EP1670868B1 - Fluoreszierende sicherheitstinten und markierstoffe mit kohlenstoffnanoröhrchen - Google Patents

Fluoreszierende sicherheitstinten und markierstoffe mit kohlenstoffnanoröhrchen Download PDF

Info

Publication number
EP1670868B1
EP1670868B1 EP04809657A EP04809657A EP1670868B1 EP 1670868 B1 EP1670868 B1 EP 1670868B1 EP 04809657 A EP04809657 A EP 04809657A EP 04809657 A EP04809657 A EP 04809657A EP 1670868 B1 EP1670868 B1 EP 1670868B1
Authority
EP
European Patent Office
Prior art keywords
carbon nanotubes
photoluminescence
radiation
ink
combinations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04809657A
Other languages
English (en)
French (fr)
Other versions
EP1670868A2 (de
Inventor
R. Bruce Weisman
Sergei M. Bachilo
Eric Christopher Booth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
William Marsh Rice University
Original Assignee
William Marsh Rice University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by William Marsh Rice University filed Critical William Marsh Rice University
Publication of EP1670868A2 publication Critical patent/EP1670868A2/de
Application granted granted Critical
Publication of EP1670868B1 publication Critical patent/EP1670868B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24835Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including developable image or soluble portion in coating or impregnation [e.g., safety paper, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • the present invention was made with support from the Robert A. Welch Foundation, Grant No. C-0807; and the National Science Foundation, Grant No. CHE-9900417.
  • the present invention relates generally to fluorescent inks and markers, especially for security applications. More specifically, the invention relates to such inks and markers comprising carbon nanotubes.
  • Fluorescence being a subset of photoluminescence (PL), occurs when a material is irradiated with electromagnetic radiation (EM), at least some of which is absorbed. Fluorescence refers to the subsequently re-emitted radiation of wavelength other than that which was absorbed. Typically, such emission, or fluorescence, is red-shifted to longer wavelengths relative to the incident or absorbed radiation, such emission can also be described as being Stokes shifted.
  • EM electromagnetic radiation
  • Fluorescent compounds typically used in such above-described applications are generally organic molecules that fluoresce in the visible region of the EM spectrum when irradiated with ultra-violet (UV) light.
  • UV ultra-violet
  • the present invention is directed toward fluorescent inks and markers comprising carbon nanotubes, and to methods of using carbon nanotubes (CNTs) as fluorescent identifiers for anti-counterfeiting and authentication purposes.
  • CNTs carbon nanotubes
  • the fluorescent inks of the present invention comprise a dispersion or suspension of CNTs in a liquid (i.e., solvent) medium.
  • a dispersion may further comprise surfactant species and/or other traditional ink components.
  • Such inks may be referred to herein as "nanotube inks.” Note that such inks are but a subset of the fluorescent markers of the present invention that can be attached to, incorporated into, or otherwise associated with an article for which identification and/or authentication is deemed important, generally at some point in the future.
  • CNTs as fluorescent identifiers
  • Methods of using CNTs as fluorescent identifiers generally rely on a knowledge of their photoluminescence properties and on techniques of incorporating and/or attaching such species into and/or to articles being marked or tagged. Note that the terms "marker” and “taggant” (and their verb conjugates) will be used synonymously herein.
  • the fluorescence is effected by irradiating the item or article comprising CNTs with visible light (i.e., radiation in the visible region of the EM spectrum).
  • the fluorescence is then detected in the near infrared (NIR) region of the EM spectrum.
  • NIR near infrared
  • the detection can be of a qualitative or quantitative nature.
  • the detection involves imaging. Such imaging can be spectral or even multi-spectral.
  • the CNTs are chemically derivatized.
  • Such chemical derivatization expands the range of solvents and solvent systems that can be employed to generate the suspension of single-wall carbon nanotubes as utilized in the present invention.
  • Such chemical derivatization can be removed via thermal and/or chemical treatments subsequent to printing such inks and/or incorporating such markers.
  • the CNTs are homogenized by electronic type according to a separation procedure. Generally, this translates to a concentration of one electronic type within a mixture of types (e.g., increasing the amount of semiconducting CNTs with respect to metallic and semi-metallic CNTs). Thus, in some embodiments, the population of CNTs for a particular application may be largely semiconducting CNTs with a small range of bandgaps.
  • compositions of CNTs can be used in which the photoluminescence properties of the CNT-based inks and markers are tuned within a range of excitation and emission wavelengths. This provides for an almost limitless variety of unique inks and markers with which to incorporate into, and/or associate with, articles for identification, anti-counterfeiting, and authentication purposes.
  • the fluorescence characteristics of a population of CNTs is varied by modulating the parameters of the CNT synthesis.
  • the invention is drawn to a suspension of CNTs, such as a suspension of single-walled carbon nanotubes (SWNTs), wherein the suspension serves as an invisible ink.
  • this ink is an aqueous suspension.
  • the nanotube ink When dried, this nanotube ink is virtually invisible. However, the nanotube ink will fluoresce when illuminated with light of an appropriate wavelength; for instance it will glow in the near-infrared when illuminated with visible light of the appropriate wavelength. If partly or fully structure-separated nanotube samples are used, then one can prepare inks that have distinct wavelengths of excitation and emission.
  • a dilute aqueous surfactant suspension of CNTs such as SWNTs
  • a dilute aqueous surfactant suspension of CNTs is applied to paper or cloth using flowing ink pens, inkjet printers, etc., wherein such a suspension (dispersion) is the ink.
  • the "ink” can be illuminated with visible light matching a second, third, or higher van Hove optical transition of the semiconducting carbon nanotubes. This yields a luminescence emission at a corresponding first van Hove wavelength in the near-infrared.
  • Resulting images in the case of written words, shapes, and/or patterns
  • can be visualized in the near-infrared using appropriate near-infrared detection equipment e.g., an InGaAs camera).
  • Spectral filtering can also distinguish different nanotube species in the ink, because each will show distinct absorption and emission wavelengths. This latter aspect is highly relevant in embodiments wherein pluralities of nanotubes have been manipulated to be concentrated in a particular type species within the greater collection of CNTs within the ink or marker.
  • the compositions (inks and markers) of the present invention are used as anti-counterfeiting markings for high-value items, such as currency.
  • Nanotubes of different diameters can be used to prepare various inks for selectively inscribing different denominations of bills. For example, a $100 bill would exhibit fluorescence only with a specific combination of excitation and observation wavelengths; a $50 bill with a different combination, etc. This spectral selectivity feature can be used with or without imaging detection.
  • compositions and methods of the present invention are used to provide spectral "bar coding" for non-contact identification of items, such as clothing.
