EP1682840B1 - Wärmeübertrager, insbesondere für kraftfahrzeuge - Google Patents

Wärmeübertrager, insbesondere für kraftfahrzeuge Download PDF

Info

Publication number
EP1682840B1
EP1682840B1 EP04765083A EP04765083A EP1682840B1 EP 1682840 B1 EP1682840 B1 EP 1682840B1 EP 04765083 A EP04765083 A EP 04765083A EP 04765083 A EP04765083 A EP 04765083A EP 1682840 B1 EP1682840 B1 EP 1682840B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
exchanger according
inlet
outlet
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04765083A
Other languages
English (en)
French (fr)
Other versions
EP1682840A1 (de
Inventor
Walter Demuth
Michael Kohl
Martin Kotsch
Michael Kranich
Karl-Heinz Staffa
Christoph Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1682840A1 publication Critical patent/EP1682840A1/de
Application granted granted Critical
Publication of EP1682840B1 publication Critical patent/EP1682840B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • F28D7/1692Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the invention relates to a heat exchanger, in particular for motor vehicles, having a heat exchanger block which can be flowed through by a first medium on the primary side and can be flowed around on the secondary side by a second medium.
  • the local heat exchanger consists inter alia of flat tubes with flow channels, z. B. extruded multi-chamber pipes, which are flowed through by a first medium, preferably a refrigerant, in particular CO2.
  • the flat tubes are arranged parallel to each other and have flat tube ends, which are held in so-called end pieces, consisting of a bottom plate, a baffle plate and a cover plate. The end pieces each form a distribution or deflection unit for the refrigerant.
  • a particularly pressure-resistant heat exchanger is provided, which is particularly suitable for use in a powered with CO2 refrigerant circuit for a motor vehicle air conditioning, on the one hand as an evaporator and on the other hand as a gas cooler, wherein the secondary side loading takes place in each case by ambient air.
  • a heat exchanger in particular for a motor vehicle, is provided with a heat exchanger block, which on the primary side of a first medium and throughflowable on the secondary side of a second medium umströmbare pipes with flow channels and pipe ends, at least one Has tube ends receiving end piece with at least one base plate, distribution or baffle plate and cover plate and at least one connected to one or one end piece inlet and / or outlet chamber, wherein the first medium from the inlet chamber through the flow channels to the outlet chamber is conductive, and with a housing jacket enclosing the tubes with an inlet and an outlet for the second medium, wherein between the tubes corrugated sheets are arranged with longitudinal channels and the corrugated sheets are parallelogram-shaped and approximately triangular or trapezoidal inflow and outflow leave areas between the pipes.
  • a heat exchanger block consisting of tubes and at least one end piece, surrounded by a housing shell, through which a second medium is conductive.
  • the heat exchanger according to the invention can be used in this heat pump cycle both as a CO2 evaporator, which absorbs heat from the coolant, as well as a CO2 gas cooler, the heat to the coolant.
  • the housing shell which can be produced as a sheet metal part, allows many variations with regard to the flow guidance of the Coolant, so that a DC, countercurrent, crossflow and DC / counter crossflow is possible.
  • the most diverse requirements for the heat exchanger according to the invention can be taken into account.
  • the inlet and the outlet for the second medium may be arranged on the same side, on opposite sides and at opposite ends of the housing shell, wherein the housing jacket is flowed through in particular in the longitudinal direction. This results in the possibility of the direct current and the countercurrent of the first and the second medium.
  • distribution and collection chambers are formed in the housing shell in the region of inlet and outlet, so that the second medium is distributed uniformly over the individual gaps between the tubes or collected at the outlet.
  • turbulence inserts or corrugated ribs are arranged between the tubes, which form longitudinal channels and thus a guide in the longitudinal direction of the tubes for the second medium.
  • these turbulence inserts stretch only between the inlet and the outlet of the second medium, so that in the region of inlet and outlet in each case an inflow and an outflow are left, in which a cross-flow of the second medium, d. H. can be transverse to the longitudinal direction of the tubes.
  • the tubes from the second medium can also be overflowed in the transverse direction, namely one or more flooded.
  • This can be done by arranging lateral headers and partitions in conjunction with deflection boxes in the housing shell.
  • the turbulence inserts or the ribbing between the tubes is then designed so that transverse channels for guiding the second medium result. This ensures that both media, such as a refrigerant and a coolant can be performed in cross-DC or cross-countercurrent. This results in a more intense heat exchange.
  • the first medium can be performed both single-flow and double-flow through the tubes, wherein the inlet and outlet chambers are arranged for the first medium either at an end piece or at different end pieces.
  • the heat exchanger according to the invention the most diverse forms and combinations of DC, counter and cross-flow between the first and second medium can be realized, depending on the requirements of the heat exchanger, for example in a refrigerant circuit and in a coolant circuit of an internal combustion engine of a motor vehicle.
  • Fig. 1 shows a refrigerant / coolant heat exchanger 1, ie a heat exchanger, the primary side of a refrigerant, for. B. CO2 (R744) and the secondary side is flowed through by a coolant, which also serves the cooling of an internal combustion engine, not shown, of a motor vehicle.
  • a coolant which also serves the cooling of an internal combustion engine, not shown, of a motor vehicle.
  • the refrigerant circuit when operated in the heat pumping process, can be used as a heat source for heating the passenger compartment. This is the Coolant in the evaporator Heat extracted, pumped to a higher temperature level and returned to the gas cooler as a heat input to the coolant.
  • this heat exchanger 1 can be used both as an evaporator and as a gas cooler in the CO2 heat pump process.
  • the CO2 process is known to take place at elevated pressure compared to the conventional refrigerant process with R134a: for example, a compression takes place up to about 120 bar, which thus occur in the gas cooler. Therefore, the heat exchanger with respect to the refrigerant guide must be dimensioned and formed particularly pressure resistant.
  • the heat exchanger 1 has a housing jacket 2, which is approximately box-shaped and has four longitudinal sides 2a-2d, of which the longitudinal side 2a and 2b are visible in the drawing.
  • the housing shell 2 is closed at the end by end pieces, of which only the end piece 3 is visible in the drawing.
  • a refrigerant inlet pipe 4 and a refrigerant outlet pipe 5 are fixed.
  • a coolant inlet nozzle 6 (only partially visible) and a coolant outlet nozzle 7 are arranged.
  • the heat exchanger 1 is connected, on the one hand, to a refrigerant, in particular a CO2 cycle (not shown) and, on the other hand, to a cooling circuit (not shown) of an internal combustion engine of a motor vehicle.
  • Fig. 1a shows the heat exchanger 1 according to Fig. 1 without housing shell 2, wherein the same reference numerals are used for the same parts.
  • the end piece 3, to which the refrigerant collecting pipes 4, 5 are fastened, is opposite an end piece 8, which is connected by a plurality of flat tubes 9 with the end piece 3.
  • On the uppermost flat tube 9.1 a corrugated sheet 10 is arranged with extending in the longitudinal direction of the flat tubes 9 longitudinal channels 10a.
  • the profile of the corrugated sheet can - as shown in the drawing - be trapezoidal, but other shapes, such. B. sinusoidal or triangular profile.
  • the corrugated sheet 10 extends not over the entire length of the flat tubes 9 from the left end piece 3 to the right end piece 8, but has an oblique leading edge 10b, 10c on the front side.
  • Corrugated sheets 10 are - which is not visible in this illustration - each arranged between adjacent flat tubes 9, so that there is a longitudinal guidance of the coolant in these areas.
  • the corrugated sheets can also be provided with slots and / or offsets, so that an exchange between the longitudinal guide channels for the coolant and thus a more homogeneous distribution and / or turbulence of the coolant and ultimately an increased heat transfer is possible.
  • sheets with transverse coolant channels can be used to increase the surface area and thus to increase the efficiency of the heat exchanger.
  • Fig. 1b shows the heat exchanger block 11 in an exploded view. Again, the same reference numbers are used for the same parts again. It should be noted that some possibilities of refrigerant flow guidance in the DE 102 60 030 A1 are described, both in the illustrated here and in further embodiments and modifications.
  • the block 11 consists of a plurality of mutually parallel flat tubes 9 with flat tube ends 9a, 9b, which are each secured in a bottom plate 12, 13 and sealed.
  • each distribution or deflection plates 14, 15 are arranged, which are covered by a respective end plate 16, 17.
  • In the front cover plate 16 are refrigerant inlet openings 16a and refrigerant outlet openings 16b, in a row with the refrigerant inlet pipe 4 and the refrigerant outlet pipe 5, respectively.
  • the bottom plate 12, baffle 14 and cover 16 thus form the end piece 3, while the end piece 8 of the bottom plate 13, the baffle plate 15 and the cover 17 composed.
  • the structure of the end pieces 3, 8 may also be modified, for. B. floor and baffle plate or deflecting and cover plate can each be integrated into a plate. The same applies to the refrigerant guide, ie by a modified form of the distributor or deflecting plates 14, 15.
  • Fig. 1c shows a schematic representation of the refrigerant connection, ie the flow of the refrigerant according to Fig. 1b ,
  • the refrigerant returns to the end piece 8, where it is deflected in the direction of arrow 23 by means of the baffle plate 15 upwards to flow back into the strand 24 again.
