beides in willkürlichen Einheiten) . Nach einem zunächst etwas steiler verlaufenden Anfangsverlauf der Wachstumsrate bleibt die Wachstumsrate danach nahezu konstant, was zu einer nahezu linearen Erhöhung der Schichtdicke für längere Zeiten führt. Insgesamt ist die ausgebildete Schichtdicke umso höher, je höher die entsprechende Betriebstemperatur ist.The dashed lines show the layer thickness of an oxide layer formed on the surface of a corresponding alloy when α-Al 2 0 3 is exclusively formed at the corresponding temperatures versus time (both in arbitrary units). After an initially somewhat steeper initial course of the growth rate, the growth rate then remains almost constant, which leads to an almost linear increase in the layer thickness for longer times. Overall, the layer thickness that is formed is higher the higher the corresponding operating temperature.
Für eine Temperatur von 900 °C ist, durch eine durchgehende Linie gekennzeichnet, zusätzlich die Schichtdicke bei einer anfänglichen Bildung von metastabilen Aluminiumoxiden und nachfolgender Bildung von α-Al203 eingetragen. Der Vergleich macht die deutlich höhere Wachstumsrate der metastabilen Aluminiumoxide gerade im Anfangsstadium deutlich. Im weite- ren Verlauf bleibt dann auch hier die Wachstumsrate nahezu konstant, so dass sich mit der Zeit ebenfalls eine nahezu linear ansteigende Schichtdicke ausbildet.For a temperature of 900 ° C, the layer thickness is also indicated by a solid line initial formation of metastable aluminum oxides and subsequent formation of α-Al 2 0 3 entered. The comparison shows the significantly higher growth rate of metastable aluminum oxides, especially in the early stages. In the further course, the growth rate then remains almost constant, so that an almost linearly increasing layer thickness also forms over time.
Als Behandlungsmethoden zur Erzielung der vorteilhaften nicht aluminumhaltigen Oxide auf der Oberfläche von aluminiumhaltigen Legierungen haben sich insbesondere die nachfolgend aufgeführten Verfahren bewährt :The methods listed below have proven particularly useful as treatment methods for achieving the advantageous non-aluminum-containing oxides on the surface of aluminum-containing alloys:
1. Auf die Oberfläche eines Bauteils aus einer aluminiumhal- tigen Legierung wird ein Ni-Oxid, Fe-Oxid, Cr-Oxid oder auch Ti-Oxid mit einer bevorzugten Dicke von 5 bis 1000 nm durch Aufdampfen aufgebracht . Die genannte Beschichtungsmethode entspricht dabei dem Stand der Technik.1. An Ni oxide, Fe oxide, Cr oxide or even Ti oxide with a preferred thickness of 5 to 1000 nm is applied to the surface of a component made of an aluminum-containing alloy by vapor deposition. The coating method mentioned corresponds to the prior art.
2. Auf die Oberfläche eines Bauteils aus einer aluminiumhaltigen Legierung wird zunächst eine metallische Schicht aus Fe, Ni, Cr oder Ti mittels üblicher Beschichtungsverfahren bis zu einer Dicke von 5 bis 1000 nm aufgebracht. Als geeignete Verfahren zum Aufbringen sind dabei insbesondere Auf- dampfen, Kathodenzerstäubung, galvanische Beschichtung zu nennen. Bei Betriebseinsatz, d. h. bei Temperaturen oberhalb von 800 °C wandelten sich die genannten Metalle in Sauerstoffhaltiger Atmosphäre in die entsprechenden Oxide um.2. A metallic layer made of Fe, Ni, Cr or Ti is first applied to the surface of a component made of an aluminum-containing alloy by means of customary coating processes up to a thickness of 5 to 1000 nm. In particular, vapor deposition, cathode sputtering, galvanic coating are mentioned as suitable methods of application. During operation, i.e. H. at temperatures above 800 ° C, the metals mentioned were converted into the corresponding oxides in an oxygen-containing atmosphere.