  • Combinations of different nanotube inks can be applied to merchandise at the factory and then detected remotely by an infrared scanner for inventory-taking, identification at a sales counter, or theft control.
  • the selective use of several different nanotube species provides many possible combinations of emission wavelengths that can be used to generate spectral bar code identifiers.
  • the compositions of the present invention are used in currency as replacements for the magnetic identifiers currently used to identify different denominations (such as by integration of the nanotube inks into the currency), in machines, such as, for example, vending machines.
  • Such an application would rely on optical detection rather than magnetic detection to differentiate the bills.
  • optical identifiers of the present invention can be used in combination with existing identifiers (e.g., magnetic materials and/or fluorescent dyes). Numerous other applications for such inks/markers exist.
  • the present invention provides improvement over the existing fluorescent identifiers in that the unique excitation and emission wavelengths of these nanotube inks and markers cannot be simulated by conventional fluorescent materials. Furthermore, the region of the EM spectrum in which these inks and markers fluoresce is generally inaccessible with other fluorophores. Also, there is virtually no background emission in the near-infrared, so only tiny quantities of nanotubes are required for marking. Furthermore, other fluorescent ink materials do not offer the variety of wavelength-specific forms that can provide the added information and security of nanotube ink. Finally, numerous methods of inducing luminescence and known detection systems capable of detecting the emission can be employed.
  • FIGURE 1 is a fluorescence spectral analysis of an aqueous (D 2 O) suspension of SWNTs obtained using a single-wavelength excitation (651 nm), wherein the SWNTs are surfactant-suspended with sodium dodecylsulfate (SDS), and wherein a deconvolution of the peaks illustrates the manner in which the fluorescence is highly unique to a particular collection of CNTs such that each one of the deconvoluted peaks in the figure is the result of a different semiconducting SWNT species being present, the particular species being indicated by the n,m indices above each peak;
  • SDS sodium dodecylsulfate
  • FIGURE 2 depicts fluorescence spectra of two batches of SWNTs produced by the same reactor, but under slightly different synthesis conditions, that yield different fluorescence signatures when irradiated with 660 nm radiation from a diode laser source, wherein the relative quantities of particular SWNT semiconducting species within Batch 1 (dashed line) differ from those within Batch 2 (solid line);
  • FIGURE 3 illustrates a near-infrared photograph of an embodiment wherein single-wall carbon nanotubes are applied to a surface (as ink) and illuminated with light in the visible region to effect photoluminescence in the near infrared;
  • FIGURE 4 is a fluorescence spectrum of SWNT fluorescence markers that have been integrated into a PMMA host, wherein excitation is at 669 nm from a diode laser, and
  • FIGURE 5 depicts the fluorescence spectra of a single sample of SWNT (HiPco, Rice University), taken with three different excitation wavelengths, wherein excitation wavelengths are as follows: trace a, 669 nm; trace b, 573 nm; and trace c, 723 nm.
  • the present invention is directed toward fluorescent inks and markers comprising carbon nanotubes, and to methods of using carbon nanotubes (CNTs) as fluorescent identifiers for anti-counterfeiting and authentication purposes.
  • CNTs carbon nanotubes
  • Carbon nanotubes comprising multiple concentric shells and termed multi-wall carbon nanotubes (MWNTs) were discovered by lijima in 1991 [ Iijima, Nature 1991, 354, 56 ].
  • SWNTs single-wall carbon nanotubes
  • MWNTs multi-wall carbon nanotubes
  • These carbon nanotubes possess unique mechanical, electrical, thermal and optical properties, and such properties make them attractive for a wide variety of applications. See Baughman et al., Science, 2002, 297, 787-792 .
  • the diameter and chirality of individual CNTs are described by integers "n” and "m,” where (n,m) is a vector along a graphene sheet which is conceptually rolled up to form a tube.
  • 3q, where q is an integer, the CNT is a semi-metal (bandgaps on the order of milli eV).
  • CNT “type,” as used herein, refers to such electronic types described by the (n,m) vector (i.e., metallic, semi-metallic, and semiconducting).
  • CNT “species,” as used herein, refers to CNTs with discrete (n,m) values. It is the semiconducting CNTs that possess fluorescence properties that make them useful as the optical identifiers of the present invention.
  • FIGURE 1 Shown in FIGURE 1 is a fluorescence spectral analysis of an aqueous (D 2 O) suspension of SWNTs using a single-wavelength excitation (651 nm), wherein the SWNTs are surfactant-suspended with sodium dodecylsulfate (SDS). Deconvolution of the peaks illustrates the manner in which the fluorescence is highly unique to a particular collection of CNTs. Each one of the deconvoluted peaks in the figure is the result of a different semiconducting SWNT species being present, the particular species being indicated by the n,m indices above each peak. Emission intensity for each peak is a function of the relative concentration of the particular species providing for a particular peak.
  • SDS sodium dodecylsulfate
  • SWNTs were shown to be selectively functionizable, providing a chemical route to their separation. See Strano et al., Science, 2003, 301, 1519-1522 ; and commonly-assigned International Patent Application No. PCT/US04/24507 .
  • Carbon nanotube chemistry has been described using a pyramidization angle formalism [ S. Niyogi et al., Acc. of Chem. Res., 2002, 35, 1105-1113 ].
  • chemical reactivity and kinetic selectivity are related to the extent of s character due to the curvature-induced strain of the sp 2 -hybridized graphene sheet
  • strain energy per carbon is inversely related to nanotube diameter, this model predicts smaller diameter nanotubes to be the most reactive, with the enthalpy of reaction decreasing as the curvature becomes infinite.
  • CNTs can be separated by type.
  • Such techniques include dielectrophoresis [ Krupke et al., Science, 2003, 301, 244-347 ], selective precipitation [ Chattophadhyay et al., J. Am. Chem. Soc., 2003, 125, 3370-3375 ], ion-exchange chromatography [ Zheng et al., Nature Mater., 2003, 2, 338-342 ], and complexation/centrifugation [ Chen et al., Nano Lett., 2003, 3, 1245-1249 ].
  • Carbon nanotubes include, but are not limited to, single-wall carbon nanotubes (SWNTs), multi-wall carbon nanotubes (MWNTs), double-wall carbon nanotubes, buckytubes, fullerene tubes, tubular fullerenes, graphite fibrils, and combinations thereof.
  • Such carbon nanotubes can be of a variety and range of lengths, diameters, number of tube walls, chiralities (helicities), etc., and can be made by any known technique including, but not limited to, arc discharge [ Ebbesen, Annu. Rev. Mater. Sci.
  • CNTs exhibiting photoluminescence in accordance with the present invention typically have diameters less than about 3 nm.
  • the CNTs can be subjected to one or more processing steps.
  • the CNTs have been purified.
  • Exemplary purification techniques include, but are not limited to, those by Chiang et al. [ Chiang et al., J. Phys. Chem. B 2001, 105, 1157-1161 ; Chiang et al., J. Phys. Chem. B 2001, 105, 8297-8301 ].
  • the CNTs have been cut by a cutting process. See Liu et al., Science 1998, 280, 1253-1256 ; Gu et al., Nano Lett. 2002, 2(9), 1009-1013 ; Haddon et al., Materials Research Society Bulletin, 2004, 29, 252-259 .
  • the terms "carbon nanotube” and “nanotube” will be used interchangeably herein.