  • the baffle plate 15 Via the baffle 14, the refrigerant outlet opening 16b and the refrigerant outlet pipe 5, the refrigerant leaves the block 11.
  • the refrigerant outlet opening 16b are larger than the refrigerant inlet openings 16a, because this block 11 is designed as an evaporator (with increasing specific volume); a gas cooler would result in a different configuration, for example with equal inlet and outlet openings.
  • the refrigerant connection described above thus applies in each case to two flat tubes lying next to each other.
  • Fig. 2 shows a refrigerant / coolant heat exchanger 25 in longitudinal section
  • the heat exchanger 1 in Fig. 1 corresponds; therefore, like reference numerals are used for like parts.
  • the housing shell 2 encloses the entire block 11, consisting of flat tubes 9 and end pieces 3, 8, wherein the housing shell 2 in the region of the end pieces 3, 8 has a shoulder, to each of which a widened region 26, 27 connects, the end pieces. 3 , 8 peripherally includes and sealed against this, z. B. by soldering.
  • the coolant inlet connection 6 and the coolant outlet connection 7 are arranged, which in each case pass over a distribution chamber 28 or a collection chamber 29 into the housing jacket 2.
  • the sectional view shows the flat tubes 9 of their longitudinal or broad side and thus also the corrugated sheet 10 with longitudinal channels 10a.
  • the corrugated sheet 10 has - as already mentioned - oblique gate edges 10b, 10c, so that inlet and Ausström Suitee 30, 31 result, in which a cross-flow of the coolant from the inlet nozzle 6 and in the direction of the outlet nozzle 7 is possible.
  • the coolant is deflected approximately at right angles and flows through the heat exchanger 25 in the longitudinal direction, which is marked by the arrow P. Die Einström Societye 30 und Auström Schemee 31 , The refrigerant flows through the heat exchanger 25, as previously for Fig.1b and 1c described. Refrigerant and coolant are thus essentially (apart from the deflections) guided in cocurrent and countercurrent.
  • Fig. 2a shows a variant 32 of the heat exchanger 25 from Fig. 2
  • the refrigerant guide is changed in that the refrigerant inlet pipe 4 'is located at the end piece 3' and the refrigerant outlet pipe 5 'is located at the end piece 8'.
  • the refrigerant is essentially single-flow, ie guided in one direction through the heat exchanger 32, while the coolant is guided in the opposite direction according to the arrow P.
  • the refrigerant can also be three, five or (odd) multiple flooded by the heat transfer. This essentially results in a counterflow between the refrigerant and the coolant.
  • Fig. 3 shows a further embodiment of a heat exchanger 33, in which a rectangular cut corrugated sheet 34 is provided with longitudinal channels 34a.
  • the coolant inlet nozzle 6 and the coolant outlet nozzle 7 are arranged on the same side 2a of the housing shell.
  • an approximately right-angled inflow region 35 results in the region of the inlet stub 6 and a corresponding outflow region 36 in the region of the outlet stub 7.
  • the areas 35 and 36 may also be provided with corrugated sheets or other turbulence generators.
  • the refrigerant flow guide is the same as in Fig. 2 ie refrigerant inlet pipe 4 and refrigerant outlet pipe 5 are arranged on the same end piece 3.
  • Fig. 3a shows a variant 37 of the heat exchanger 33 after Fig. 3 , Unlike the heat exchanger 33 is only the refrigerant guide, the in Fig. 2a corresponds, ie, the refrigerant inlet pipe 4 'is on the end piece 3' and the refrigerant outlet pipe 5 'is attached to the end piece 8'. This essentially results in a counterflow between the refrigerant and the coolant, which flows in the longitudinal direction according to the arrow P.
  • Fig. 4 shows a further embodiment of a heat exchanger 38, wherein the refrigerant guide analogous to the embodiments in Fig. 2 and 3 takes place, ie it is a block 11 according to Fig. 1b used.
  • the coolant inlet connection 6 and the coolant outlet connection 7 are located directly opposite one another at the same height, ie they are both arranged in the region of the end piece 3.
  • a partition wall 39 is centrally arranged, which delimits an inflow region 40 on the side of the inlet nozzle 6 and an outflow region 41 on the side of the outlet nozzle 7.
  • the partition wall 39 is arranged in each case between adjacent flat tubes.
  • a corrugated sheet 42 with longitudinal channels 42a connects to the partition 39 and extends to a deflection 43.
  • the corrugated sheet 42 has - as stated above - an approximately trapezoidal profile, which in each case with the adjacent flat tubes is soldered. As a result, discrete longitudinal channels 42a are formed, ie a transverse flow between the longitudinal channels 42a is not possible.
  • the coolant thus flows from the inflow region 40 initially in the upper half of the heat exchanger 38, following the arrow P1, into the deflection region 43, where it is deflected by 180 degrees, ie in the opposite direction, according to the arrow P2. It then flows in the lower half of the heat exchanger 38, following the arrow P3, back into the outflow region 41, where it leaves the heat exchanger 38 via the outlet connection 7.
  • the coolant thus deposits the double path in the heat exchanger 38, in comparison to the previous exemplary embodiments, so that an intensive heat exchange with the refrigerant takes place. Likewise, a four- or (even) multi-flow through the heat exchanger for the refrigerant is possible.
  • the corrugated sheets may be provided with slots and / or offsets, so that an exchange between the longitudinal guide channels for the coolant and thus a more homogeneous distribution and / or turbulence of the coolant and ultimately an increased heat transfer is possible.
  • plates with transverse Külstoffkanälen to increase the surface and thus to increase the efficiency of the heat exchanger can be used.
  • Fig. 5 shows a cross section through a heat exchanger 44, the heat exchanger in Fig. 2 corresponds, with the end piece 3 is omitted. It can therefore be seen directly on the end faces of the flat tubes 9, which are formed as extruded multi-chamber tubes with circular flow channels 45. Between adjacent flat tubes 9, a corrugated metal sheet 10 with a trapezoidal profile is in each case arranged and soldered to the flat tubes 9. As a result, discrete longitudinal channels 10a for the coolant are formed. These plates may also be provided with slots and / or offsets to allow an exchange between the longitudinal channels for the coolant and thus a more homogeneous distribution and / or turbulence of the coolant.
  • the housing shell 2 is formed here as a U-shaped frame with a shoulder and a widening 26, in which the end piece, not shown, is used.
  • the heat exchanger block 11 (see. Fig. 1a, 1b ) can thus be easily inserted into the housing 2 and closed by a lid, not shown.
  • the adjoining the Einsbergsstutzen 6 distribution chamber 28 extends over the entire height of the housing wall 2c, analogously, the collection chamber 29 on the side of the outlet nozzle 7 about the height of the side wall 2a.
  • a distribution of the coolant between all flat tubes 9 is possible and also a collection of the coolant in the collection chamber 29 on the outlet side.
  • Fig. 6 shows a longitudinal section through a flat tube 9, which is taken with its flat tube end 9a in the end piece 3 and its flat tube end 9b in the end piece 8.
  • the two end pieces 3, 8 are as in Fig. 1b illustrated, formed.
  • This design for the flat tubes 9 with the end pieces 3, 8 of individual plates is particularly suitable for high pressures, such as occur in the CO2 refrigerant process.
  • FIG. 7 shows a further embodiment of a heat exchanger 46 with a changed coolant guide.
  • a refrigerant block 47 is in principle similar in construction to the block 11 according to FIG Fig. 1b that is, it has a first end 48 with refrigerant inlet pipe 49 and refrigerant outlet pipe 50 and a second end 51, in which the deflection of the refrigerant takes place.
  • the end piece 48 has a laterally extended bottom plate 52, to which a coolant inlet channel 53 is attached.
  • the tail 51st has an extended bottom plate 54, to which a coolant outlet channel 55 is attached.
  • a housing jacket 56 surrounds the block 47 and each forms a wedge-shaped coolant inlet chamber 57 and a coolant outlet chamber 58.
  • the coolant enters through the inlet channel 53 into the inlet chamber 57 and from there between the column of the flat tubes of the block 47, flows through it in the transverse direction accordingly Arrows P4, enters the outlet chamber 58 and from there into the coolant outlet channel 55.
  • a simple cross-flow of the block 47 is possible.
  • corrugated sheets or turbulence inserts can be arranged between the individual flat tubes, which cause a guide of the coolant in the direction of arrow P4 and turbulence generation.
  • Fig. 8 shows a further embodiment of a heat exchanger 59 with a likewise transversely guided coolant flow, which, however, is shown only schematically. This is based on a longitudinal section through a flat tube 9, as in Fig. 6 is illustrated.
  • a refrigerant block 60 is divided by two dividing walls 61, 62 into three flow areas I, II, III. The areas I, II are interconnected by a deflection chamber 63 and the areas II, III by a further deflection chamber 64 on the opposite side.
  • the coolant enters the region I of the block 60 via an inlet connection 65, which is also shown only schematically, is deflected in the deflection chamber 63, then flows through the region II into the deflection chamber 64 where it is again deflected and finally reaches the region III, which it leaves via an outlet 66.
  • Inlet and outlet ports 55, 66 and deflection chambers 63, 64 are part of a housing shell, not shown, which surrounds the block 60.
  • the exemplary embodiments described above for refrigerant / coolant heat exchangers are preferably soldered, which applies in particular to the block through which CO2 flows.
  • the housing shell could - because of the significant lower pressure of the coolant - by alternative bonding techniques, eg. B. by gluing or rubber seals with the block or its end pieces are connected. In this case, other materials, such as plastic, come into question for the housing shell.
  • the invention has been explained using the example of a refrigerant / coolant heat exchanger, but also includes other heat exchangers.
  • an inventive heat exchanger of oil and / or air can flow through, which exchange heat with each other or with other media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