3. Ein Bauteil aus einer aluminiumhaltigen Legierung wird in einer Chlorid- oder/und fluoridhaltigen Lösung oder in einer Gasatmosphäre in der sich eine derartige Lösung befindet behandelt. Eine geeignete Lösung ist beispielsweise eine 10 %-ige NaCl-Lösung in Wasser. Diese Behandlung findet bei Raumtemperatur oder bei leicht erhöhter Temperatur, ca. 80 °C, statt. Während dieser Behandlung, die in einem Zeitraum von wenigen Minuten bis zu zwei Stunden durchgeführt wird, entsteht an der Oberfläche des Bauteils, je nach Legierungsbasis ein Fe- oder Ni-haltiges Oxid und/oder Hydro- xid. Bei einem sich anschließenden Hochtemperatureinsatz wandelt sich das ggf. vorhandene Hydroxid in das gewünschte Fe-Oxid (Fe203) bzw. Ni-Oxid (NiO) um.3. A component made of an aluminum-containing alloy is treated in a chloride- and / or fluoride-containing solution or in a gas atmosphere in which such a solution is located. A suitable solution is, for example, a 10% NaCl solution in water. This treatment takes place at room temperature or at a slightly elevated temperature, approx. 80 ° C instead. During this treatment, which is carried out over a period of a few minutes to two hours, an Fe- or Ni-containing oxide and / or hydroxide is formed on the surface of the component, depending on the alloy base. In the case of subsequent high-temperature use, the hydroxide which may be present is converted into the desired Fe oxide (Fe 2 0 3 ) or Ni oxide (NiO).
4. Ein Bauteil wird zunächst einer Temperatur von 750 °C für einen Zeitraum von einigen Minuten bis zu fünf Stunden ausgesetzt. Dabei bildete sich auf der Oberfläche bevorzugt je nach Legierungsbasis ein Fe- oder Ni-haltiges Oxid aus. 4. A component is first exposed to a temperature of 750 ° C for a period of a few minutes to five hours. Depending on the alloy base, an oxide containing Fe or Ni was preferably formed on the surface.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung einer Schutzschicht für einer aluminiumhaltigen Legierung des Typs Fe-Al, Fe-Cr-Al, Ni-Al oder Ni-Cr-Al, mit den Schritten - auf der Oberfläche der Legierung wird eine Oxid- Schicht ausgebildet, die nicht aluminiumhaltigen Oxide aufweist, - bei Erwärmung der Legierung auf Temperaturen oberhalb von 800 °C unterdrücken die nicht aluminiumhaltigen O- xide auf der Oberfläche der Legierung die Ausbildung von metastabilen Aluminiumoxiden, so dass überwiegend nur α-Al203-Oxide gebildet wird.1. A method for producing a protective layer for an aluminum-containing alloy of the type Fe-Al, Fe-Cr-Al, Ni-Al or Ni-Cr-Al, with the steps - an oxide layer is formed on the surface of the alloy, the does not contain aluminum-containing oxides, - when the alloy is heated to temperatures above 800 ° C., the non-aluminum-containing oxides on the surface of the alloy suppress the formation of metastable aluminum oxides, so that predominantly only α-Al 2 0 3 oxides are formed.
2. Verfahren nach Anspruch 1, bei der ein nicht aluminium- haltige Oxidschicht in einer maximalen Dicke von 5000 nm, insbesondere von nur 1000 nm und besonders vorteil- haft von nur 100 nm ausgebildet wird.2. The method according to claim 1, in which a non-aluminum-containing oxide layer is formed with a maximum thickness of 5000 nm, in particular only 1000 nm and particularly advantageously only 100 nm.
3. Verfahren nach einem der Ansprüche 1 bis 2, bei dem zur Ausbildung der nicht aluminiumhaltigen Oxidschicht wenigstens eins der Oxide aus der Gruppe (Ni-Oxid, Fe- Oxid, Cr-Oxid oder Ti-Oxid) auf die aluminiumhaltige Legierung aufgebracht wird.3. The method according to any one of claims 1 to 2, in which at least one of the oxides from the group (Ni oxide, Fe oxide, Cr oxide or Ti oxide) is applied to the aluminum-containing alloy to form the non-aluminum-containing oxide layer.
4. Verfahren nach vorhergehendem Anspruch 3 , bei dem das Aufbringen durch Aufdampfen oder Kathodenzerstäubung realisiert wird.4. The method according to the preceding claim 3, wherein the application is carried out by vapor deposition or sputtering.