  • the CNTs used in the inks, markers, and methods of the present invention can be separated by length, diameter, type or species and/or chemically derivatized according to any of the above-described separation and/or chemical derivatization methods.
  • Separatation generally involves the concentration of CNTs of a particular type, dimension, or species. The extent of such separation, and the level at which it is carried out, can lead to essentially homogeneous populations of CNTs comprising a particular type, dimension, or species of CNT.
  • the fluorescent inks of the present invention comprise a dispersion or suspension of CNTs in a liquid (i.e., solvent) medium.
  • a dispersion may further comprise surfactant species and/or other traditional ink components.
  • Fluorescent markers of the present invention are simply compositions CNTs with established photoluminescent properties that can be attached, incorporated into, and/or otherwise associated with an article for the purpose of identification and/or authentication.
  • the marker compositions may further comprise material other than CNTs, e.g., polymer.
  • the CNTs within a nanotube ink or marker have been homogenized or separated by one or more of the above-described techniques.
  • separation and/or chemical derivatization techniques such as those described above, are used to generate unique, designer mixtures of nanotubes of varying type, dimension and/or species.
  • the process parameters for the synthesis of the CNTs are altered so as to produce CNTs with a slightly different fluorescence signature. Indeed, there is greater flexibility for unique fluorescence signatures from mixtures than from homogenous populations (of CNTs).
  • SWNTs produced by the same reactor but under slightly different synthesis conditions, yield different fluorescence signatures when irradiated with 660 nm radiation from a diode laser source, wherein the relative quantities of particular SWNT semiconducting species within Batch 1 (dashed line) differ from those within Batch 2 (solid line).
  • Suitable solvent media for nanotube inks and markers include, but are not limited to, water, alcohols, alkanes, N,N -dimethylformamide (DMF), dimethylsulfoxide (DMSO), o-dichlorobenzene, benzene, xylenes, toluene, mesitylene, tetrahydrofuran, chloroform, dichloromethane, FREONs (general class of halocarbons, primarily fluorinated hydrocarbons), supercritical fluids (SCFs, such as supercritical CO 2 ), and combinations thereof.
  • DMF N,N -dimethylformamide
  • DMSO dimethylsulfoxide
  • FREONs general class of halocarbons, primarily fluorinated hydrocarbons
  • SCFs supercritical fluids
  • Surfactants can be any chemical agent which facilitates the dispersion of carbon nanotubes in water or other solvent media.
  • Surfactants include ionic (cationic and anionic) surfactants and non-ionic surfactants.
  • Suitable surfactants include, but are not limited to, sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfonate (SDBS), sodium octylbenzene sulfonate, TRITON X-100, TRITON X-405, dodecyltrimethylammonium bromide (DTAB), and combinations thereof.
  • SDS sodium dodecyl sulfate
  • SDBS sodium dodecylbenzene sulfonate
  • TRITON X-100 sodium octylbenzene sulfonate
  • DTAB dodecyltrimethylammonium bromide
  • the CNTs are dispersed in a superacid (e.g., oleum) or other intercalating media. See Ramesh et al., J. Phys. Chem. B, 2004, 108, 8794-8798 .
  • the CNTs, as markers are incorporated into a polymer host as a composite or blend material, wherein the CNTs have a predetermined fluorescence signature.
  • This blend can then be used to fabricate articles of manufacture, objects, or parts.
  • polymer fibers comprising such CNT fluorescence markers are fabricated. Such fibers can be used to make paper, currency, textiles, etc.
  • the material or article into which the CNT fluorescence markers are being blended should be transparent to both the excitation and emission wavelengths used to detect and analyze the fluorescence signature.
  • Methods of using the fluorescent nanotube inks of the present invention can generally comprise the steps of: 1) depositing a suspension of CNTs onto a surface, generally in the form of words, shapes, and/or patterns, and 2) removing the solvent. Provided that relatively small quantities of the CNTs are actually transferred to the surface, such words, shapes, and/or patterns can be said to be invisible and the nanotube ink referred to as an invisible ink. Such methods typically also can comprise the steps of 3) irradiating the ink with a visible light source, and 4) viewing the resulting fluorescence with a NIR optical viewer, such as an InGaAs camera or other such device.
  • a NIR optical viewer such as an InGaAs camera or other such device.
  • CNTs within such a suspension may previously have been subjected to separation and/or chemical derivatization techniques to generate homogenous and/or designer mixtures of CNTs.
  • a further step of thermal and/or chemical defunctionalization is used to cause the CNTs to revert back to their original underivatized state [ Bahr et al., J. Mater. Chem., 2002, 12, 1952-1958 ].
  • the suspension of CNTs generally has the CNTs dispersed in a suitable solvent medium. As described above, there is considerable variety in the selection of such media. Often, a surfactant is added to provide for or enhance the suspension of CNTs.
  • the process of forming a mixture of surfactant-suspended carbon nanotubes comprises a homogenizing step.
  • a homogenizing step can be any method which suitably homogenizes the mixture and renders at least some of the carbon nanotubes encapsulated in micellar-like assemblies.
  • the process of forming an mixture of surfactant-suspended carbon nanotubes further comprises ultrasonic assistance.
  • Ultrasonic assistance can be provided by either an ultrasonic bath or an ultrasonic hom sonicator, typically operating at a power from between about 200 W to about 600 W. The duration of such ultrasonic assistance typically ranges from about 1 min to about 20 min.
  • the mixture of surfactant-suspended carbon nanotubes is centrifuged to separate the surfactant-suspended nanotube material from other material.
  • the other material gravitates to the bottom and the surfactant-suspended carbon nanotubes are decanted.
  • the centrifugation is provided by an ultracentrifuge, and centrifugation is performed with an intensity which ranges generally from about 10,000 rpm to about 90,000 rpm, and for a duration which ranges generally from about 1 hour to about 6 hour.
  • one or more additional materials are added to the suspension of CNTs (the ink).
  • additional materials may include, dyes, binders, traditional fluorescent inks, magnetic materials, nanoparticles, or other materials used in the formulation of inks.
  • Surfaces or substrates include but are not limited to, paper, natural or synthetic fibers, metals, polymeric materials, ceramics, glasses, etc.
  • the surface is pretreated to facilitate adhesion of the ink.
  • Such pretreatments can be of a chemical (e.g., etching) or physical (e.g., plasma) nature.
  • Depositing the suspension of CNTs, as nanotube ink, onto a surface can be by way of any number of standard printing techniques. Such techniques include, but are not limited to, inkjet printing, screen printing, lithographic techniques, brushing, spraying, flowing ink pens, stamping, and combinations thereof.
  • such deposition can generally be in some patterned form such as words and/or shapes and symbols. In some embodiments, however, this nanotube ink is invisible to the naked eye.
  • Solvent removal generally involves an evaporative process. Such evaporative processes can be facilitated by heat, vacuum, and/or other processes.
  • an additional treatment is applied to the deposited ink.