  • Die Erfindung betrifft einen Wärmeübertrager, insbesondere für Kraftfahrzeuge, mit einem primärseitig von einem ersten Medium durchströmbaren und sekundärseitig von einem zweiten Medium umströmbaren Wärmeübertragerblock.
  • Ein derartiger Wärmeübertrager ist in der DE 102 60 030 A1 beschrieben. Der dortige Wärmeübertrager besteht u. a. aus Flachrohren mit Strömungskanälen, z. B. extrudierten Mehrkammerrohren, die von einem ersten Medium, vorzugsweise einem Kältemittel, insbesondere CO2 durchströmt werden. Die Flachrohre sind parallel zueinander angeordnet und weisen Flachrohrenden auf, die in so genannten Endstücken, bestehend aus einer Bodenplatte, einer Umlenkplatte und einer Abdeckplatte, gehalten sind. Die Endstücke bilden jeweils eine Verteil- oder Umlenkeinheit für das Kältemittel. Die Zuführung des Kältemittels erfolgt über ein Sammelrohr, welches mit einem Endstück verbunden ist - analog erfolgt die Ableitung des Kältemittels über ein weiteres Sammelrohr, welches entweder an demselben Endstück oder an dem gegenüberliegenden Endstück befestigt ist. Durch diese Bauweise ist ein besonders druckfester Wärmeübertrager geschaffen, der insbesondere zur Verwendung in einem mit CO2 betriebenen Kältemittelkreislauf für eine Kraftfahrzeug-Klimaanlage verwendbar ist, und zwar einerseits als Verdampfer und andererseits als Gaskühler, wobei die sekundärseitige Beaufschlagung jeweils durch Umgebungsluft erfolgt.
  • Dem gegenüber ist es Aufgabe der vorliegenden Erfindung, die Anwendungsmöglichkeiten eines solchen Wärmeübertragers zu erweitern.
  • Die Lösung dieser Aufgabe erfolgt durch die Merkmale des Patentanspruches 1, wonach ein Wärmeübertrager, insbesondere für ein Kraftfahrzeug, mit einem Wärmeübertragerblock versehen ist, welcher primärseitig von einem ersten Medium durchströmbare und sekundärseitig von einem zweiten Medium umströmbare Rohre mit Strömungskanälen und Rohrenden, zumindest ein die Rohrenden aufnehmendes Endstück mit je zumindest einer Bodenplatte, Verteil- oder Umlenkplatte und Abdeckplatte sowie zumindest eine mit einem oder je einem Endstück verbundene Einlass- und/oder Auslasskammer aufweist, wobei das erste Medium von der Einlasskammer durch die Strömungskanäle zur Auslasskammer leitbar ist, und mit einem die Rohre umschließenden Gehäusemantel mit einem Einlass und einem Auslass für das zweite Medium, wobei zwischen den Rohren Wellbleche mit Längskanälen angeordnet sind und die Wellbleche parallelogrammförmig ausgebildet sind und etwa dreieck- oder trapezförmige Ein- und Ausströmbereiche zwischen den Rohren belassen.
  • Vorteilhaft ist ein Wärmeübertragerblock, bestehend aus Rohren und zumindest einem Endstück, von einem Gehäusemantel umgeben, durch welchen ein zweites Medium leitbar ist. Damit ergeben sich beispielsweise unter Verwendung des in der DE 102 60 030 A1 beschriebenen Wärmeübertragerblockes und einer relativ einfach herstellbaren Gehäuseummantelung weitere Einsatzmöglichkeiten für den erfindungsgemäßen Wärmeübertrager, insbesondere bei einem Wärmepumpenprozess mit dem Kältemittel CO2. Verbrauchsoptimierte Motoren liefern zuwenig Heizenergie, sodass diese Fahrzeuge eine Zusatzheizung, so genannte Zuheizung benötigen. Das Kühlmittel für den Kühlkreislauf des Motors wird dabei als Wärmequelle genutzt. Der erfindungsgemäße Wärmeübertrager kann in diesem Wärmepumpenkreislauf sowohl als CO2-Verdampfer, der Wärme aus dem Kühlmittel aufnimmt, als auch als CO2-Gaskühler der Wärme an das Kühlmittel abgibt, eingesetzt werden. Der Gehäusemantel, der als Blechteil herstellbar ist, erlaubt viele Variationsmöglichkeiten hinsichtlich der Strömungsführung des Kühlmittels, sodass ein Gleichstrom, Gegenstrom, Kreuzstrom sowie Gleich/Gegen-Kreuzstrom möglich ist. Damit kann den verschiedensten Anforderungen an die erfindungsgemäßen Wärmeübertrager Rechnung getragen werden.
  • Weitere Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Nach vorteilhaften Ausgestaltungen der Erfindung können der Einlass und der Auslass für das zweite Medium auf derselben Seite, auf gegenüberliegenden Seiten und an entgegengesetzten Enden des Gehäusemantels angeordnet sein, wobei der Gehäusemantel insbesondere in Längsrichtung durchströmt wird. Daraus ergibt sich die Möglichkeit des Gleichstroms und des Gegenstroms des ersten und des zweiten Mediums.
  • Nach einer vorteilhaften Weiterbildung der Erfindung sind im Bereich von Einlass und Auslass Verteil- und Sammelkammern in den Gehäusemantel eingeformt, sodass das zweite Medium gleichmäßig über die einzelnen Spalte zwischen den Rohren verteilt bzw. beim Austritt gesammelt wird.
  • Nach der Erfindung sind zwischen den Rohren so genannte Turbulenzeinlagen oder Wellrippen angeordnet, die Längskanäle und somit eine Führung in Längsrichtung der Rohre für das zweite Medium bilden. Vorteilhafterweise verstrecken sich diese Turbulenzeinlagen nur zwischen dem Einlass und dem Auslass des zweiten Mediums, sodass im Bereich von Einlass und Auslass jeweils ein Einström- und ein Ausströmbereich belassen sind, in welchen eine Querströmung des zweiten Mediums, d. h. quer zur Längsrichtung der Rohre erfolgen kann.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung sind die Rohre vom zweiten Medium auch in Querrichtung überströmbar, und zwar ein- oder mehrflutig. Dies kann durch Anordnung von seitlichen Sammelkästen und von Trennwänden in Verbindung mit Umlenkkästen im Gehäusemantel erfolgen. Die Turbulenzeinlagen bzw. die Berippung zwischen den Rohren ist dann so ausgebildet, dass sich Querkanäle zur Führung des zweiten Mediums ergeben. Damit wird erreicht, dass beide Medien, beispielsweise ein Kältemittel und ein Kühlmittel, im Kreuz-Gleich- oder Kreuz-Gegenstrom geführt werden können. Dies ergibt einen intensiveren Wärmeaustausch.
  • In weiterer vorteilhafter Ausgestaltung der Erfindung kann auch das erste Medium sowohl einflutig als auch zweiflutig durch die Rohre geführt werden, wobei die Einlass- und Auslasskammern für das erste Medium entweder an einem Endstück oder an verschiedenen Endstücken angeordnet sind. Somit können mit dem erfindungsgemäßen Wärmeübertrager die verschiedensten Formen und Kombinationen von Gleich-, Gegen- und Kreuzstrom zwischen erstem und zweitem Medium realisiert werden, je nach Anforderung an den Wärmeübertrager beispielsweise in einem Kältemittelkreislauf und in einem Kühlmittelkreislauf einer Brennkraftmaschine eines Kraftfahrzeuges.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher beschrieben. Es zeigen
  • Fig.1 1
    einen Kältemittel/Kühlmittel-Wärmeübertrager mit Gehäusemantel,
    Fig. 1a
    den Wärmeübertrager gemäß Fig. 1 ohne Gehäusemantel,
    Fig. 1b
    den Wärmeübertrager gemäß Fig. 1a in Explosivdarstellung,
    Fig. 1c
    eine schematische Darstellung der Kältemittelverschaltung,
    Fig. 2