5. Verfahren nach einem der Ansprüche 1 bis 2, bei dem zur Ausbildung der nicht aluminiumhaltigen Oxidschicht wenigstens ein Metall aus der Gruppe (Ni, Fe, Cr oder Ti) auf die aluminiumhaltige Legierung aufgebracht wird, und sich daraus in sauerstoffhaltiger Atmosphäre eine dem Metall entsprechende Oxidschicht ausbildet. 5. The method according to any one of claims 1 to 2, in which at least one metal from the group (Ni, Fe, Cr or Ti) is applied to the aluminum-containing alloy in order to form the non-aluminum-containing oxide layer, and the metal in an oxygen-containing atmosphere appropriate oxide layer forms.
6. Verfahren nach vorhergehendem Anspruch 5 , bei dem das Aufbringen durch Aufdampfen, Kathodenzerstäubung oder eine galvanische Abscheidung realisiert wird.6. The method according to the preceding claim 5, wherein the application is carried out by vapor deposition, sputtering or galvanic deposition.
7. Verfahren nach einem der Ansprüche 1 bis 2, bei dem zur Ausbildung der nicht aluminiumhaltigen Oxidschicht die aluminiumhaltige Legierung in ein Chlorid- und/oder fluorithaltiges Medium eingebracht, wobei sich an der Oberfläche der aluminiumhaltigen Legierung aus einem Legierungsmetall, welches nicht Aluminium ist, eine entsprechende Oxid- bzw. Hydroxidschicht ausbildet.7. The method according to any one of claims 1 to 2, in which the aluminum-containing alloy is introduced into a chloride- and / or fluorite-containing medium to form the non-aluminum-containing oxide layer, the surface of the aluminum-containing alloy consisting of an alloy metal which is not aluminum, forms a corresponding oxide or hydroxide layer.
8. Verfahren nach Anspruch 7 , bei dem das Einbringen der aluminiumhaltigen Legierung in das Medium für einen Zeitraum von einer Minute bis zu fünf Stunden erfolgt .8. The method according to claim 7, wherein the introduction of the aluminum-containing alloy into the medium is carried out for a period of one minute to five hours.
9. Verfahren nach Anspruch 7 , bei dem das Einbringen der aluminiumhaltigen Komponente in das Medium bei Temperaturen zwischen 30 und 100 °C erfolgt.9. The method according to claim 7, wherein the introduction of the aluminum-containing component into the medium takes place at temperatures between 30 and 100 ° C.
10. Verfahren nach einem der Ansprüche 1 bis 2, bei dem zur Ausbildung der nicht aluminiumhaltigen Oxidschicht die aluminiumhaltige Legierung auf eine Temperatur un- terhalb von 800 °C, insbesondere auf eine Temperatur im Bereich von 500 bis 800 °C erhitzt wird, wobei sich an der Oberfläche der aluminiumhaltigen Legierung aus einem Legierungsmetall, welches nicht Aluminium ist, eine entsprechende Oxidschicht ausbildet. 10. The method according to any one of claims 1 to 2, in which the aluminum-containing alloy is heated to a temperature below 800 ° C, in particular to a temperature in the range from 500 to 800 ° C, to form the non-aluminum-containing oxide layer, wherein a corresponding oxide layer is formed on the surface of the aluminum-containing alloy from an alloy metal which is not aluminum.
EP04802781A 2004-01-21 2004-11-20 Protective layer for an aluminium-containing alloy for using at high temperatures, and method for producing one such protective layer Not-in-force EP1706518B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004002946A DE102004002946A1 (en) 2004-01-21 2004-01-21 Protective layer for an aluminum-containing alloy for use at high temperatures, and method for producing such a protective layer
PCT/DE2004/002570 WO2005071132A1 (en) 2004-01-21 2004-11-20 Protective layer for an aluminium-containing alloy for using at high temperatures, and method for producing one such protective layer