  • Such additional treatments generally serve to protect the integrity of the words, shapes or symbols printed on a surface.
  • Such treatments may comprise a lamination, e.g., the deposition of a polymer or glass film over the deposited ink, wherein the deposited polymer of glass is transparent to both the excitation and emission wavelengths required to induce and detect fluorescence.
  • Irradiation of the deposited ink can be done with a variety of visible light sources. Such sources provide the excitation required for fluorescence and can be monochromatic or polychromatic in nature.
  • the excitation source is a laser. In some embodiments, the excitation source has a wavelength near or above 750 nm so as to be essentially invisible itself.
  • Viewing or detecting the fluorescent emission which has a frequency in the near infrared region of the EM spectrum, is generally done with an near infrared viewer or camera, such as an InGaAs camera or imager. It is generally not necessary, in the case of such inks, to resolve the spectral information, but this can be done with spectral imaging techniques when desired.
  • Methods of using CNTs as fluorescent identifiers rely on a knowledge of their photoluminescence properties and on techniques of incorporating and/or attaching such species to articles being marked or tagged.
  • such methods comprise the steps of: 1) providing a plurality of carbon nanotubes with unique, predetermined photoluminescence characteristics; and 2) incorporating the carbon nanotubes into articles as optical identifiers to form optically tagged articles.
  • Methods of using CNTs as fluorescent identifiers may further comprise the steps of: 3) irradiating the optically tagged articles with EM radiation; and 4) detecting photoluminescence from the carbon nanotubes for the purpose of identifying the optically tagged article.
  • CNTs compositions as markers generally requires a thorough understanding of their fluorescence properties.
  • the CNTs have been subjected to separation and/or chemical derivatization techniques to generate homogenous and/or designer mixtures of CNTs.
  • a further step of thermal and/or chemical defunctionalization is used to cause the CNTs to revert back to their original, underivatized state.
  • CNTs are synthesized as unique mixtures with unique fluorescent properties.
  • the fluorescence signature i.e., spectra
  • the fluorescence signature is carefully evaluated (i.e., predetermined) prior to marking or tagging articles or objects with the CNT fluorescent markers.
  • the CNT markers can be suspended in a solvent medium and applied as an ink (as above).
  • inks could contain multiple levels of information, wherein the shapes and/or words contain one level of information and additional levels of spectral information can be contained within the CNT marker compositions within the inks.
  • the markers are incorporated into a host material, wherein the host material is generally transparent to the excitation and emission wavelengths with which the CNTs fluoresce.
  • host materials are polymeric in nature, but they can also be ceramic or glass.
  • the CNT markers can be attached to an article either directly or in a host material.
  • the CNTs markers are incorporated into a host material that makes up an article or manufacture. For example, CNT markers could be blended into synthetic fibers which are then used to make articles of clothing.
  • the host material is liquid or fluid.
  • Irradiating the CNT fluorescent markers can be done with a variety of visible light sources. Such sources provide the excitation required for fluorescence and can be monochromatic or polychromatic in nature.
  • the excitation source is a laser. Suitable lasers sources include, but are not limited to, solid state diode lasers, HeNe lasers, Ar lasers, Kr lasers, and combinations thereof. In some embodiments, greater differentiation between sets of CNTs is afforded by the use of two or more discrete excitation wavelengths.
  • Detection of the emission can be qualitative in nature using spectral filters and such. More typically, however, detection is such that the spectral signature of the CNT markers is resolved, thus providing a high level of identification. Such spectral resolution is typically provided via spectroscopic gratings and NIR detectors. Suitable NIR detectors include, but are not limited to, photodiodes, photomultipliers, one- or two-dimensional photodiode arrays, or CCD or CMOS cameras based on semiconductors such as Si, Ge, or InGaAs.
  • nanotube inks and markers of the present invention include, but are not limited to, authentication of currency, security documents, passports, drivers licenses, pharmaceuticals, clothing and other consumer goods, books, art, and combinations thereof.
  • Such inks and markers can be used in quality or process control to identify batches.
  • Such inks or markers could also be used in leak detection or other similar applications. Additionally such inks and/or markers could be used in combination with other methods of authentication and identification such as magnetic devices, strips or labels.
  • This Example serves to illustrate a manner in which nanotube inks can be used according to some embodiments of the present invention.
  • SWNTs HiPco, Rice University were dispersed in an aqueous solution of SDS surfactant by an accepted process of high-shear mixing, ultrasonic agitation, and ultracentrifugation to create a nanotube ink.
  • the nanotube ink suspension was used to fill the reservoir of a flowing ink drafting pen, which was then used with a drafting template to write the characters "SWNT" onto a piece of office paper manufactured with a mild gloss coating.
  • the ink was then allowed to dry such that the resulting characters were approximately 5 mm in height and with a mass per character of approximately 10 nanograms. Such a small amount of SWNTs renders the ink invisible to the naked eye.
  • FIGURE 3 is an image generated by this NIR camera with an exposure of 6 video frames.
  • This Example serves to illustrate how CNT fluorescent markers can be integrated into host materials like polymers.
  • SWNTs HiPco, Rice University were blended into a poly(methylmethacrylate) (PMMA) matrix by ultrasonic dispersion of SWNTs into a xylene solution of PMMA. Evaporation of the xylene gave an optically clear solid containing fluorescent SWNTs.
  • PMMA poly(methylmethacrylate)
  • FIGURE 4 is a fluorescence spectrum of these SWNT markers which have been integrated into the PMMA host, wherein excitation is at 669 nm from a diode laser. Each peak indicated by an arrow corresponds to fluorescence from a different SWNT species within the sample.
  • This Example serves to illustrate excitation selectively within a CNT sample comprising a variety of CNT species.
  • SWNTs due to excitation selectivity, only a subset of SWNT types will be detectible with some "standard” excitation wavelength, such as 660 to 670 nm (the region where some common semiconductor diode lasers emit). Many nanotube types that might be present in the sample may be hidden or exhibit an emission intensity which is too low to be detected, especially where such peaks lie close to intense peaks activated with such "standard” excitation wavelengths. The application of additional excitation wavelengths can possibly reveal these typically “hidden” peaks (and the semiconducting SWNT species that produce them).
  • FIGURE 5 depicts the fluorescence spectra of the same SWNT sample (HiPco, Rice University), taken with three different excitation wavelengths, wherein excitation wavelengths are as follows: trace a, 669 nm; trace b, 573 nm; and trace c, 723 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Luminescent Compositions (AREA)
  • Credit Cards Or The Like (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Claims (56)