    einen Wärmeübertrager mit schräg angeschnittener Verrippung und Umlenkung des Kältemittels (zweiflutig),
    Fig. 2a
    den Wärmeübertrager gemäß Fig. 2, jedoch ohne Umlenkung des Kältemittels (einflutig),
    Fig. 3
    einen Wärmeübertrager mit rechtwinklig angeschnittener Verrippung und zweiflutiger Kältemitteldurchströmung,
    Fig. 3a
    den Wärmeübertrager gemäß Fig. 3, jedoch mit einflutiger Kältemitteldurchströmung,
    Fig. 4
    einen Wärmeübertrager mit zweiflutiger Kühlmitteldurchströmung in Längsrichtung,
    Fig. 5
    einen Querschnitt durch einen Wärmeübertrager mit Blick auf die Stirnseiten der Flachrohre,
    Fig. 6
    einen Längsschnitt durch ein Flachrohr mit Endstücken,
    Fig. 7
    ein weiteres Ausführungsbeispiel eines Wärmeübertragers mit quer geführter Kühlmittelführung,
    Fig. 8
    ein weiteres Ausführungsbeispiel eines Wärmeübertragers mit quer geführter und zweifach umgelenkter Kühlmittelströmung.
  • Fig. 1 zeigt einen Kältemittel/Kühlmittel-Wärmeübertrager 1, d. h. einen Wärmeübertrager, der primärseitig von einem Kältemittel, z. B. CO2 (R744) und sekundärseitig von einem Kühlmittel durchströmt wird, welches gleichzeitig der Kühlung einer nicht dargestellten Brennkraftmaschine eines Kraftfahrzeuges dient. Somit stehen der Kühlkreislauf der Brennkraftmaschine und der Kältemittelkreislauf einer Fahrzeugklimaanlage über diesen Wärmeübertrager miteinander in wärmeaustausch. Der Kältemittelkreislauf kann, wenn er im Wärmepumpenprozess betrieben wird, als Wärmequelle für die Zuheizung des Fahrgastinnenraumes genutzt werden. Dabei wird dem Kühlmittel im Verdampfer Wärme entzogen, auf ein höheres Temperaturniveau "gepumpt" und im Gaskühler als Wärmeeintrag an das Kühlmittel zurückgegeben. Das erwärmte Kühlmittel gibt diese Wärme dann über einen nicht dargestellten Heizkörper an Umgebungsluft ab, die dem Fahrzeuginnenraum als Warmluft zugeführt wird. Insofern kann dieser Wärmeübertrager 1 sowohl als Verdampfer als auch als Gaskühler im CO2-Wärmepumpenprozess eingesetzt werden. Der CO2-Prozess findet bekanntlich unter erhöhtem Druck im Vergleich zum herkömmlichen Kältemittelprozess mit R134a statt: beispielsweise findet eine Verdichtung bis auf ca. 120 bar statt, die somit im Gaskühler auftreten. Daher muss der Wärmeübertrager bezüglich der Kältemittelführung besonders druckfest dimensioniert und ausgebildet sein.
  • Der Wärmeübertrager 1 weist einen Gehäusemantel 2 auf, der etwa kastenförmig ausgebildet ist und vier Längsseiten 2a - 2d aufweist, von denen die Längsseite 2a und 2b in der Zeichnung sichtbar sind. Der Gehäusemantel 2 wird stirnseitig durch Endstücke verschlossen, von welchen in der Zeichnung nur das Endstück 3 sichtbar ist. An diesem Endstück 3 sind ein Kältemitteleintrittsrohr 4 und ein Kältemittelaustrittsrohr 5 befestigt. An sich gegenüberliegenden Seiten des Gehäusemantels 2 sind ein Kühlmitteleintrittsstutzen 6 (nur teilweise sichtbar) und ein Kühlmittelaustrittsstutzen 7 angeordnet. Wie bereits erwähnt, ist der Wärmeübertrager 1 einerseits an einen nicht dargestellten Kältemittel-, insbesondere CO2-Kreislauf und andererseits an einen nicht dargestellten Kühlkreislauf eines Verbrennungsmotors eines Kraftfahrzeuges angeschlossen.
  • Fig. 1a zeigt den Wärmeübertrager 1 gemäß Fig. 1 ohne Gehäusemantel 2, wobei für gleiche Teile gleiche Bezugszahlen verwendet werden. Dem Endstück 3, an welchem die Kältemittelsammelrohre 4, 5 befestigt sind, liegt ein Endstück 8 gegenüber, welches durch eine Vielzahl von Flachrohren 9 mit dem Endstück 3 verbunden ist. Auf dem obersten Flachrohr 9.1 ist ein Wellblech 10 mit in Längsrichtung der Flachrohre 9 verlaufenden Längskanälen 10a angeordnet. Das Profil des Wellbleches kann - wie in der Zeichnung dargestellt - trapezförmig ausgebildet sein, jedoch auch andere Formen, z. B. Sinus- oder Dreiecksprofil aufweisen. Das Wellblech 10 erstreckt sich nicht über die gesamte Länge der Flachrohre 9 von dem linken Endstück 3 bis zum rechten Endstück 8 , sondern weist stirnseitig jeweils eine schräge Anschnittkante 10b, 10c auf. Wellbleche 10 sind - was in dieser Darstellung nicht sichtbar ist - jeweils zwischen benachbarten Flachrohren 9 angeordnet, sodass sich in diesen Bereichen eine Längsführung des Kühlmittels ergibt. Ebenso können die Wellbleche auch mit Schlitzen und/oder Versätzen versehen sein, so dass ein Austausch zwischen den Längsführungkanälen für das Kühlmittel und damit eine homogenere Verteilung und/oder Turbulenzen des Kühlmittel und letztendlich ein erhöhter Wärmeübertrag möglich ist. Auch sind Bleche mit quer verlaufenden Kühlmittelkanälen zur Vergrößerung der Oberfläche und damit zu einer Erhöhung der Effizienz des Wärmeübertragers einsetzbar.
  • In den aufgrund des schrägen Anschnittes 10b, 10c freibleibenden Bereichen ist eine Querströmung des Kühlmittels möglich. Die Kältemittelströmung - die unten noch genauer erläutert wird - erfolgt vom Eintrittsrohr 4 über das Endstück 3, welches als Verteileinheit wirkt, auf die Flachrohre 9 bis zum zweiten Endstück 8, welches als Umlenkeinheit wirkt, wieder zurück durch die Flachrohre 9 bis zum Austrittsrohr 5. Diese Kältemitteleinheit ist als Wärmeübertragerblock 11 oder kurz als Block 11 bezeichnet.
  • Fig. 1b zeigt den Wärmeübertragerblock 11 in Explosivdarstellung. Auch hier werden für gleiche Teile wieder gleiche Bezugszahlen verwendet. Es wird darauf hingewiesen, dass einige Möglichkeiten der Kältemittelströmungsführung in der DE 102 60 030 A1 beschrieben sind, und zwar sowohl in der hier dargestellten als auch in weiteren Ausführungsformen und Abwandlungen.
  • Der Block 11 besteht aus mehreren parallel zueinander angeordneten Flachrohren 9 mit Flachrohrenden 9a, 9b, welche jeweils in einer Bodenplatte 12, 13 befestigt und abgedichtet sind. Über den Bodenplatten 12, 13 sind jeweils Verteil- bzw. Umlenkplatten 14, 15 angeordnet, die durch jeweils eine Abschlussplatte 16, 17 abgedeckt werden. In der vorderen Abdeckplatte 16 sind Kältemitteleintrittsöffnungen 16a und Kältemittelaustrittsöffnungen 16b, in einer Reihe mit dem Kältemitteleintrittsrohr 4 und dem Kältemittelaustrittsrohr 5, angeordnet. Die Bodenplatte 12, Umlenkplatte 14 und Abdeckplatte 16 bilden somit das Endstück 3, während sich das Endstück 8 aus der Bodenplatte 13, der Umlenkplatte 15 und der Abdeckplatte 17 zusammensetzt. Wie in der älteren Anmeldung ausgeführt, kann der Aufbau der Endstücke 3, 8 auch abgewandelt sein, z. B. können Boden und Umlenkplatte oder Umlenk- und Abdeckplatte jeweils zu einer Platte integriert werden. Gleiches gilt für die Kältemittelführung, d. h. durch eine abgewandelte Form der Verteiler- bzw. Umlenkplatten 14, 15.