Publications (2)

Publication Number Publication Date
EP1706518A1 true EP1706518A1 (en) 2006-10-04
EP1706518B1 EP1706518B1 (en) 2012-04-18

Family

ID=34744926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04802781A Not-in-force EP1706518B1 (en) 2004-01-21 2004-11-20 Protective layer for an aluminium-containing alloy for using at high temperatures, and method for producing one such protective layer

Country Status (7)

Country Link
US (1) US7850791B2 (en)
EP (1) EP1706518B1 (en)
JP (1) JP4636389B2 (en)
CN (1) CN100569990C (en)
AT (1) ATE554195T1 (en)
DE (1) DE102004002946A1 (en)
WO (1) WO2005071132A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906170B2 (en) * 2008-06-24 2014-12-09 General Electric Company Alloy castings having protective layers and methods of making the same
US9480511B2 (en) 2009-12-17 2016-11-01 Engage Medical Holdings, Llc Blade fixation for ankle fusion and arthroplasty
US9925051B2 (en) 2010-12-16 2018-03-27 Engage Medical Holdings, Llc Arthroplasty systems and methods
US9254130B2 (en) 2011-11-01 2016-02-09 Hyun Bae Blade anchor systems for bone fusion
US10238382B2 (en) * 2012-03-26 2019-03-26 Engage Medical Holdings, Llc Blade anchor for foot and ankle
CN107541293A (en) * 2016-06-23 2018-01-05 通用电气公司 Vaporization element formed with chrome coating and the method with chrome coating protection vaporization element
US10390955B2 (en) 2016-09-22 2019-08-27 Engage Medical Holdings, Llc Bone implants
US10456272B2 (en) 2017-03-03 2019-10-29 Engage Uni Llc Unicompartmental knee arthroplasty
US11540928B2 (en) 2017-03-03 2023-01-03 Engage Uni Llc Unicompartmental knee arthroplasty
DE102018212110A1 (en) * 2018-07-20 2020-01-23 Alantum Europe Gmbh Open-pore metal body with an oxide layer and process for its production
US11697879B2 (en) * 2019-06-14 2023-07-11 Applied Materials, Inc. Methods for depositing sacrificial coatings on aerospace components
CN110172671A (en) * 2019-06-18 2019-08-27 南通大学 A kind of aluminum or aluminum alloy casting mould cracking resistance protective film and preparation method
CN114041181A (en) 2019-06-26 2022-02-11 应用材料公司 Flexible multi-layer overlay lens stack for foldable displays

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379784A (en) * 1976-12-25 1978-07-14 Toyota Motor Corp Catalyst carrier for exhaust gas purification and production thereof
JPH0261053A (en) * 1988-08-29 1990-03-01 Matsushita Electric Ind Co Ltd Steel sheet for combustion tube and production thereof
RU1824234C (en) * 1991-06-07 1993-06-30 Дзержинский Филиал Государственного Научно-Исследовательского Института По Промышленной И Санитарной Очистке Газов Method for producing catalyst for freeing exhaust gases from organic contaminants
JPH07144972A (en) * 1993-11-18 1995-06-06 Chichibu Onoda Cement Corp Thermal spraying material
US5741372A (en) * 1996-11-07 1998-04-21 Gugel; Saveliy M. Method of producing oxide surface layers on metals and alloys
JPH11253815A (en) * 1998-03-16 1999-09-21 Showa Aircraft Ind Co Ltd Metallic carrier for electrically heating type catalytic device
JP4883512B2 (en) * 2000-07-14 2012-02-22 独立行政法人日本原子力研究開発機構 Fabrication method of visible light responsive titanium oxide thin film
US6599636B1 (en) * 2000-10-31 2003-07-29 Donald L. Alger α-Al2O3 and Ti2O3 protective coatings on aluminide substrates
JP2003213458A (en) * 2002-01-24 2003-07-30 Nisshin Steel Co Ltd Cr-FREE CHEMICAL CONVERSION-TREATED ALUMINUM-BASED PLATED STEEL SHEET
JP2003226985A (en) * 2002-02-05 2003-08-15 Nisshin Steel Co Ltd Highly corrosion resistant plated stainless steel sheet and production method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005071132A1 *