  1. Nanoröhren-Tinte, umfassend eine Suspension aus Kohlenstoff-Nanoröhren, die einen Durchmesser von weniger als etwa 3 nm haben, worin die Kohlenstoff-Nanoröhren so angelegt sind, dass sie Photolumineszenz eingehen können und eine Emission innerhalb eines vorbestimmten Wellenlängen-Bereichs ergeben, wenn sie mit Strahlung im sichtbaren Bereich des elektromagnetischen Spektrums bestrahlt werden, und worin die Nanoröhren-Tinte zur Haftung an einer SubstratOberfläche formuliert ist, wenn eine derartige Oberfläche mit der Nanoröhren-Tinte bedruckt wird.
  2. Nanoröhren-Tinte nach Anspruch 1, worin die Kohlenstoff-Nanoröhren gewählt sind aus einwandigen Kohlenstoff-Nanoröhren, vielwandigen Kohlenstoff-Nanoröhren, doppelwandigen Kohlenstoff-Nanoröhren und Kombinationen daraus.
  3. Nanoröhren-Tinte nach Anspruch 1, worin die Kohlenstoff-Nanoröhren einwandige Kohlenstoff-Nanoröhren umfassen.
  4. Nanoröhren-Tinte nach irgendeinem vorangehenden Anspruch, worin die Kohlenstoff-Nanoröhren in der Nanoröhren-Tinte im Wesentlichen homogen in Bezug auf ihre Photolumineszenz-Eigenschaften sind.
  5. Nanoröhren-Tinte nach irgendeinem vorangehenden Anspruch, worin die Kohlenstoff-Nanoröhren in der Nanoröhren-Tinte eine künstlich erzeugte Population von einwandigen Kohlenstoff-Nanoröhren verschiedener Nanoröhren-Spezies umfassen, wobei eine solche künstliche Erzeugung geschaffen wird durch Kohlenstoff-Nanoröhren-Trenn-Verfahren.
  6. Nanoröhren-Tinte nach Ansprüchen 1 bis 3, worin die Suspension ein flüssiges Medium umfasst, das gewählt ist aus Wasser, organischen Lösungsmitteln, überkritischen Flüssigkeiten und Kombinationen daraus.
  7. Nanoröhren-Tinte nach irgendeinem vorangehenden Anspruch, worin die Suspension weiter ein oberflächenaktives Mittel umfasst.
  8. Nanoröhren-Tinte nach irgendeinem vorangehenden Anspruch, umfassend weiter ein Additiv, das gewählt ist aus herkömmlichen fluoreszierenden Tinten, Farbstoffen, Bindemitteln, polymerem Material, Nanoteilchen, magnetischen Materialien und Kombinationen daraus.
  9. Nanoröhren-Tinte nach irgendeinem vorangehenden Anspruch, worin der vorbestimmte Bereich von Wellenlängen im nahen Infrarot-Bereich liegt.
  10. Zubereitung, umfassend
    (a) ein Substrat; und
    (b) eine Vielzahl von Kohlenstoff-Nanoröhren in Kontakt mit dem Substrat, worin die Kohlenstoff-Nanoröhren einen Durchmesser von weniger als etwa 3 nm haben und so angelegt sind, dass sie Photolumineszenz bei einem vorbestimmten Wellenlängen-Bereich eingehen können, und worin die Kohlenstoff-Nanoröhren Teil einer getrockneten Nanoröhren-Tinten-Formulierung sind, worin die Nanoröhren-Tinte zur Haftung an dem Substrat in ihrem getrockneten Zustand formuliert ist.
  11. Zubereitung nach Anspruch 10, weiter umfassend irgendeines oder mehrere der Merkmale, die offenbart sind in Anspruch 2 oder Anspruch 3 oder einer zulässigen Kombination daraus.
  12. Zubereitung nach Anspruch 10 oder Anspruch 11, worin das Substrat ein faserartiges Material umfasst.
  13. Zubereitung nach Anspruch 12, worin das faserartige Material gewählt ist aus Papier, synthetischen Polymeren, Baumwolle, Seide und Kombinationen daraus.
  14. Zubereitung nach Anspruch 10 oder Anspruch 11, worin das Substrat ein sicherheitsrelevanter Gegenstand ist.
  15. Zubereitung nach Anspruch 10 oder Anspruch 11, worin das Substrat ein Zahlungsmittel ist.
  16. Verfahren zum In-Kontakt-Bringen einer Nanoröhren-Tinte mit einem Substrat, umfassend ein Aufbringen einer Nanoröhren-Tinte, die eine Suspension von Kohlenstoff-Nanoröhren in einem flüssigen Medium umfaßt, worin die Kohlenstoff-Nanoröhren einen Durchmesser von weniger als etwa 3 nm und vorbestimmte Photolumineszenz-Eigenschaften aufweisen und worin die Suspension als eine Tinte formuliert ist, auf ein Substrat und ein Entfernen des flüssigen Mediums von der Nanoröhren-Tinte unter Zurücklassen einer getrockneten Nanoröhren-Tinte in Kontakt mit dem Substrat.
  17. Verfahren nach Anspruch 16, weiter umfassend irgendeines oder mehrere der Merkmale von irgendeinem der Ansprüche 2, 3, 7, 8, 12, 13 und 15 oder eine zulässige Kombination davon.
  18. Verfahren nach Anspruch 16 oder Anspruch 17, worin die Photolumineszenz-Eigenschaften qualitativ und/oder quantitativ vorbestimmt sind.
  19. Verfahren nach irgendeinem der Ansprüche 16 bis 18, worin das flüssige Medium gewählt ist aus Wasser, organischen Lösungsmitteln, überkritischen Flüssigkeiten und Kombinationen daraus.
  20. Verfahren nach irgendeinem der Ansprüche 16 bis 19, worin der Schritt des Aufbringens der Nanoröhren-Tinte auf das Substrat ein Aufbringungs-Verfahren umfasst, das gewählt ist aus Tinten-Sprühen, Tintenstrahl-Drucken, fließende Übertragung mit einem Tinten-Stift, Aufstempeln und Kombinationen daraus.
  21. Verfahren nach irgendeinem der Ansprüche 16 bis 20, worin das flüssige Medium mittels eines Verdampfungs-Verfahrens entfernt wird.
  22. Verfahren, umfassend ein Bestrahlen einer Zubereitung, die (i) ein Substrat und (ii) eine Vielzahl von Kohlenstoff-Nanoröhren in Kontakt mit dem Substrat umfasst, worin die Kohlenstoff-Nanoröhren so angelegt sind, dass sie Photolumineszenz bei einem vorbestimmten Wellenlängen-Bereich eingehen können, mit Strahlung eines Bereichs von Wellenlängen; und ein Nachweisen von Lumineszenz-Emission bei entsprechenden ersten van-Hove-Wellenlängen im nahen Infrarot-Bereich.
  23. Verfahren nach Anspruch 22, worin der Schritt des Bestrahlens durchgeführt wird mit Strahlung eines Bereichs von Wellenlängen, die zu den zweiten, dritten oder höheren optischen van-Hove-Übergängen in den Kohlenstoff-Nanoröhren passen.
  24. Verfahren nach Anspruch 22 oder Anspruch 23, worin der Schritt des Bestrahlens durchgeführt wird mit Strahlung eines Bereichs von Wellenlängen, die zu den optischen Plasmon-Resonanz-Übergängen in den Kohlenstoff-Nanoröhren passen.
  25. Verfahren nach irgendeinem der Ansprüche 22 bis 24, worin der Nachweis-Schritt durchgeführt wird mit einem Verfahren, das gewählt ist aus Nachweis mit einer Kamera für das nahe Infrarot, Spektral-Filtration und Kombinationen daraus.
  26. Verfahren nach Anspruch 25, worin der Nachweis mit einer Kamera für das nahe Infrarot die Verwendung einer Kamera umfasst, die gewählt ist aus einer InGaAs-Kamera, einer Si-Kamera und Kombinationen daraus.
  27. Verfahren nach irgendeinem der Ansprüche 22 bis 26, worin (a) das Substrat gewählt ist aus echten sicherheitsrelevanten Gegenständen, nachgemachten sicherheitsrelevanten Gegenständen und Kombinationen daraus; und (b) das Verfahren einen Mechanismus liefert, in dem zu unterscheiden ist, ob das Substrat ein echter sicherheitsrelevanter Gegen-stand oder ein gefälschter sicherheitsrelevanter Gegenstand ist.
  28. Verfahren nach irgendeinem der Ansprüche 20 bis 26, worin der sicherheitsrelevante Gegenstand ein Zahlungsmittel ist.