  • Fig. 1c zeigt in schematischer Darstellung die Kältemittelverschaltung, d. h. die Strömungsführung des Kältemittels gemäß Fig. 1b. Wegen Einzelheiten wird auf die ältere Anmeldung verwiesen. Das über das Kältemitteleintrittsrohr 4 eintretende, über die Eintrittsöffnungen 16a, verteilte Kältemittel gelangt in die Flachrohre 9, d. h. deren rechten Strang 18, wird in der Umlenkeinheit bzw. dem Endstück 8 mittels der Umlenkplatte 15 in Richtung des Pfeils 19 umgelenkt und gelangt dann im benachbarten Flachrohr in dessen rechten Strang 20 zurück zur Bodenplatte 12, wo es in Richtung des Pfeils 21 mittels der Umlenkplatte 14 auf den linken Strang 22 geführt wird. Somit gelangt das Kältemittel wieder zum Endstück 8, wo es in Pfeilrichtung 23 vermittels der Umlenkplatte 15 nach oben umgelenkt wird, um in dem Strang 24 wieder zurückzuströmen. Über die Umlenkplatte 14, die Kältemittelaustrittsöffnung 16b und das Kältemittelaustrittsrohr 5 verlässt das Kältemittel den Block 11. Die Kältemittelaustrittsöff nung 16b sind größer als die Kältemitteleintrittsöffnungen 16a, weil dieser Block 11 als Verdampfer (mit zunehmendem spezifischen Volumen) ausgelegt ist; bei einem Gaskühler ergäbe sich eine andere Konfiguration, beispielsweise mit gleichen Ein- und Austrittsöffnungen. Die oben beschriebene Kältemittelverschaltung gilt also jeweils für zwei nebeneinander liegende Flachrohre.
  • Wie bereits erwähnt und in der älteren Anmeldung ausgeführt, sind andere Kältemittelverschaltungsvarianten möglich.
  • Fig. 2 zeigt einen Kältemittel/Kühlmittel-Wärmeübertrager 25 im Längsschnitt, der dem Wärmeübertrager 1 in Fig. 1 entspricht; daher werden für gleiche Teile gleiche Bezugszahlen verwendet. Der Gehäusemantel 2 umschließt den gesamten Block 11, bestehend aus Flachrohren 9 und Endstükken 3, 8, wobei der Gehäusemantel 2 im Bereich der Endstücke 3, 8 einen Absatz aufweist, an den sich jeweils ein aufgeweiteter Bereich 26, 27 anschließt, der die Endstücke 3, 8 umfangseitig umfasst und diesen gegenüber abgedichtet ist, z. B. durch Verlöten. Auf gegenüberliegenden Seiten 2a, 2c des Gehäusemantels 2 sind der Kühlmitteleintrittstutzen 6 und der Kühlmittelaustrittsstutzen 7 angeordnet, die jeweils über eine Verteilkammer 28 bzw. eine Sammelkammer 29 in den Gehäusemantel 2 übergehen. Dadurch wird eine Verteilung des Kühlmittels über die gesamte Breite sichergestellt. Die Schnittdarstellung zeigt die Flachrohre 9 von ihrer Längs- bzw. Breitseite und damit auch das Wellblech 10 mit Längskanälen 10a. Das Wellblech 10 weist - wie bereits erwähnt - schräge Anschnittkanten 10b, 10c auf, sodass sich Ein- und Ausströmbereiche 30, 31 ergeben, in denen eine Querströmung des Kühlmittels vom Eintrittstutzen 6 und in Richtung des Austrittsstutzens 7 möglich ist. Derartige Einströmbereiche 30 und Auströmbereiche 31 befinden sich jeweils zwischen benachbarten Flachrohren 9. Unmittelbar hinter dem Einströmbereich 30 wird das Kühlmittel etwa rechtwinklig umgelenkt und durchströmt den Wärmeübertrager 25 in Längsrichtung, welche durch den Pfeil P gekennzeichnet ist. Das Kältemittel durchströmt den Wärmeübertrager 25, wie zuvor für Fig.1b und 1c beschrieben. Kältemittel und Kühlmittel sind somit im Wesentlichen (abgesehen von den Umlenkungen) im Gleich- und Gegenstrom geführt.
  • Fig. 2a zeigt eine Variante 32 des Wärmeübertrager 25 aus Fig. 2: die Kältemittelführung ist insofern geändert, als sich das Kältemitteleintrittsrohr 4' am Endstück 3' und das Kältemittelaustrittsrohr 5' am Endstück 8' befinden. Dies bedeutet, dass das Kältemittel im Wesentlichen einflutig, d. h. in einer Richtung durch den Wärmeübertrager 32 geführt ist, während das Kühlmittel entsprechend dem Pfeil P in entgegengesetzter Richtung geführt ist. Das Kältemittel kann aber auch drei-, fünf- oder (ungeradzahlig) mehrflutig durch den Wärmeübertrage geführt sein. Dadurch ergibt sich im Wesentlichen ein Gegenstrom zwischen Kältemittel und Kühlmittel.
  • Fig. 3 zeigt ein weiteres Ausführungsbeispiel eines Wärmeübertragers 33, bei welchem ein rechtwinklig zugeschnittenes Wellblech 34 mit Längskanälen 34a vorgesehen ist. Der Kühlmitteleintrittsstutzen 6 und der Kühlmittelaustrittsstutzen 7 sind auf derselben Seite 2a des Gehäusemantels angeordnet. Zwischen Endstück 8 und Wellblech 34 ergibt sich im Bereich des Eintrittsstutzens 6 ein etwa rechtwinkliger Eintrömbereich 35 und im Bereich des Austrittsstutzen 7 ein entsprechender Ausströmbereich 36. Auch hier ist also eine Querströmung des Kühlmittels möglich, während der Wärmeübertrager 33 im Übrigen in Längsrichtung entsprechend dem Pfeil P durchströmt wird. Die Bereiche 35 und 36 können ebenfalls mit Wellblechen oder anderen Turbulenzerzeugern versehen sein. Die Kältemittelströmungsführung entspricht der in Fig. 2, d. h. Kältemitteleinetrittsrohr 4 und Kältemittelaustrittsrohr 5 sind an demselben Endstück 3 angeordnet.
  • Fig. 3a zeigt eine Variante 37 des Wärmeübertragers 33 nach Fig. 3. Unterschiedlich gegenüber dem Wärmeübertrager 33 ist lediglich die Kältemittelführung, die der in Fig. 2a entspricht, d. h. das Kältemitteleintrittsrohr 4' ist am Endstück 3' und das Kältemittelaustrittsrohr 5' ist am Endstück 8' befestigt. Somit ergibt sich im Wesentlichen ein Gegenstrom zwischen Kältemittel und Kühlmittel, welches entsprechend dem Pfeil P in Längsrichtung strömt.
  • Fig. 4 zeigt ein weiteres Ausführungsbeispiel eines Wärmeübertragers 38, bei welchem die Kältemittelführung analog den Ausführungsbeispielen in Fig. 2 und 3 erfolgt, d. h. es wird ein Block 11 gemäß Fig. 1b verwendet. Der Kühlmitteleintrittsstutzen 6 und der Kühlmittelaustrittsstutzen 7 liegen sich direkt auf gleicher Höhe gegenüber, d. h. sie sind beide im Bereich des Endstückes 3 angeordnet. Zwischen Eintrittsstutzen 6 und Austrittsstutzen 7 ist mittig eine Trennwand 39 angeordnet, welche einen Einströmbereich 40 auf Seiten des Eintrittsstutzens 6 und einen Ausströmbereich 41 auf Seiten des Austrittsstutzens 7 abgrenzt. Die Trennwand 39 ist jeweils zwischen benachbarten Flachrohren angeordnet. Ein Wellblech 42 mit Längskanälen 42a schließt sich an die Trennwand 39 an und erstreckt sich bis zu einem Umlenkbereich 43. Das Wellblech 42 weist - wie oben ausgeführt - ein etwa trapezförmiges Profil auf, welches jeweils mit den benachbarten Flachrohren verlötet ist. Dadurch werden diskrete Längskanäle 42a gebildet, d. h. eine Querströmung zwischen den Längskanälen 42a ist nicht möglich. Das Kühlmittel strömt somit aus dem Einströmbereich 40 zunächst in der oberen Hälfte des Wärmeübertragers 38, dem Pfeil P1 folgend, in den Umlenkbereich 43, wo es entsprechend dem Pfeil P2 um 180 Grad, d. h. in die entgegengesetzte Richtung umgelenkt wird. Es strömt dann in der unteren Hälfte des Wärmeübertragers 38, dem Pfeil P3 folgend, zurück in den Ausströmbereich 41 und verlässt dort über den Austrittsstutzen 7 den Wärmeübertrager 38.