Also Published As

Publication number Publication date
WO2005071132A1 (en) 2005-08-04
US20080245446A1 (en) 2008-10-09
DE102004002946A1 (en) 2005-08-11
ATE554195T1 (en) 2012-05-15
JP2007518881A (en) 2007-07-12
WO2005071132A8 (en) 2005-09-15
CN100569990C (en) 2009-12-16
JP4636389B2 (en) 2011-02-23
US7850791B2 (en) 2010-12-14
CN1906323A (en) 2007-01-31
EP1706518B1 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
DE3535548C2 (en) Coated article and method of making a coating of an article
EP1706518B1 (en) Protective layer for an aluminium-containing alloy for using at high temperatures, and method for producing one such protective layer
DE2233700A1 (en) PROCESS FOR INCREASING THE ABRASION RESISTANCE OF THE SURFACE OF CUTTING TOOLS ETC. CARBIDE PARTS
DE2824737A1 (en) COCRAL (Y) COVERED NICKEL-BASED SUPER ALLOY WITH HIGH INTEGRITY
DE60119114T2 (en) SURFACE-MODIFIED STAINLESS STEEL IN THE FORM OF A FE-CR-AL ALLOY
DE10157749B4 (en) Iron-chromium-aluminum alloy
DE102005032070A1 (en) Surface treatment process for a magnesium-based material
WO2009068502A1 (en) Aluminum strip for lithographic printing plate carriers and the production thereof
EP0318803B1 (en) High-temperature protective coating
EP0241807B1 (en) High-temperature-resistant coating
CH616960A5 (en) Components resistant to high-temperature corrosion.
DE931624C (en) Process for the production of a protective coating on molybdenum, titanium, zirconium or alloys containing at least 50% of these metals
DE10200445B4 (en) Metal strip for epitaxial coatings and process for its production
WO2022048990A1 (en) Steel component produced by hot-shaping a steel flat product, steel flat product and method for producing a steel component
WO2002088404A2 (en) Iron-chrome-aluminium-alloy
AT521011B1 (en) Component with a two-layer, oxidic protective layer
DE3742594A1 (en) Method for increasing the corrosion stability of metallic workpieces, and metallic workpiece having an anti-corrosive coating on its surface
DE3842301C2 (en)
DE102004052104B3 (en) Pre-oxidation of articles made from aluminum alloys comprises heating to form stable alpha-aluminum coating in atmosphere comprising e.g. water vapor with specified free oxygen content
DE1960836A1 (en) Oxide coatings for high temp heat conduct - ors
DE102012017520A1 (en) A method of tin coating a metallic substrate, a method of curing a tin layer, and wire with a tin coating
DE2540999B2 (en) Electrical plug contact with a contact layer made of a silver-palladium alloy
DE892024C (en) Process for the production of a dielectric from titanium dioxide on a support
DE102020119604A1 (en) Process for producing a friction-optimized zinc coating on a steel component
DE102009045076A1 (en) Anti-corrosion layer for the production of a steel component, comprises predominantly zinc for steel materials, and a crystalline structure that is permeable to hydrogen, where the anti-corrosion layer is applied by hot-dip-galvanization

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: QUADAKKERS, WILLEM, J.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 554195

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004013461

Country of ref document: DE

Effective date: 20120614

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120818

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120719

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120820

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

26N No opposition filed

Effective date: 20130121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004013461

Country of ref document: DE

Effective date: 20130121

BERE Be: lapsed

Owner name: FORSCHUNGSZENTRUM JULICH G.M.B.H.

Effective date: 20121130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121120

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 554195

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141011

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004013461

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601