  29. Verfahren nach irgendeinem der Ansprüche 20 bis 26, worin (a) das Substrat ein Zahlungsmittel ist; und (b) das Verfahren einen Mechanismus liefert, in dem das Zahlungsmittel nach seiner Geldschein-Benennung zu unterscheiden ist.
  30. Verfahren nach irgendeinem der Ansprüche 20 bis 27, worin das Verfahren einen Mechanismus liefert, in dem Gegenstände für Identifikations-Zwecke ohne Kontakt spektral mit einem Balken-Code versehen werden.
  31. Verfahren, umfassend das Einarbeiten einer Mehrzahl von Kohlenstoff-Nanoröhren mit einzigartigen vorbestimmten charakteristischen Photolumineszenz-Eigenschaften in Gegenstände als optische Identifikations-Merkmale unter Bildung optisch markierter Gegenstände.
  32. Verfahren nach Anspruch 31, weiter umfassend
    (a) ein Bestrahlen der optisch markierten Gegenstände mit elektromagnetischer Strahlung; und
    (b) ein Nachweisen von Photolumineszenz von den Kohlenstoff-Nanoröhren für den Zweck eines Identifizierens des optisch markierten Gegenstandes.
  33. Verfahren nach Anspruch 32, worin der Schritt des Bestrahlens von einer Quelle Gebrauch macht, die Strahlung im sichtbaren Bereich des elektromagnetischen Spektrums emittiert.
  34. Verfahren nach Anspruch 32, worin der Schritt des Bestrahlens von einer Quelle Gebrauch macht, die Strahlung emittiert, die gewählt ist aus monochromatischer Strahlung und polychromatischer Strahlung.
  35. Verfahren nach Anspruch 33, worin die Quelle ein Laser ist.
  36. Verfahren nach Anspruch 32, worin der Schritt des Bestrahlens von mehreren diskreten Anregungs-Wellenlängen Gebrauch macht.
  37. Verfahren nach irgendeinem der Ansprüche 32 bis 36, worin die Photolumineszenz im nahen Infrarot-Bereich des elektromagnetischen Spek-trums liegt.
  38. Verfahren nach Anspruch 37, worin das Nachweisen von Photolumineszenz den Gebrauch einer Kamera umfasst, die gewählt ist aus einer InGaAs-Kamera, einer Si-Kamera und Kombinationen daraus.
  39. Verfahren nach irgendeinem der Ansprüche 31 bis 38, worin wenigstens einige der Kohlenstoff-Nanoröhren einen Prozeß zu ihrer Trennung auf der Basis einer charakteristischen Eigenschaft durchlaufen haben, die gewählt ist aus Länge, Durchmesser, Chiralität, Bandlücke und Kombinationen daraus.
  40. Verfahren nach irgendeinem der Ansprüche 31 bis 39, worin die Mehrzahl der Kohlenstoff-Nanoröhren im Wesentlichen homogen ist.
  41. Verfahren nach irgendeinem der Ansprüche 31 bis 39, worin die Photolumineszenz der Kohlenstoff-Nanoröhren abgeleitet ist von einer einzigartigen Kombination von Kohlenstoff-Nanoröhren schwankender charakteristischer Eigenschaften.
  42. Verfahren nach irgendeinem der Ansprüche 31 bis 40, worin der Schritt des Einarbeitens einen Anhaft-Mechanismus umfasst.
  43. Verfahren nach irgendeinem der Ansprüche 31 bis 42, worin die Gegenstände, die optisch markiert werden, gewählt sind aus Zahlungsmittel, sicherheitsrelevanter Gegenstand, Dokumenten, Pässen, pharmazeutischen Produkten, Fabrikations-Gegenständen und Kombinationen daraus.
  44. Verfahren nach irgendeinem der Ansprüche 31 bis 43, worin die Gegenstände optisch markiert werden für einen oder mehrere der folgenden Zwecke:
    (a) Zwecke der Bekämpfung von Produkt-Fälschung;
    (b) Zwecke der Bekämpfung von Produktpiraterie;
    (c) Zwecke der Inventarisierungs-Bewertung; und
    (d) Zwecke der Qualitätskontrolle.
  45. Verfahren, umfassend das Bestrahlen eines Gegenstandes, der Kohlenstoff-Nanoröhren umfaßt, mit elektromagnetischer Strahlung unter Bewirken einer Photolumineszenz von irgendwelchen vorhandenen halbleitenden Kohlenstoff-Nanoröhren und Vergleichen der Photolumineszenz mit charakteristischen Photolumineszenz-Eigenschaften von bekannten Kohlenstoff-Nanoröhren-Populationen für Zwecke einer Identifikation.
  46. Verfahren nach Anspruch 45, worin die Kohlenstoff-Nanoröhren so angelegt sind, dass sie Photolumineszenz eingehen können und eine Emission innerhalb einer zweiten vorbestimmten charakteristischen Photolumineszenz ergeben, wenn sie mit Strahlung aus einem Bereich des elektromagnetischen Spektrums bestrahlt werden, der gewählt ist aus sichtbarem Bereich, ultraviolettem Bereich und Kombinationen daraus, und weiter umfassend
    (a) Bestrahlen des Gegenstandes mit einer zweiten elektromagnetischen Strahlung unter Bewirken einer zweiten Photolumineszenz von den Kohlenstoff-Nanoröhren, worin die zweite elektromagnetische Strahlung von der ersten elektromagnetischen Strahlung verschieden ist; und
    (b) Vergleichen der zweiten Photolumineszenz mit den zweiten vorbestimmten charakteristischen Photolumineszenz-Eigenschaften für Zwecke einer Identifikation.
  47. Verfahren nach Anspruch 46, worin die zweite elektromagnetische Strahlung spektrale charakteristische Eigenschaften verschieden von der ersten elektromagnetischen Strahlung aufweist.
  48. Verfahren nach irgendeinem der Ansprüche 16 bis 47, worin die Kohlenstoff-Nanoröhren gewählt sind aus einwandigen Kohlenstoff-Nanoröhren, vielwandigen Kohlenstoff-Nanoröhren, doppelwandigen Kohlenstoff-Nanoröhren und Kombinationen daraus.
  49. Verfahren nach irgendeinem der Ansprüche 16 bis 48, worin die Kohlenstoff-Nanoröhren einwandige Kohlenstoff-Nanoröhren umfassen.
  50. Verfahren nach irgendeinem der Ansprüche 16 bis 49, worin die Kohlenstoff-Nanoröhren Nanoröhren umfassen, die Durchmesser von weniger als etwa 3 nm aufweisen.
  51. Verfahren nach irgendeinem der Ansprüche 31 bis 50, worin wenigstens einige der Kohlenstoff-Nanoröhren chemisch funktionalisiert wurden.
  52. Verfahren nach irgendeinem der Ansprüche 45 bis 51, worin die Schritte des Bestrahlens durchgeführt werden mit elektromagnetischer Strahlung, die Wellenlängen in einem Bereich des elektromagnetischen Spektrums umfasst, die gewählt sind aus sichtbarem Bereich, ultraviolettem Bereich und Kombinationen daraus.
  53. Verfahren nach irgendeinem der Ansprüche 45 bis 52, worin der Schritt des Bestrahlens durchgeführt wird mit Strahlung, die gewählt ist aus polychromatischer Strahlung, monochromatischer Strahlung und Kombinationen daraus.
  54. Verfahren nach irgendeinem der Ansprüche 45 bis 52, worin der Schritt des Bestrahlens durchgeführt wird mit wenigstens einer Laser-Quelle.
  55. Verfahren nach irgendeinem der Ansprüche 45 bis 54, worin die Photolumineszenz Emissions-Wellenlängen im nahen Infrarot-Bereich des elektromagnetischen Spektrums umfasst.
  56. Verfahren nach irgendeinem der Ansprüche 45 bis 55, worin der Schritt des Vergleichens eine Analyse der Photolumineszenz einschließt, worin die Analyse quantitativ und/oder qualitativ ist.
EP04809657A 2003-09-05 2004-09-02 Fluoreszierende sicherheitstinten und markierstoffe mit kohlenstoffnanoröhrchen Not-in-force EP1670868B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50039403P 2003-09-05 2003-09-05
PCT/US2004/028603 WO2005028577A2 (en) 2003-09-05 2004-09-02 Fluorescent security inks and markers comprising carbon nanotubes