  • Das Kühlmittel legt somit - im Vergleich zu den vorherigen Ausführungsbeispielen - den doppelten Weg im Wärmeübertrager 38 zurück, sodass ein intensiver Wärmeaustausch mit dem Kältemittel stattfindet. Ebenso ist eine vier- oder (geradzahlig) mehrflutige Durchströmung des Wärmeübertragers für das Kältemittel möglich.
  • Auch hier können die Wellbleche mit Schlitzen und/oder Versätzen versehen sein, so dass ein Austausch zwischen den Längsführungkanälen für das Kühlmittel und damit eine homogenere Verteilung und/oder Turbulenzen des Kühlmittel und letztendlich ein erhöhter Wärmeübertrag möglich ist. Auch sind hier Bleche mit quer verlaufenden Külmittelkanälen zur Vergrößerung der Oberfläche und damit zu einer Erhöhung der Effizienz des Wärmeübertragers einsetzbar.
  • Fig. 5 zeigt einen Querschnitt durch einen Wärmeübertrager 44, der dem Wärmeübertrager in Fig. 2 entspricht, wobei das Endstück 3 weggelassen ist. Man sieht daher direkt auf die Stirnseiten der Flachrohre 9, die als extrudierte Mehrkammerrohre mit kreisförmigen Strömungskanälen 45 ausgebildet sind. Zwischen benachbarten Flachrohren 9 ist jeweils ein Wellblech 10 mit trapezförmigem Profil angeordnet und mit den Flachrohren 9 verlötet. Dadurch werden diskrete Längskanäle 10a für das Kühlmittel gebildet. Auch diese Bleche können mit Schlitzen und/oder Versätzen versehen sein, um einen Austausch zwischen den Längskanälen für das Kühlmittel und damit eine homogenere Verteilung und/oder Turbulenzen des Kühlmittels zu ermöglichen.
  • Für den Fall, dass keine Umlenkung des Kühlmittels - wie in Fig. 4 dargestellt - vorgesehen ist, sondern nur eine einflutige Durchströmung, sind keine diskreten Längskanäle 10a notwendig, vielmehr kann eine Querverbindung zwischen den einzelnen Längskanälen erwünscht sein. Dies kann durch nicht dargestellte so genannte Turbulenzbleche realisiert werden, bei welchen das Trapezprofil nach bestimmten Längsabschnitten jeweils versetzt angeordnet ist, sodass sich neue Anströmkanten und damit eine erhöhte Verwirbelung ergeben. Der Gehäusemantel 2 ist hier als U-förmiger Rahmen mit einem Absatz und einer Aufweitung 26 ausgebildet, in welche das nicht dargestellte Endstück eingesetzt wird. Der Wärmeübertragerblock 11 (vgl. Fig. 1a, 1b) kann somit einfach in das Gehäuse 2 eingesetzt und durch einen nicht dargestellten Deckel verschlossen werden. Die an den Einstrittsstutzen 6 anschließende Verteilerkammer 28 erstreckt sich über die gesamte Höhe der Gehäusewand 2c, analog weist die Sammelkammer 29 auf der Seite des Austrittsstutzens 7 etwa die Höhe der Seitenwand 2a auf. Dadurch ist eine Verteilung des Kühlmittels zwischen alle Flachrohre 9 möglich und ebenso ein Sammeln des Kühlmittels in der Sammelkammer 29 auf der Austrittsseite.
  • Fig. 6 zeigt einen Längsschnitt durch ein Flachrohr 9, welches mit seinem Flachrohrende 9a in dem Endstück 3 und seinem Flachrohrende 9b in dem Endstück 8 aufgenommen ist. Die beiden Endstücke 3, 8 sind wie in Fig. 1b dargestellt, ausgebildet. Diese Bauweise für die Flachrohre 9 mit den Endstücken 3, 8 aus einzelnen Platten ist für hohe Drücke, wie sie im CO2-Kältemittelprozess auftreten, besonders geeignet.
  • Fig. 7 zeigt ein weiteres Ausführungsbeispiel eines Wärmeübertragers 46 mit einer geänderten Kühlmittelführung. Ein Kältemittelblock 47 ist prinzipiell ähnlich aufgebaut wie der Block 11 gemäß Fig. 1b, d. h. er weist ein erstes Endstück 48 mit Kältemitteleintrittsrohr 49 und Kältemittelaustrittsrohr 50 sowie ein zweites Endstück 51 auf, in welchem die Umlenkung des Kältemittels erfolgt. Das Endstück 48 weist eine seitlich verlängerte Bodenplatte 52 auf, an welcher ein Kühlmitteleintrittskanal 53 befestigt ist. Auch das Endstück 51 weist eine verlängerte Bodenplatte 54 auf, an welcher ein Kühlmittelaustrittskanal 55 befestigt ist. Ein Gehäusemantel 56 umschließt den Block 47 und bildet jeweils eine keilförmig ausgebildete Kühlmitteleintrittskammer 57 und eine Kühlmittelaustrittskammer 58. Das Kühlmittel tritt durch den Eintrittskanal 53 in die Eintrittskammer 57 ein und gelangt von dort zwischen die Spalte der Flachrohre des Blockes 47, durchströmt diese in Querrichtung entsprechend den Pfeilen P4, gelangt in die Austrittskammer 58 und von dort in den Kühlmittelaustrittskanal 55. Durch diese Bauweise ist eine einfache Querdurchströmung des Blockes 47 möglich. Zur Erhöhung des Wärmeüberganges können - was hier nicht dargestellt ist - zwischen den einzelnen Flachrohren wiederum Wellbleche oder Turbulenzeinlagen angeordnet sein, die eine Führung des Kühlmittels in Pfeilrichtung P4 und eine Turbulenzerzeugung bewirken.
  • Fig. 8 zeigt ein weiteres Ausführungsbeispiels eines Wärmeübertragers 59 mit einer ebenfalls quer geführten Kühlmittelströmung, die allerdings nur schematisch dargestellt ist. Dies wird anhand eines Längsschnittes durch ein Flachrohr 9, wie es in Fig. 6 dargestellt ist, veranschaulicht. Ein Kältemittelblock 60 ist durch zwei Trennwände 61, 62 in drei Strömungsbereiche I, II, III unterteilt. Die Bereiche I, II sind durch einen Umlenkkammer 63 und die Bereiche II, III durch eine weitere Umlenkkammer 64 auf der gegenüberliegenden Seite miteinander verbunden. Das Kühlmittel tritt über einen Eintrittsstutzen 65 - ebenfalls nur schematisch dargestellt - in den Bereich I des Blockes 60 ein, wird in der Umlenkkammer 63 umgelenkt, strömt dann durch den Bereich II in die Umlenkkammer 64, wird dort abermals umgelenkt und gelangt schließlich in den Bereich III, den es über einen Austrittsstutzen 66 verlässt. Ein- und Austrittsstutzen 55, 66 sowie Umlenkkammern 63, 64 sind Teil eines nicht näher dargestellten Gehäusemantels, welcher den Block 60 umgibt. Durch diese Strömungsführung, entsprechend den Pfeilen P5, P6, P7, wird das Kühlmittel dreimal quer über den Block 60 geführt; es ergibt sich somit ein Kreuzstrom zwischen Kältemittel und Kühlmittel. Selbstverständlich ist auch - was hier nicht dargestellt ist - eine nur einfache Umlenkung mit einer Trennwand und einem Umlenkkasten sowie eine drei- und mehrfache Umlenkung des Kühlmittels möglich.
  • Die oben beschriebenen Ausführungsbeispiele für Kältemittel/Kühlmittel-Wärmeübertrager werden vorzugsweise gelötet, was insbesondere für den von CO2 durchströmten Block gilt. Der Gehäusemantel dagegen könnte - wegen des erheblichen geringeren Druckes des Kühlmittels - auch durch alternative Verbindungstechniken, z. B. durch Kleben oder mittels Gummidichtungen mit dem Block bzw. dessen Endstücken verbunden werden. Hierbei kommen für den Gehäusemantel auch andere Materialien, wie beispielsweise Kunststoff, in Frage.
  • Die Erfindung wurde am Beispiel eines Kältemittel/Kühlmittel-Wärmeübertragers erläutert, umfaßt jedoch auch andere Wärmeübertrager. Beispielsweise ist ein erfindungsgemäßer Wärmeübertrager von Öl und/oder Luft durchströmbar, die untereinander oder mit anderen Medien Wärme austauschen.