Publications (2)

Publication Number Publication Date
EP1670868A2 EP1670868A2 (de) 2006-06-21
EP1670868B1 true EP1670868B1 (de) 2008-02-13

Family

ID=34375242

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04809657A Not-in-force EP1670868B1 (de) 2003-09-05 2004-09-02 Fluoreszierende sicherheitstinten und markierstoffe mit kohlenstoffnanoröhrchen

Country Status (7)

Country Link
US (2) US7682523B2 (de)
EP (1) EP1670868B1 (de)
AT (1) ATE386091T1 (de)
CA (1) CA2540864A1 (de)
DE (1) DE602004011793T2 (de)
HK (1) HK1091226A1 (de)
WO (1) WO2005028577A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014114690A1 (de) 2013-01-23 2014-07-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Markierungszusammensetzung
EP3847038B1 (de) 2018-09-07 2023-06-14 Giesecke+Devrient Currency Technology GmbH Sicherheitselement

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8512718B2 (en) 2000-07-03 2013-08-20 Foamix Ltd. Pharmaceutical composition for topical application
US7700076B2 (en) 2002-10-25 2010-04-20 Foamix, Ltd. Penetrating pharmaceutical foam
US8486376B2 (en) 2002-10-25 2013-07-16 Foamix Ltd. Moisturizing foam containing lanolin
ATE551596T1 (de) 2003-09-22 2012-04-15 Univ Maryland Arzneistoffauthentisierung
US20060283931A1 (en) * 2003-09-22 2006-12-21 University Of Maryland, Baltimore Product authentication
US20080152889A1 (en) * 2005-05-10 2008-06-26 Hans-Achim Brand Nano-Labeling
EP2059479B1 (de) 2006-08-30 2017-11-15 Northwestern University Monodisperse einzelwand-kohlenstoffnanoröhrchen-populationen und entsprechende verfahren zu ihrer erzeugung
EP2101910A2 (de) * 2006-12-05 2009-09-23 University Of Florida Research Foundation, Inc. Systeme und verfahren auf grundlage von strahlungsinduzierter erhitzung oder zündung funktionalisierter fullerene
US8182552B2 (en) 2006-12-28 2012-05-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7740666B2 (en) 2006-12-28 2010-06-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7674300B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US8636982B2 (en) 2007-08-07 2014-01-28 Foamix Ltd. Wax foamable vehicle and pharmaceutical compositions thereof
WO2009072007A2 (en) 2007-12-07 2009-06-11 Foamix Ltd. Carriers, formulations, methods for formulating unstable active agents for external application and uses thereof
US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
US7727578B2 (en) 2007-12-27 2010-06-01 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
US7960027B2 (en) 2008-01-28 2011-06-14 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
US20100072458A1 (en) * 2008-08-05 2010-03-25 Green Alexander A Methods For Sorting Nanotubes By Wall Number
WO2010071652A1 (en) * 2008-12-18 2010-06-24 Hewlett-Packard Development Company, L.P. Carbon nanotube film
US8253536B2 (en) * 2009-04-22 2012-08-28 Simon Fraser University Security document with electroactive polymer power source and nano-optical display
CN102483378B (zh) * 2009-07-20 2014-06-18 Bt成像股份有限公司 半导体材料光致发光测量中掺杂浓度和少数载流子寿命分离
DE102010028608B4 (de) * 2010-05-05 2014-02-06 Witte Safemark Gmbh Mehrschichtiges Halbzeug zur Herstellung von Etiketten, Etikett zum Kennzeichnen einer Ware und Verfahren zum Herstellen eines mehrschichtigen Halbzeugs
US8778226B2 (en) 2010-09-30 2014-07-15 Ut-Battelle, Llc Luminescent systems based on the isolation of conjugated PI systems and edge charge compensation with polar molecules on a charged nanostructured surface
WO2012068180A1 (en) * 2010-11-15 2012-05-24 Vorbeck Materials Corp. Method of making conductive images
GB201110508D0 (en) * 2011-06-22 2011-08-03 Smartwater Technology Ltd A method for applying a marker to an electrical cable during manufacture
US8552381B2 (en) * 2011-07-08 2013-10-08 The Johns Hopkins University Agile IR scene projector
US8895158B2 (en) 2011-08-10 2014-11-25 The Johns Hopkins University Nanoparticle taggants for explosive precursors
PL222519B1 (pl) * 2011-09-19 2016-08-31 Inst Tech Materiałów Elektronicznych Sposób otrzymywania warstw grafenowych i pasta zawierająca nanopłatki grafenowe
CN102555317B (zh) * 2012-01-05 2016-02-24 深圳市宜丽环保科技有限公司 一种磁性防伪保健材料及其生产方法
US9006667B2 (en) * 2012-03-30 2015-04-14 International Business Machines Corporation Surface-modified fluorescent carbon nanotubes for product verification
US8735852B2 (en) 2012-04-16 2014-05-27 International Business Machines Corporation Matrix-incorporated fluorescent silica for anti-counterfeiting
WO2013175260A1 (en) 2012-05-25 2013-11-28 Indian Institute Of Technology Madras Luminescent graphene patterns
CN103487139B (zh) * 2012-06-12 2015-07-29 清华大学 光强分布的测量方法
CN103487141B (zh) * 2012-06-12 2015-07-29 清华大学 光强分布的检测***
CN103514802A (zh) * 2012-06-29 2014-01-15 上海崇立文化传播有限公司 一种利用二维点印码在商品包装上进行防伪技术
US8796642B2 (en) 2012-11-29 2014-08-05 International Business Machines Corporation Carbon nanotubes with fluorescent surfactant
US8766258B1 (en) 2012-12-12 2014-07-01 International Business Machines Corporation Authentication using graphene based devices as physical unclonable functions
FR3000801A1 (fr) * 2013-01-09 2014-07-11 Commissariat Energie Atomique Procede d'identification d'un materiau
US10358569B2 (en) * 2013-03-15 2019-07-23 South Dakota Board Of Regents Systems and methods for printing patterns using near infrared upconverting inks
US9360589B1 (en) * 2013-04-23 2016-06-07 Lockheed Martin Corporation Articles containing non-visible identifying marks formed from carbon nanomaterials and methods utilizing the same
US9179542B2 (en) * 2013-04-23 2015-11-03 Lockheed Martin Corporation Articles containing non-visible identifying marks formed from nanomaterials and methods utilizing the same
US11267979B2 (en) 2014-09-29 2022-03-08 Northwestern University Supramolecular encrypted fluorescent security ink compositions
US9704080B2 (en) * 2014-12-18 2017-07-11 Piotr Nawrocki Security element for sensitive documents and a sensitive document
GB201501342D0 (en) * 2015-01-27 2015-03-11 Univ Lancaster Improvements relating to the authentication of physical entities
WO2016134339A1 (en) * 2015-02-19 2016-08-25 South Dakota Board Of Regents Reader apparatus for upconverting nanoparticle ink printed images
GB201502935D0 (en) * 2015-02-23 2015-04-08 Datalase Ltd Ink for laser imaging
RU2609185C1 (ru) * 2015-09-23 2017-01-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Способ исследования деформаций и напряжений с помощью газоанализатора
CN108349728B (zh) * 2015-10-01 2021-12-24 株式会社名城毫微碳 碳纳米管的制造装置和制造方法
US9816892B2 (en) * 2016-01-14 2017-11-14 The Boeing Company Systems and methods for fuel leak detection
WO2017125951A1 (en) 2016-01-22 2017-07-27 Council Of Scientific And Industrial Research A lanthanum based upconverting microrods and application thereof
US10620558B2 (en) 2016-03-10 2020-04-14 Hp Indigo B.V. Security liquid electrostatic ink composition
US9626540B1 (en) * 2016-04-07 2017-04-18 Vitaly Talyansky Secure wire marking for identification and authentication
US10546303B2 (en) 2017-03-21 2020-01-28 International Business Machines Corporation Optically visible carbon nanotube with nanocrystals decoration as unique ID
CN108285687B (zh) * 2018-04-03 2021-03-23 沈阳大学 一种碳基纳米粒子多色荧光墨水的制备方法
DE102019127948A1 (de) * 2019-10-16 2021-04-22 Bundesrepublik Deutschland, vertreten durch den Bundesminister für Wirtschaft und Energie, dieser vertreten durch den Präsidenten der Bundesanstalt für Materialforschung und –prüfung (BAM) Verfahren zur Identitätsüberprüfung eines Erzeugnisses und ein Erzeugnis mit einem Prüfabschnitt
US11584140B2 (en) 2020-07-31 2023-02-21 Kyocera Document Solutions Inc. Concealable marking