Claims (26)

  1. Wärmeübertrager, insbesondere für ein Kraftfahrzeug, mit einem Wärmeübertragerblock (11), welcher primärseitig von einem ersten Medium durchströmbare und sekundärseitig von einem zweiten Medium umströmbare Rohre (9) mit Strömungskanälen (45) und Rohrenden (9a, 9b), zumindest ein die Rohrenden (9a, 9b) aufnehmendes Endstück (3, 8) mit je zumindest einer Bodenplatte (12,13), Verteil- oder Umlenkplatte (14, 15) und Abdeckplatte (16, 17) sowie zumindest eine mit einem oder je einem Endstück (3, 8) verbundene Einlass- und/oder Auslasskammer (4, 5) aufweist, wobei das erste Medium von der Einlasskammer (4) durch die Strömungskanäle (45) zur Auslasskammer (5) leitbar ist, und mit einem die Rohre (9) umschliewenden Gehäusemantel (2) mit einem Einlass (6) und einem Auslass (7) für das zweite Medium, wobei zwischen den Rohren (9) Wellbleche (10) mit Längskanälen (10a) angeordnet sind und die Wellbleche (10) parallelogrammförmig ausgebildet sind und etwa dreieck- oder trapezförmige Ein- und Ausströmbereiche (30, 31) zwischen den Rohren belassen.
  2. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass die Rohre als insbesondere extrudierte Flachrohre ausgebildet sind.
  3. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rohre jeweils mehrere Strömungskanäle aufweisen.
  4. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wärmeübertragerblock zumindest zwei Endstücke aufweist.
  5. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Gehäusemantel zwischen zwei Endstücken angeordnet ist.
  6. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest zwei Platten eines Endstücks einstückig ausgebildet sind.
  7. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Gehäusemantel (2) als ein- oder mehrteiliger Blechmantel ausgebildet ist.
  8. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Gehäusemantel (2) mit dem zumindest einen Endstück (3, 8) stoffschlüssig verbunden, insbesondere verlötet ist.
  9. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Gehäusemantel (2) einen im Wesentlichen rechteckigen Querschnitt mit vier Seiten (2a, 2b, 2c, 2d) aufweist.
  10. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Einlass (6) und der Auslass (7) an gegenüberliegenden Seiten (2a, 2c) des Gehäusemantels (2) angeordnet sind.
  11. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Einlass (6) und der Auslass (7) auf derselben Seite (2a) des Gehäusemantels (2) angeordnet sind.
  12. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Einlass (6) und der Auslass (7) an entgegengesetzten Enden des Gehäusemantels (2) angeordnet sind.
  13. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Bereich von Einlass und Auslass (6, 7) Verteil- und Sammelkammern (28, 29) in den Gehäusemantel (2) eingeformt sind.
  14. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wellbleche (10) eine Längserstreckung aufweisen, die dem Abstand zwischen Einlass (6) und Auslass (7) entspricht.
  15. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wellbleche (34) rechteckförmig ausgebildet sind und einen etwa rechteckigen Ein- und Ausströmbereich (35, 36) zwischen den Rohren (9) belassen.
  16. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Einlass (6) und der Auslass (7) sich gegenüberliegend angeordnet sind und dass zwischen Einlass (6) und Auslass (7) eine Trennwand (39) zur Bildung eines Einströmbereiches (40) und eines Ausströmbereiches (41) und am dem Ein- und Auslass (6, 7) abgewandten Ende des Gehäusemantels ein Umlenkabschnitt (43) belassen ist und dass der Gehäusemantel sekundärseitig mindestens zweiflutig in Längsrichtung (P1, P3) durchströmbar ist.
  17. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das zweite Medium im Wesentlichen quer zur Längsrichtung der Rohre durch den Block (47) geführt ist.
  18. Wärmeübertrager nach Anspruch 17, dadurch gekennzeichnet, dass das zweite Medium mindestens einmal in Längsrichtung umlenkbar und der Wärmeübertragerblock (60) mindestens zweiflutig durchströmbar ist.
  19. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Gehäusemantel (56) mit den Rohren bzw. dem Block (47) eine Eintrittskammer (57) und eine Austrittskammer (58) für das zweite Medium bildet, die sich in Längsrichtung der Rohre erstrecken.
  20. Wärmeübertrager nach Anspruch 19, dadurch gekennzeichnet, dass an den Endstücken (48, 51) Eintritts- und Austrittskanäle (53, 54) für das zweite Medium angeordnet sind, die mit den Eintritts- bzw. Austrittskammem (57, 58) kommunizieren.
  21. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Gehäusemantel mindestens ein Umlenkkasten (63, 64) und zwischen den Rohren mindestens eine quer verlaufende Trennwand (61, 62) angeordnet sind.
  22. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen den Rohren Wellrippen oder Turbulenzeinlagen angeordnet sind, die Querkanäle für das zweite Medium bilden.
  23. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wärmeübertragerblock (11) primärseitig einflutig durchstömbar ist.
  24. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wärmeübertragerblock (11, 47) primärseitig zwei- oder mehrflutig durchströmbar ist.
  25. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste Medium ein insbesondere zweiphasig oder überkritisch betreibbares Kältemittel ist.
  26. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das zweite Medium flüssig und insbesondere ein flüssiges Kühlmittel ist.
EP04765083A 2003-10-17 2004-09-10 Wärmeübertrager, insbesondere für kraftfahrzeuge Not-in-force EP1682840B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10349150A DE10349150A1 (de) 2003-10-17 2003-10-17 Wärmeübertrager, insbesondere für Kraftfahrzeuge
PCT/EP2004/010158 WO2005038375A1 (de) 2003-10-17 2004-09-10 Wärmeübertrager, insbesondere für kraftfahrzeuge