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310591A (en) * 1979-01-30 1982-01-12 E. I. Du Pont De Nemours And Company Security paper from film-fibril sheets
US4558224A (en) 1983-05-26 1985-12-10 Imperial Inc. Counterfeit bill warning device
US5374415A (en) 1993-02-03 1994-12-20 General Motors Corporation Method for forming carbon fibers
US6035914A (en) 1993-10-22 2000-03-14 Martin Marietta Energy Systems Inc. Counterfeit-resistant materials and a method and apparatus for authenticating materials
US6330939B1 (en) * 1996-11-14 2001-12-18 George W. Pratt Device and method for determining the authenticity of documents
JP4069532B2 (ja) 1999-01-11 2008-04-02 松下電器産業株式会社 カーボンインキ、電子放出素子、電子放出素子の製造方法、および画像表示装置
US6610351B2 (en) * 2000-04-12 2003-08-26 Quantag Systems, Inc. Raman-active taggants and their recognition
IL142254A0 (en) * 2001-03-26 2002-03-10 Univ Ben Gurion Method for the preparation of stable suspensions of single carbon nanotubes
US20030027870A1 (en) * 2001-05-15 2003-02-06 Wilson Stephen R. Fullerene derivatives that modulate nitric oxide synthase and clamodulin activity
JP2003026981A (ja) * 2001-07-12 2003-01-29 Tohoku Ricoh Co Ltd 孔版印刷用油中水型エマルションインク、および該インクを用いた印刷方法
WO2003084869A2 (en) * 2002-03-04 2003-10-16 William Marsh Rice University Method for separating single-wall carbon nanotubes and compositions thereof
US7097788B2 (en) * 2003-06-30 2006-08-29 The Board Of Trustees Of The University Of Illinois Conducting inks
JP2007500669A (ja) 2003-07-29 2007-01-18 ウィリアム・マーシュ・ライス・ユニバーシティ カーボンナノチューブの選択的官能化

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014114690A1 (de) 2013-01-23 2014-07-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Markierungszusammensetzung
DE102013100662B4 (de) 2013-01-23 2018-09-20 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Markierungszusammensetzung, deren Verwendung und diese enthaltende Gegenstände
US11421125B2 (en) 2013-01-23 2022-08-23 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Marking composition
EP3847038B1 (de) 2018-09-07 2023-06-14 Giesecke+Devrient Currency Technology GmbH Sicherheitselement

Also Published As

Publication number Publication date
DE602004011793D1 (de) 2008-03-27
WO2005028577A3 (en) 2005-05-19
ATE386091T1 (de) 2008-03-15
US7682523B2 (en) 2010-03-23
HK1091226A1 (en) 2007-01-12
DE602004011793T2 (de) 2009-02-12
EP1670868A2 (de) 2006-06-21
US20100209632A1 (en) 2010-08-19
CA2540864A1 (en) 2005-03-31
WO2005028577A2 (en) 2005-03-31
US20070062411A1 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
EP1670868B1 (de) Fluoreszierende sicherheitstinten und markierstoffe mit kohlenstoffnanoröhrchen
Liu et al. Hair-derived carbon dots toward versatile multidimensional fluorescent materials
Chen et al. Synthesis and unique photoluminescence properties of nitrogen‐rich quantum dots and their applications
Tomonari et al. Solubilization of single‐walled carbon nanotubes by using polycyclic aromatic ammonium amphiphiles in water—strategy for the design of high‐performance solubilizers
US5853464A (en) Pigment compositions
Li et al. Luminescent films functionalized with cellulose nanofibrils/CdTe quantum dots for anti-counterfeiting applications
Lebedkin et al. Photophysics of carbon nanotubes in organic polymer-toluene dispersions: Emission and excitation satellites and relaxation pathways
Russo et al. Blue and green luminescent carbon nanodots from controllable fuel-rich flame reactors
WO2010138914A1 (en) Sers-active particles or substances and uses thereof
Lutsyk et al. A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes
Böhmler et al. Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna
Ahmad et al. Applications of the static quenching of rhodamine B by carbon nanotubes
Sun Carbon Dots
Ahmad Makinudin et al. Metal phthalocyanine: fullerene composite nanotubes via templating method for enhanced properties
Hong et al. Luminescent properties of carbon dots originated from pine pollen for anti-counterfeiting application
US8803094B2 (en) Carbon nanotube compositions and methods of making and using same
Ullal et al. Eco-friendly ink formulation of column purified carbon dots from GABA for anticounterfeiting applications
Sandeep et al. Transforming human hair fibers into carbon dots: Utilization in flexible films, fingerprint detection, counterfeit prevention and Fe3+ detection
Andrade et al. Polyelectrolyte‐Assisted Noncovalent Functionalization of Carbon Nanotubes with Ordered Self‐Assemblies of a Water‐Soluble Porphyrin
Swapna et al. Order fluctuation induced tunable light emission from carbon nanosystem
Zhang et al. Strong visible light emission from well-aligned multiwalled carbon nanotube films under infrared laser irradiation
Luo et al. Solvent-free pyrolysis synthesis of solid-state fluorescent carbon dots: Optical properties and latent fingerprint imaging
Asada et al. Chromatographic Length Separation and Photoluminescence Study on DNA‐Wrapped Single‐Wall and Double‐Wall Carbon Nanotubes
Feng et al. Photoinduced anisotropic response of azobenzene chromophore functionalized multiwalled carbon nanotubes
Chinmayi et al. Pistachio shell-derived carbon dots and their screen-printing formulation for anticounterfeiting applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060331

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060713

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1091226

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602004011793

Country of ref document: DE

Date of ref document: 20080327

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080524

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1091226

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080714

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080513

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080513

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080902

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120925

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120921

Year of fee payment: 9

Ref country code: FR

Payment date: 20121001

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120927

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004011793

Country of ref document: DE

Effective date: 20140401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930