Publications (2)

Publication Number Publication Date
EP1682840A1 EP1682840A1 (de) 2006-07-26
EP1682840B1 true EP1682840B1 (de) 2009-04-01

Family

ID=34442203

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04765083A Not-in-force EP1682840B1 (de) 2003-10-17 2004-09-10 Wärmeübertrager, insbesondere für kraftfahrzeuge

Country Status (7)

Country Link
US (1) US20070056720A1 (de)
EP (1) EP1682840B1 (de)
JP (1) JP2007508519A (de)
KR (1) KR20060113897A (de)
AT (1) ATE427468T1 (de)
DE (2) DE10349150A1 (de)
WO (1) WO2005038375A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005012761A1 (de) * 2005-03-19 2006-09-21 Modine Manufacturing Co., Racine Wärmetauscher, bspw. Ladeluftkühler und Herstellungsverfahren
DE102005013922A1 (de) * 2005-03-26 2006-09-28 Modine Manufacturing Co., Racine Wärmetauscher, insbesondere Ladeluftkühler
DE102005021464A1 (de) 2005-05-10 2006-11-16 Modine Manufacturing Co., Racine Vorrichtung zur Zwischenkühlung
EP1996892A2 (de) * 2005-10-26 2008-12-03 Behr GmbH & Co. KG Wärmetauscher, verfahren zur herstellung eines wärmetauschers
DE102006005362A1 (de) * 2006-02-07 2007-08-09 Modine Manufacturing Co., Racine Abgaswärmetauscher in einer Abgasrückführungsanordnung
US8915292B2 (en) 2006-02-07 2014-12-23 Modine Manufacturing Company Exhaust gas heat exchanger and method of operating the same
FR2906357B1 (fr) * 2006-09-21 2013-01-18 Valeo Systemes Thermiques Echangeur de chaleur de type liquide/gaz,notamment pour un equipement de climatisation de vehicule automobile utilisant un fluide refrigerant operant a l'etat supercritique tel que co2
DE102006046671A1 (de) * 2006-09-29 2008-04-03 Behr Gmbh & Co. Kg Wärmetauscher in Plattenbauweise, insbesondere Verdampfer für eine Kraftfahrzeug-Klimaanlage
WO2009013179A2 (en) * 2007-07-23 2009-01-29 M.T.A. S.P.A. Heat exchanger with mini- and/or micro-channels and method for its construction
EP2090851A1 (de) * 2008-02-15 2009-08-19 Delphi Technologies, Inc. Wärmetauscher mit Mischkammer
SE532837C2 (sv) * 2008-03-28 2010-04-20 Titanx Engine Cooling Holding Värmeväxlare, såsom en laddluftkylare
JP5061065B2 (ja) * 2008-08-26 2012-10-31 株式会社豊田自動織機 液冷式冷却装置
FR2943776B1 (fr) * 2009-03-26 2012-08-17 Valeo Systemes Thermiques Echangeur de chaleur, en particulier condensateur de climatisation
JP2011091301A (ja) * 2009-10-26 2011-05-06 Toyota Industries Corp 液冷式冷却装置
CN101956600A (zh) * 2010-09-29 2011-01-26 芜湖中宇散热器有限公司 一种用于改装车上的中冷器
DE102012208771A1 (de) * 2012-05-24 2013-11-28 Behr Gmbh & Co. Kg Wärmetauscher zum Temperieren eines ersten Fluids unter Verwendung eines zweiten Fluids
FR3006432B1 (fr) * 2013-05-28 2017-12-08 Delphi Automotive Systems Lux Echangeur de chaleur
WO2015038111A1 (en) * 2013-09-11 2015-03-19 International Engine Intellectual Property Company, Llc Thermal screen for an egr cooler
DE102014203038A1 (de) 2014-02-19 2015-08-20 MAHLE Behr GmbH & Co. KG Wärmeübertrager
JP2019074267A (ja) * 2017-10-17 2019-05-16 イビデン株式会社 熱交換器
DE202018101360U1 (de) * 2018-03-12 2019-06-13 Autokühler GmbH & Co. KG Wärmeaustauscher
US11624565B2 (en) * 2018-05-25 2023-04-11 Hangzhou Sanhua Research Institute Co., Ltd. Header box and heat exchanger
DE102018215398A1 (de) * 2018-09-11 2020-03-12 Mahle International Gmbh Elektrische Heizeinrichtung
CN113251831A (zh) * 2021-04-30 2021-08-13 三花控股集团有限公司 换热器及换热模块
US20240093952A1 (en) * 2022-09-15 2024-03-21 Hamilton Sundstrand Corporation Crossflow heat exchanger with stacked distribution tubes

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1884080A (en) * 1931-12-28 1932-10-25 Westinghouse Electric & Mfg Co Heat transfer apparatus
US2394402A (en) * 1943-03-20 1946-02-05 Pennella Samuel Surface condenser
JPS4814837Y1 (de) * 1970-07-20 1973-04-24
JPS5674592A (en) * 1979-11-21 1981-06-20 Toshimi Kuma Opposing current type heat exchanger
JPH07104115B2 (ja) * 1986-01-31 1995-11-13 三菱電機株式会社 熱交換器
JPH0633970B2 (ja) * 1989-09-12 1994-05-02 東京瓦斯株式会社 液化天然ガスの冷熱回収用熱交換器
JPH05346297A (ja) * 1992-06-15 1993-12-27 Nippon Light Metal Co Ltd 熱交換器
JP3298189B2 (ja) * 1992-12-11 2002-07-02 株式会社デンソー 多管式熱交換器
JP3445727B2 (ja) * 1997-08-04 2003-09-08 オリオン機械株式会社 圧縮空気除湿装置
DE19734690C2 (de) * 1997-08-11 2000-02-17 Modine Mfg Co Wärmetauscher, beispielsweise luftgekühlter Ladeluftkühler
FR2779812B1 (fr) * 1998-06-12 2000-10-06 Soc Et Et De Const Aero Navale Echangeur de chaleur du type a carter creux renfermant notamment un grand nombre de premieres voies d'ecoulement d'un premier fluide et parcouru par un second fluide en contact d'echange thermique avec ces voies
JP2000081289A (ja) * 1998-09-04 2000-03-21 Toshiba Corp プレートフィン型熱交換器
US6237357B1 (en) * 1999-06-07 2001-05-29 Mitsubishi Heavy Industries, Ltd. Vehicular air conditioner using heat pump
DE19927607A1 (de) * 1999-06-17 2000-12-21 Behr Gmbh & Co Ladeluftkühler mit einem Kühlmitteleintritt sowie einem Kühlmittelaustritt
JP4554144B2 (ja) * 2001-06-18 2010-09-29 昭和電工株式会社 蒸発器
DE10233407B4 (de) * 2001-07-26 2016-02-18 Denso Corporation Abgaswärmeaustauscher
JP3903869B2 (ja) * 2001-07-26 2007-04-11 株式会社デンソー 排気熱交換器
ES2316640T3 (es) * 2001-12-21 2009-04-16 BEHR GMBH & CO. KG Intercambiador de calor, en particular para un vehiculo automovil.
US6779596B2 (en) * 2002-03-22 2004-08-24 Exxonmobil Research And Engineering Company Heat exchanger with reduced fouling
FR2837917B1 (fr) * 2002-03-27 2004-07-09 Valeo Thermique Moteur Sa Echangeur de chaleur, notamment pour un vehicule automobile, constitue d'elements tubulaires empiles
GB2400648A (en) * 2003-03-19 2004-10-20 Calsonic Kansei Uk Ltd An automotive heat exchanger

Also Published As

Publication number Publication date
DE10349150A1 (de) 2005-05-19
JP2007508519A (ja) 2007-04-05
WO2005038375A1 (de) 2005-04-28
US20070056720A1 (en) 2007-03-15
EP1682840A1 (de) 2006-07-26
KR20060113897A (ko) 2006-11-03
DE502004009282D1 (de) 2009-05-14
ATE427468T1 (de) 2009-04-15

Similar Documents

Publication Publication Date Title
EP1682840B1 (de) Wärmeübertrager, insbesondere für kraftfahrzeuge
EP1454106B1 (de) Wärmetauscher
EP1459026B1 (de) Wärmeübertrager, insbesondere für ein kraftfahrzeug
EP0974804B1 (de) Wärmetauscher, insbesondere Abgaswärmetauscher
EP2452149B1 (de) Plattenwärmetauscher
DE112016004446T5 (de) Kühlsystem mit integrierter Kernstruktur
EP1604163A1 (de) W rme bertrager, insbesondere abgaskühler für kraftfahrzeuge
WO1998050740A1 (de) Verteil-/sammel-kasten eines mindestens zweiflutigen verdampfers einer kraftfahrzeugklimaanlage
DE60310992T2 (de) Hochdruckwärmetauscher
EP1792135B1 (de) Wärmetauscher für kraftfahrzeuge
EP2962056B1 (de) Wärmeübertrager
EP0789213A2 (de) Wärmeübertrager für ein Kraftfahrzeug
DE102012100724A1 (de) Integrierter Kreuz-Gegenstromkondensator
EP1411310B1 (de) Wärmeübertrager in Serpentinenbauweise
DE102007031824A1 (de) Wärmetauscher
WO1998050750A1 (de) Mehr als zweiflutiger flachrohrwärmetauscher für kraftfahrzeuge mit umlenkboden sowie herstellungsverfahren
WO2005085737A1 (de) Vorrichtung zum austausch von wärme und verfahren zur herstellung einer solchen vorrichtung
DE102006061440A1 (de) Kühlflüssigkeitskühler
DE10160380A1 (de) Vorrichtung zur Wärmeübertragung
DE202004011489U1 (de) Wärmeaustauscher für Hochtemperatur-Anwendungen, insbesondere Ladeluftkühler
DE3209760C2 (de) Wärmeaustauscher
DE10319226B4 (de) Vorrichtung zur Kühlung oder Heizung eines Fluids
EP2049859B1 (de) Kraftfahrzeugklimaanlage
WO2008003291A1 (de) Heizkörper, insbesondere röhrenradiator
DE102016207192A1 (de) Flachrohr für einen Wärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060517

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOHL, MICHAEL

Inventor name: KOTSCH, MARTIN

Inventor name: DEMUTH, WALTER

Inventor name: STAFFA, KARL-HEINZ

Inventor name: KRANICH, MICHAEL

Inventor name: WALTER, CHRISTOPH

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071127

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004009282

Country of ref document: DE

Date of ref document: 20090514

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

26N No opposition filed

Effective date: 20100105

BERE Be: lapsed

Owner name: BEHR G.M.B.H. & CO. KG

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090702

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090910

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100929

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110927

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110910

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004009282

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004009282

Country of ref document: DE

Owner name: MAHLE INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: BEHR GMBH & CO. KG, 70469 STUTTGART, DE

Effective date: 20150224

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004009282

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

Effective date: 20150224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181001

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004009282

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401